
Modeling Time, Probability, and Con�guration

Constraints for Continuous Cloud Service Certi�cation

M. Anisettic, C.A. Ardagnac, E. Damianib, N. El Ioinia, F. Gaudenzic

aFree University of Bozen, Bolzano, Italy
bEtisalat British Telecom Innovation Center, Khalifa University of Science, Technology and

Research, Abu Dhabi, UAE
cDipartimento di Informatica, Università degli Studi di Milano, Milano, Italy

Abstract

Cloud computing proposes a paradigm shift where resources and services are
allocated, provisioned, and accessed at runtime and on demand. New business
opportunities emerge for service providers and their customers, at a price of
an increased uncertainty on how their data are managed and their applications
operate once stored/deployed in the cloud. This scenario calls for assurance
solutions that formally assess the working of the cloud and its services/pro-
cesses. Current assurance techniques increasingly rely on model-based veri�ca-
tion, but fall short to provide sound checks on the validity and correctness of
their assessment over time. The approach in this paper aims to close this gap
catching unexpected behaviors emerging when a veri�ed service is deployed in
the target cloud. We focus on certi�cation-based assurance techniques, which
provide customers with veri�able and formal evidence on the behavior of cloud
services/processes. We present a trustworthy cloud certi�cation scheme based
on the continuous veri�cation of model correctness against real and synthetic
service execution traces, according to time, probability, and con�guration con-
straints, and attack �ows. We test the e�ectiveness of our approach in a real
scenario involving ATOS SA eHealth application deployed on top of open source
IaaS OpenStack.

Keywords: Assurance, Certi�cation, Cloud, Compliance, Security

1. Introduction

Cloud computing has radically transformed the way in which software is pro-
cured and provisioned. Cloud-based services are becoming the primary choice
for many purchasers of software products, since they o�er substantial advantages
in terms of e�ciency, functionality, and ease of use (Gai et al. (2016, 2017)).

Email addresses: marco.anisetti@unimi.it (M. Anisetti), claudio.ardagna@unimi.it
(C.A. Ardagna), ernesto.damiani@kustar.ac.ae (E. Damiani), nelioini@unibz.it (N. El
Ioini), filippo.gaudenzi@unimi.it (F. Gaudenzi)

Preprint submitted to Elsevier September 4, 2017

Indeed, cloud computing provides an opportunity to re-assess traditional license
and tender-based software procurement strategies to create a more �exible pro-
visioning process. Unfortunately, lack of trust in the cloud environment is par-
tially preventing both customers and providers from taking full advantage of
this opportunity (Alford and Morton (2009)). Their decision-making is in fact
a�ected by the di�culty of evaluating risks threatening data and applications
once stored/deployed in the cloud (Bellandi et al. (2015)).

To alleviate this problem, the research community has introduced new assur-
ance techniques to enhance cloud trust and transparency, supporting di�erent
practices such as audit, certi�cation, and compliance checking (e.g., Anisetti
et al. (2013a); Bertholon et al. (2011); Doelitzscher et al. (2013); Ye et al. (2012);
Sunyaev and Schneider (2013); Nunez et al. (2016)). In particular, certi�cation
has turned out to be an attractive solution for increasing the con�dence of
users and providers that their data and applications will be handled as agreed.
Certi�cation is evolving following IT evolution and moving from software certi-
�cation (e.g., Herrmann (2002)) to service and distributed system certi�cation
(e.g., Anisetti et al. (2013a); Bertholon et al. (2011); Kourtesis et al. (2010)),
and, in the last few years, to cloud-based system and infrastructure certi�cation
(e.g., Sunyaev and Schneider (2013); Anisetti et al. (2014a); Spanoudakis et al.
(2012); Grobauer et al. (2011)). Today, cloud certi�cation schemes (e.g., Anisetti
et al. (2014a); Spanoudakis et al. (2012)) implement processes that can be exe-
cuted at all layers of the cloud stack. Still, the dynamic nature of the cloud may
impair the certi�cation results. Certi�ed cloud services are in fact subject to
changes when deployed in the in-production environment,1 and can become very
di�erent from their counterparts certi�ed in a lab environment. For this reason,
interest in dynamic certi�cation is growing, and evidence collection at the basis
of cloud system certi�cation has become a continuous, runtime process often
driven by a model of the system behavior (Anisetti et al. (2013a); Ravindran
(2013); Spanoudakis et al. (2012)). The need for model-based, continuous evi-
dence collection is particularly important when verifying behavioral properties
that could be a�ected by the production execution context, such as worst-case
execution times (WCET) and the actual frequency of execution paths labeled
as exceptional at design time (Bate et al. (2002)). Also, the correctness of the
collection process strongly relies on the correctness of the system model that if
not preserved would impair the veri�cation results and the certi�cation process.

In this paper, we depart from the assumption of having a correct and error-
free modeling of the system under certi�cation (Anisetti et al. (2013a); Ravin-
dran (2013); Spanoudakis et al. (2012)), and present a trustworthy cloud cer-
ti�cation approach based on continuous veri�cation of model correctness. Our
approach aims to catch unexpected behavior occurring when a certi�ed service
is deployed in the production cloud. It builds on testing and monitoring of
execution traces to discover discrepancies between the model originally used to

1For clarity, in the following, we refer to in-production system, environment, evaluation,
as production system, environment, evaluation.

2

verify and certify a service in a lab environment, and the one inferred by observ-
ing system behavior in the production environment. Such discrepancies would
in fact invalidate the results of a certi�cation process, and in turn the certi�-
cate itself. We start by verifying the structure of the model, matching model
paths with real and synthetic service execution traces observed in production.
We then verify additional constraints, including time relations between di�erent
states of the model, transition probabilities, and mandatory con�gurations for
certi�cate validity. We �nally verify robustness against attacks represented in
the system model.

The contribution of this paper is twofold. We �rst de�ne a trustworthy
certi�cation process based on continuous veri�cation of the correctness of the
system model driving certi�cation activities. In particular, we put forward the
idea that a trustworthy certi�cation in the cloud must be built on a veri�ably
correct service model capable of expressing time, probability, con�guration con-
straints, and of specifying attack paths. Model correctness is in fact a mandatory
requisite on the consistency of the certi�cation process once the certi�ed sys-
tem is deployed in the production environment. We then design and develop
a certi�cation framework implementing a certi�cation scheme and a methodol-
ogy supporting the veri�cation of model correctness. We note that, although
our methodology is applied to a speci�c certi�cation scheme, it is general and
can be used for any model-based assurance technique. This paper develops on
our previous work (Anisetti et al. (2014b, 2015)) by providing i) a trustworthy
certi�cation scheme extended with checks on model correctness (Section 2); ii)
a methodology composed of four processes and corresponding algorithms for
verifying the model structure, as well as time, probability, and con�guration
constraints (Section 3); iii) an architecture including components supporting
online veri�cation of model correctness (Section 4); iv) an extensive evaluation
of our trustworthy certi�cation scheme (Section 5). The evaluation considers
the eHealth application of ATOS SA, a major IT enterprise, deployed on top of
open source IaaS OpenStack.

The remainder of the paper is organized as follows. Section 2 sketches our
trustworthy certi�cation process. Section 3 describes the methodology for veri-
�cation of model correctness at the basis of the certi�cation process. Section 4
presents our certi�cation framework. Section 5 presents the evaluation of the
methodology and framework in a real-world scenario. Section 6 presents related
work and Section 7 draws our conclusions. Finally, Appendix A-Appendix E
describe the algorithms implemented in the framework for veri�cation of model
correctness.

2. Trustworthy Certi�cation Process

A certi�cation scheme de�nes an evaluation process driven by a property,
taken from a shared vocabulary (Anisetti et al. (2013a)), to be certi�ably held
by a speci�c system representing the Target of Certi�cation (ToC). The evalua-
tion is usually carried out in a controlled environment (laboratory) and is aimed

3

at verifying the property through evidence collected by testing and/or monitor-
ing the ToC behavior. When the ToC is executed in a dynamically changing
environment like the cloud, an advanced certi�cation framework needs to keep
re-evaluating the ToC without the continuous supervision of the certi�cation au-
thority responsible for the certi�cation process or the accredited lab (delegated
by the certi�cation authority) responsible for evidence collection.

