
Android Inter-App Communication Threats and
Detection Techniques

Shweta Bhandaria,∗, Wafa Ben Jaballahb, Vineeta Jaina, Vijay Laxmia, Akka
Zemmaric, Manoj Singh Gaura, Mohamed Mosbahc, Mauro Contid

aMalaviya National Institute of Technology Jaipur (MNIT Jaipur)
bOrange Labs, Paris, France

cLaBRI - University of Bordeaux, CNRS, 33405 Talence cedex, FRANCE
dUniversity of Padua, Italy

Abstract

With the digital breakthrough, smart phones have become very essential com-

ponent for many routine tasks like shopping, paying bills, transferring money,

instant messaging, emails etc. Mobile devices are very attractive attack surface

for cyber thieves as they hold personal details (accounts, locations, contacts,

photos) and have potential capabilities for eavesdropping (with cameras/micro-

phone, wireless connections). Android, being the most popular, is the target of

malicious hackers who are trying to use Android app as a tool to break into and

control device. Android malware authors use many anti-analysis techniques to

hide from analysis tools. Academic researchers and commercial anti-malware

companies are putting great effort to detect such malicious apps. They are

making use of the combinations of static, dynamic and behavior based analysis

techniques.

Despite of all the security mechanisms provided by Android, apps can carry

out malicious actions through inter-app communication. One such inter-app

communication threats is collusion. In collusion malicious functionality is di-

vided across multiple apps. Each participating app accomplish its part and

communicate information to another app through Inter Component Communi-

cation (ICC). ICC does not require any special permissions. Also there is no

∗Corresponding author. Mobile: +91-7597385348
Email address: er.shwetabhandari@gmail.com (Shweta Bhandari)

Preprint submitted to Computer & Security September 22, 2017

ar
X

iv
:1

61
1.

10
07

6v
2

 [
cs

.C
R

]
 2

1
Se

p
20

17

compulsion to inform user about the communication. Each participating app

needs to request a minimal set of privileges, which may make it appear benign

to current state-of-the-art techniques that analyze one app at a time.

There are many surveys on app analysis techniques in Android; however

they focus on single-app analysis. This survey highlights several inter-app com-

munication threats, in particular collusion among multiple-apps. In this paper,

we present Android vulnerabilities that may be exploited for carrying privilege

escalation attacks, privacy leakage and collusion attacks. We cover the exist-

ing threat analysis, scenarios, and a detailed comparison of tools for intra and

inter-app analysis. To the best of our knowledge this is the first survey on inter-

app communication threats, app collusion and state-of-the-art detection tools

in Android.

Keywords: App Collusion, Privacy Leakage, Inter Component

Communication, Inter App Communication, Multi App Analysis

1. Introduction

Nowadays, mobile devices such as smartphones, are widely used for social

networking, online shopping, banking, etc. Mobile applications are increasingly

playing an essential role in our daily life, making the safety guards in mobile

operating systems an important concern for researchers and practitioners. An-

droid is the most popular mobile operating system, with 84% of the worldwide

smartphone sales to end users in first quarter of 2016 [1], and over 50 billion

app downloads so far. The large popularity of Android and its open nature

made it a primary target of hackers who are now developing malicious apps at

an industrial scale [2–9].

An Android app consists of components and uses a special interaction mech-

anism to perform Inter-Component Communication (ICC). ICC enables mod-

ular design and reuse of functionality across apps and app components. In

Android, ICC communication model is implemented as a message-passing sys-

tem, where messages are encapsulated as Intent objects. Through Intents, an

2

app (or app component) can utilize functionality exposed by another app (or

app component), e.g. by passing a message to the browser to render content

or to a navigation app to display a location and provide directions to it. This

light communication model has been used by developers to design rich applica-

tion scenarios by reusing existing functionality. Unfortunately, because many

Android developers have limited expertise in security, the ICC mechanism has

brought a number of vulnerabilities [2, 3, 10–13]. Some of the ICC vulnerabili-

ties viz. Activity hijacking vulnerability (where a malicious Activity is launched

in place of the intended Activity), Intent spoofing vulnerability (where a ma-

licious app sends Intents to an exported component which originally does not

expect Intents from that app) etc.

Different research efforts have investigated weaknesses from various perspec-

tives [14–20], including detection of information leaks, analysis of the least-

privilege principle, and enhancements to Android protection mechanisms. De-

spite the significant progress, such security techniques are substantially intended

to detect and mitigate vulnerabilities in a single app [10, 21–24], but fail to

identify vulnerabilities that arise due to the interaction of multiple apps. Vul-

nerabilities due to the interaction of multiple apps, such as collusion attacks

and privilege escalation chaining, cannot be detected by techniques that ana-

lyze a single app in isolation. Thus, there is a pressing need for security analysis

techniques in such rapidly growing domains to take into account such commu-

nication vulnerabilities.

The principle of malware collusion has been recently described in a few

research papers [11, 17–19, 25–30] as the next step that malware writers may

evolve into. Collusion refers to the scenario where two or more applications

possibly (not necessary) developed by the same developer, interact with each

other to perform malicious tasks. The danger of malware collusion is that each

colluding malware only needs to request a minimal set of privileges, which may

make it appear benign under single-app analysis mechanisms [4, 17, 18, 30]. The

scenario could be think of as two utility apps one for cab booking and another is a

browser app. Now cab booking app needs to access client’s location and browser

3

app needs to connect with the internet. Lets assume that both the apps are

developed by same adversary and he intentionally puts a communication channel

between these two apps. Whenever user invokes cab booking app, along with

serving to the user it also sends location information to the browser app. Since

browser have the access to internet, it can easily send the location information

of the user to any command and control (C&C) server. Malware writers have

strong incentives to write colluding malware.

The wide usage of ICC calls in benign app pairs make accurate classification

quite challenging [4, 18, 31]. Academia and industry researchers have proposed

solutions and frameworks to analyze, and detect the collusion attacks [3, 14,

15, 17–20, 26, 30, 32, 33]. Some of these are even available as open-source

as [3, 15, 18, 33]. The solutions can be characterized using three broad types

of analysis: Static analysis, dynamic analysis and policy enforcement based

analysis.

In [18], authors propose a tool named DIALDroid, as the most recent state-

of-the-art inter-app ICC analysis tool for large scale detection of collusion and

privilege escalation. They also provide the first inter-app collusion real-apps

benchmark of 30 apps. Till now, this is the most efficient tool available in the

literature for inter-app vulnerability detection. MR-Droid [17] aims to detect

inter-app communication threats specifically intent hijacking, intent spoofing

and collusion. It proposes a MapReduce based framework to scale up compo-

sitional app analysis. DidFail [33] is another state-of-the art to detect intra-

component and inter-component information flow in a set of apps. In [26],

authors propose XMandroid, that is the first approach for detecting collusion

attacks in Android platforms. It claims to identify privilege escalation in case

of pending intents and transmission channels between dynamically built compo-

nents such as broadcast receivers. FUSE [14] is a tool that starts by single-app

static analysis accompanied with lint tool to mitigate limitations of static anal-

ysis followed by multi-app information flow analysis. IccTA [15] is a static taint

analyzer to detect privacy leaks between components in Android apps. If com-

bined with APKCombiner [3], it can also detect inter-app leakage paths.

4

This survey paper aims to present a general review about inter-app com-

munication threats in particular, collusion attacks in Android framework. It

provides a better understanding of the key research challenges. We present

an abstract definition of collusion and highlight its origin. Along the way, we

cover the Android model, the communication and permission model of Android

and the main vulnerabilities that lead to a possible collusion attack. We also

cover the existing threat analysis and a detailed comparison of techniques for

intra and inter-app analysis. This review gives an insight into the strengths

and shortcomings of the known tools and provides a clear comparison for the

researchers between these tools. Finally, we present an insight into our future

research directions.

This survey paper is organized as follows. Section 2 presents Android model.

In Section 3, we present the Inter Process Communication (IPC) model as one

of the key features of programming model in Android. Then, in Section 4, we

present Android security risks. In Section 5, we elaborate collusion by provid-

ing a formal definition and cases where collusion attack is possible followed by

the main challenges to detect collusion attack. In Section 6, we review the in-

ter application analysis. Section 7 recalls state-of-art approaches, a thorough

comparison between them for collusion detection and lessons learned. In Sec-

tion 8, we conclude the paper and we present an insight into our future research

directions.

2. Android

Android is developed under the Android Open Source Project (AOSP), pro-

moted by the Open Handset Alliance (OHA) and maintained by Google [34].

Android is developed on top of Linux kernel due to its robust driver model,

efficient memory, process management, and networking support for the core

services. Linux Kernel is customized specifically for the embedded environment

consisting of limited resources.

Android apps are written in java; however, the native code and shared li-

5

braries are developed in C/C++ to support high performance [35]. There are

two runtime environments available in Android viz. Dalvik Virtual Machine

(DVM) and Android Runtime (ART). In DVM, dex file of the Android apps

are translated to their respective native representations on demand using just-

in-time (JIT) compiler. However, in case of ART, ahead-of-time (AOT) com-

pilation is performed i.e. at the time of installation itself apps are compiled to

a ready-to-run state [36]. Therefore, ART massively improves the performance

and battery life of Android device.

Once the OS boot completes, a process known as zygote (parent of all apps)

initializes. As zygote starts, it preloads all necessary Java classes and resources,

starts System Server and opens a socket /dev/socket/zygote to listen for re-

quests for starting applications. Thus zygote process expedites the app launch-

ing process.

In the following, we present the main Android app composition followed by

Android security model viz. application signing, application permission, and

sandboxed environment.

2.1. Android App Composition

Android applications are distributed as binaries in a regular format based

on zip files with .apk as file extension. It usually contains the following files and

directories [37].

1. Manifest file: Manifest file is an XML configuration file (Android-

Manifest.xml) one per app. It is used to declare various components

of an application, their encapsulation (public or private) and the per-

missions required by the app. Android APIs offer programmatic ac-

cess to mobile device-specific features such as the GPS, vibrator, ad-

dress book, data connection, calling, SMS, camera, etc. These APIs

are usually protected by permissions. For example the Vibrator class, to

use the android.os.Vibrator.vibrate(long milliseconds) function,

which starts the phone vibrator for a number of milliseconds. The permis-

6

sion android.permission.VIBRATE must be declared in the app manifest

file.

2. dex file: A Dalvik executable (classes.dex), which contains the bytecode

of the program.

3. res directory: Resources including string literals, their translations,

and references to binary resources.

4. layout directory: XML layouts describing user interface elements.

5. lib directory: The directory containing the compiled code that is spe-

cific to a software layer of a processor.

6. assets directory: The directory containing applications assets, which

can be retrieved by AssetManager.

An android app is composed of any combination of the following four compo-

nents:

• Activities: The Android libraries include a set of GUI components specif-

ically built for the interfaces of mobile devices, which have small screens

and low power consumption. One type of such component is Activities,

that represent screens which are visible to the user;

• Services: They perform background computation;

• Content Providers: They act as database-like data stores;

• Broadcast Receivers: They handle notifications sent to multiple targets.

2.2. Android Security Model

Android security depends on restricting apps by combining app signing,

sandboxing, and permissions.

2.2.1. App Signing

App signing is a prerequisite for inclusion in the official Android market

(Google Play Store). App signature is the point of trust between Google and

the third party developers to ensure app integrity and the developer reputation.

7

Most developers use self-signed certificates that they can generate themselves,

which do not imply any validation of the identity of the developer. Instead, they

enable seamless updates to applications and enable data reuse among sibling

apps created by the same developer [38].

2.2.2. App Permission

App permission model regulates how applications access certain sensitive re-

sources, such as users’ personal information or sensor data (e.g., camera, GPS,

etc.). For instance, an application must have the READ CONTACTS per-

mission in order to read entries in a user’s phone [39]. System permissions

are divided into four protection levels. The two most relevant levels to this

manuscript are normal and dangerous permissions. Normal permissions require

when the app needs to access data or resources outside the app’s sandbox, but

involves very little risk to the user’s privacy or the operation of other apps. For

example, permission to set the alarm is a normal permission. Dangerous per-

missions are required when the app wants data or resources that involve user’s

private information or could potentially affect user’s stored data or the operation

of other apps. For example, the ability to read user’s contacts is a dangerous

permission [40]. Applications can also define their own permissions in order to

restrict the use of components in an application that can perform sensitive tasks.

The third level of permission is Signature permission that is used by the devel-

opers to transfer resources and data between their own applications meanwhile

safeguarding them against applications of other developers [41]. Lastly, Signa-

tureOrSystem permission which is high-level permission that includes changing

security settings, installing an application, etc. These permissions are main-

tained by OS developers and manufacturers. They are granted by System to

those applications which are either contained in the system image or signed by

the same certificate as of system image [42].

App permissions play important role in malware detection. There exist

rich literature embodies tools that attempt to identify malicious applications

through their permission requests [12, 43, 44]. Researchers have also developed

8

static and dynamic analysis tools to analyze Android permission specifications

[41, 42, 45]. Permission enforcement techniques are also proposed [39].

2.2.3. Sandboxed Environment

Android apps are executed in a sandboxed environment to protect the sys-

tem, the user data, the developer apps, the device, the network, and the hosted

applications, from malware [41]. Each app process is protected with an assigned

unique id (UID) within an isolated sandbox. The sandboxing restrains other

apps or their system services from interfering the app [46]. Android protects

network access by implementing a feature Paranoid Network Security, a feature

to control Wi-Fi, Bluetooth and Internet access within the groups. If an app

has permission for a network resource (e.g., Bluetooth), the app process is as-

signed to the corresponding network access id. Thus, apart from UID, a process

may be assigned one or more group id (GIDs). An app must contain a PKI

certificate signed with the developer key. App signing procedure places an app

into an isolated sandbox assigning it an unique UID. If the certificate of an app

A matches with an already installed app B on the device, Android assigns the

same UID (i.e., sandbox) to apps A and B, permitting them to share their pri-

vate files and the manifest defined permissions. This unintended sharing can be

exploited by the malware writers as naive developers may generate two certifi-

cates. It is advisable for the developers to keep their certificates private to avoid

their misuse. The Android sandbox relies on, and augments, the Linux kernel

isolation facilities. While sandboxing is a central security feature, it comes at

the expense of interoperability. In many common situations, apps require the

ability to interact. For example, the browser app should be capable of launching

the Google Play app if the user points toward the Google Play website [47].

3. Inter-Component Communication

Inter Process Communication (IPC) is known as Inter Component Commu-

nication (ICC) in Android [48]. It is the key features of Android programming

model. It allows a component of an application to access user’s data and can

9

transfer it to another component of same or other application within the same

device, or to an external server. ICC helps to eliminate duplication of func-

tionality in different applications. Developers can leverage data and services

provided by other applications. For example, a cab booking application can ask

Google Maps for client’s or driver’s location information. This communication

between applications can reduce developer’s burden and facilitate functionality

reuse.

To support inter-component communication, there exists conventional meth-

ods called overt channels and non-conventional methods called covert channels.

Covert channels are intentionally used to hide the messages or communication.

Any app using covert channel as a medium of communication can be suspected

as malicious. Although overt channels are perfectly benign and widely used for

communication in Android apps. The main focus of this paper is to show that

how a set of apps appear perfectly benign can carry out a threat. Therefore

in this section, we will elaborate overt channels and provide glimpse of covert

channels.

3.1. Overt channel

Overt channel is an unconcealed medium provided by Android framework

for communication. In the following, we present the main channels that come

under this such as Intents, Content Providers, Shared Preferences, External

Storage, and Remote Method Calls.

3.1.1. Intents

Intents enable components of an application to invoke other components of

the same or different applications. It is also used to pass data between differ-

ent components through Bundles. It optionally contains destination component

name or action string, category and data. Intents are the preferred message

passing mechanism for asynchronous IPC in Android. The Android API defines

methods called ICC methods that can accept intents and perform actions ac-

cordingly. For example, startActivity(Intent), startService(Intent) etc.

10

ICC is widely facilitated through Intents. In [15], authors highlighted that

2955 /33258 applications use ICC through intents. Intents can be sent to three

out of four components. Based on destination of ICC calls, they are categorized

into two broad categories:

Implicit Intent

Implicit intents are used when the receiver of the intent is not fixed [15].

Whenever an app wants to send the intent to all the registered components

(registration is done using an intent filter in the manifest file) within and across

the installed apps. When an app invokes API call with implicit intent then

depending on the type of component, framework serves the calls.