Most of current techniques for cloud certi�cation (e.g., Anisetti et al. (2014a);
Lins et al. (2016b); Stephanow et al. (2016)) implement a two-step evidence col-
lection process involving a certi�cation authority, an accredited lab, and the
system provider. The �rst step (pre-deployment evaluation) mimics traditional
certi�cation schemes and is aimed at collecting evidence in a controlled envi-
ronment; the second step (production evaluation) addresses cloud peculiarities
implementing continuous cloud-aware evaluation. In the pre-deployment eval-
uation, evidence collection activities are managed according to a model of the
ToC (evidence collection model) representing only those parts relevant for prop-
erty certi�cation. Such activities are executed in a laboratory environment.
The certi�cation authority evaluates whether the collected evidence is su�cient
to prove the given property and then issues a certi�cate for the ToC. We note
that evidence collection model is derived from the model of the whole system
including the ToC (system model). We also note that, though the behavior of
the laboratory environment is similar to the one of the production environment,
it cannot fully reproduce it. At this stage, all the processes are under the direct
control of the certi�cation authority or accredited lab executing the certi�cation
framework. In the production evaluation, possible inconsistencies (in terms of
evidence) between the behavior of the ToC in laboratory and production envi-
ronments are identi�ed, and their impact on awarded certi�cates are evaluated.
It is a continuous evaluation completely under the control of the certi�cation
process verifying the validity of the issued certi�cates.

There is however a subtle but important factor to be considered when pro-
duction evaluation is concerned. The veri�cation of the correctness of the ToC
behavior is strictly dependent on the correctness of the evidence collection model
used for managing evaluation activities, and in turn of the system model used
to produce it. An error in the system model in fact can a�ect the results of
the whole certi�cation process. Current processes do not consider this aspect,
substantially reducing the trustworthiness of the certi�cation process. Let us
consider a scenario where i) a ToC is certi�ed for property data con�dentiality,
ii) the system model does not model a backdoor added at deployment time giv-
ing full and unrestricted access to the production environment's administrators
(Duncan et al. (2012)). In this case, the production evaluation simply checking
the consistency between the ToC behavior in laboratory and production environ-
ments does not uncover the inconsistency introduced by the admin's backdoor.
If exposed, this backdoor would a�ect the validity of the certi�cate for property
data con�dentiality, possibly resulting in a certi�cate revocation.

To �ll in this gap, we extend our model-based certi�cation process in Anisetti
et al. (2014a, 2015) with a methodology for the veri�cation of the correctness of
the system model. We assume the system model to be either manually gener-

4

ated by the system provider with the help of the accredited lab or automatically
generated according to existing solutions (e.g., Anisetti et al. (2014b); Merten
et al. (2012); Ernst et al. (1999)). Our certi�cation process implements the
pre-deployment and production evaluation steps, and extends the system model
adding time, probability, con�guration constraints, and attack paths tested on
the ToC. These extensions represent certi�cation meta-requirements on the ToC
execution context, indirectly a�ecting the support of a given property, and com-
plement traditional certi�cation requirements on ToC mechanisms. The nature
of the collected evidence is then of two kinds: i) evidence on the behavior of
the ToC retrieved by testing/monitoring it according to the evidence collection
model, ii) evidence on system correctness verifying the consistency between the
original system model and the one retrieved by monitoring ToC executions in
the production environment.

A trustworthy certi�cation process must �rst verify the behavior of the ToC
in production by re-executing testing/monitoring activities done in the labo-
ratory environment and matching their results against results retrieved in the
pre-deployment evaluation. It must then check the correctness of the system
model used for pre-deployment certi�cation against real and synthetic service
execution traces, according to time, probability, and con�guration constraints.
It must �nally check robustness of the ToC against modeled attack paths. Below,
we assume that the pre-deployment phase results in the release of a certi�cate
(Anisetti et al. (2014a)), and provide an approach for system model correctness
veri�cation against time, probability, and con�guration constraints, and attack
paths (Section 3).

3. Veri�cation of Model Correctness

Our methodology for verifying the system (ToC) model correctness starts
by matching the system model structure against production execution traces.
It then analyzes additional contextual constraints on time, probability, con�g-
uration, and attack paths. Constraints and attack paths can be imposed over
the system model depending on the property to be veri�ed. It includes �ve
veri�cation steps as follows.

3.1. Model Structure

Model structure veri�cation permits to catch unexpected system behaviors,
which expose issues to be raised at certi�cation authority level and eventually
lead to certi�cate revocation. For instance, a backdoor added at deployment
time (Duncan et al. (2012)) and therefore not included in the system model could
a�ect the certi�cate of property con�dentiality. Model structure veri�cation
does not target any speci�c property. Rather, it targets model correctness and
is a prerequisite for the validity of the model and in turn of the certi�cation
process.

We start from the de�nition of the system model m representing the execu-
tion paths of a ToC composed of a speci�c service or a business process involving
multiple services. We model m as a �nite state machine as follows.

5

De�nition 3.1 (Model m). Model m∈M is a 5-tuple (L, l0, A,E, F), where
L is a �nite set of states, A is a �nite set of actions (input), E:L×A→L is the
transition function, l0∈L is the initial state, and F⊆L is the set of �nal states.

We note that a state l∈L represents a speci�c execution point reached by
the service; an action a∈A represents a service call or an operation triggering a
transition between two states; when clear from the context, we will refer to a
transition as a pair (li,lj) of states. Our model m can also be seen as a collection
of execution paths formally de�ned as follows.

De�nition 3.2 (Path pi). Given a service model m, a path pi is a sequence
of states pi=〈l0,. . .,ln〉, with l0∈L and ln∈F denoting the initial state and a
�nal state, respectively, s.t. ∀n−1j=0 l j, ∃ a transition (l j×aj→l j+1)∈E.

Our approach checks model structure correctness by collecting execution
traces from ToC executions and by projecting them on the system model paths.
Execution traces are collected by either monitoring real executions of the system
involving real customers or observing the results of ad hoc testing (synthetic
traces executed in laboratory and/or in production). Traces can be formally
de�ned as follows.

De�nition 3.3 (Trace T i). An execution trace T i∈T is a sequence 〈a1,. . .,an〉
of actions, where aj is a service/operation execution.

Appendix A illustrates the pseudocode of our algorithm for model structure
veri�cation (MSV). It takes as input the system model m =(L, l0, A,E, F)
and collected execution traces T i, and produces as output either success (1),
if the traces conform to the system model, or failure (0), otherwise, with a
description of the type of inconsistency found. MSV is based on a consistency
function ≡ between collected traces and system model execution (the formal
de�nition in Appendix A). The consistency function ≡ takes as input a trace
T i and a path pj and checks if for each action in trace T i exists a corresponding
action in path pj referring to the same service/operation. The inconsistencies
can be classi�ed according to three classes, each resulting in a set of pairs (T i,pj)
modeling inconsistencies, as follows.

• Partial path discovery. A trace is consistent with a sub-path in the model
meaning that, while mapping a trace to paths in the model, only an in-
complete path is found. Inconsistencies of this class are stored in the set
rpartial={(T i,pj)}.

• New path discovery. A trace is not consistent with any path in the model
meaning that a new path is found, that is, at least a new transition and/or
a new state is found in the traces. Inconsistencies of this class are stored
in the set rnew={(T i,−)}.

• Broken existing path. Real traces do not cover a path in the model and
the synthetic traces return an error for the same path, meaning that the

6

l0l1

l2

l3

l4l5

l6l7

l8

login(cred)

log(success)

log(failure)

assign_role(primary doctor)assign_role(doctor/nurse)

access(private_data)access(public_data)

logout()logout()

Figure 1: Model structure of the eHealth service

model includes a path that is not available/implemented in the real ToC.
Inconsistencies of this class are stored in the set rbroken={(−,pj)}.

We note that r=rpartial∪rnew∪rbroken establish the basis for verifying the
consistency between observed traces and paths.

Example 3.1. Let us consider the authentication service of an eHealth sys-
tem. The service checks the user's credentials and, if valid, assigns a role to
her to access di�erent portions of the eHealth system. Figure 1 shows a model
of the authentication service. Once the role of the user is identi�ed, the user
has access to patients' records with di�erent clearance levels (e.g., doctors in
charge of a patient have rights to access her private data, while all doctors and
nurses can access public data). Examples of traces that match this model include
〈login(cred), log(failure)〉, 〈login(cred), log(success), assign_role(doctor),
access(public_data), logout()〉. Similarly, traces that do not match this model
include 〈log(success), assign_role(nurse), access(public_data)〉 and
〈login(cred), log(success), assign_role(nurse), access(private_data), logout()〉.
There is however a subtlety to consider for the latter example. In case of emer-
gency, access to private data by doctors and nurses must be granted (break the
glass � BG); trace 〈login(cred), log(success), assign_role(nurse),
access(private_data), logout()〉 can then be observed in a production environ-
ment. If this scenario is not correctly modeled (like in Figure 1) an error is
raised by MSV .

3.2. Time Constraints

Time constraint veri�cation permits to identify inconsistencies in the orches-
tration of di�erent (parts of) services composing the ToC, when deployed in the

7

production environment. For instance, the veri�cation of a given non-functional
property should come with a time constraint that imposes to log any exceptional
situation and/or notify involved entities within a speci�c time frame, not to be
exceeded by the service WCET. We note that time constraints can also relate
to security aspects like in the case of Distributed Denial of Service (DDoS) or
latency-based attacks (Ardagna and Damiani (2014)). We use annotations on
the system model in De�nition 3.1 as a way to represent time constraints regulat-
ing the support of a given property. A time constraint is a set of integer-valued
x, y, . . ., representing clocks, and functions in the form f(z1,. . .,zi), representing
clock functions added as annotations over the transitions of the model m. Φ(K)
denotes the set of clock constraints. λt:E→Φ(K) is a labeling function that as-
sociates a clock constraint φ∈Φ(K) with a transition (li,lj)∈E of m. Based on
λt, we de�ne a timed system model mt as an extension of the system model m
in De�nition 3.1.

De�nition 3.4 (Timed system model (mt)). Model mt is a 6-tuple
(L, l0, A,E, F, λt), where L, A, E, l0, and F are de�ned in De�nition 3.1, and
λt assigns a label λt((li,lj)), corresponding to the time constraint de�ned for
each transition (li,lj).

We note that in case a transition (li,lj) 6∈E, λt((li,lj)) refers to the path(s)
connecting li∈L and lj∈L.

To match execution traces against model mt , traces need to be extended to
support temporal properties, in other words, timestamps need to be added to
each action in the trace. Formally, timed traces are de�ned as follows.

De�nition 3.5 (Timed Trace TT i). A timed trace TT i is a sequence
〈a1,. . .,an〉 of actions, where aj={o, ts}, o is a service/operation execution, and
ts is the timestamp associated to o. The sequence of traces is temporally ordered
ai≺aj meaning that ai is temporally completed before aj.

Appendix B illustrates the pseudocode of our algorithm for time constraint
veri�cation (TCV). It takes as input timed system model mt and the timed
traces TT i, and produces as output either success (1), if each trace satis�es
time constraints in the corresponding path, or failure (0), otherwise, with the
list of transitions violating time constraints. TCV is based on a time consistency
function ≡t (the formal de�nition in Appendix B). The consistency function
≡t takes as input a timed trace TT i and a path pj , such that TT i≡p , and
checks if the corresponding time constraints λt((li,lj)) annotated over path pj
are consistent with the timestamps in trace TT i (denoted TT≡tp).

Example 3.2. We extend Example 3.1 by adding temporal guards over some
of its transitions (Figure 2). For the purpose of our example we have added the
transition (BG) in Example 3.1 referring to an emergency situation in which
all doctors and nurses can access private data. In this example, we specify
that in normal circumstances data access can take up to 10ms, while in BG
data access can take up to 5ms. Let us consider a valid trace T=〈login(cred),

8

l0l1

l2

l3

l4l5

l6l7

l8

login(cred)

log(success)

log(failure)

assign_role(primary doctor)assign_role(doctor/nurse)

access(private_data)

x < 10ms

access(public_data)

x < 10ms

logout()logout()

access(private_data)

x < 5ms

Figure 2: Time constraints of the eHealth service.

log(success), assign_role(nurse), access(private_data), logout()〉 in m; this
trace will be valid in mt if it satis�es time constraints. For instance, timed trace
TT=〈(login(cred), 2), (log(success), 3), (assign_role(nurse), 5), (access
(private_data), 8), (logout(), 9)〉 is valid because it satis�es time constraints in
mt (i.e., 8ms−5ms<5ms).

3.3. Probability Constraints

Probability constraint veri�cation permits to identify inconsistencies in the
distribution of executions among ToC �ows. It considers a speci�c time window
(consisting of a set of real and synthetic traces) and is used to identify behavioral
anomalies, where exceptional activities become the norm. We use annotations
on the system model in De�nition 3.4 as a way to represent probability con-
straints regulating the support of a given property. A probability constraint is
an equation of the form x∼n, where x and n are real numbers ∈[0 . . . 1], and
∼∈{6, <,=, >,>}. Γ(n) denotes the set of probability constraints.

Similar to time annotations, we de�ne a labeling function λprob:E→Γ(n)
that associates a probability constraint γ∈Γ(n) with a transition (li,li+1)∈E of
mt . Based on λprob, we de�ne a probabilistic timed system model mprob as an
extension of the system model mt in De�nition 3.4.

De�nition 3.6 (Probabilistic timed system Model mprob). Model mprob is
a 7-tuple (L, l0, A,E, F, λt, λprob), where L, A, E, l0, F , and λt are de�ned in
De�nition 3.4, and λprob assigns a label λprob((li,li+1)), corresponding to the
probability constraint de�ned for each transition (li,li+1).

We note that, for each l∈L,
∑
kλprob((l,lk))=1, with (l,lk)∈E. Let us con-

sider a time window ∆t de�ned as a bounded interval [ts, te] where ts∈N is the

9

starting time, and te∈N is the ending time. The veri�cation of model mprob is
built on a frequency-based evaluation of request distribution, using the subset
of timed traces TT i observed during the time window ∆t.

Appendix C illustrates the pseudocode of our algorithm for probability con-
straint veri�cation (PCV). It takes as input the probabilistic timed system
model mprob and the set T of timed traces TT i, and produces as output either
success (1), if each trace satis�es probability constraints of the corresponding
path, or failure (0), otherwise, with the list of transitions violating probability
constraints. PCV is based on a probability consistency function ≡prob (the for-
mal de�nition in Appendix C). The probability consistency function ≡prob takes
as input a path p and a set of timed traces TT j , such that TT j≡p , observed in
a time window ∆t and insisting on p , and checks if timed traces TT j are such
that the frequency of executing p is consistent with λprob((li,li+1)) annotated
over p (denoted {TT j}≡probp) .

Failures in the probability constraint veri�cation means that there is an
inconsistency between the probability model and the execution traces. The
inconsistencies at this level show that there are changes in the execution path
distribution. Thus, the system needs to be checked to verify whether the changes
are due to malicious behaviors, therefore requiring the intervention of the cer-
ti�cation authority.

Example 3.3. We extend Example 3.2 by adding probabilities over its transi-
tions (Figure 3). The transitions of interest include the ones representing the
BG scenario. BG is a relatively rare situation that needs to be modeled with low
execution probability. Thus, for a speci�c time window, the traces that violate
the probability constraints are the ones containing transitions occurring with a
percentage higher/lower than the one speci�ed over the model mprob. For in-
stance, in the model de�ned in Figure 3, if for a speci�c time window ∆t we
have 100 valid timed traces that pass through transition (l2,l5), at most .02 of
traces (2 traces) should take transition (l5,l6).

3.4. Con�guration Constraints

Con�guration constraint veri�cation permits to identify indirect dependen-
cies on cloud con�gurations supporting the property. For instance, let us con-
sider a system implementing a DNS made of three independent replicas. The
system needs to be certi�ed against property �reliability to two failures�. At
certi�cation time, we can verify that the three replicas are actually working;
however, this check does not take into account the fact that the three replicas
may be deployed on the same physical hardware. In this case, the certi�cate
for property reliability should be invalidated because if the physical machine
fails, all replicas will fail. Being able to add con�guration constraints as part
of the service model permits to have a clear picture of the con�gurations that
may a�ect the certi�ed system, and need to be managed during the certi�cation
process as mandated by ISACA (Chaudhuri et al. (2011)).

10

l0l1

l2

l3

l4l5

l6l7

l8

login(cred)

log(success)
> .95

log(failure)

6 .05

assign_role(primary doctor)assign_role(doctor/nurse)

access(private_data)

x < 10ms

access(public_data)

x < 10ms

> .98

logout()logout()

access(private_data)
x < 5ms

6 .02

Figure 3: Probability constraints of the eHealth service

We use annotations on the system model in De�nition 3.6 as a way to rep-
resent con�guration constraints regulating the support of a given property. A
cloud con�guration constraint is a set of pairs Ψ(prop, v), where prop represents
a cloud con�guration property and v its value.