• If the calls are intended for activity, then users are asked for the choice.

• If the calls are intended for service, then the framework will randomly

choose one of the registered services.

• If the calls are intended for broadcast receivers, then the framework de-

livers to all the receivers.

In the following, we present a sample code of implicit intent where

"com.example.msgSendFirst" is the action string:

/**

* Implicit Intent

*/

Intent intent = new Intent("com.exampke.msgSendFirst");

startActivity(intent);

Explicit Intent

Explicit intents are used when receiver of the intent is fixed. When an

app invokes API call with explicit intent, the framework will deliver the intent

to the component that is mentioned in the intent. A Sample code of explicit

11

intent where "this, LoginActivity.class" is the address of the destination

component:

/**

* Explicit Intent

*/

Intent intent = new Intent(this,LoginActivity.class);

startActivity(intent);

3.1.2. Content Provider

Content Providers are used to transfer structured data across components of

same or different apps. It stores information in tables like relational databases.

To access or modify data in Content Provider, apps need ContentResolver

objects. An app can also attach read and write permissions to the content

provider it owns.

public class SchoolProvider extends ContentProvider {

/**

* Declaration

*/

static final String PROVIDER_NAME = "com.example.provider.School";

static final String URL = "content://" + PROVIDER_NAME + "/students";

static final Uri CONTENT_URI = Uri.parse(URL);

...........

...........

/**

* Database specific constant declarations

*/

private SQLiteDatabase db;

static final String DATABASE_NAME = "School";

static final String STUDENTS_TABLE_NAME = "students";

.............

12

..............

/**

* Helper class that actually creates and manages

* the provider’s underlying data repository.

*/

private static class DatabaseHelper extends SQLiteOpenHelper {

DatabaseHelper(Context context){

super(context, DATABASE_NAME, null, DATABASE_VERSION);

}

@Override

public void onCreate(SQLiteDatabase db)

{

db.execSQL(CREATE_DB_TABLE);

}

public boolean onCreate() {

/**

* Create a write able database which will trigger its

* creation if it doesn’t already exist.

*/

}

public Uri insert(Uri uri, ContentValues values) {

/**

* Add a new student record

*/

}

public Cursor query(Uri uri, String[] projection, String

selection,String[] selectionArgs, String sortOrder) {

/**

* Code for querying the database

*/

}

13

public int delete(Uri uri, String selection, String[]

selectionArgs) {

/**

* Code for deleting records from the database

*/

public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {

/**

* Code for updating records from the database

*/

}

3.1.3. Shared Preference

Shared Preference is an operating system feature that allows apps to store

key-value pairs of data. Its purpose is to be used to store preferences informa-

tion. Apps can use key-value pairs to exchange information if proper permissions

are defined when accessing and storing data.

/**

* Declaration

*/

SharedPreferences sharedPref = getActivity().

getPreferences(Context.MODE_PRIVATE);

/**

* Write to Shared Preferences

*/

SharedPreferences.Editor editor = sharedPref.edit();

editor.putInt(getString(R.string.

saved_high_score), newHighScore);

editor.commit();

/**

* Read from Shared Preferences

*/

14

int defaultValue = getResources().getInteger

(R.string.saved_high_score_default);

long highScore = sharedPref.getInt

(getString(R.string.saved_high_score),

defaultValue);

3.1.4. External Storage

External Storage is the storage space external to an app. It includes USB

connection, SD card and even non-removable storage. Apps accessing the ex-

ternal storage need to declare the READ EXTERNAL STORAGE permission. Apps

declaring the WRITE EXTERNAL STORAGE can write and read from external stor-

age.

/**

* Write to SD card

*/

File myFile = new File("/sdcard/mysdfile.txt");

myFile.createNewFile();

FileOutputStream fOut = new FileOutputStream(myFile);

OutputStreamWriter myOutWriter = new OutputStreamWriter(fOut);

myOutWriter.append(txtData.getText());

myOutWriter.close();

fOut.close();

/**

* Read from SD Card

*/

File myFile = new File("/sdcard/mysdfile.txt");

FileInputStream fIn = new FileInputStream(myFile);

BufferedReader myReader = new BufferedReader(

new InputStreamReader(fIn));

myReader.close();

15

3.1.5. Remote Method Calls

Remote methods enable to make method calls that look local but are exe-

cuted in another process. It is same as remote procedural calls (RPC) in other

systems. In Android, due to sandboxing, one process cannot access the memory

of another process. In order to communicate, they need to pack their objects

into the primitives that operating system can understand and unpack them

again at receiver’s end. This is facilitated by Binder, Messenger and AIDL.

• Binder : Binder supports remote method calls within same application

without the support of multi-threading. Binders are the entity which

allows activities and services to obtain a reference to another service. It

allows not simply send messages to services but directly invoke methods on

them. Binder class provides direct access to public methods in the service

but can be used only when the service is used by the local application and

in the same process. For example, it would work if a music application

that needs to bind an activity to its own service that’s playing music in

the background.

• Messenger : Messenger supports remote method calls across the applica-

tions without the support of multi-threading. It represents a reference to

a Handler that can be sent to a remote process via an Intent. Messenger

provides an interface to the service to communicate with remote processes.

This allows inter-process communication without the use of AIDL. This

can be used in the case where remote IPC is required but multi-threading

support by the service is not required.

• AIDL: AIDL supports remote method calls across the applications with

the support of multi-threading. Android provides an API to handle mar-

shalling and unmarshalling of objects called Android’s Interface Definition

Language (AIDL). AIDL is necessary only if remote access of the service is

required for IPC and want to handle multithreading in that service. AIDL

is complex to implement as this interface sends simultaneous requests to

the service, which must then handle multi-threading.

16

3.2. Covert channel

Covert channel is a secret medium which exploits shared resources and use

them for communication [26]. Timing channels and storage channels come under

the covert channel.

3.2.1. Timing channels

In timing channel, the information between applications is synchronously

transmitted using shared resource having no storage capability. Battery use,

Phone call frequency are examples of timing channels.

3.2.2. Storage channels

In storage channel, the information between applications is asynchronously

transmitted using shared resource with storage. Phone call logs, Content

providers are examples of storage channels.

4. Android Security Risks and Consequences

Android ensures security through its sandbox model, application signing and

the permission model for managing IPC effectively and efficiently. In spite of

these measures, Android is vulnerable to many security risks. According to the

recent OWASP mobile security report [49], out of 91 reported security risks, 85

are recorded to be present in Android. This makes Android security a serious

concern. These risks are outcome of either maliciously exploiting the legitimate

procedures provided by android such as ICC, or taking advantage of unchecked

processes occurring in the system. In the following, we focus on Intent based

attacks and their consequences.

4.1. Intent based attacks

We focus our attention on the security challenges of Android communication

from the perspectives of Intent sending and receiving. In section 4.1.1, we focus

on the Intent receiving, and consider vulnerabilities related to receiving Intents

coming from other applications. In Section 4.1.2, we consider how sending

Intents to the wrong application can leak user information.

17

4.1.1. Intent Spoofing

Intent spoofing refers to a typical scenario where a vulnerable app has a com-

ponent that expects Intent from Android framework or itself. If the component

is exposed, then other malicious apps can send forged Intents, and then spoof

this app in order to trigger misbehaved actions. In the following, we classify the

Intent spoofing to three subclasses [10]: malicious broadcast injection, malicious

activity launch, and malicious service launch.

Malicious Broadcast Injection. Broadcast receivers are vulnerable to malicious

broadcast injection when they receive Intents with system actions [10]. An ex-

ample scenario of this attack is that some Intents contain action strings that

only the operating system may add to broadcast Intents. If a malicious ap-

plication sends an Intent explicitly addressed to the target Receiver, without

containing the system action string. The Receiver will be tricked into perform-

ing functionality that only the system should be able to trigger if it does not

check the Intent’s action.

Malicious Activity Launch. A malicious activity launch is executed by other ap-

plications with explicit or implicit Intents. The impact of this attack is that the

malicious Activity’s UI will load instead of the targeted one. In [10], the authors

classify three types of possible attacks when launching malicious activity:

• Modification of data in the background caused due to non verification of

the origin of the Intent or leading to a change in the application state;

• A user can be misleaded between malicious and victim applications. She

might make changes to the victim application while believing she is inter-

acting with the malicious one.

• A victim application could leak some sensitive information returning a

result to its caller upon completion.

Malicious Service Launch. In the same way as an Activity, a Service, if not

protected with permissions, any application can bind it. This vulnerability

18

could lead even to leak information or perform unauthorized tasks, depending

on the type of Service [10].

4.1.2. Intent Hijacking

The Intent hijacking threat is illustrated when an Intent could not reach

the intended recipient via an implicit ICC, and then it may be hijacked by an

unauthorized app [10]. We classify this threat based on the type of the send-

ing component: broadcast receivers hijacking, activity hijacking, and service

hijacking.

Broadcast Receivers Hijacking. Broadcast Receivers can be vulnerable to active

denial of service attacks or eavesdropping. An eavesdropper can read the con-

tents of a broadcast Intent without interrupting the broadcast. This is a risk

whenever an application sends a public broadcast. A malicious Broadcast Re-

ceiver could eavesdrop on all public broadcasts from all applications by creating

an Intent filter that lists all possible actions, data, and categories [10].

Activity Hijacking. In an Activity hijacking attack, a malicious Activity is

launched instead of the intended Activity [6]. This attack works as follows: The

malicious Activity registers to receive another applications implicit Intents, and

it is then started instead of the expected Activity. The impact of this attack is

dreadful since the malicious activity could read the data in the Intent and then

immediately relay it to a legitimate activity [50] into the victim application.

Service Hijacking. The service hijacking attack occurs when a malicious service

intercepts an Intent designed for a legitimate service [51]. The impact of this

attack is that the initiating application establishes a connection with a malicious

service instead of the legitimate one. The malicious service can steal data and

lie about completing requested actions [52].

4.2. Android Risk Consequences

In the following, we focus on two major consequences of the Android security

risks: privilege escalation, and privacy leaks.

19

Figure 1: Privileged Escalation attack scenario

4.2.1. Privilege Escalation

Android security framework enforces permission protected model that allows

the user to regulate the access of data by an application. It has been shown

that applications can bypass this security model by exploiting transitive per-

mission usage known as privilege escalation [53], [28], [26], [54]. This refers to

the scenario where two or more applications with a limited set of permissions

communicate with each other to gain indirect privilege escalation and can per-

form unauthorized actions.

Figure 1 shows an example of privilege escalation attack. In this example, an

android device contain 2 apps - Contacts manager and News. Contact man-

ager includes permissions READ CONTACTS and WRITE CONTACTS. On the other

hand, News app includes permission INTERNET. Contact manager cannot access

internet and news app cannot access contacts stored on the device. However,

they can communicate via Intents. Contact manager sends an Intent carrying

contact information as a payload to news app. As news app can access internet,

it can transmit it to outside world. Hence, news app can access contacts, even

if it does not contain permission to do so. Hence its privileges got escalated.

4.2.2. Privacy Leaks

Privacy leak occurs if there is a secret (without user consent) path from

sensitive data as source to statements sending this data outside the application

or device, called sink. This path may be within a single component or across

20

multiple components. Thus, analyzing components separately is not enough

to detect leaks. It is necessary to perform an inter-component analysis of

applications. Android app analysts could leverage such tools to identify

malicious apps that leak private data. For the tool to be useful, it has to be

highly precise and minimize the false positive rate when reporting applications

leaking private data. For example, IccTA, an inter-component communication

Taint Analysis tool [15]. It is for a sound and precise detection of ICC links

and leaks.

Recent works have demonstrated that Android apps exhibit different privacy

leaks, that are mainly build around the collusion attack [55–58]. The main

vulnerability comes from the fact that these leaks are exacerbated by several

applications that can interact to leak data using the inter-app communication

mechanism [2]. The aforementioned security risk could lead to the collusion

attack resulting in privacy abuse. Through the inter-app ICCs, two or more

apps can collude to perform malicious actions. We give more details about the

collusion attacks in Section 5.

5. Collusion

The Android security model is designed to protect data, applications and

devices from security threats. It is guarding apps by combining app signing,

sandboxing, and permissions. Unfortunately, these restrictions can be bypassed

by colluding apps. The combined permission of these apps allow them to carry

out attack, that could not be possible by a single app. Let us consider the

following example where a collusion consists of one app permitted to access

some personal data, and this app passes the data to a second app that is allowed

to transmit the data. Moreover, the Android OS does not check if an app

that is accessing a permission-protected resource through another app has itself

requested that permission. We believe that collusion is worth investigation

since it could be exploited by criminals, and become a serious threat in the near

21

future.

In this section, we start with a brief history of the origin of collusion. Then

we define collusion along with its categories on the grounds of application prop-

erties. We also highlight some challenges faced in detecting collusion. For the

sake of clarity, we define some terminologies such as Sensitive Resource Access:

When an Android app access the system resource that is protected with some

dangerous permission then that access to the resource is called Sensitive Re-

source Access. Sensitive Information: Any piece of data that generates from

sensitive resource access becomes Sensitive Information. Leakage: It happens

when the sensitive information moves out of device boundaries without user

consent.

5.1. History

The problem of colluding apps can be traced back to confused deputy attack.

This attack was first reported in 1988 by Norm Hardy [59]. This attack can

happen when an application provides a public interface and access some sensitive

resources. Other applications could use that interface to access the sensitive

resources. The application providing access to the sensitive resource is called a

confused deputy.

In 2011, the work in [43] mapped confused deputy attack with permission

re-delegation attack. In particular, a careless developer may expose permission-

protected resources through exported component. Other applications can access

those resources through ICC to that component.

In 2011, the first documented example of intentional permission re-delegation

was presented by [11]. They developed Soundcomber, a Trojan with few and

innocuous permissions, that can extract a small amount of targeted private in-

formation from the audio sensor of the phone and conveys information remotely

without direct network access. This is the example of intentional permission

re-delegation and illustrated in Figure 2.

The Soundcomber example shows the difference between app collusion and

confused deputy attacks. In app collusion the exposure of the sensitive resource

22

Figure 2: Soundcomber working architecture

is intentional [53].

5.2. Definition

Assume, A be a set of all Android apps and P be a set of all possible

dangerous permissions in Android.

Let, a and b are two apps with permission set pa and pb respectively such that:

a, b ∈ A and pa, pb ⊂ P ,

Suppose, a performs sensitive resource access that requires permission α to

generate sensitive information ι such that,

α ∈ (pa − pb),

If f(ι) (perform any operation(s) on ι) flows to b through any number of apps,

and b performs sensitive resource access that requires permission β to leak f(ι)

such that,

β ∈ pb,

Then we say that a and b are colluding apps.

5.3. Scenarios

For the sake of completeness, we illustrate the collusion definition by three

different scenarios based on app properties: 1) Among colluding apps, all are

signed by the same signature; 2) Among colluding apps, all are signed with

different signatures; 3) dynamic colluding apps.

23

5.3.1. Among colluding apps, all are signed by same signature

Android requires that all apps have to be signed with developer’s certificate

before they can be installed. Android uses this certificate to identify the

developer of an app [38]. There are some signing considerations as:

• App Modularity: Android allows apps signed by the same certificate to

run in the same address space, if applications choose this, the system

treats them as a single application.

• Code/Data Sharing: Android provides signature-based permissions en-

forcement, so that an app can expose functionality to another app that is

signed with a specified certificate.

In this scenario, apps request a minimal permission set at the time of in-

stallation; and they can expand it later with the permissions of other apps with

same signature. The shared permission set exposes sensitive information leakage

path and thus emanate collusion.

5.3.2. Among colluding apps, all are signed with different signatures

Android applications signed by different signatures always run in different

user address space. Such apps are not allowed to access each others data but

can communicate with each other. Through this communication they can pass

data. The general mode of such communication are Intents. Application do not

need any specific permission to send Intent. In this scenario, collusion emanate

if there exist some mode of communication between apps and they are sharing

some sensitive information through it that is creating leakage path.

5.3.3. Dynamic colluding apps

This is a new type of threat called threat of split-personality behavior [60]

where the attackers divide malware samples into a benign and malicious part,

such that the malicious part is hidden from analysis by packing, encrypting

or outsourcing of the code. In such cases the app appears as benign during

24

analysis phase but while running on real device it become malicious. Similar

case exists in case of app collusion, depending on the availability of an analysis

system, malware can either behave benignly or load malicious code at runtime.