We then de�ne a labeling function λc:E→Ψ(prop, v) that associates a con-
�guration constraint ψ∈Ψ(prop, v) with a transition (li,lj)∈E of mprob . Based
on λc, we de�ne a trustworthy system model mr as an extension of the system
model mprob in De�nition 3.6.

De�nition 3.7 (Trustworthy system model (mr)). Model mr is a 8-tuple
(L, l0, A,E, F, λt, λprob, λc), where L, A, E, l0, F , λt, and λprob are de�ned in
De�nition 3.6, and λc assigns a label λc((li,lj)), corresponding to the con�gu-
ration constraint de�ned for each transition (li,lj).

We note that in case a transition (li,lj) 6∈E, λt((li,lj)) refers to the path(s)
connecting li and lj .

Appendix D illustrates the pseudocode of our algorithm for time constraint
veri�cation (CCV). It takes as input a trustworthy system model mr and pro-
duces as output either success (1), if each con�guration constraint in the corre-
sponding path is satis�ed, or failure (0), otherwise, with the list of transitions
violating con�guration constraints.

Failures in the veri�cation of con�guration constraints mean that one or more
con�guration requirements are not met. Failures at this stage can have serious
implications for cloud providers promising con�gurations that are not present,
or in case of miscon�gurations/attacks. Thus, if a con�guration constraint is
not satis�ed the system needs to be tested to check the problem and take the
appropriate actions to solve it.

11

l0l1

l2

l3

l4l5

l6l7

l8

login(cred)

(protocol, SSL)

log(success)

> .95

log(failure)

6 .05

assign_role(primary doctor)assign_role(doctor/nurse)

access(private_data)

x < 10ms

access(public_data)

x < 10ms

> .98

logout()logout()

access(private_data)
x < 5ms

6 .02

Figure 4: Con�guration constraints of the eHealth service

Example 3.4. We extend Example 3.3 by adding one con�guration constraint
stating that the communications during the login phase need to be protected by
security protocol SSL (Figure 4). This property needs to be continuously checked
to verify the support of corresponding certi�cates.

3.5. Attack paths

The modeling of service interactions, time, probability and con�guration
constraints goes beyond the simple checking of the correct system behavior. It
also permits to indirectly verify the conformance between the running system
and its security requirements. For example, when the distribution of invoking
certain services undergoes a rapid change, it might be an indicator of a security
breach. As another example, traces that do not re�ect the annotations in the
models might represent a possible basis for security threats.

Attack path veri�cation permits to even strengthen security checks, by veri-
fying robustness of the ToC against known attacks.2 We de�ne an attack model
as a perturbation of the system model in De�nition 3.1, based on well-known
fault injection techniques, with the purpose of representing attack vectors.

De�nition 3.8 (Attack Model mAT). Model mAT=(L′, l0, A
′, E′, F) is an ex-

tension of m=(L, l0, A,E, F), where L′=L∪La, A′=A∪Aa, and E′=E∪Er∪Ew,
with La a �nite set of attack states, Aa a �nite set of attack actions, Er:L

′×Aa→La

2We recall that we are not implementing an intrusion detection system; rather, our goal
is to implement a trustworthy certi�cation process, which is based on the continuous veri�-
cation of the model representing the ToC and used to verify its properties in the production
environment.

12

q1

q2

Laa

(a) Data Interception

q1

q2

Laa

(b) Data Forwarding

q1

q2

La
attack

Impl

(c) Data modi�cation

Figure 5: Attack classes

a transition annotated with a read action, and Ew:La×Aa→L′ a transition an-
notated with a write action.

We note that our attack model mAT can also be seen as a set of attack paths,
which are used to generate attack traces. Attack traces implement attacks to a
real system and show possible security failures. Three attack classes have been
considered in our approach (Anisetti et al. (2013b)), namely i) data interception,
ii) data forwarding, and iii) data modi�cation. States La and actions Aa are
used to model the attack classes as shown in Figure 5. We note that, depending
on di�erent situations, additional attack classes can be added to the model.
Formally, attack traces are de�ned as follows.

De�nition 3.9 (Attack Trace AT i). An attack trace AT i is a sequence
〈a1,. . .,an〉 of actions, where at least one aj is part of the attack model mAT .

Appendix E illustrates the pseudocode of our algorithm for attack path
veri�cation (APV). It takes as input the system model, the attack model, and
the corresponding attack traces, and produces as output either success (1), if
all attack traces fail, or failure (0), otherwise, with the list of successful attack
traces. The system is considered to be secure if none of the attack traces can
follow the corresponding path in the system model in De�nition 3.1 and retrieve
successful results.

Example 3.5. Let us consider model m in Figure 1. Functionality login is
perturbed according to an attack model of class data interception (Figure 5(a))
modeling a replay attack. The man-in-the-middle attacker intercepts a call to
the login service, retrieves the login data, and replay them to authenticate to the
system. If the system grants access to the attacker, that is, the same result of an
authorized users sending a call to the login service is retrieved, we can conclude
that the login service is vulnerable to the replay attack.

Our certi�cation process and framework use the trustworthy system model
in De�nition 3.7 and the attack model in De�nition 3.8 to verify system model
correctness.

13

Certi�cation Manager

Model Database DashboardProbe Dispatcher Evidence Analyzer
Evidence Database

A
g
en
t
Q
u
eu
e

E
v
id
en
ce

Q
u
eu
e

ToC

Service SaaS

PaaSDBMeta-Probe WS

IaaSMeta-Probe

Execution Cluster1

Execution Cluster2

Execution Manger

Scheduler

Worker1

Worker2

Execution Manger

Execution Manger

Execution Manger

Probe

Probe

Meta-Probe

.config

.config

Figure 6: A simpli�ed view of the framework architecture

4. Certi�cation Framework

Our certi�cation framework has the main responsibility of managing a trust-
worthy certi�cation process and verifying the validity of corresponding certi�-
cates. Its architecture and components support any (semi-)automatic assurance
process, including audit and compliance processes.

Figure 6 presents a view of our framework architecture. The framework is
composed of a certi�cation manager that orchestrates the whole certi�cation
and model veri�cation processes, and a set of execution clusters, each managing
and executing a set of agents collecting the evidence at the basis of certi�cation
and veri�cation activities.

The certi�cation manager stores all con�gurations and information needed
to verify the correctness of the model (model structure, time constraints, proba-
bility constraints, con�guration constraints, attack paths) and evaluates it once
a su�cient amount of evidence is available. Certi�cation manager is composed
of the following modules:

• Dashboard : a web application providing an interface to manage certi�ca-
tion and model veri�cation processes.

• Model Database: a database storing all con�gurations and rules for certi-
�cation operations and model veri�cation.

• Probe Dispatcher : a module implementing a communication channel be-
tween certi�cation manager and execution clusters to require agent exe-
cution.

• Result Database: a time-series database automatically storing all evidence
coming from execution clusters at the basis of certi�cation and veri�cation
activities.

14

• Evidence Analyzer : a module analyzing the evidence in the result database
and verifying the model correctness based on speci�ed constraints.

Execution clusters are composed of execution managers that manage, deploy,
and run agents on demand following requests from the certi�cation manager on
a full-duplex channel, where collected evidence are also exchanged. Communi-
cations are implemented using queues and the producer-consumer pattern. An
execution cluster deploys multiple execution managers, each composed of the
following modules:

• Scheduler : a module attached to the agent queue and constantly waiting
for messages from the certi�cation manager. Upon a request arrival, it
dispatches the task to a worker.

• Worker : a module directly connecting to agents in order to send them all
con�gurations needed for their execution. Upon agent execution is com-
pleted, the resulting evidence is sent to the certi�cation manager through
the evidence queue.

We note that our design based on multiple certi�cation managers allows
to scale the computational capacity of the system, since the certi�cation man-
ager can choose the most appropriate execution cluster to exercise the ToC.
We also note that agents can be of two types working at di�erent levels of
granularity. The �rst agent type, called probe, includes testing and monitoring
functionalities. They directly exercise the ToC by executing test cases and/or
by monitoring events, to the aim of evaluating the behavior (including attack
scenarios) of the system under certi�cation. Their main goal is to identify pos-
sible inconsistencies between the evidence retrieved in a laboratory environment
and the one retrieved in the production environment. The second agent type,
called meta-probe, is used for the veri�cation of contextual (i.e., time, probabil-
ity, con�guration) constraints and system model correctness. They indirectly
exercise the ToC by observing real and synthetic execution �ows (traces) of the
system under certi�cation. Their main goal is to identify violations of time,
probability, and con�guration constraints, and inconsistencies of the execution
�ows.

Probes and meta-probes have the same structure (see Figure 7). They are
composed of di�erent atom operations that accept as input con�guration pa-
rameters and results produced by previous operations, and returns as output
evidence on the behavior of the system. An example of probe structure is showed
in Figure 7. A probe is modeled as a State Transition System (STS) with two
main �ows of the same size (Figure 7(a)): i) the forward chain and ii) the roll-
back chain. The forward chain contains all the states that should be executed if
there are no exceptions during the probe execution, otherwise the �ow is redi-
rected on the corresponding rollback state and continues on the rollback chain.
This approach is designed to guarantee that the ToC can be always restored
to the initial state. The example in Figure 7 shows a probe with 4 states (2
forward states, 2 rollback states). The order of execution and association be-
tween forward and rollback states are speci�ed by the con�gurations in method

15

atom0f

atom1f

atom0r

atom1r

class SimpleEmptyProbe(Probe):

def atom0f(self, inputs):
#reading input
port=self.testinstances["con�g"]["port"]
...
return True

def atom0r (self, inputs):
...
return False

def atom1f(self, inputs):
#return evidence
self.result.put("evidence−key","evidence−value")
...
return True

def atom1r (self, inputs):
...
return False

#De�nition of execution order
def appendAtomics(self):

self.appendAtomic(self.atom0f, self.atom0r)
self.appendAtomic(self.atom1f, self.atom1r)

(a) (b)

Figure 7: Probe script in python. The probe is composed of two atom operations (atom0,
atom1) with the corresponding rollback operations (atom0r, atom1r). Method appendAtomics
speci�es the order and matching of atom operations. atom0 is executed �rst; atom1 can access
the results from atom0 according to its de�nition.

appendAtomics (Figure 7(b)). The complete code of some example probes are
described in Section 5.2 and available for interested readers at https://github.
com/SESARLab/Security-Constraint-Cloud-Service-Composition.

In some cases, probes and meta-probes can be used interchangeably. The
choice depends on the speci�c scenario, and balance the quality of the retrieved
evidence and the required level of access to the cloud infrastructure. Meta-
probes connect to interfaces (hooks) provided by the cloud provider with limited
access to the cloud backend; probes directly access the cloud backend and can
manage part of it. As an example, both probes and meta-probes can be used to
verify property con�dentiality by encryption of a cloud storage. Probes require
direct read/write access to the storage, while meta-probes only check whether
the storage is con�gured to encrypt data without any access to the stored data.
The use of meta-probes comes with some non-negligible advantages. First, they
do not require the cloud providers to open their system to the outside and release
sensitive data. Second, they verify support of a property without interfering
with the normal execution of the system. Third, they introduce lower overhead.
These advantages come at the price of a reduced quality of the evidence. In the
following, we denote as structure, time, probability, and con�guration (meta-
)probes, (meta-)probes dealing with system model structure, time constraints,
probability constraints, and con�guration constraints, respectively.

In Section 5, we present the working of our certi�cation framework in a real
scenario. To this aim, we implemented a certi�cation manager that collects evi-
dence on the behavior of the system (probes) and evidence on system correctness

16

(meta-probes), and uses them to manage a certi�cation process and its certi�-
cate life cycle. We note that di�erent assurance/adaptation frameworks (e.g.,
audit and compliance frameworks) can be implemented by simply changing the
way in which evidence is used by the certi�cation manager.

5. Experimental evaluation

We evaluate our trustworthy certi�cation process in the context of the eHealth
application provided by ATOS SA, a major IT player, deployed on top of Open-
stack. We �rst describe our scenario discussing the security requirements at
both application and infrastructure layers (Section 5.1). We then present the
setup and deployment of our certi�cation framework, the implemented probes
and meta-probes for security property certi�cation, and the results of our eval-
uation (Section 5.2). We �nally discuss the achievements of our certi�cation
framework and present some future work (Section 5.3).

5.1. Reference Scenario: ATOS SA eHealth Application

Our reference scenario is the eHealth application provided by ATOS SA,
a telemedicine cloud application for patients su�ering from dementia. ATOS
SA is an international information technology services company, and one of the
biggest system integration players in Europe. The eHealth application aims to
support patients in their everyday life with a speci�c and dedicated tool, as
well as caregivers and clinicians during the patient treatment. It is composed
of three distributed components:

• GUI application server (GAS) is a self-contained server component that
manages eHealth users, the data resulting from the monitoring of patients'
biometric indicators, and tasks and questionnaires assigned to patients. It
o�ers a web graphic interface to access all service features.

• Engine application server (EAS) is a self-contained SOAP-based server
component that acts as an interface between the eHealth application com-
ponents. It hosts the functionalities o�ered by the system through web
services, namely: i) management of roles, permissions, connections, and
transactions with the database server, ii) information provisioning to third
party services and applications, iii) execution of the main business appli-
cation logic (e.g., patients' data, warnings, and message processing).

• Database server (DS) is a MySQL DBMS. It stores and manages all per-
sistent information, such as personal data of patients, caregivers, and doc-
tors, patient's medical measurements, and questionnaire data with pa-
tients' responses, to name but a few. All data are manipulated via the
engine application server ensuring data integrity and consistency.

eHealth application is designed to work on OpenStack infrastructure. Open-
Stack is an open source IaaS solution providing functionalities for the manage-
ment and monitoring of infrastructure resources. It is becoming a standard

17

de facto due to its wide adoption by big IT companies and provides di�erent
services at the basis of eHealth deployment.

• Identity service (Keystone): it provides authentication and authorization
functionalities to all OpenStack services.

• Compute service (Nova): it provides Virtual Machine (VM) management
through abstraction layers that support di�erent hypervisors.

• Block storage (Cinder): it provides persistent storage. It supports a full
life cycle management for block storage, and access control and encryption
functionalities.

• Network service (Neutron): it provides IP management, DNS, DHCP, load
balancing, �rewall policies, and VPN management.

• Database service (Trove): it provides a database as a service for Open-
Stack. It is designed to run entirely on OpenStack, with the goal of al-
lowing users to quickly and easily utilize the features of a relational or
non-relational database, but without the burden of handling complex ad-
ministrative tasks.

The eHealth application components are mapped on OpenStack as follows:
database server is deployed using Trove to speed up the deployment and to
continuously monitor the database cluster status; engine application server and
GUI application server are deployed as VMs. These VMs are managed by Nova,
while their storage is managed by Cinder. Figure 8 presents the architecture
of the eHealth application, showing the deployment of its components on top
of Openstack. For conciseness, when clear from the context, we will refer to
the eHealth deployment in Figure 8 by the shortened name `eHealth'. The
application layer of eHealth is composed of the public interfaces exposed by
engine application server and GUI application server, while the infrastructure
layer is composed of the Openstack services including the database server.

5.1.1. Security aspects

The notion of cloud security depends on the service model and the requested
level of assurance. We adopted the security domain concepts and classi�cation
collected by the OpenStack security group (OSSG) in the OpenStack Security
Guide OpenStack Foundation (2016), and mapped them to our eHealth scenario.
According to OSSG, �a security domain comprises users, applications, servers
or networks that share common trust requirements and expectations within a
system� (OpenStack Foundation (2016)). In our scenario, users are the Open-
stack cloud administrators, cloud tenants, and eHealth users, applications are
the eHealth services deployed on Openstack VMs, servers are the OpenStack
services, and networks include both internal and external networks. Security
domains are classi�ed as follows.

18

Horizon

Keystone

GAS
VM

EAS
VM

.....
GAS

.....
EAS

DS
VM

MySQL

VM2

..... MySQL

VMn

Storage 1
.....

Storage 3

Storage 4
.....

Storage n

Storage Db1
.....