In this scenario, static part of the app collude with dynamic part of the code

to leak information. The dynamic part may be another app that get down-

loaded and installed using social engineering attack or it can be some dynamic

code loading. The proof of concept of this type of collusion is demonstrated

in [61]. They modified the well known open source malware named AndroRat

(Android Remote Administration Tool). This app connects to server and allow

remote control of the device. The authors divide the app into two and devel-

oped AndroRAT-Split. They put the main service class into one app and added

the activity class into another app to create collusion attack. Detection rate

of original sample on VirusTotal is 15/56 i.e. 15 out of 56 antivirus engines

says that the app is malicious; whereas when AndroRAT-Split is analyzed on

Virus-Total, the detection rate is 0/56 i.e. it is considered as benign app.

5.4. Challenges in Collusion Detection

The detection of Android ICC based collusion faces many challenges. In the

following, we summarize the major ones:

• How to characterize the context associated with communication channels

with fine granularity?

• How to provide scalable solutions with minimum complexity to vet a large

number of apps for possible collusion?

• How to define security policies for classification that reduce the number

of false alerts?

• It’s pretty hard to have a policy that is at the same time consistent and

still provides realistic results without over-tainting.

The solutions to detect collusion in apps must be capable of doing analysis of

multiple apps simultaneously aka inter-app analysis.

25

6. Inter-Application Analysis

This section discusses the main defense techniques for inter-app analysis:

static, dynamic and policy based.

6.1. Static Inter-App Analysis

Static inter-app analysis consists of examining and auditing the code without

executing it [62]. Android apps are analyzed without really running them by

inspecting the source code. Static analysis techniques act as a potential weapon

for conducting the behavioral analysis of an application i.e. detecting whether

an application is benign or malicious. It extensively explores data flows in

a program and subsequently detect paths through which information can be

leaked. It can be used to detect problems such as cross site scripting (XSS) [63],

SQL injection [64], buffer overflows [65], access control problems and many more.

Resources and techniques of static inter-app analysis are detailed below.

6.1.1. Resources

The resources of Android apps from which information can be extracted in

static analysis includes manifest file, dalvik byte code, libraries, etc [66].

The information obtained from manifest file includes the name of the package,

list of components, list of permissions, version, etc. It also reveals information

about intents and intent-filters used for communication. Level of API and li-

braries required by an application for execution is also mentioned in the file [67].

Android apps are written in java and compiled to byte code. This byte code

is further translated to dalvik byte code and stored in classes.dex (dalvik exe-

cutable) file. This file reveals information about the structure of an application

and methods used by it. It is analyzed to detect potentially malicious actions

such as sending SMS to premium numbers, use of reflection or encryption, ac-

cess of sensitive resources, etc. [68].

Java libraries can be statically analyzed in order to obtain data flow summaries

of an application. It can be useful to determine malicious flow in an application.

26

6.1.2. Techniques

The technique employed to perform static analysis depends on the depth

and purpose of analysis. Various static analysis techniques used by researchers

include taint analysis [69], dataflow analysis [70], entry point analysis [71] etc.

Some of the most prevalently used techniques are explained below.

Taint analysis is also known as user-input dependency checking [69]. The

concept behind taint analysis is that any variable altered by the user becomes

tainted and is considered vulnerable. The taint may flow from variable to

variable during a course of operations and if the tainted variable is utilized

to perform some harmful operation, it becomes a breach in security. Taint

analysis detects the set of instructions that are affected by user inputs. It helps

in identifying sensitive information leakage.

Data flow analysis determines the information flow between various compo-

nents. It is the essential analysis need to detect leakage of sensitive data. For

instance, for a variable, it can detect all the possible sources of a variable’s value

i.e. where do values assigned to a variable come from, all the possible values

a variable can possess, all the sinks where its value passes further, etc [72].

Data-flow analysis can be of various types depending on the context of analysis

[66].

• Context sensitive data flow analysis [73] is an inter-procedural analysis

technique. It examines target of a function call by focusing on calling

context.

• Path sensitive data flow analysis [74] takes into account the branching

statements. It analyzes the information obtained by the state obtained at

conditional instructions.

• Flow sensitive data flow analysis [75] considers the order of instructions

in a program.

• Inter-procedural data flow analysis [76] takes into account the flow of

27

information between procedures. It is achieved by constructing call graphs

• Intra-procedural data flow analysis [77] involves the flow of information

within a procedure.

Entry point analysis [71] helps in determining where a program starts its

execution. It is very difficult to identify starting point due to the use of callbacks

and multiple entry points.

Accessibility analysis [78] contributes in evaluating the likelihood of following

a path betwe [62]en two components. It helps in building reachability graphs

showing the path followed through methods for execution of an application.

Side-Effect analysis is performed to compute which variables of a method are

affected by its execution [66].

6.2. Dynamic Inter-App Analysis

Dynamic inter-app analysis refers to the analysis of a program by executing

it [62]. Android apps are examined and reviewed by actually executing them on

real devices and emulators. Since static analysis does not portray the complete

picture of an application, for example network data stored in the memory heap

during run time is not available before executing app, obfuscated strings are hard

to recognize from decompiled codes etc, therefore dynamic analysis is important

to identify malicious applications, information leakage, sensitive data flows and

vulnerabilities present in applications [79].

6.2.1. Resources

The resources of Android apps from which information is extracted in dy-

namic analysis includes application framework, information about native code

libraries, kernel parameters, cpu parameters, memory parameters, information

about dynamically loaded libraries, etc. [80].

Application framework is a software library which imparts basic structure for

developing applications. It provides information about components and pro-

cesses currently running and invoked API calls. It keeps record of which disk

28

location belong to which file, keystrokes done and all the network inputs and

outputs of function call.

Native library is a library that includes native code. Native code refers to a

code written in C or C++ and compiled to machine code. Since native libraries

are linked at run time, dynamic analysis is the suitable approach to identify the

data flows in an application [14].

Kernel is the core of Android operating system. It is responsible for the manage-

ment of hardware interactions. It provides information about the interactions

with system protected resources which are not directly accessible [81].

Other parameters of cpu, memory etc. can be captured dynamically when the

program is running.

6.2.2. Techniques

Various dynamic analysis techniques used by researchers that include System

hooking [82], Taint analysis [2], Instrumentation [83], System call tracing [84],

Debugging [85], Code emulation [86] etc.

System hooking involves altering or amplifying the functionalities of applica-

tions or components of application, by anticipating function calls, events and

transmitted messages between the components [87]. It assists in conducting dy-

namic analysis by intercepting and modifying API calls made by the target app.

It is used to capture data flows, construct event ordering, record the parameters

of passed messages and store values of run-time variables [81].

Dynamic taint analysis [88] starts by tainting the data that is initiated from un-

trusted sources, specifically user supplied inputs. Later, these tainted variables

are stored and whenever any of these variables are used for carrying sensitive

data they are tracked down to detect sensitive paths [86].

The term instrumentation pertains to the capability of monitoring or evaluating

the performance of product and interpreting errors [89]. Android apps are in-

strumented to monitor actions of specific components such as logging number of

times a particular service is called, etc. It is achieved by injecting smali codes.

Smali is an intermediate representation of dalvik byte code which is inserted to

29

keep log of actions of specific components.

In order to perform system call tracing, a system call tracer is embedded into

the system that logs the invoked interrupts or APIs as the program runs on the

system [90].

In code emulation, the malicious code is executed on virtual machines with repli-

cated CPU and memory management system, rather than real processor [90].

6.3. Policy Enforcement Based Analysis

Policy (a.k.a rule) enforcement based techniques make use of certain set of

policies(rules) that are considered as normal or benign. These policies can be

represented either in the form of regular expressions or any new policy language.

The access of apps to any policy protected resource is verified against the pre-

defined policy-set [91]. Verification can be done statically on the intermediate

program code and can also be enforced at install-time or run-time. If the re-

source access adhered to the policy-set, it is considered benign. Any violation is

referred as malicious behaviour [92]. The challenge posed by this defence mech-

anism lies in identifying, defining and maintaining the policy-set. It should not

be very strict that may generate false-positives but at the same time it should

not be too liberal to generate more false-negatives [9].

6.3.1. Resources

The resources of Android apps from which information can be extracted in

policy based analysis techniques depend on the nature of the policy-set and

where they are applied [93]. For eg., if the policy set considers permissions and

their corresponding API call then, manifest, dex files and libraries are suffice to

extract relevant information. However, when policies are enforced at install-time

or run-time, hooking or instrumentation need to be done. In later case, relevant

information can be extracted from system parameter like registers, CPU etc.

6.3.2. Techniques

In order to protect users’ private/sensitive data in Android, various solutions

have been proposed based on controlling the access of sensitive resources. The

30

access control can be apply at various system abstraction layers viz. kernel-

layer, middle-ware layer and application layer [94]. The access controls are

of various type viz. Mandatory Access Control (MAC), Discretionary Access

Control (DAC), Role Based Access Control (RBAC), Context Based Access

Control (CBAC) and Attribute Based Access Control (ABAC) [95, 96].

In MAC, whenever app wants to access policy protected resource, Android

kernel will verify the access against predefined rule-set. The access is allowed

only if it is authorized. These rule-set is not modified by app or user. In

DAC, user can define an access control list (ACL) on specific resources. These

resources can be accessed when the owner provides permission. RBAC is based

on the roles of an individual user. The user is assigning to different positions,

with permissions to use the resources. The user can access sensitive data based

on their assigned role. Till Android 5.1.1, once privileges are granted to the

applications, they cannot be revoked. However, in many cases whether the

application get a privilege or not depends on the user context and therefore CBAC

comes into existence in Android. It has the capability to give privileges with

dynamically granted or revoked to applications. In ABAC, granting privileges to

the users is based on attributes which combine with the policies. Authorization

relies on a set of operations that is determined by evaluating the attributes

associated with the subjects, objects, and requested services.

7. State of the art approaches

In the following section, we present different experimental approaches for

the detection of intra and inter-application communication vulnerabilities.

7.1. Static Analysis

This section briefly explains about the approaches conducting static analysis.

31

7.1.1. MR-Droid: A Scalable and Prioritized Analysis of Inter-App Communi-

cation Risks [17]

Objective: The paper aims to detect inter-app communication threats

specifically intent hijacking, intent spoofing and collusion. Authors proposed a

MapReduce based framework to scale up compositional app analysis. They also

prioritized the identified ICC risks, based on the communication context of apps.

Methodology: The MapReduce based approach is divided into two broad

steps. In the first step, MR-Droid identifies ICC nodes (both sources and sinks),

ICC edges (intent based ICC communication channels) and group inter-app

ICCs that belong to an app pair using MapReduce. In the second step, risk

assessment module of MR-Droid assigns risk levels to the app pairs based on

the semantics and contextual information of the identified ICC channels. The

risk assessment module detects the presence of risk and assigns ranking to the

detected risk. Prioritizing risks helps to reduce false alarms. To validate the

approach, authors manually analyzed around 200 apps.

Dataset Used: The dataset consists of 11, 996 apps from 24 popular

app categories belonging to Google Play Store and 8 apps from DroidBench

3.0 [97] inter-app communication category.

Limitations: The paper suffers from the following limitations:

• The proposed approach can handle intent based ICC communications only.

Therefore, security risks posed by other inter-app channels like content

providers, shared preferences etc. cannot be detected.

• Currently, the approach can detect privacy leakage across two apps. How-

ever, leakage involving more than two apps are missed.

32

7.1.2. Detecting Inter-App Information Leakage Paths [32]

Objective: The paper presented a model-checking based approach for

inter-app collusion detection. The authors presented compositional app analysis

to identify set of conspiring apps involved in the collusion. They developed 8

colluding apps and contributed to DroidBench 3.0 [97].

Methodology: The proposed approach is divided into four broad steps.

In the first step, it leverages DARE [98] and IC3 [99] to extract information

related to ICC sources, sinks and, intent based communication channels. In

the second step, data-flow analysis has been carried out to map sensitive

information provided by sensitive API call to the outgoing intent followed

by storing all the extracted information in the database. In the third step,

PROMELA model is generated for each app. In the fourth step, model

checking is done using the generated models and collusion detection property

([](STATUS==SAFE)) mentioned in the linear temporal logic (LTL) form. If the

compositional model of apps do not satisfy the property, then that set of apps

are declared as colluding apps set.

Dataset Used: The dataset consists of self-developed 8 apps and con-

tributed to DroidBench 3.0 [97] under inter-app communication category.

Limitations: The paper suffers from the following limitations:

• The proposed approach can handle intent based ICC communications only.

Therefore, security risks posed by other inter-app channels like content

providers, shared preferences etc. cannot be detected.

• Not addresses the issue of scalability.

7.1.3. Towards Automated Android App Collusion Detection [100]

Objective: The paper mentioned that collusion can cause information

theft, money theft or service misuse. They defined collusion between apps

33

as some set of actions executed by the apps that can lead to a threat.

They proposed two approaches to identify candidates for collusion. One is

rule based approach developed in Prolog and other is statistical based approach.

Methodology: In rule based approach, some features are used to identify

colluding apps. These features include permissions, communication channels,

and set of some actions viz. accessing sensitive information, sending information

etc. The statistical approach consists defining probabilistic model, training of

the model that means estimating the model parameter on the training set and

validating the model on test dataset. Additionally the paper also presented

that model-checking is the feasible approach to detect collusion in Android apps.

Dataset Used: The dataset consists of ∼ 9000 malicious and ∼ 9000

benign apps developed by Intel Security.

Limitations: The paper suffers from the following limitations:

• The rule based approach can be easily evaded using some evasion tech-

niques like reflection, obfuscation etc.

• The statistical approach performance could be due to a bias of validation

dataset towards the methodology.

• Not addresses the issue of scalability.

7.1.4. User-Intention Based Program Analysis for Android Security [101]

Objective: The paper proposed a data structure called ICC Map

that statically captures cross-app information flow and based on self-made

security policies classify communication among apps as collusion or no collusion.

Methodology: ICC Map is a hash map data structure. It stores ICC

entry and exit points that can be extracted by scanning bytecode of source and

target apps respectively. It is used to statically characterize the inter-app ICC

34

channels among the Android apps. The detailed description of ICC Map is as

follows:

• ICC exit points refer to all Intent based ICC APIs like

startActivity(Intent i), startService(Intent i) etc., user

triggers like onClick() and APIs that retrieve private data such as

getAccounts(), getPassword() etc.

• After extracting exit points, data dependence graph (DDG) of intra- and

inter-procedural dependencies has been constructed.

• Then, from each ICC exit point, backward depth-first traversal on DDG

is done to check if it involves private data or user trigger and store this

information in SourceAppICCExitHashMap.

• Then construct the data dependence graph (DDG) for the target app and

perform forward depth-first traversal on its DDG from each ICC entry

point to find any critical operations and store this information in Targe-

tAppICCEntryHashMap.

In SourceAppICCExitHashMap, each entry consists of source component name

as key, and a list of ICC exit, sensitive data and user trigger as value. For exam-

ple, (compX,{startService(Intent i), getDeviceID(), onClick()}) rep-

resents one entry in the SourceAppICCExitHashMap, where compX is the com-

ponent name that initiates the inter-app ICC call startService(Intent i) with

sensitive data device ID included as part of the Intent of this call and onClick()

as the user event to trigger this call.

Similarly, in TargetAppEntryHashMap, each entry consists of target com-

ponent name as key, and a list of ICC entry, component protection

and critical operation as value. For example, (compY, {onStart(), No,

java.io.FileOutputStream.write(...)}) represents one entry in the Tar-

getAppICCEntryHashMap, where compY is the component name that receives

the inter-app ICC call, and onStart() is the entry point of compY which is not

protected (No) and has critical operation java.io.FileOutputStream.write(...).

35

Given the above two hash maps, they connect inter-app ICC calls as follows:

• First search for the source component name in SourceAppICCEx-

itHashMap. The search results return its value(ICCExitName, Sensitive-

Data, UserTrigger).

• Then, search the same with the target component in TargetAppICCEn-

tryHashMap to get its value(ICCEntryName, CompProtection, Critical-

Operations).

• After that, connect the ICC exit point in the source component with its

corresponding ICC entry point in the target component.

These operations provide the complete path of the ICC calls from the source to

the destination across multiple apps. Authors call these paths as ICC links and

entire data structure as ICC Map. ICC Map cannot be used for apps collusion

detection but it helps to identify pair or group of communicating apps.

After this they define four rules/policies that are as follows:

Suppose component C1 in app P1 calls component C2 in app P2 , i.e., C1→ C2

• If the ICC exit point in C1 does not have a valid user trigger and the

target component C2 is not protected by permission checking and has

critical operation, then this ICC channel is classified as a high risk inter-

app ICC channel.

• If the ICC exit point in C1 has a valid user trigger and the target compo-

nent C2 is not protected by permission checking and has critical operation,

then this ICC channel is classified as a medium risk inter-app ICC channel.

• If the ICC exit point in C1 does not have a valid user trigger and the

target component C2 is protected by permission checking and has critical

operation, then this ICC channel is classified as a medium risk inter-app

ICC channel.

• If the ICC exit point in C1 has a valid user trigger and the target com-

ponent C2 is protected by permission checking and has critical operation,

36

then this ICC channel is classified as a low (or no) risk inter-app ICC

channel.

Authors have also extended these rules to more fine-grained 16 rules that

include inter-app ICC call. The detail description of these 16 rules are available

in [102].

Thus, based on ICC Map and a set of security policies they can differentiate

between benign communicating apps and colluding ones. In their experiments,

the proposed method can correctly detect 97.9% of the 1,433 malware samples.

The false negative rate is 2.1%, i.e., 31 malware apps are misclassified as benign.

Dataset Used: 1,433 malware apps collected from [103] and Virus

Share. 2,684 apps from Google Play market.

Limitations: ICC Map approach suffers from following limitations:

• ICC Map cannot detect collusion through indirect communication channel

such as shared files.

• ICC Map cannot capture the scenario that involves complex string opera-

tion like both apps read/write to files, however, the filenames are dynam-

ically generated using string operations. Collusion occurs through such

scenario is missed by the proposed approach.

• The approach statically identifies the predicted risk level associated with

the inter-app ICC calls, but it does not confirm the existence of the col-

lusion.

• The proposed approach has difficulty in performing the analysis on pro-

grams that employ obfuscation techniques, dynamic code loading, or use

of reflection.

7.1.5. IccTA [15]

Objective: IccTA is a static taint analyzer to detect privacy leaks between

components in Android apps. It claims to improve its precision of analysis by

37

propagating context-aware information.

Methodology: IccTA tool takes APK file (dalvik bytecode) as input

and convert it into Jimple (soot’s intermediate representation [104]). After

that, it extracts ICC links and related information like ICC call parame-

ters, Intent filter etc. using Epicc [105] and also parses URIs (eg. scheme,

host) to support Content Provider related ICC methods (eg. query) using

IC3 [99]. To extract ICC links, IccTA have to identify source and target

components. Source components are the components that initiate ICC method

and target components are resolved by analyzing the values of Intent filter

from AndroidManifest file of the app. It also needs to analyze bytecode

because Broadcast Receivers may be declared at runtime. Then it stores all

the extracted information into a database. Based on the extracted ICC links,

IccTA modifies Jimple representation to directly connect the components to

enable data-flow analysis between them.

IccTA handles three types of methods, ICC methods are replaced by an

instantiation of the target component with the appropriate Intent. For callback

methods, the tool takes care of both UI triggered event as well as callbacks

triggered by Java or the Android system. To handle lifecycle methods, the

tool generates a dummyMain method for each component in which it models,

the entire lifecycle model of the component. IccTA leverages FlowDroid [73]

to build a complete control flow graph of the Android app under analysis.

This graph allows to analyze the context (eg. the value of Intent) between

two components. In the end, IccTA also stores the reported tainted path

(leaks) into the database which can be reused in later analysis. IccTA achieved

96.6% precision while analyzing privacy leaks from the samples of DroidBench

and ICC-Bench. IccTA can perform inter-app analysis when used with AP-

KCombiner [3] which is a static tool that scales down inter-app communication

analysis to intra-app communication analysis. APKCombiner disassembled

every app to obtain manifest and smali files using android apktool [106], a

reverse engineering tool. After that all files corresponding to different apps are

38

combined together into a single directory and conflicts are resolved.

Dataset Used: 22 apps from DroidBench, 15000 apps from Google

Play Store, 1260 apps from Genome Malware, 16 apps from ICC-Bench.

Limitations: IccTA suffers from the following limitations:

• IccTA resolves reflective calls only if their argument are string constants,

which is not always the case.

• It cannot detect leak through multi-threading. It assumes the execution

of threads in arbitrary but sequential order.

• It can miss leaks through native calls that their rules model incorrectly.

• It cannot handle rarely used ICC methods like startActivities and

sendOrderedBroadcastAsUser.

• It cannot resolve complicated string operations which are generated using

StringBuilder.

• The string analysis done by IccTA is within a single methods which may

cause false alarms.

• IccTA cannot analyze apps of big size as it requires too much memory

consumptions and system often gets hang.

7.1.6. Automatic Detection of Inter-Application Permission Leaks in Android

Applications: PermissionFlow [13]

Objective: PermissionFlow is a single-app static analysis approach

that handles attacks related to obtaining unauthorized access to permission-

protected information. It focuses on three types of attacks viz. permission

collusion, confused deputy and Intent spoofing. PermissionFlow uses taint

analysis to capture the flow of permissions.

39

Methodology: PermissionFlow consists of three major modules, i.e.

Permission Mapper, Rule Generator and Decision Maker. The approach

consists of identifying APIs whose execution leads to permission-checking. This

is done through permission mapper. Then another module, rule generator will

define rules for tainting. It considers the APIs selected by permission mapper,

to be the sources of taint and define rules to capture their corresponding sinks.

Then based on the information extracted from APK file of an app through

apktool and dex2jar, PermissionFlow leverages another open-source tool named

Andromeda to identify flows and components. Decision maker will allow or

disallow the flow based on permissions.

Dataset Used: PermissionFlow tests 313 popular Android Market ap-

plications, and then identifies that 56% of them use inter-component

information flows that may require permissions.

Limitations: Permission flow approach suffers from the following limita-

tions:

• Permission flow does not handle native code permissions.

• Permission flow records a large number of false positives due to the check-

ing of redundant permissions and data dependent checks.

• Permission flow gives false negatives for the apps that transfer protected

information between components before returning it. This is due to the

use of Implicit intents as it prevents identification of the class names for

invoked Activity.

7.1.7. FUSE [14]

Objective: FUSE proposed a approach that starts by single-app static

analysis accompanied with lint tool followed by multi-app information flow

analysis. Lint tool is used to mitigate limitations of static analysis. They

demonstrated limitations of single-app analysis by detecting more information

40

flow paths in multi-app analysis.

Methodology: FUSE works in two broad steps. Single-app analysis,

followed by multi-app analysis based on violation of specified security policies.

The first step takes an appkit (collection of apps) as input, analyze each app

individually to produce extended manifest data structure. In the second step,

all the extended manifests are combined and collusion is checked based on

violation of specified security policies. The detailing of all the steps are as

follow:

Single-app analysis: In this step, each application in the appkit is individu-

ally analyzed to create its corresponding extended manifest data-structure. The

extended manifest represents the internal information flow graph from applica-

tion inputs (sources) to application outputs (sinks). According to FUSE, sources

are the inputs to each component or permission protected resources. Sinks are

the means by which a component can send (possibly sensitive) information to

another component or to the outside world. In FUSE, a version of Andersen’s

analysis [107] is used to compute a call graph and determine reachable methods

in each application. The analysis also considers Android Framework and Java

libraries along with the application. The application is tainted with taint labels

at every source and if these labels reach to sinks, data leakage path is flagged.

Multi-app analysis: In this step, FUSE takes the entire appkit along with

all the extended manifests as input. The output is the multi-app graph with

the flow of information between the applications. In the graph, set of all the

permissions and each sources and sinks present in any application becomes the

node. There must be an edge from source or permission to the sink, whenever

there is the flow of information between them. There also exist the edges from

sink to component, if sink can send IPC message to that component.

FUSE defines coarse-grained information flow assertions based on permis-

sions combination. The multi-app graph is checked against these assertions.

User is alerted if there is any violation of the assertion occurs in the graph.

FUSE also uses security linter tool, to overcome the limitations of static analy-

41

sis. The tool issues warning if there exists problem like, component hijacking,

dynamic registration of broadcast receiver, use of insecure credentials, presence

of reflection, unused permissions or writing to public files.

Dataset Used: 189 applications drawn from Nexus 4 running Android

4.4.2. 1124 applications of F-Droid updated till May,2014. 1260 applications

from Genome project dataset, applications from DroidBench.

Limitations: FUSE suffers from following limitations:

• The biggest limitation of the approach is that it is not publicly available

to test. It is designed for commercial purposes.

• Defining coarse-grained information flow assertions leads to many false

alert as the behavior of the application is not considered.

• It does not support all versions Android APIs,

7.1.8. Amandroid [22]

Objective: Amandroid is a static analysis tool, that has the capability of

calculating all objects’ points-to information in a both flow and context-sensitive

way. This tool detects whether there is any information leakage from a sensitive

source to a critical sink; by providing an abstraction of the app’s behavior.

Methodology: Amandroid proceeds by converting an app’s Dalvik byte-

code to an intermediate representation (IR) for subsequent analysis. Then,

Amandroid generates an environment model that emulates the interactions of

the Android System with the app to limit the scope of the analysis for scal-

ability. Amandroid builds an inter-component data flow graph (IDFG) of the

whole app. IDFG includes the control flow graph; that tracks the set of ob-

ject creation sites that reach each program point. The core component is to

build a precise IDFG of the app; the flow-sensitive and context-sensitive data

flow analysis to calculate objects points-to information is done at the same time

with building inter-procedural control flow graph. Amandroid builds the data

42

dependence graph on top of the IDFG, then it induces explicit information flow.

This framework provides an abstraction of the app’s behavior, and can be used

for a number of useful security analysis as data leak detection, data injection

detection, and detection misuse of an API.

Dataset used: Amandroid is tested on 753 Google Play apps by the Epicc

group, and 100 potentially malicious apps from Arbor Networks.

Limitations: Amandroid has the following limitations:

• Amandroid has limited capability to handle exceptions. Amandroid may

not detect an exception, when an app has a security issue where the core

of an execption handler plays a role.

• Amandroid does not handle concurrency and reflections. An app may have

multiple components and then may run concurrently; and when multiple

components interleave this may induce some security issues.

7.1.9. Android Taint Flow Analysis for App Sets [108]

Objective: DidFail conducts static taint analysis of Android apps by

augmenting FlowDroid and Epicc tools to detect intra-component and inter-

component information flow in a set of apps. It performs analysis in two phases

where the first phase determines information flow within the app and second

phase determines flow across the apps.

Methodology: DidFail accepts a set of apps as the input. The analysis is

performed in two phases:

• The first phase constitutes of 4 steps - TransformAPK, FlowDroid (mod-

ified), Dare and Epicc.

1. TransformAPK : In this step, each APK is modified by using Soot.

Initially, APK is converted to an intermediate representation known

as jimple. Later, all the send intent method calls are located and just

before the method call, a new method call is inserted that provides

a unique ID to the sent intent. The jimple code is then repackaged

into an APK and passed as an input to the next step.

43

2. Dare: This tool accepts transformed APK as an input and produces

retargeted java class files as an output.

3. Epicc: This tool accepts retargeted java class files and transformed

APK as an input and provides parameters of sent and received intents

such as action, category as an output to the second phase.

4. Modified FlowDroid : DidFail has modified FlowDroid by adding few

intent method calls as sources (onActivityResult()) and sinks (setRe-

sult()). It has also added code to analyze putExtra call for the intents

that are uniquely identified by ID in TransformAPK step. FlowDroid

accepts transformed APK as the input and conducts taint analysis.

It provides flows within the components of an app as the output.

• The first phase identifies intents as tuples. For example, I < C1, C2, ID >

where C1 = component that sends the intent, C2 = component that re-

ceives the intent and ID = unique identifier of the intent. This phase

identifies flows within an app and pass these flows as an input to the

second phase.

• In the second phase, inter-app communication among the set of apps is

resolved i.e. an intent sent by an app is matched with the intent-filters of

other apps to identify the receiver. Once the receiver is identified a flow

from source→sink is detected.

Dataset Used: DidFail is tested on two app sets where the first app set

contains three apps developed by the authors and second app set contains three

apps taken from Droidbenchmark.

Limitations: DidFail suffers from the following limitations:

• DidFail does not handle native calls and reflection.

• DidFail focuses only on Activity component of Android app. It does not

handle service, broadcast receiver and content provider.

• DidFail cannot detect flow of information when static fields are used as a

44

source or sink for intents i.e. it misses the flow if an intent reads informa-

tion from static field.

• If the tainted information propagates through a chain of apps, then DidFail

fails to detect the flow.

7.1.10. Analyzing Inter-Application Communication in Android: Com-

Droid [10]

Objective: ComDroid is a tool that detects application communication

vulnerabilities and could be used by developers and reviewers to analyze their

own applications before release. The main purpose of this tool comes from

the fact that Android’s message passing system can become an attack if used

incorrectly (personal data loss, information leakage, phishing, etc.) These

vulnerabilities stem mainly from the fact that Intents can be used for both

intra and inter application communication.

Methodology: ComDroid considers two types of analysis: Intent analy-

sis and Component analysis.

In Intent analysis, ComDroid statically analyzes method invocation to a

depth of one method call. In this way it performs flow sensitive intra-procedural

static analysis, with a limited inter-procedural analysis. This tool parses dalvik

files and tracks the state of intents, registers, sinks, intent-filters, and compo-

nents. For each method that uses intents, this tool can track the value of each

string, class, intent and intent-filter. For each Intent object, ComDroid tracks

the following:

• whether the intent has been made explicit;

• whether the intent has an action;

• whether the intent has any flags set; and

• whether the intent has any extra data.

45

When it detects that an implicit intent being sent with weak or no permission

requirements, ComDroid issues a warning as this situation is eavesdropping

prone. There are two types of warnings viz. with data, and without data, in

order to distinguish action based attacks from eavesdropping.

In Component analysis, ComDroid examines application’s manifest file to

get components and translates dalvik instructions to get information about each

component. ComDroid treats activities and their aliases as separate components

because an alias field can increase the exposure surface of the component. It

generates a warning about a potential intent spoofing attack, when it detects

that a public component is protected with no permission or a weak permission.

ComDroid also issues warnings for receivers that are registered to receive system

broadcast actions (that are actions sent by the system).

In order to resolve these warnings, a solution proposed by authors was

to add a call to android.content.Intent.getAction() to verify that the

protected action is in the Intent (authentication of the sender of the Intent).

This differs from other Intent spoofing attacks where the solution is to make

the component private.

Limitations: ComDroid suffers from the following limitations:

• False Negatives: ComDroid tracks Intent control flow across functions,

and did not distinguish between paths through if and switch statements.

For instance, an application might make an Intent implicit in one branch

and explicit in another, ComDroid would always identify it as explicit.

• Privilege Delegation: ComDroid does not detect privilege delegation

through pending Intents and Intents that carry URI read/write permis-

sions.

• Verification of the existence of attacks: ComDroid issues warnings and

not verify the existence of attacks. For instance, some components are

intentionally made public for the purpose of inter-application collabora-

tion. It is not possible to infer the developer’s intention when making a

46

component public. It is the role of the developer to verify the veracity of

the warnings.

7.2. Dynamic Analysis

This section briefly explains the proposed tools and approaches that conducts

analysis dynamically.

7.2.1. IntelliDroid [109]

Objective: IntelliDroid is a generic tool that generates input specific for

a dynamic analysis tool to perform analysis more precisely by reducing false

positives. Instead of static or dynamic analysis, this work proposes targeted

analysis. It is achieved by preliminarily doing background study about the

dynamic analysis tool and static analysis of the application given as input to

the dynamic analysis tool. It helps in triggering target APIs and consecutively

leads to more efficient and effective dynamic analysis.

Methodology: Android apps contain multiple event handlers, which

when triggered in a particular sequence with specific inputs, reveal malicious

behavior. This environment and input is provided by IntelliDroid to dynamic

analysis tools. IntelliDroid acts in 6 steps viz. Specifying target APIs,

Identifying paths to target APIs, Extracting call path constraints, Extracting

event chains, Determining run-time constraints and Input-injection to trigger

call paths.

In the first step, APIs to be targeted are identified by analyzing either API

methods [2], system calls [110] or low-level events [111].