Storage Dbn

EAS image

GAS image

TroveMySQL

GlanceTroveCinder

Client-net db-net trove-net
Neutron

Nova

OpenStack

Figure 8: eHealth application on top of Openstack infrastructure. Solid triangles represents
public interfaces

• Public: it refers to the untrusted portion of the cloud. Each data posing
con�dentiality or integrity issues should be protected by using external
controls before transiting the public domain.

• Guest : it refers to instance-to-instance or application-to-application com-
munications. It considers all data produced by cloud applications/VMs.

• Management : it refers to communications and data produced by tools and
services part of the cloud business core.

• Data: it refers to information concerning the storage services.

The evaluation of our certi�cation framework builds on the mapping between
eHealth and security domains (Figure 9), and focuses on security properties de-
rived from eHealth security concerns. When dealing with cloud applications, we
must consider security concerns of both the application (eHealth) and the under-
lying cloud layers (OpenStack hosting eHealth). eHealth treating sensitive med-
ical data has a lot of security and privacy concerns. All eHealth sensitive data
need to be exchanged and stored in a con�dential way. Any access to con�den-
tial data, either from service interfaces or directly through infrastructure ports,
must be restricted via authorization rules preventing from unauthorized access,
as well as identity theft. OpenStack supporting the management and storage
of sensitive data has also several security concerns. For these concerns, we re-
fer to the OpenStack Security Guide (OpenStack Foundation (2016)) including
security advices/considerations and keeping track of vulnerabilities, which are
released as security notes.

5.2. Certi�cation of eHealth

We deployed our framework and setup our certi�cation process for the ver-
i�cation of a set of security properties for eHealth application on a 32 physical

19

Public

Management

Data

Guest

K
E
Y
S
T
O
N
E

N
O
V
A

N
E
U
T
R
O
N

C
I
N
D
E
R

T
R
O
V
E

E
H

Figure 9: Mapping between OSGG security domains and eHealth. eHealth application layer
is denoted as EH, eHealth infrastructure layer is represented by Openstack services.

machines ProLiant BL2x220c G6 equipped with 12 Intel Xeon X5660 cores at
2.80 GHz, 24GB RAM, 120GB SATA HDD. The storage node is composed of
1TB o�ered as Network File System (NFS). Our machine hosts a replica of the
eHealth production cloud, where OpenStack has been installed with i) no re-
dundancy, ii) Trove, Sahara, and Heat services in addition to core services, and
iii) TLS/SSL module enabled for all services. Security properties have been
veri�ed according to relevant security aspects in the OpenStack security guide
(Section 5.1.1) and requirements imposed by eHealth.

In the following, we provide a section for each model veri�cation step in
Section 3 presenting certi�cation activities, describing the code of our (meta-
)probes, and discussing the retrieved results. In particular, for time (Sec-
tion 5.2.2), probability (Section 5.2.3), con�guration (Section 5.2.4) constraints,
and attack paths (Section 5.2.5), we present the certi�cation activities executed
on the eHealth application describing: i) the goal, ii) the scenario, iii) the
target of certi�cation in terms of eHealth components, iv) the implementation
of probes and meta-probes (including their code), and v) an analysis of the
retrieved results. For model structure (Section 5.2.1), instead, we provide an
evaluation based on simulation, which goes beyond an evaluation based on a
single reference scenario with a single system model. Model structure veri�ca-
tion, which is a mandatory step of our veri�cation process and is at the basis of
the others veri�cation steps, requires a more extensive evaluation implemented
using model perturbation.

5.2.1. Model Structure Veri�cation

We show how our approach can detect model inconsistencies and changes
in the running system can be re�ected in the model. To this aim, we devel-
oped a prototype composed of two main modules, namely, consistency checker
and model adapter, and a model generator that generates random models and
provides the ability to perturb them at various degrees (e.g., add new paths,
remove existing paths).3 The Consistency checker receives as input a service

3The model generator code can be found in https://goo.gl/4fQRhE.

20

model and a set of real and synthetic traces,4 and returns as output inconsistent
traces with the corresponding type of inconsistency. Model adapter receives as
input the results of the consistency checker and, according to them, generates
as output a re�ned model.

A data set has been generated to test the e�ectiveness of our prototype as
follows. A model m has been de�ned manually to represent the correct im-
plementation of a portion of the eHealth system. The model m is composed
of 20 di�erent paths. Using the model generator, we randomly generated 1000
inconsistent models by adding random inconsistencies to m. Inconsistent mod-
els are such that 10%, 20%, 30%, 40%, or 50% of the paths are di�erent (e.g.,
missing, new) from the paths in m. To simulate realistic customer behaviors, we
extended m by adding a probability Pi of executing each path pi∈m such that∑
iPi=1. Probabilities are taken randomly from a normal probability distribu-

tion such that there exist few paths whose probability of being invoked tends to
0. Real and synthetic traces are produced using m extended with probabilities.

First, using the consistency checker, we veri�ed inconsistent models in the
data set and retrieved inconsistent traces together with the type of inconsistency
(using the algorithm MSV in Appendix A)). Then, using the model adapter, we
built a re�ned model of each inconsistent model, and evaluated how much these
models approximate the correct model m. The results show that the re�ned
models covered 64% of paths in m on average, with an increase of 28% on
the average coverage of the inconsistent models. Also, 17% of the inconsistent
models were able to cover the entire model m (i.e., 100% coverage), while 0% of
the inconsistent models in the data set covered the entire model by construction.
Figure 10 shows a Box and Whisker chart presenting more detailed results on
the basis of the rates of di�erences (i.e., 10%, 20%, 30%, 40%, 50%) introduced
in the inconsistent models. Figure 10 shows that an increased perturbation level
results in a decreased ability to achieve a full coverage of the initial model. The
median value decreases in such a way that the complete coverage is achieved in
the last category (50%) as an outlier. Nevertheless, for all perturbation levels,
50% of the models recovers at least 40% of the inconsistencies. Additionally, in
the �rst case (10% perturbation), more than 50% of the models were completely
recovered; therefore, both the median and the maximum coverage are equal
to 1. These results are mainly due to the fact that paths at low probability
are invoked with low probability. If these paths are already speci�ed in an
inconsistent model, then a synthetic trace can be generated to evaluate them (if
no real traces are observed) and the re�ned model covers 100% of m. Otherwise,
they remain hidden impairing the ability of model adapter to produce a re�ned
model that covers 100% of m.

5.2.2. Time Constraints - �Access Performance�

The access performance (responsiveness) of an eHealth service is crucial to
save life. A prompt access to patience information in emergency cases is even

4We remark that synthetic traces are generated by ad hoc testing.

21

10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage per category

Perturbation %

A
ve

ra
ge

 C
ov

er
ag

e

Figure 10: Re�ned model coverage of m.

more crucial. This property has an impact both at service and infrastructure
layer measuring the total time needed to retrieve patience information upon
request (response time).

Goal. The goal of the certi�cation process is to check whether the response
time of function access(private_data) is under a given threshold mi (mi=500ms
in our example). Time is measured from outside the application as a nurse or a
doctor interacts with the application.

Scenario. A user logs into the eHealth application during an emergency situ-
ation and requires private data of a patience not under her control.

ToC. It consists of the eHealth application with particular focus on function ac-
cess(private_data). It insists on guest and data domains in Figure 9. In fact, to
access data, the system uses the whole architecture: the request passes through
the EAS, accesses the DS, and has an impact on the whole infrastructure, using
storage, network and computational power.

Implementation. The evaluation is carried out using a time probe continu-
ously requiring AES to execute function access(private_data). The probe calcu-
lates the response time and, in case it is higher than mi, it noti�es back the certi-
�cation manager. We note that each response time is evaluated independently,
since every call must guarantee the requested access performance. Figure 11
shows the code of our probe, which is available at https://goo.gl/zXP8PN.
The probe receives as input i) login credentials, ii) patience id, iii) time thresh-
old mi. It then calculates and returns as output the response time (lines 15-17).

Analysis of results. Property access performance is certi�ed i� the time probe
never returns a negative evaluation. We run the probe for 2 days and, since the
response time was always under the threshold mi, the property was certi�ed.