In the second step, paths to the targeted APIs are discovered by conduct-

ing static analysis. IntelliDroid obtains information about components of an

application and its lifecycle methods by reading its manifest file. It identifies

entry-points of an application and create a partial call-graph to look for ini-

tialization of callback listeners. It adds circumvented listener methods to the

entry-points list and creates a new call graph. This process is repeated re-

47

cursively till no more entry points are found. By traversing path from event

handler’s entry point to target API invocation, target paths are extracted for

every target API.

In the third step, call path constraints are determined by conducting control

and data-flow analysis on the control flow graph (CFG) in forward direction.

If more than one path exists from one-method invocation to other in CFG,

IntelliDroid combines the constraints of each path by using logical OR operator.

For the cases where extracted constraints are return values of other method

invocation, they are added with main path constraints by using logical AND

operator.

The reason for executing fourth step (extracting event chains) is that the

path constraints can be heap variables whose value cannot be determined stat-

ically by observing entry-points. To determine their values, the lines in the

code containing the heap variable definition are looked for. The event handler

containing the heap variable definition are tracked and stored. The route from

event handler to heap variable store statement becomes supporting path and its

constraints becomes supporting constraints. Their value is determined at the

time of resolving constraints ans subsequently used for storing path constraints.

In the fifth phase i.e. determining run-time constraints, the value of variables

that are still unresolved are obtained at run-time, just before the event injection.

In the sixth step, finally the input fulfilling constraints are injected to trigger

the call paths. The component of IntelliDroid responsible for injecting input

consists of a computer attached to a device. Communication between them

occurs through IntelliDroidService. The static part of IntelliDroid is responsible

for specifying inputs for the targeted APIs. It supplies these inputs to dynamic

part which is accountable for inserting the inputs at device-framework interface

of Android.

For the static analysis, source code is not used. The APK files are unpacked

using Dare [98] and APKParser [112]. The Java bytecode is then passed to static

part which uses WALA static analysis libraries [113]. For dynamic analysis,

Z3 constraint solver [114] is used. The IntelliDroidService client program is

48

executed using Python.

IntelliDroid is tested with TaintDroid, a dynamic analysis tool. On an

average 72 inputs have been injected. Out of 75 malware instances, IntelliDroid

was successful in identifying 70 instances. It is observed that 138.4 seconds on

an averages is required per application.

Dataset Used: It has been tested on 1260 malware samples from Malware

Genome Project [115] and 1066 benign apps from Android Observatory [116].

Limitations: IntelliDroid suffers from the following limitations:

• IntelliDroid does not handle implicit Intents, Content Providers and native

code.

• The extracted constraints are sometimes very complex such as trignomet-

ric functions. It cannot be resolved by constraint solver. Currently, human

intervention is required to solve such constraints.

• IntelliDroid partially handles reflection as it cannot identify the path con-

straints after the reflected call.

• IntelliDroid is not capable of creating inputs for encrypted and hashed

functions.

7.2.2. IntentDroid [117]

Objective: IntentDroid is a framework that dynamically examines

Android apps for IAC (Inter Application Communication) related integrity

vulnerabilities such as custom uri’s, payloads in IAC messages etc. It created

attack scenario for 8 vulnerabilities viz. Cross-Site Scripting, SQL Injection,

Unsafe Reflections, UI (User-Interface) Spoofing, Fragment Injection, Java

Crashing, Native Memory Corruption and File Manipulation. It analyzes

Activity component of apps by implementing attack scenarios in a way to

obtain effective path coverage with minimum overhead.

49

Methodology: IntentDroid tests the applications in three phases viz.

Instrumentation, Testing and Reporting.

In the instrumentation phase, the app under analysis is instrumented to store

library calls and access to user-supplied data. The app is reverse engineered

through apktool to extract its manifest file. Manifest file is parsed to extract

public components. IntentDroid specifies three cases to call any activity as

public:

• if the activity is exported via Intent filter(s);

• if the activity access does not require any permissions (system or signa-

ture); and

• if any unvalidated data which is originated from any public component,

passes through it;

These activities communicate via Intents and therefore all Intents form a set of

IAC input points for the Testing phase.

In the testing phase, to detect whether a vulnerability exists in the app or

not, IntentDroid has created attack scenarios. Testing occurs in three steps

Monitoring, Testing and Exploration. During monitoring, IntentDroid sends

a message to the app under test. It uses system-level hooks to records all

the security concerned APIs called by the app and custom fields (such as

getStringExtra, getFieldExtra, etc.) accessed by it. IntentDroid analyzes

the app with direct and indirect access to custom fields. For direct access, In-

tentDroid iteratively detects the extra fields of the Intent and looks for the be-

havior of the app. If any extra field is observed, that IAC input point migrates

to testing phase. For indirect access, bundle object created for the message

sent by IntentDroid is observed by installing a monitor in Intent.getBundle()

method. It checks the extra and data fields for payloads. If any inserted payload

is found, bundle is considered relevant and exploited further by implementing

attack scenarios. After monitoring the app undergoes testing. The app is tested

50

for implementation of an attack scenario on an IAC input point by sending probe

request. If the result is positive, that attack scenario is implemented. In the end

during exploration, boolean variables are analyzed to detect the path followed

by an Intent. It introduces two terminology for boolean variables viz. Indepen-

dence and Dominance. A boolean variable is Independent, if its execution is not

dependent on any other boolean variable. On the contrary, a boolean variable

is Dominating, if its execution decides the application of other boolean variable

(nested variables). Boolean variable analysis reflects the handling of incoming

data by the Intent.

In the Reporting phase, IntentDroid reports the number of vulnerabilities

present in an app after implementing all the possible attack scenarios on the

app.

For evaluating IntentDroid, apps in the test dataset are manually tested

by professional ethical hacker through brute-force fuzzing tool. It detected

163 IAC vulnerabilities across 80 apps. IntentDroid is able to detect 150 IAC

vulnerabilities giving a recall rate of 92%.

Dataset Used: IntentDroid is tested on the dataset of 80 apps, out of

which 4 are enterprise apps, 4 are shipping apps and remaining 73 are the

most popular Google Play apps. These apps are tested on Samsung Nexus 5

device with Android 4.4 installed on it.

Limitation: IntentDroid suffers from the following limitations:

• IntentDroid does not test Services, Broadcast Receivers and Content

Providers for IAC vulnerabilities.

• IntentDroid does not consider multi-app attack.

7.2.3. TaintDroid [2]

Objective: TaintDroid is a security framework that dynamically detects

sensitive information leakage in ICC between Android apps. TaintDroid

51

extends the functionality of Android operating system to record the flow of

confidential and vulnerable data through installed applications.

Methodology: It combines four fragments of taint dispersion viz. Vari-

able Level, Message Level, Method Level and File Level. Variable level

capturing is done for single app analysis. Variable taint tags are stored

adjacently to variables in memory. Message level capturing is done for tracking

communication between applications. One taint tag per message is stored

which is the combination of variable taint tags. Method level capturing is done

for native libraries granted by system. File level capturing is done to guarantee

data preserves their taint markings. One taint tag per file is stored.

TaintDroid divides the Android architecture in three modules viz. Inter-

preted Code, Userspace and Kernel. It considers a scenario in which a message

is transmitted from source app to destination app, where source app is assumed

to be trusted and destination app is assumed to be untrusted.

Interpreted code module of the source app taints (labels) the data originated

from confidential and vulnerable sources (such as GPS coordinates) as taint

sources in a trusted application. The assigned taint labels are stored in Virtual

Taint Map present in Userspace module.

Userspace module includes Dalvik VM interpreter (which is invoked by na-

tive methods) and Binder IPC library. TaintDroid modifies Binder IPC library

so that in case of an ICC, the parcel transmitted between two apps carries a

taint tag which is a combination of taint markings of all the data carried in-

side the parcel. The customized Android platform tracks the flow of tainted

data through dynamic taint tracking. In dynamic taint tracking, the labels

are assigned transitively to components (such as IPC messages, variables etc.)

when sensitive information propagates through them. When the tainted data

of trusted app is to be sent as an ICC message, the data is first transferred to

modified Binder IPC library. It creates a parcel and ensures that parcel holds a

tainted tag, representing the combination of all the tainted data tags inside the

parcel. The parcel is sent to untrusted application via Kernel.

52

On the receiver side, modified Binder IPC library extracts the data from

the parcel and sends it to Dalvik VM Interpreter. The flow of tainted data

is monitored. Whenever tainted data leaves the system either by transmission

over the network or by any tainted sink, the scenario is logged and reported to

the user immediate. The logged information includes labels of data, receiver of

the data and the application culpable for sending the data.

TaintDroid reported that on an average two-third of the considered apps

are leaking sensitive data. TaintDroid incurs 14% of performance overhead on

CPU-bound micro-benchmark.

Dataset Used: 30 most popular android apps are selected from 12

categories of Android Market. By applying TaintDroid, 65 scenarios of

information misuse across 20 apps has been identified. Out of 1130 logged

TCP connections, 105 has been found responsible for carrying tainted data out

of the system. 15 out of 30 apps have been found leaking user’s location to

advertising servers. 7 applications have been detected leaking user’s device ID.

Limitations: TaintDroid suffers from the following limitations:

• TaintDroid only handles data flows. It does not considers control flows.

• TaintDroid is not able to tag native code which leaves many sensitive

sources untouched.

• In case of File level tracking, storing one taint tag per file gives a lot of

false positives.

7.3. Policy Enforcement Based Analysis

7.3.1. Collusive Data Leak and More: Large Scale Threat Analysis of Inter-app

Communications[118]

Objective: The paper presents a tool named DIALDroid (Database

powered ICC Analysis for Android). To the best of our knowledge, this is the

first state-of-art that proposed large scale detection of collusion and privilege

53

escalation. They also provide the first inter-app collusion real-apps benchmark

of 30 apps. Till now, this is the most efficient tool available in the literature

for inter-app vulnerability detection [17].

Methodology: In this paper, authors proposed DIALDroid that works

in four broad steps. In the first step, permissions and intent-filter attributes

are extracted from the manifest file and ICC entry/exit points are identified.

In the second step, static taint analysis is performed to determine paths from

sensitive sources to the intents being sent and intents received to sensitive

sinks. It leverages Flowdroid[73] to conduct dataflow analysis at high precision.

In the third step, all the extracted data is organized in mysql database

comprising of 42 tables. The relational database provides scalable and efficient

storage. To reduce the computational complexities, DIALDroid filters out

ICC communications that are not sensitive. Finally, security policies are

implemented using sql queries to detect the presence of collusion or privilege

escalation.

They improved the preciseness of intent discovery by implementing in-

cremental callback analysis. In dataflow analyzer, if any app takes more

than 5 minutes, DIALDroid resets the analysis by decreasing precision to

maintain the trade-off between performance and precision. To avoid deadlocks,

the app is analyzed for maximum 20 minutes. The crash rate of DIALDroid

is very less than IccTA+APKCombiner [15] and it is more accurate than [15, 30].

Dataset Used: The dataset consists of 110,150 apps which includes

100,206 most popular Google play apps and 9,944 apps from Virushare.

DIALDroid is also analyzed on Droidbench apps and ICC bench apps.

Limitations: DIALDroid suffers from the following limitations:

• DIALDroid resolves reflective calls only if their argument are string con-

stants, which is not always the case.

54

• DIALDroid analyzes an app only for 20 minutes. If an app takes more

than that time, DIALDroid stops analysis.

• DIALDroid can handle intent based ICC communications only. Therefore,

security risks posed by other inter-app channels like content providers,

shared preferences etc. cannot be detected.

7.3.2. Intersection Automata based Model for Android Application Collu-

sion [20]

Objective: This is a static inter app analysis tool that can take multiple

apps simultaneously for analysis and detect potentially colluding apps.

Methodology: In this paper, authors proposed a novel automaton framework

that allows detection of intent based collusion among apps. The presence of col-

lusion is detected by intersecting application and policy automata. Application

automaton depicts intent-based communication among apps. Policy automaton

have policies like if access of an API that requires READ SMS permission in one

app is followed by an API call that requires SEND SMS permission in another

app. The policy is searched in the application automaton and if the match is

found, the tool will check the presence of READ SMS permission in the second

app. If it is not found then the tool declares the presence of collusion otherwise

no collusion.

The detection framework operates at the component-level. They tested

their approach on 21 apps by taking all possible combinations (two at a time)

and successfully detected presence/absence of collusion among them. Time and

space complexity of the proposed tool is O(n) where n is the sum of all the

components in applications under analysis.

Dataset Used: 3 applications from DroidBench inter-app communication cat-

egory, self-developed 14 applications and 4 applications from Google Play Store.

55

Limitations: The tool suffers from the following limitations:

• The false alarm rate is very high as the tool is not performing any data-

flow analysis. If there is intent communication between two apps without

any data transferred, the tool raise warning of collusion.

• Only intents are considered as a means of communication.

7.3.3. Flexible and Fine-Grained Mandatory Access Control on Android for Di-

verse Security and Privacy Policies [94]

Objective: FlaskDroid is policy-driven tool that provides security for

kernel resources (like files, IPC, etc.) as well as middleware resources (like

Intents, Content Providers, etc.). The security enforcement is through pro-

viding mandatory access control on both middleware and kernel layers of

Android simultaneously. They extended Android’s middleware layer with type

enforcement and present a new policy language to capture the semantics of this

layer.

Methodology: FlaskDroid plants various Object Managers at middle-

ware and kernel layer that are responsible for assigning security context to

objects. Related policies are managed by security servers deployed at different

layers. The object manager makes access control decisions by using security

servers at their respective layer. Also the deployed policies at both the layers

are synchronized meaning change of policy in one layers, automatically reflect

in another layer. Following are the major components of FlaskDroid:

• SE Android Module: SE Android module restricts the privileges of root

account to constrain the file-system privileges of the app. It is also respon-

sible for restricting apps from bypassing middleware level policy enforce-

ment check. For e.g., it restricts app from directly accessing the contacts

database file instead, the app must access contacts via ContactsProvider

app.

56

• Userspace Security Server: It is responsible for taking policy decisions for

all userspace access control.

• Userspace Object Managers: In FlaskDroid, middleware services and apps

act as Userspace Object Managers (USOMs) for their re- spective objects.

Currently it comprises of 136 policy enforcement points.

• Context Providers: A context is the current security requirements of the

device. It is derived from various criteria, such as physical, the state of

apps and the system. Context Providers are the plugins to Userspace

Security Server that allows control of contexts and their definitions.

Dataset Used: FlaskDroid is evaluated on the apps collected from Malware

Genome [119] and Contagio minidump [120]. The authors also developed

synthetic apps that exhibits root exploit, over-privilege, information leakage,

sensory malwares, confused deputy and collusion attacks.

Limitations: FlaskDroid suffers from the following limitations:

• Access control rules are human user trail based. Therefore, revision of rules

is time-comsuming process. Also, limited human trials cannot guarantee

full coverage of possible access control rules.

• Many false alarms while detecting confused deputy and collusion attacks.

As FlaskDroid relies on application inputs/outputs and does not consider

the information flow within apps.

• Simultaneous analysis of multipe apps is not provided by FlaskDroid.

7.3.4. XManDroid: A New Android Evolution to Mitigate Privilege Escalation

Attacks [26]

Objective: XmanDroid (eXtended Monitoring on Android) is a dynamic

framework that extends the monitoring mechanism of Android to detect and

prevent application-level privilege escalation attacks. It is based on runtime

57

system-centric policies. Two types of application-level privilege escalation

attacks are handled by XmanDroid viz. Confused Deputy attacks and Colluding

attacks.

Dataset Used: XManDroid developed their own dataset that consists

of seven apps. These app set exhibit privilege escalation attack through ICC

communication links and three types of covert channels viz. synchronized

adjustment and reading of the voice volume, change of the screen state and

change of the vibration settings.

Methodology: XManDroid consists of three elements:

• Application Installer: It is responsible for installation and uninstallation

of applications. It makes use of package manager for incorporating the

changes and rebuild a new state, whenever any new application gets in-

stalled.

• System Policy Installer: It is responsible for the installation of explicitly

defined list of system policies in the Android middleware.

• Runtime Monitor: It is responsible for enforcing mandatory access con-

trol in Android like permissions are checked at this interface, take deci-

sions whether to allow an ICC or not based on the information about

installed apps and their communication. Whenever a request for an ICC

call reaches, it is either approved or disapproved by reference monitor after

validating it with policies database and whether the given ICC call leads

to privacy leak or not.