22

1 from reque s t s . auth import HTTPBasicAuth
2 from reque s t s import r eques t
3 import time
4 from dr i v e r import Driver
5
6 c l a s s RensponseTime (Driver) :
7 de f l o g i n (s e l f , inputs=None) :
8 #preprare Header f o r http ba s i c au then t i c a t i on
9 l og in_t i=s e l f . t e s t i n s t a n c e s . get (" l o g i n " , None)
10 auth = HTTPBasicAuth(l og in_t i . get (' user ') , l o g in_t i . get ('

password '))
11 re turn auth
12 de f get_response (s e l f , inputs=None) :
13 time_m=s e l f . t e s t i n s t a n c e s . get (" c a l l ") . get (" time thre sho ld ")
14 pat ience_id=s e l f . t e s t i n s t a n c e s . get (" c a l l ") . get (" pat i ence id ")
15 auth=inputs
16 start_time=time . time ()
17 reques t . get (' https :// aes . ehea l th . l o c a l / access−pr ivate−data/'+

patience_id , auth=auth)
18 response_time = time . time () − start_time
19 i f response_time <= time_m :
20 return True
21 e l s e :
22 return Fal se
23 de f logout (s e l f , inputs) :
24 re turn Fal se
25 de f r o l l b a ck (s e l f , inputs) :
26 s e l f . r e s u l t . put_value (" except ion " , "The probe e x i t because an

except ion ")
27 return Fal se
28 de f appendAtomics (s e l f) :
29 s e l f . appendAtomic (s e l f . l og in , s e l f . l ogout)
30 s e l f . appendAtomic (s e l f . get_response , s e l f . r o l l b a ck)

Figure 11: Code of the time probe for evaluating property access performance

5.2.3. Probability Constraints - �Authorization-Based Privacy�

Authorization-based privacy is crucial for eHealth, where the privacy of pa-
tients' data is paramount. More speci�cally, authorization-based privacy re-
quires that only authorized personnel can access patients' data. An exception
to this rule applies for emergency situations (break the glass (BG) scenario in
Example 3.1), where all doctors and nurses can temporary access patients' data.
This property has an impact at application layer where eHealth interfaces are
provided and BG scenario is modeled.

Goal. The goal of the certi�cation process is to check that every access to
eHealth satis�es the de�ned RBAC (role-based access control) policies. Also,
it aims to verify that the BG scenario is not abused by checking probability
constraints.

Scenario. eHealth users (e.g., nurses, doctors) request access to resources for
which they are authorized (possibly in a BG scenario). Access requests are
collected in a log for a prede�ned window of time.

ToC. It consists of the eHealth application and insists on guest domain in

23

[22/Aug/2017 14:06:28] user_1 login(cred) 200
[22/Aug/2017 14:06:54] user_1 log(failure) 200
[22/Aug/2017 14:06:58] user_2 login(cred) 200
[22/Aug/2017 14:07:24] user_3 login(cred) 200
[22/Aug/2017 14:07:28] user_2 log(success) 200
[22/Aug/2017 14:07:54] user_3 log(success) 200
[22/Aug/2017 14:07:54] user_2 assign_role(doctor/nurse) 200
[22/Aug/2017 14:07:58] user_2 access(public_data) 200
[22/Aug/2017 14:08:24] user_2 logout() 200
[22/Aug/2017 14:08:28] user_4 login(cred) 200
[22/Aug/2017 14:08:30] user_4 log(success) 200
[22/Aug/2017 14:08:54] user_3 assign_role(doctor/nurse) 200
...

Figure 12: Log �le (excerpt)

Figure 9.5 It mainly focuses on the �ow described in Example 3.3.

Implementation. The evaluation is carried out by i) a monitoring probe con-
trolling the correctness of every access to eHealth and ii) a probability meta-
probe checking abuses such as in cases of BG scenarios. The monitoring probe
is implemented using di�erent monitors working at application layer, which ob-
serve all accesses and evaluate them against RBAC policies. The probability
meta-probe evaluates the frequency of accesses at application layer to uncover
higher probability of utilization with respect to the one designed by the certi�-
cation authority (see for instance BG scenario in Example 3.3 and Figure 3).

For brevity, we provide details on the probability meta-probe only. The
probability meta-probe periodically accesses the application logs collected by
the monitoring probe using an SSH service and �lter them using the selected
time window. An example of log �le is presented in Figure 12 (the entire log
�le is available at https://goo.gl/xntHhQ) and follows the pattern [<time>]
<user> <operation> <code>.6

Figure 13 shows the code of our meta-probe, which is available at https:
//goo.gl/a3JHjx. The meta-probe receives as input i) SSH credentials, ii)log
�le path, iii) operation sequences with expected probabilities. It then analyzes
each entry in the log and maps them over the �ow sequences in Figure 3. Once
all �ows are mapped, the meta-probe calculates frequencies and returns them
as output. The meta-probe starts with the ssh_connection (lines 6-21), which
reads the SSH credentials and connects it to the host. Then, it reads the log �le
with log_connection (lines 22-30) and analyzes it line-by-line in log_analysis
(lines 31-47).

Analysis of results. Property authorization-based privacy is certi�ed i� both
the probe and the meta-probe return a positive evaluation. We run them on
a set of 700 operations distributed in 138 requests collected in a log. Since
each access was successfully evaluated against RBAC policies and the retrieved

5We note that similar checks can also be applied at infrastructure.
6We note that, for privacy reasons, the logs used in this evaluation are synthetic.

24

sequence
expected
frequency

number
of �ows
found

frequency

login(cred), log(failure) 0.05 2 0.014
login(cred), log(success),* 0.95 136 0.986
login(cred), log(success),
assign_role(doctor/nurse),
access(public_data), *

0.98 98 0.98

login(cred), log(success),
assign_role(doctor/nurse),
access(private_data), *

0.02 2 0.02

Table 1: Meta-probe results

frequency satis�ed the probabilities in the model (see Table 1)

5.2.4. Con�guration Constraints -�Storage Con�dentiality�

Storage con�dentiality is a crucial property for systems managing sensitive
personal data. In our scenario, it impacts infrastructure layer only since eHealth
relies on the storage service provided by Openstack, where data are stored en-
abling cryptographic encryption at �le system level.

Goal. The goal of the certi�cation process is to check if stored data are managed
in a secure way, making eHealth robust against unauthorized access to sensitive
information. To address this requirement eHealth secured the virtual storage
by using infrastructure-layer encryption mechanisms.

Scenario. The eHealth application requires an encrypted storage to store its
information before being attached to VMs (e.g., at deployment time, while scal-
ing, or for load balancing). Cinder manages the persistent storage, and Nova
provides an encryption mechanism and features to attach it to VMs. Cinder and
Nova use an encryption function based on Dm-Crypt (Benjamin et al. (2013)),
which prevents unauthorized access to sensitive information creating a Linux
Uni�ed Key Setup (LUKS) storage.

ToC. It includes Nova and Cinder services, and insists on security domains
data and management in Figure 9.

Implementation. The evaluation is carried out using a con�guration meta-
probe connecting to Cinder service to check that every storage is correctly set
as encrypted. Figure 14 shows the code of our meta-probe, which is available
at https://goo.gl/1pkim8. The probe receives as input i) OpenStack cre-
dentials, ii) volume list and the encryption type for the given volume. The
probe connects to OpenStack APIs (lines 7-17) and checks that every requested
volume is encrypted (lines 18-33).

Analysis of results. Property storage con�dentiality is certi�ed i� the con�g-
uration meta-probe successfully veri�es that all available storage is con�gured as