System representation is done using graph schema where UID assigned by

the system to an app is a vertex and the information about exchanged intents

are the edges. By applying the rules of graph theory, transitive transfer of

information is detected during ICC. This graph is used for defining rules in

system policies.

58

Dataset Used: XManDroid developed their own dataset that consists

of seven apps. These app set exhibit privilege escalation attack through ICC

communication links and three types of covert channels viz. synchronized

adjustment and reading of the voice volume, change of the screen state and

change of the vibration settings.

Limitations: XmanDroid suffers from the following limitations:

• False Positives: XManDroid suffers from high positives if the app un-

der analysis is over-privileged. The defined system-policies are not tuned

properly.

• Attack at kernel level: XManDroid cannot handle privilege escalation at-

tacks done at kernel level that can exploit the system to gain root access.

• Single app analysis is missing: XManDroid cannot detect malicious app

as applications within a single sandbox have equal privileges and cannot

perform privilege escalation.

7.4. Case Studies

This section presents various studies done to demonstrate the serious effects

of information leakage in android apps.

7.4.1. Case of Collusion: A Study of the Interface Between Ad Libraries and

their Apps [121]

Objective: In this study, API calls used by Ad Libraries to communicate

with host applications are analyzed. Host applications have access to sensitive

and private user data. API calls are capable of transmitting demographic data

about user, which is of great interest for Ad agencies. Therefore, this interface

presents a serious impact of user’s private information leakage.

59

Methodology: Initially, manual identification of 103 individual and an-

alytic libraries are done. Then, apps are disassembled using dedexer [122]

followed by app parsing, to detect all the API calls (using package name) that

occurred between apps and any ad library. Later, all the captured API calls are

recorded to keep a track of calls which were actually used from the considered

dataset. Frequency of each call is also calculated and recorded. The group of

detected API calls are assembled to recreate API of Ad libraries. Recreation is

followed by detection of privacy related API calls through manually examining

each API call using method name and parameters. The study found that user

private data is leaked and stored in databases. These demographic data can be

correlated to map a user to a real world person.

Dataset Used: Dataset consists of 114,000 apps downloaded from Google

Play Store. APIs of 103 ad libraries used by apps in the dataset are recon-

structed. Top 20 ad libraries used in 64000 applications have been analyzed to

detect privacy leakage.

Limitations: The study suffers from following limitations:

• The study only considers API calls. API calls are not the only source

of communication between ad libraries and apps. Communication can

also be performed through direct manipulation of class variables, shared

memory etc.

• In case of obfuscation, where method names are altered, this method is

not capable of identifying privacy related API calls.

• The libraries which acts as a intermediate to transfer information between

an app and its library are known as Ad mediation libraries. They are not

considered in this study.

• It also omits small libraries which can also be a source of privacy leakage.

60

7.4.2. Analysis of communication between colluding applications [27]

Objective: This paper focuses on evaluating two major channels used for

collusion named covert and overt channels. This work aims to quantify the

severity of app collusion attack threats by computing throughput, bit-error

rate and expected synchronization for every channel.

Methodology: Covert and overt channels are implemented by executing

them on Nexus one or Samsung Galaxy S smartphones. 5 overt channels

are implemented viz. Shared Preferences, Internal Storage, Broadcast In-

tents, System Logs and UNIX Socket communication. 9 covert channels

are implemented which viz. Single and Multiple Settings, Types of Intents,

Automatic Intents, Threads Enumeration, UNIX Socket discovery, Free Space

on file system, Reading /proc/stat, Timing Channels and Processor Frequency.

Experiments are performed to calculate throughput (rate of transmitting data

through a channel), stealth (difficulty in identifying a channel), bit-error rate

(error-occurance rate in transmission) and required synchronization (timing

constraint between source and sink). In tests 4, 8 and 135 byte data is

transmitted from source to sink. During transmission, if the channel under

consideration is found open, the information is logged. For the channels which

requires synchronization between source and sink, a synchronization protocol is

applied on them. This protocol reduces noise and starts measurement on both

the ends at the same time.

This paper also proposes a collusion detection approach named Black-Box

analysis technique. This technique administers a data monitor between

applications on the device. The monitor tracks and stores the data used and

transmitted by an app to the colluding app. The paper claims that the existing

analysis tools such as TaintDroid and XmanDroid failed to detect most of these

channels. TaintDroid detects only 2 out of 5 overt channels and 0 out of 9

covert channels. XmanDroid detects 4 out of 5 overt channels and 6 out of 9

covert channels.

61

Limitations: The approach suffers from the following limitations:

• The proposed black-box approach is very preliminary, it misses many com-

munications.

• Data monitoring cannot handle obfuscation, reflection and encryption.

• It cannot handle complex string analysis that can be used by any of the

channels.

7.5. Comparison among state of art approaches

Researchers have proposed various approaches for intra and inter-app analy-

sis varying from static [62][73], dynamic [79] to policy enforcement [9][91] based

techniques. In Section 6, we explained these techniques and Section 7 presents

research pieces that rely on these techniques. Table 1 summarizes each proposed

approach under different criteria: (1) handled components, (2) handled Intents,

(3) examines native code or not, (4) resolves reflection or not, (5) works on

which code level, (6) conducts intra or inter app analysis and (7) availability of

the tool. We believe this helps the reader to examine all the differences in one

glance.

Most of the proposed approaches handle Android components viz. Activi-

ties(A), Services(S) and Receivers(R), whereas, Content Providers(C) are not

handled by [10, 20, 22, 32, 100, 109] as shown in column (1) of the table.

These approaches consider only Intents as a medium of communication. To

access content providers, unique resource identifier (URI) does not use the In-

tent. Therefore, Intent specific approaches fails to handle content providers. In

particular, there are two approaches [108] and [123] that are not handling any

components other than activities. In [108], the authors have mentioned that

their approach can be similarly extended for other components whereas [123]

have built a prototype on activities and it is available commercially as a cloud

service. In future the authors of [123] may extend their approaches to handle

all the other components.

62

There are broadly two types of Intents viz. Implicit(I) and Explicit(E). All

the proposed approaches can handle communication through Intents as they are

the most popular medium of communication used in Android as shown in column

(2) of the table. Although there is one approach [109] that is not considering

implicit Intent. The reason narrated by the authors of [109] is that they do

not want to increase false positives. In case of implicit Intent the target is not

fixed. If there are multiple receivers then at the run-time one of the receivers is

chosen.

Column (3) of table 1 presents the capability of proposed approaches to han-

dle native code. Native code refers to the code written in C/C++ and used by

Android app libraries for low-level interactions with the underlying Linux ker-

nel. Native code runs directly on the processor and hence not included in Dalvik

executable that runs in Dalvik virtual machine. Almost all the approaches con-

vert dex into some intermediate representation (IR) language but native code is

not get converted into IR and hence, cannot be handled by many tools. How-

ever, Flowdroid [73] can handle very limited native calls as they defined some

explicit rules for common invocation of native calls present in Java. Tools like

[15, 18, 108] leverage Flowdroid for analysis and therefore can handle native

calls partially.

The proposed approaches based on the their ability to resolve reflection is

depicted in column (4) of the table. Reflection is a language’s ability to in-

spect and dynamically call classes, methods, attributes, etc. at runtime. It is

a dynamic phenomenon and hence it is very difficult for any static approach to

handle it. Dynamic analysis approaches are needed to capture related runtime

behaviour features to resolve reflection. If an API is called through reflection,

it is passed as a parameter and hence become invisible for detection tools. Al-

though some static tools like [14, 15, 18] can handle reflection partially meaning

if the API calls are string constants, then they may be revealed otherwise if

they are called through variable where it is obfuscated or encrypted, these tools

cannot resolve such reflected calls.

Analysis tools based on the used intermediate representation (IR) for anal-

63

P
ro

p
o
se

d
A

p
p

ro
a
ch

es
C

o
m

p
o
n

en
ts

In
te

n
ts

N
a
ti

v
e

R
efl

ec
ti

o
n

C
o
d

e
In

te
r-

a
p

p
A

v
a
il
a
b

il
it

y

H
a
n

d
le

d
H

a
n

d
le

d
C

o
d

e
(4

)
L

ev
el

A
n

a
ly

si
s

(7
)

(1
)

(2
)

(3
)

(5
)

(6
)

Static
M

R
-D

ro
id

[1
7
]

〈A
S

R
C
〉

〈E
I〉

N
o

N
o

J
a
v
a

B
y
te

co
d

e
Y

es
-

D
et

ec
ti

n
g

In
te

r-
A

p
p

In
fo

rm
a
ti

o
n

L
ea

k
a
g
e

P
a
th

s
[3

2
]

〈A
S

R
-〉

〈E
I〉

N
o

N
o

J
a
v
a

B
y
te

co
d

e

&
S

m
a
li

Y
es

-

T
o
w

a
rd

s
A

u
to

m
a
te

d
A

n
-

d
ro

id
A

p
p

C
o
ll

u
si

o
n

D
e-

te
ct

io
n

[1
0
0
]

〈A
S

R
-〉

〈E
I〉

N
o

N
o

S
m

a
li

Y
es

-

IC
C

M
a
p

[4
]

〈A
S

R
C
〉

〈E
I〉

N
o

N
o

J
im

p
le

/
S

o
u

rc
e

co
d

e
Y

es
-

Ic
cT

A
[1

5
]

〈A
S

R
C
〉

〈E
I〉

Y
es

*
Y

es
*

J
im

p
le

Y
es

+
O

p
en

-S
o
u

rc
e

P
er

m
is

si
o
n

F
lo

w
[1

3
]

〈A
S

R
C
〉

〈E
I〉

N
o

N
o

J
a
v
a

B
y
te

co
d

e
N

o
-

F
U

S
E

[1
4
]

〈A
S

R
C
〉

〈E
I〉

N
o

Y
es

*
J
a
v
a

B
y
te

co
d

e
Y

es
C

o
m

m
er

ci
a
l

A
m

a
n

D
ro

id
[2

2
]

〈A
S

R
-
〉

〈E
I〉

N
o

N
o

J
a
v
a

B
y
te

co
d

e
N

o
O

p
en

-S
o
u

rc
e

D
id

F
a
il

[1
0
8
]

〈A
-

-
-〉

〈E
I〉

Y
es

*
N

o
J
a
v
a

B
y
te

co
d

e
Y

es
O

p
en

-S
o
u

rc
e

C
o
m

D
ro

id
[1

0
]

〈A
S

R
-
〉

〈E
I〉

N
o

N
o

J
a
v
a

B
y
te

co
d

e
N

o
O

p
en

-S
o
u

rc
e

Dynamic

In
te

ll
iD

ro
id

[1
0
9
]

〈A
S

R
-〉

〈E
-〉

Y
es

Y
es

J
a
v
a

B
y
te

co
d

e
N

o
-

In
te

n
tD

ro
id

[1
1
7
]

〈A
-

-
-〉

〈E
I〉

Y
es

Y
es

J
a
v
a

B
y
te

co
d

e
Y

es
C

o
m

m
er

ci
a
l

T
a
in

tD
ro

id
[2

]
〈A

S
R

C
〉

〈E
I〉

Y
es

Y
es

J
a
v
a

B
y
te

co
d

e
N

o
O

p
en

-S
o
u

rc
e

PolicyEnforcement

D
IA

L
D

ro
id

[1
8
]

〈A
S

R
C
〉

〈E
I〉

Y
es

*
Y

es
*

J
a
v
a

B
y
te

co
d

e
Y

es
O

p
en

-S
o
u

rc
e

In
te

rs
ec

ti
o
n

A
u

to
m

a
ta

B
a
se

d
M

o
d

el
fo

r
A

n
-

d
ro

id
A

p
p

li
ca

ti
o
n

C
o
ll
u

si
o
n

[2
0
]

〈A
S

R
-〉

〈E
I〉

N
o

N
o

J
a
v
a

B
y
te

co
d

e
Y

es
-

F
la

sk
D

ro
id

[9
4
]

〈A
S

R
C
〉

〈E
I〉

N
o

N
o

-
Y

es
-

X
M

a
n

D
ro

id
[2

6
]

〈A
S

R
C
〉

〈E
I〉

Y
es

Y
es

-
Y

es
-

•
A

:
A

ct
iv

it
y,

S
:

S
er

v
ic

e,
R

:
B

ro
a
d

ca
st

R
ec

ei
v
er

,
C

:
C

o
n
te

n
t

P
ro

v
id

er

•
E

:
E

x
p

li
ci

t
In

te
n
t,

I:
Im

p
li
ci

t
In

te
n
t

•
Y

es
*
:

T
h

e
d

et
a
il
s

a
re

ex
p

la
in

ed
in

se
ct

io
n

7
.5

•
Y

es
+

:
If

it
is

u
se

d
w

it
h

A
P

K
C

o
m

b
in

er

T
a
b

le
1
:

C
o
m

p
a
ri

so
n

a
m

o
n

g
st

a
te

o
f

th
e

a
rt

a
p

p
ro

a
ch

es

64

Figure 3: Intermediate Representation (IR) used for analysis

ysis are classified in column (5) of the table. Android APK file is converted to

some IR prior to the analysis. There are four code levels on which analysis can

be performed viz. Java source code, Java bytecode, Jimple and Smali. Java

source code can be analyzed because applications are written in Java language.

However, souce is available only if the apps are open-sourced or self developed.

Android apps are compiled into Dalvik bytecode called Dex, which is executed

in Dalvik virtual machine. For analysis Dalvik should be converted to Java

bytecode. This can be done by many APK to Jar converters like dex2jar [124],

ded [125] and Dare [98]. Jimple is a simplified version of Java bytecode. It is a

typed 3-address intermediate representation. It is used by Soot [104] which is

a popular static analysis framework for Java. Dexpler [126] is a plugin for the

Soot framework that translates Dalvik bytecode to Jimple. Smali is another IR

used by very popular reverse engineering tool developed by Google named Apk-

tool [106]. Figure 3 shows that Java bytecode is used by most of the approaches,

as Java source is generally not available and Jimple and Smali are tool specific

representations.

Apart from this, Figure 4, shows the distribution of different app repositories

used by the state of art approaches.

This brings us to the following conclusions:

65

Figure 4: App repositories used for analysis

• Intents are considered to be most commonly used ICC communication

channels. Therefore data sharing through Content Providers may become

an attractive target for attacker to exploit.

• Native Calls and Reflection are handled by very few researchers and there-

fore can be used by malware developers to evade the maliciousness of their

code.

• There are two ways to register Broadcast Receiver viz. static and dynamic.

If any static approach that cannot handle reflection but can handle dy-

namic Broadcast Receiver only works if, registration of Receiver is not

reflected.

• Most of the approaches work on bytecode and therefore maliciousness

posed by native code remains untouched.

• Approaches that analyzes only single app cannot detect inter app leakages.

7.6. Lessons Learned

In this subsection, we mention some recommendations on which future re-

search needs to focus to stay ahead of smart malware or vulnerabilities.

66

Analysis approaches should be combination of static, dynamic and policy

based analysis techniques to overcome the limitations of all. Other communica-

tion channels like Content Providers, Shared Preferences, AIDL etc. should be

considered while analysis. Analysis methods should cover different code forms

to compensate the losses posed by converting dex to any IR language. Also,

analysis methods should consider native code level. There is an urgent need

to develop engines that can resolve reflected calls beforehand, so that they are

examined during analysis. To capture compositional vulnerabilities like collu-

sion, analysis approaches should examine multiple apps simultaneously. Many

proposed approaches are either commercial or not available for public use. It

is very difficult for the researchers to evaluate and compare their findings and

results. Therefore, it is highly recommended that the tool implemented from

the proposed approach along with the tested dataset (if self developed) should

be available for free.

To prevent unintentional collusion i.e. to avoid the situations when some

malicious app can exploit the benign app and use it for collusion, developers

need to take special care while signing applications with same certificate and

keep their certificate private. Developers should also protect the component that

is sending sensitive information to the outside world with specific permissions.

8. Conclusions

Android is a modern operating system for smartphones with expanding mar-

ket share. The main security mechanisms of Android are application sandbox-

ing, application signing, and a permission framework to control access to (sen-

sitive) resources. Android’s security framework exhibits serious shortcomings:

The burden of approving application permissions is delegated to the end-user

who in general does not care much about the impact of prompted permissions

on his privacy and security. Hence, malware can be installed on end-user de-

vices such as unauthorized sending of text messages or leaking of sensitive data

in the background of running games. With the growing use of Android and

67

the awareness of its security vulnerabilities, a number of research contributions

have led to tools for the intra-app analysis of Android apps. Unfortunately,

these state of the art approaches, and the associated tools, have long left out

the security flaws that arise across the boundaries of single apps, in the interac-

tion between several apps. We provide in this survey a definition of the collusion

in Android, the major security risks on Android, as well as a summary of the

main tools for detecting inter and intra app analysis. The collusion attack is

worth investigation.

This survey provides a comprehensive assessment of the strengths and short-

comings of state-of-art approaches. It provides a platform to researchers and

practitioners towards proposing technique that can analyze multiple apps simul-

taneously to detect Android app collusion attacks.

9. Acknowledgments

This study has been carried out with financial support from the Department

of Information Technology, Government of India Project Grant ‘Security Analy-

sis Framework for Android Platform’ and the French National Research Agency

(ANR)of the French State in the frame of the ‘Investments for the future’ Pro-

gramme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02).

References

References

[1] IDCReport: Press Release, http://www.idc.com/getdoc.jsp?

containerId=prUS41425416, [Online; accessed 18-June-2016].

[2] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, A. N. Sheth, Taintdroid: an information-flow tracking sys-

tem for realtime privacy monitoring on smartphones, ACM Transactions

on Computer Systems (TOCS) 32 (2) (2014) 5.

68

http://www.idc.com/getdoc.jsp?containerId=prUS41425416
http://www.idc.com/getdoc.jsp?containerId=prUS41425416

[3] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, Apkcombiner:

Combining multiple android apps to support inter-app analysis, in: ICT

Systems Security and Privacy Protection, Springer, 2015, pp. 513–527.

[4] K. O. Elish, D. D. Yao, G. R. Barbara, On the need of precise inter-app

icc classificationfor detecting android malware collusions, in: Proceedings

of the Security and Privacy Workshops, 2015, pp. 116–127.

[5] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, D. S. Wallach, Quire:

Lightweight provenance for smart phone operating systems., in: USENIX

Security Symposium, 2011, p. 24.

[6] L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang, Chex: statically vetting android

apps for component hijacking vulnerabilities, in: Proceedings of the 2012

ACM conference on Computer and communications security, ACM, 2012,

pp. 229–240.

[7] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, B. Shastry,

Practical and lightweight domain isolation on android, in: Proceedings

of the 1st ACM workshop on Security and privacy in smartphones and

mobile devices, ACM, 2011, pp. 51–62.

[8] S. Shekhar, M. Dietz, D. S. Wallach, Adsplit: Separating smartphone

advertising from applications., in: USENIX Security Symposium, 2012,

pp. 553–567.

[9] W. Enck, Defending users against smartphone apps: Techniques and fu-

ture directions, in: Information Systems Security, Springer, 2011, pp. 49–

70.

[10] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, Analyzing inter-

application communication in android, in: Proceedings of the 9th inter-

national conference on Mobile systems, applications, and services, ACM,

2011, pp. 239–252.

69

[11] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, X. Wang,

Soundcomber: A stealthy and context-aware sound trojan for smart-

phones., in: NDSS, Vol. 11, 2011, pp. 17–33.

[12] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, E. Chin, Permission

re-delegation: Attacks and defenses, in: In 20th USENIX Security Sym-

posium, 2011.

[13] D. Sbirlea, M. Burke, S. Guarnieri, M. Pistoia, V. Sarkar, Automatic

detection of inter-application permission leaks in android applications,

IBM Journal of Research and Development 57 (6) (2013) 10:1–10:12. doi:

10.1147/JRD.2013.2284403.

[14] T. Ravitch, E. R. Creswick, A. Tomb, A. Foltzer, T. Elliott, L. Casburn,

Multi-app security analysis with fuse: Statically detecting android app

collusion, in: Proceedings of the 4th Program Protection and Reverse

Engineering Workshop, ACM, 2014, p. 4.

[15] L. Li, A. Bartel, T. F. D. A. Bissyande, J. Klein, Y. Le Traon, S. Arzt,

S. Rasthofer, E. Bodden, D. Octeau, P. McDaniel, Iccta: detecting inter-

component privacy leaks in android apps, in: 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering (ICSE 2015), 2015.

[16] A. Sadeghi, H. Bagheri, S. Malek, Analysis of android inter-app security

vulnerabilities using covert, in: Proceedings of the 37th International Con-

ference on Software Engineering - Volume 2, ICSE ’15, 2015, pp. 725–728.

[17] F. Liu, H. Cai, G. Wang, D. Yao, K. Elish, B. Ryder, Mr-droid: A scalable

and prioritized analysis of inter-app communication risks, in: Proceedings

of the Mobile Security Technologies (MoST), in conjunction with IEEE

Symposium on Security and Privacy, San Jose, CA, May 2017.

[18] A. Bosu, F. Lio, D. Yao, G. Wang, Collusive data leak and more: Large-

scale threat analysis of inter-app communications, in: Proceedings of the

70

http://dx.doi.org/10.1147/JRD.2013.2284403
http://dx.doi.org/10.1147/JRD.2013.2284403

ACM Asia Conference on Computer and Communications Security (ASI-

ACCS), 2017.

[19] H. Chen, D. He, S. Zhu, J. Yang, Toward detecting collusive ranking ma-

nipulation attackers in mobile app markets, in: Proceedings of the ACM

Asia Conference on Computer and Communications Security (ASIACCS),

2017.

[20] S. Bhandari, V. Laxmi, A. Zemmari, M. S. Gaur, Intersection automata

based model for android application collusion, in: 2016 IEEE 30th Interna-

tional Conference on Advanced Information Networking and Applications

(AINA), IEEE, 2016, pp. 901–908.

[21] S. Bhandari, R. Gupta, V. Laxmi, M. S. Gaur, A. Zemmari, M. Anikeev,

Draco: Droid analyst combo an android malware analysis framework, in:

Proceedings of the 8th International Conference on Security of Information

and Networks, ACM, 2015, pp. 283–289.

[22] F. Wei, S. Roy, X. Ou, et al., Amandroid: A precise and general inter-

component data flow analysis framework for security vetting of android

apps, in: Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, ACM, 2014, pp. 1329–1341.

[23] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, Drebin:

Effective and explainable detection of android malware in your pocket.,

in: NDSS, The Internet Society, 2014.

URL http://dblp.uni-trier.de/db/conf/ndss/ndss2014.html#

ArpSHGR14

[24] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, M. Rinard,

Information-flow analysis of android applications in droidsafe, in: Proc.

of the Network and Distributed System Security Symposium (NDSS). The

Internet Society, 2015.

71

http://dblp.uni-trier.de/db/conf/ndss/ndss2014.html#ArpSHGR14
http://dblp.uni-trier.de/db/conf/ndss/ndss2014.html#ArpSHGR14
http://dblp.uni-trier.de/db/conf/ndss/ndss2014.html#ArpSHGR14
http://dblp.uni-trier.de/db/conf/ndss/ndss2014.html#ArpSHGR14

[25] A. P. Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A survey of mobile

malware in the wild, in: Proceedings of the 1st ACM workshop on Security

and privacy in smartphones and mobile devices, ACM, 2011, pp. 3–14.

[26] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, Xmandroid:

A new android evolution to mitigate privilege escalation attacks, Technis-

che Universität Darmstadt, Technical Report TR-2011-04.

[27] C. Marforio, H. Ritzdorf, A. Francillon, S. Capkun, Analysis of the com-

munication between colluding applications on modern smartphones, in:

Proceedings of the 28th Annual Computer Security Applications Confer-

ence, ACM, 2012, pp. 51–60.

[28] T. Markmann, D. Gessner, D. Westhoff, Quantdroid: Quantitative ap-

proach towards mitigating privilege escalation on android, in: Communi-

cations (ICC), 2013 IEEE International Conference on, IEEE, 2013, pp.

2144–2149.

[29] Z. Fang, W. Han, Y. Li, Permission based android security: Issues and

countermeasures, computers & security 43 (2014) 205–218.

[30] H. Bagheri, A. Sadeghi, J. Garcia, S. Malek, Covert: Compositional analy-

sis of android inter-app permission leakage, IEEE transactions on Software

Engineering 41 (9) (2015) 866–886.

[31] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein,

Y. Le Traon, Combining static analysis with probabilistic models to en-

able market-scale android inter-component analysis, in: ACM SIGPLAN

Notices, Vol. 51, ACM, 2016, pp. 469–484.

[32] S. Bhandari, F. Herbreteau, V. Laxmi, A. Zemmari, P. S. Roop, M. S.

Gaur, Poster: Detecting inter-app information leakage paths, in: Pro-

ceedings of the 2017 ACM on Asia Conference on Computer and Commu-

nications Security, ACM, 2017, pp. 908–910.

72

[33] W. Klieber, L. Flynn, A. Bhosale, L. Jia, L. Bauer, Android taint flow

analysis for app sets, in: Proceedings of the 3rd ACM SIGPLAN Interna-

tional Workshop on the State of the Art in Java Program Analysis, ACM,

2014, pp. 1–6.

[34] https://en.wikipedia.org/wiki/Android-operating-system, [On-

line; accessed 20-Feb-2016].

[35] http://developer.android.com/ndk/index.html, [Online; accessed

20-Feb-2016].

[36] https://source.android.com/devices/tech/dalvik/index.html,

[Online; accessed 21-Feb-2016].

[37] https://en.wikipedia.org/wiki/Android-application-package,

[Online; accessed 21-Feb-2016].

[38] http://developer.android.com/tools/publishing/app-signing.

html, [Online; accessed 01-Jan-2016].

[39] A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android permissions

demystified, in: Proceedings of the 18th ACM Conference on Computer

and Communications Security, CCS ’11, ACM, New York, NY, USA, 2011,

pp. 627–638. doi:10.1145/2046707.2046779.

URL http://doi.acm.org/10.1145/2046707.2046779

[40] http://developer.android.com/guide/topics/security/

permissions.html, [Online; accessed 21-Feb-2016].

[41] A. Egners, U. Meyer, B. Marschollek, Messing with android’s permission

model, in: Proceedings of the 2012 IEEE 11th International Conference on

Trust, Security and Privacy in Computing and Communications, TRUST-

COM ’12, IEEE Computer Society, Washington, DC, USA, 2012, pp. 505–

514. doi:10.1109/TrustCom.2012.203.

URL http://dx.doi.org/10.1109/TrustCom.2012.203

73

https://en.wikipedia.org/wiki/Android-operating-system
http://developer.android.com/ndk/index.html
https://source.android.com/devices/tech/dalvik/index.html
https://en.wikipedia.org/wiki/Android-application-package
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046707.2046779
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://dx.doi.org/10.1109/TrustCom.2012.203
http://dx.doi.org/10.1109/TrustCom.2012.203
http://dx.doi.org/10.1109/TrustCom.2012.203
http://dx.doi.org/10.1109/TrustCom.2012.203

[42] D. Barrera, H. G. Kayacik, P. C. van Oorschot, A. Somayaji, A method-

ology for empirical analysis of permission-based security models and its

application to android, in: Proceedings of the 17th ACM conference on

Computer and communications security, ACM, 2010, pp. 73–84.

[43] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, E. Chin, Permission

re-delegation: Attacks and defenses., in: USENIX Security Symposium,

Vol. 30, 2011.

[44] K. W. Y. Au, Y. F. Zhou, Z. Huang, D. Lie, Pscout: Analyzing the android

permission specification, in: Proceedings of the 2012 ACM Conference on

Computer and Communications Security, CCS ’12, 2012, pp. 217–228.

[45] D. Sb̂ırlea, M. G. Burke, S. Guarnieri, M. Pistoia, V. Sarkar, Automatic

detection of inter-application permission leaks in android applications,

IBM Journal of Research and Development 57 (6) (2013) 10–1.

[46] S. Rasthofer, S. Arzt, E. Lovat, E. Bodden, Droidforce: Enforcing com-

plex, data-centric, system-wide policies in android, in: Availability, Re-

liability and Security (ARES), 2014 Ninth International Conference on,

IEEE, 2014, pp. 40–49.

[47] http://developer.android.com/training/articles/

security-tips.html, [Online; accessed 01-Jan-2016].

[48] W. Enck, M. Ongtang, P. McDaniel, Understanding android security,

IEEE security & privacy (1) (2009) 50–57.

[49] OWASP Mobile Checklist Final 2016 , https://drive.google.com/

file/d/0BxOPagp1jPHWYmg3Y3BfLVhMcmc/view, [Online; accessed 02-

march-2016].

[50] Q. A. Chen, Z. Qian, Z. M. Mao, Peeking into your app without actually

seeing it: Ui state inference and novel android attacks., in: USENIX

Security, Vol. 14, 2014, pp. 1037–1052.

74

http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
https://drive.google.com/file/d/0BxOPagp1jPHWYmg3Y3BfLVhMcmc/view
https://drive.google.com/file/d/0BxOPagp1jPHWYmg3Y3BfLVhMcmc/view

[51] L. Li, A. Bartel, J. Klein, Y. Le Traon, Automatically exploiting potential

component leaks in android applications, in: Trust, Security and Privacy

in Computing and Communications (TrustCom), 2014 IEEE 13th Inter-

national Conference on, IEEE, 2014, pp. 388–397.

[52] D. Kantola, E. Chin, W. He, D. Wagner, Reducing attack surfaces for

intra-application communication in android, in: Proceedings of the sec-

ond ACM workshop on Security and privacy in smartphones and mobile

devices, ACM, 2012, pp. 69–80.

[53] S. Heuser, M. Negro, P. K. Pendyala, A.-R. Sadeghi, Droidauditor: Foren-

sic analysis of application-layer privilege escalation attacks on android,

Tech. rep., Technical report, TU Darmstadt (2016).

[54] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, B. Shastry,

Towards taming privilege-escalation attacks on android., in: NDSS, 2012.

[55] W. Enck, D. Octeau, P. McDaniel, S. Chaudhuri, A study of android

application security., in: USENIX security symposium, Vol. 2, 2011, p. 2.

[56] A. Bartel, J. Klein, Y. Le Traon, M. Monperrus, Automatically securing

permission-based software by reducing the attack surface: An application

to android, in: Proceedings of the 27th IEEE/ACM International Confer-

ence on Automated Software Engineering, ACM, 2012, pp. 274–277.

[57] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, A. Ribagorda, Evolu-

tion, detection and analysis of malware for smart devices, Communications

Surveys & Tutorials, IEEE 16 (2) (2014) 961–987.

[58] A. Armando, G. Costa, A. Merlo, Bring your own device, securely, in:

Proceedings of the 28th Annual ACM Symposium on Applied Computing,

ACM, 2013, pp. 1852–1858.

[59] N. Hardy, The confused deputy:(or why capabilities might have been in-

vented), ACM SIGOPS Operating Systems Review 22 (4) (1988) 36–38.

75

[60] D. Maier, M. Protsenko, T. Müller, A game of droid and mouse: The

threat of split-personality malware on android, Computers & Security.

[61] D. Maier, T. Muller, M. Protsenko, Divide-and-conquer: Why android

malware cannot be stopped, in: Availability, Reliability and Security

(ARES), 2014 Ninth International Conference on, IEEE, 2014, pp. 30–

39.

[62] D. J. Tan, T.-W. Chua, V. L. Thing, et al., Securing android: a sur-

vey, taxonomy, and challenges, ACM Computing Surveys (CSUR) 47 (4)

(2015) 58.

[63] A. Bhavani, Cross-site scripting attacks on android webview, arXiv

preprint arXiv:1304.7451.

[64] J. Clarke-Salt, SQL injection attacks and defense, Elsevier, 2009.

[65] D. Ceara, M.-L. POTET, G. I. ENSIMAG, L. MOUNIER, Detecting soft-

ware vulnerabilities-static taint analysis, Vérimag-Distributed and Com-

plex System Group, Polytechnic University of Bucharest.

[66] S. Schmeelk, J. Yang, A. Aho, Android malware static analysis techniques,

in: Proceedings of the 10th Annual Cyber and Information Security Re-

search Conference, CISR ’15, ACM, New York, NY, USA, 2015, pp. 5:1–

5:8. doi:10.1145/2746266.2746271.

URL http://doi.acm.org/10.1145/2746266.2746271

[67] The AndroidManifest.xml File, http://lyle.smu.edu/~coyle/

cse7392mobile/handouts/s01.The%20AndroidManifest.pdf, [On-

line; accessed 21-May-2015].

[68] H. S. Karlsen, E. R. Wognsen, M. C. Olesen, R. R. Hansen, Study, for-

malisation, and analysis of dalvik bytecode, in: Informal proceedings of

The Seventh Workshop on Bytecode Semantics, Verification, Analysis and

Transformation (BYTECODE 2012), Citeseer, 2012.

76

http://doi.acm.org/10.1145/2746266.2746271
http://dx.doi.org/10.1145/2746266.2746271
http://doi.acm.org/10.1145/2746266.2746271
http://lyle.smu.edu/~coyle/cse7392mobile/handouts/s01.The%20AndroidManifest.pdf
http://lyle.smu.edu/~coyle/cse7392mobile/handouts/s01.The%20AndroidManifest.pdf

[69] B. Scholz, C. Zhang, C. Cifuentes, User-input dependence analysis via

graph reachability, in: Proceedings of Eighth IEEE International Working

Conference on Source Code Analysis and Manipulation.

[70] T. Reps, S. Horwitz, M. Sagiv, Precise interprocedural dataflow analy-

sis via graph reachability, in: Proceedings of the 22nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, ACM,

1995, pp. 49–61.

[71] Z. Yang, M. Yang, Leakminer: Detect information leakage on android

with static taint analysis, in: Software Engineering (WCSE), 2012 Third

World Congress on, IEEE, 2012, pp. 101–104.

[72] Analyzing Data flow, https://www.jetbrains.com/help/idea/2016.1/

analyzing-data-flow.html, [Online; accessed 25-April-2016].

[73] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. Le Traon, D. Octeau, P. McDaniel, Flowdroid: Precise context, flow,

field, object-sensitive and lifecycle-aware taint analysis for android apps,

in: ACM SIGPLAN Notices, Vol. 49, ACM, 2014, pp. 259–269.

[74] M. Das, S. Lerner, M. Seigle, Esp: Path-sensitive program verification

in polynomial time, in: ACM Sigplan Notices, Vol. 37, ACM, 2002, pp.

57–68.

[75] D. Callahan, The program summary graph and flow-sensitive interproce-

dual data flow analysis, Vol. 23, ACM, 1988.

[76] E. M. Myers, A precise inter-procedural data flow algorithm, in: Pro-

ceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, ACM, 1981, pp. 219–230.

[77] M. Sharir, A. Pnueli, Two approaches to interprocedural data flow anal-

ysis.

77

https://www.jetbrains.com/help/idea/2016.1/analyzing-data-flow.html
https://www.jetbrains.com/help/idea/2016.1/analyzing-data-flow.html

[78] A. J. Spyridi, A. A. Requicha, Accessibility analysis for the automatic

inspection of mechanical parts by coordinate measuring machines, in:

Robotics and Automation, 1990. Proceedings., 1990 IEEE International

Conference on, IEEE, 1990, pp. 1284–1289.

[79] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, S. Ioannidis,

Rage against the virtual machine: hindering dynamic analysis of android

malware, in: Proceedings of the Seventh European Workshop on System

Security, ACM, 2014, p. 5.

[80] Droidbox, http://code.google.com/p/droidbox/;, [Online; accessed

10-Oct-2015].

[81] M. Backes, S. Bugiel, S. Gerling, P. von Styp-Rekowsky, Android security

framework: Enabling generic and extensible access control on android,

arXiv preprint arXiv:1404.1395.

[82] V. Costamagna, C. Zheng, Artdroid: A virtual-method hooking frame-

work on android art runtime, Proceedings of the 2016 Innovations in Mo-

bile Privacy and Security (IMPS) (2016) 24–32.

[83] S. Gupta, P. Pratap, H. Saran, S. Arun-Kumar, Dynamic code instru-

mentation to detect and recover from return address corruption, in: Pro-

ceedings of the 2006 international workshop on Dynamic systems analysis,

ACM, 2006, pp. 65–72.

[84] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, Y.-M. Wang, Fine-grained power

modeling for smartphones using system call tracing, in: Proceedings of the

sixth conference on Computer systems, ACM, 2011, pp. 153–168.

[85] P. Machado, J. Campos, R. Abreu, Mzoltar: automatic debugging of an-

droid applications, in: Proceedings of the 2013 International Workshop

on Software Development Lifecycle for Mobile, ACM, 2013, pp. 9–16.

78

http://code.google.com/p/droidbox/;

[86] L.-K. Yan, H. Yin, Droidscope: Seamlessly reconstructing the os and

dalvik semantic views for dynamic android malware analysis., in: USENIX

security symposium, 2012, pp. 569–584.

[87] M. Sun, M. Zheng, J. Lui, X. Jiang, Design and implementation of an

android host-based intrusion prevention system, in: Proceedings of the

30th Annual Computer Security Applications Conference, ACM, 2014,

pp. 226–235.

[88] G. Sarwar, O. Mehani, R. Boreli, D. Kaafar, On the effectiveness of dy-

namic taint analysis for protecting against private information leaks on

android-based devices, Nicta.

[89] D. Amalfitano, A. R. Fasolino, P. Tramontana, A gui crawling-based tech-

nique for android mobile application testing, in: Software Testing, Verifi-

cation and Validation Workshops (ICSTW), 2011 IEEE Fourth Interna-

tional Conference on, IEEE, 2011, pp. 252–261.

[90] P. Szor, The art of computer virus research and defense, Pearson Educa-

tion, 2005.

[91] W. Enck, M. Ongtang, P. McDaniel, Mitigating android software misuse

before it happens.

[92] R. Xu, H. Säıdi, R. J. Anderson, Aurasium: practical policy enforcement

for android applications., in: USENIX Security Symposium, Vol. 2012,

2012.

[93] M. Conti, V. T. N. Nguyen, B. Crispo, Crepe: Context-related policy

enforcement for android, in: International Conference on Information Se-

curity, Springer, 2010, pp. 331–345.

[94] S. Bugiel, S. Heuser, A.-R. Sadeghi, Flexible and fine-grained mandatory

access control on android for diverse security and privacy policies., in:

Usenix security, 2013, pp. 131–146.

79

[95] OWASP, https://www.owasp.org/index.php/Access_Control_

Cheat_Sheet, [Online; accessed 10-March-2017].

[96] A. Ubale Swapnaja, G. Modani Dattatray, S. Apte Sulabha, Analysis of

dac mac rbac access control based models for security, Analysis 104 (5).

[97] DroidBench 3.0, https://github.com/

secure-software-engineering/DroidBench/tree/develop, [Online;

accessed 02-February-2017].

[98] D. Octeau, S. Jha, P. McDaniel, Retargeting android applications to java

bytecode, in: Proceedings of the ACM SIGSOFT 20th international sym-

posium on the foundations of software engineering, ACM, 2012, p. 6.

[99] D. Octeau, D. Luchaup, M. Dering, S. Jha, P. McDaniel, Composite con-

stant propagation: Application to android inter-component communica-

tion analysis, in: Proceedings of the 37th International Conference on

Software Engineering (ICSE), 2015.

[100] I. M. Asavoae, J. Blasco, T. M. Chen, H. K. Kalutarage, I. Muttik, H. N.

Nguyen, M. Roggenbach, S. A. Shaikh, Towards automated android app

collusion detection, in: Proceedings of the Workshop on Innovations in

Mobile Privacy and Security IMPS at ESSoS16, London, UK, 06-April-

2016.

[101] K. O. Elish, D. Yao, B. G. Ryder, User-centric dependence analysis for

identifying malicious mobile apps, in: Workshop on Mobile Security Tech-

nologies, 2012.

[102] K. O. M. Elish, User-intention based program analysis for android security.

[103] J. Oberheide, C. Miller, Dissecting the android bouncer, SummerCon2012,

New York.

[104] P. Lam, E. Bodden, O. Lhoták, L. Hendren, The soot framework for

java program analysis: a retrospective, in: Cetus Users and Compiler

Infastructure Workshop (CETUS), 2011.

80

https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/secure-software-engineering/DroidBench/tree/develop

[105] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,

Y. Le Traon, Effective inter-component communication mapping in an-

droid with epicc: An essential step towards holistic security analysis, in:

USENIX Security, 2013.

[106] APKTool, http://ibotpeaches.github.io/Apktool/, [Online; ac-

cessed 21-March-2016].

[107] L. O. Andersen, Program analysis and specialization for the c program-

ming language, Ph.D. thesis, University of Cophenhagen (1994).

[108] W. Klieber, L. Flynn, A. Bhosale, L. Jia, L. Bauer, Android taint flow

analysis for app sets, in: Proceedings of the 3rd ACM SIGPLAN In-

ternational Workshop on the State of the Art in Java Program Anal-

ysis, SOAP ’14, ACM, New York, NY, USA, 2014, pp. 1–6. doi:

10.1145/2614628.2614633.

URL http://doi.acm.org/10.1145/2614628.2614633

[109] M. Y. Wong, D. Lie, Intellidroid: A targeted input generator for the dy-

namic analysis of android malware, Proceedings of the Annual Symposium

on Network and Distributed System Security (NDSS 2016).

[110] K. Tam, S. J. Khan, A. Fattori, L. Cavallaro, Copperdroid: Automatic

reconstruction of android malware behaviors., in: Proceedings of the Net-

work and Distributed System Security Symposium (NDSS15), San Diego,

California, USA.

[111] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss, andromaly: a

behavioral malware detection framework for android devices, Journal of

Intelligent Information Systems 38 (1) (2012) 161–190.

[112] http://code.google.com/p/xml-apk-parser/, [Online; accessed 16-

Nov.-2015].

[113] http://wala.sourceforge.net, [Online; accessed 11-Jan.-2016].

81

http://ibotpeaches.github.io/Apktool/
http://doi.acm.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2614628.2614633
http://dx.doi.org/10.1145/2614628.2614633
http://dx.doi.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2614628.2614633
http://code.google.com/p/xml-apk-parser/
http://wala.sourceforge.net

[114] L. De Moura, N. Bjørner, Z3: An efficient smt solver, in: Tools and

Algorithms for the Construction and Analysis of Systems, Springer, 2008,

pp. 337–340.

[115] Y. Zhou, X. Jiang, Dissecting android malware: Characterization and evo-

lution, in: Security and Privacy (SP), 2012 IEEE Symposium on, IEEE,

2012, pp. 95–109.

[116] D. Barrera, J. Clark, D. McCarney, P. C. van Oorschot, Understanding

and improving app installation security mechanisms through empirical

analysis of android, in: Proceedings of the second ACM workshop on

Security and privacy in smartphones and mobile devices, ACM, 2012, pp.

81–92.

[117] R. Hay, O. Tripp, M. Pistoia, Dynamic detection of inter-application com-

munication vulnerabilities in android, in: Proceedings of the 2015 Inter-

national Symposium on Software Testing and Analysis, ACM, 2015, pp.

118–128.

[118] A. Bosu, F. Liu, D. D. Yao, G. Wang, Collusive data leak and more:

Large-scale threat analysis of inter-app communications, in: Proceedings

of the 2017 ACM on Asia Conference on Computer and Communications

Security, ACM, 2017, pp. 71–85.

[119] Malware Genome Project, http://www.malgenomeproject.org, [Online;

accessed 20-April-2015].

[120] Contagio Minidump, http://contagiominidump.blogspot.com/, [On-

line; accessed 23-April-2015].

[121] T. Book, D. S. Wallach, A case of collusion: A study of the interface

between ad libraries and their apps, in: Proceedings of the Third ACM

workshop on Security and privacy in smartphones & mobile devices, ACM,

2013, pp. 79–86.

82

http://www.malgenomeproject.org
http://contagiominidump.blogspot.com/

[122] Dedexer, http://dedexer.sourceforge.net/, [Online; accessed 10-

May-2016].

[123] R. Hay, O. Tripp, M. Pistoia, Dynamic detection of inter-application com-

munication vulnerabilities in android, in: Proceedings of the 2015 Interna-

tional Symposium on Software Testing and Analysis, ISSTA 2015, ACM,

New York, NY, USA, 2015, pp. 118–128. doi:10.1145/2771783.2771800.

URL http://doi.acm.org/10.1145/2771783.2771800

[124] Dex2Jar, https://github.com/pxb1988/dex2jar, [Online; accessed 10-

May-2015].

[125] D. Octeau, W. Enck, P. McDaniel, The ded decompiler, Network and

Security Research Center, Department of Computer Science and Engi-

neering, Pennsylvania State University, University Park, PA, USA, Tech.

Rep. NAS-TR-0140-2010.

[126] A. Bartel, J. Klein, Y. Le Traon, M. Monperrus, Dexpler: converting

android dalvik bytecode to jimple for static analysis with soot, in: Pro-

ceedings of the ACM SIGPLAN International Workshop on State of the

Art in Java Program analysis, ACM, 2012, pp. 27–38.

83

http://dedexer.sourceforge.net/
http://doi.acm.org/10.1145/2771783.2771800
http://doi.acm.org/10.1145/2771783.2771800
http://dx.doi.org/10.1145/2771783.2771800
http://doi.acm.org/10.1145/2771783.2771800
https://github.com/pxb1988/dex2jar

	1 Introduction
	2 Android
	2.1 Android App Composition
	2.2 Android Security Model
	2.2.1 App Signing
	2.2.2 App Permission
	2.2.3 Sandboxed Environment

	3 Inter-Component Communication
	3.1 Overt channel
	3.1.1 Intents
	3.1.2 Content Provider
	3.1.3 Shared Preference
	3.1.4 External Storage
	3.1.5 Remote Method Calls

	3.2 Covert channel
	3.2.1 Timing channels
	3.2.2 Storage channels

	4 Android Security Risks and Consequences
	4.1 Intent based attacks
	4.1.1 Intent Spoofing
	4.1.2 Intent Hijacking

	4.2 Android Risk Consequences
	4.2.1 Privilege Escalation
	4.2.2 Privacy Leaks

	5 Collusion
	5.1 History
	5.2 Definition
	5.3 Scenarios
	5.3.1 Among colluding apps, all are signed by same signature
	5.3.2 Among colluding apps, all are signed with different signatures
	5.3.3 Dynamic colluding apps

	5.4 Challenges in Collusion Detection

	6 Inter-Application Analysis
	6.1 Static Inter-App Analysis
	6.1.1 Resources
	6.1.2 Techniques

	6.2 Dynamic Inter-App Analysis
	6.2.1 Resources
	6.2.2 Techniques

	6.3 Policy Enforcement Based Analysis
	6.3.1 Resources
	6.3.2 Techniques

	7 State of the art approaches
	7.1 Static Analysis
	7.1.1 MR-Droid: A Scalable and Prioritized Analysis of Inter-App Communication Risks MR-Droid
	7.1.2 Detecting Inter-App Information Leakage Paths bhandari2017poster
	7.1.3 Towards Automated Android App Collusion Detection asavoae2016towards
	7.1.4 User-Intention Based Program Analysis for Android Security elish2012user
	7.1.5 IccTA li2015iccta
	7.1.6 Automatic Detection of Inter-Application Permission Leaks in Android Applications: PermissionFlow SbirleaPermissionFlow15
	7.1.7 FUSE ravitch2014multi
	7.1.8 Amandroid wei2014amandroid
	7.1.9 Android Taint Flow Analysis for App Sets Klieber:2014:ATF:2614628.2614633
	7.1.10 Analyzing Inter-Application Communication in Android: ComDroid chin2011analyzing

	7.2 Dynamic Analysis
	7.2.1 IntelliDroid wong2016intellidroid
	7.2.2 IntentDroid hay2015dynamic
	7.2.3 TaintDroid enck2014taintdroid

	7.3 Policy Enforcement Based Analysis
	7.3.1 Collusive Data Leak and More: Large Scale Threat Analysis of Inter-app Communicationsbosu2017collusive
	7.3.2 Intersection Automata based Model for Android Application Collusion intersection
	7.3.3 Flexible and Fine-Grained Mandatory Access Control on Android for Diverse Security and Privacy Policies flaskdroid
	7.3.4 XManDroid: A New Android Evolution to Mitigate Privilege Escalation Attacks bugiel2011xmandroid

	7.4 Case Studies
	7.4.1 Case of Collusion: A Study of the Interface Between Ad Libraries and their Apps book2013case
	7.4.2 Analysis of communication between colluding applications marforio2012analysis

	7.5 Comparison among state of art approaches
	7.6 Lessons Learned

	8 Conclusions
	9 Acknowledgments