25

1 from userManager import users , us , bui ld_users
2 from ssh_connector import SSHClient
3 from dr i v e r import Driver
4
5 c l a s s FrequencyProbe (Driver , SSHClient) :
6 de f ssh_connection (s e l f , inputs=None) :
7 ssh_connect ion_ti =
8 s e l f . t e s t i n s t a n c e s . get (" connect_to_server " , None)
9 a s s e r t not ssh_connect ion_ti i s None
10 hostname = ssh_connect ion_ti . get (" hostname ")
11 port = ssh_connect ion_ti . get (" port ")
12 username = ssh_connect ion_ti . get (" username ")
13 password = ssh_connect ion_ti . get (" password " , None)
14 a s s e r t not password i s None
15 s e l f . ssh_connection = s e l f . ssh_connect (
16 hostname=hostname ,
17 username=username ,
18 port=port ,
19 password=password
20)
21 return True
22 de f log_connect ion (s e l f , inputs=None) :
23 #connect to log host and read log f i l e
24 l og s_t i = s e l f . t e s t i n s t a n c e s . get (" l o g s " , None)
25 _stdin , _stdout , _stderr =
26 s e l f . ssh_connection . exec_command(
27 " cat "+log s_t i . get (" log_path ")
28)
29 out = _stdout . r e a d l i n e s ()
30 return out
31 de f l og_ana ly s i s (s e l f , inputs=None) :
32 #parse model input
33 model_ti =s e l f . t e s t i n s t a n c e s . get (" l o g s " , None)
34 model =[]
35 f o r item in model_ti :
36 model . append (item)
37 #parse log f i l e
38 myf i l e=inputs . s p l i t ("\n")
39 bui ld_users (myf i l e)
40 ana ly s e l og (model)
41 f requency =[0]∗model [l en (model) −1][" f low "]
42 f o r m in model :
43 f requency [m[" f low "]]+=m[" count "]
44 f o r m in model :
45 i f m[" p "] > (m[" count "]/ f requency [m[" f low "]]) :
46 r e s u l t=False
47 return r e s u l t
48 de f c lose_ssh_connect ion (s e l f , inputs=False) :
49 t ry :
50 s e l f . ssh_connection . c l o s e ()
51 except :
52 pass
53 return inputs
54 de f r o l l b a ck (s e l f , inputs) :
55 s e l f . r e s u l t . put_value (" except ion " ,
56 "The probe e x i t because an except ion ")
57 return Fal se
58 de f appendAtomics (s e l f) :
59 s e l f . appendAtomic (s e l f . ssh_connect , s e l f . c lose_ssh_connect ion)
60 s e l f . appendAtomic (s e l f . log_connection , s e l f . r o l l b a ck)
61 s e l f . appendAtomic (s e l f . l og_analys i s , s e l f . r o l l b a ck)
62 s e l f . appendAtomic (s e l f . c lose_ssh_connect ion , s e l f . r o l l b a ck)

Figure 13: Code of the probe for evaluating property authorization-based privacy

26

1 from keystoneauth1 import load ing
2 from keystoneauth1 import s e s s i o n
3 from c i n d e r c l i e n t import c l i e n t
4 from dr i v e r import Driver
5
6 c l a s s ProbeStorageCinder (Driver) :
7 de f au then t i c a t i on (s e l f , inputs=None) :
8 l oade r = load ing . get_plugin_loader (' password ')
9 auth = loade r . load_from_options (
10 auth_url=s e l f . t e s t i n s t a n c e s [" openstack c r e d e n t i a l "] ["

OS_AUTH_URL"] ,
11 username=s e l f . t e s t i n s t a n c e s [" openstack c r e d e n t i a l "] ["

OS_USERNAME"] ,
12 password=s e l f . t e s t i n s t a n c e s [" openstack c r e d e n t i a l "] ["

OS_PASSWORD"] ,
13 pro ject_id=s e l f . t e s t i n s t a n c e s [" openstack c r e d e n t i a l "] ["

OS_PROJECT_ID"] ,
14 user_domain_name=s e l f . t e s t i n s t a n c e s [" openstack c r e d e n t i a l

"] ["OS_USER_DOMAIN_NAME"]
15)
16 s e s s = s e s s i o n . Se s s i on (auth=auth)
17 return s e s s
18 de f check_volumes (s e l f , inputs=None) :
19 encrypted_type=s e l f . t e s t i n s t a n c e s . get (" volumes ") . get (" encrypted

type ")
20 volumes_ti=s e l f . t e s t i n s t a n c e s . get (" volumes ") . get (" l i s t ")
21 volumes=volumes_ti . s p l i t (' , ')
22 s e s s=inputs
23 c inde r = c l i e n t . C l i en t (' 2 ' , s e s s i o n=s e s s)
24 volume_list = c inde r . volumes . l i s t ()
25 found=len (volumes)
26 f o r v in volume_list :
27 i f v . name in volumes :
28 found=found−1
29 i f v . types != encrypted_type :
30 re turn Fal se
31 i f found != 0
32 return Fal se
33 return True
34 de f r o l l b a ck (s e l f , inputs) :
35 s e l f . r e s u l t . put_value (" except ion " , "The probe e x i t because an

except ion ")
36 return Fal se
37 de f appendAtomics (s e l f) :
38 s e l f . appendAtomic (s e l f . authent i ca t ion , s e l f . r o l l b a ck)
39 s e l f . appendAtomic (s e l f . check_volumes , s e l f . r o l l b a ck)

Figure 14: Code of the probe for evaluating property storage con�dentiality

Linux Uni�ed Key Setup (LUKS) storage at infrastructure layer. Since eHealth
used an encrypted storage, the meta-probe returned a positive result and the
property was certi�ed.

5.2.5. Attack Paths - �Replay Attack Vulnerability�

eHealth protects access to its services by means of a login service imple-
menting a password-based authentication. Replay attack is a possible way for
an attacker to bypass the login service and obtain unauthorized access to the
system. A replay attack assumes a man in the middle with the possibility to
capture, store, and replay tra�c exchanged between a client and the server.

27

Goal. The goal of the certi�cation process is to check if the login service of the
eHealth application is vulnerable to a replay attack.

Scenario. An attacker captures, stores, and replays a call to the login service
sent by an eHealth user.

ToC. It includes the network infrastructure and the login service of the eHealth
application, and insists on security domains Public and Guest in Figure 9.

Implementation. The evaluation is carried out using a probe with the re-
quested attacker capabilities. Figure 15 shows the code of our probe, which
is available at https://goo.gl/psrJn3. The probe �rst checks if a replay at-
tack is possible, that is, it checks if the communication channel is encrypted
with TLS or not using NMAP (lines 11-12).7 Then, if the channel is not en-
crypted with TLS, the probe captures a call to the login service and replay it
on the eHealth login API (lines 13-26). If the login service returns a positive
response, the attack is successful. The probe uses tshark to capture the tra�c
(https://www.wireshark.org/docs/man-pages/tshark.html) and tcpreplay
to replay it (http://tcpreplay.appneta.com/).

Analysis of results. Property replay attack vulnerability is certi�ed i� the
probe successfully veri�es that eHealth is not vulnerable against a replay attack.
Since eHealth used a TLS encrypted channel with a strong encryption key (RSA-
2048), the probe returned a positive evaluation and the property was certi�ed.

5.3. Discussion

We showed how our trustworthy certi�cation process can be applied to an
industrial eHealth application deployed on top of OpenStack. Our evaluation
presented the certi�cation of di�erent properties by means of both probes and
meta-probes, available for download at https://goo.gl/8iNmV4.8 Compared
with our previous framework (Anisetti et al. (2015)), the current framework
provides the following advantages. First, it supports veri�cation of i) indirect
constraints (i.e., time and probability) that would a�ect a certi�cation process
(e.g., property authorization-based privacy), ii) properties by simply checking
the con�guration of the underlying cloud layers (e.g., property storage con�-
dentiality), iii) attack paths potentially invalidating security properties. As an
example, in case i), we checked potential abuses of the break-the-glass scenario,
which would invalidate a certi�cation process; in case ii), we reached the same
results of the testing approach in Anisetti et al. (2015) (adding and deleting
volumes in production), requiring less resources (only a check of storage con�g-
uration); in case iii), we checked robustness against replay attacks, which would

7RFC 5246 (https://tools.ietf.org/html/rfc5246#appendix-F.2) states that the use of
TLS prevents from replay attacks.

8We note that our evaluation does not prove absolute support for the property, while it
can pro�tably verify that some (security) features/mechanisms are in place and work cor-
rectly. Whether this is su�cient or not for releasing a certi�cate is under the bailiwick of the
certi�cation authority signing the certi�cate.

28

1 import subproces s
2 from reque s t s . auth import HTTPBasicAuth
3 from reque s t s import r eques t
4 from libnmap . p roce s s import NmapProcess
5 from libnmap . par s e r import NmapParser , NmapParserException
6 from logge r import check_change_value
7 from nmap import scan_nmap
8 from dr i v e r import Driver
9
10 c l a s s ReplayAttack (Driver) :
11 de f nmapRun (s e l f , inputs) :
12 return scan_nmap(s e l f . t e s t i n s t a n c e s [" c on f i g "] [" host "] , s e l f .

t e s t i n s t a n c e s [" c on f i g "] [" port "])
13 de f tcpdump(s e l f , inputs) :
14 eth=s e l f . t e s t i n s t a n c e s ["dump"] [" i n t e r f a c e "]
15 i f input == True :
16 re turn True
17 e l s e :
18 bash_command = " tshark − i " + eth + " −w t e s t . pcap −F l ibpcap −

a durat ion :200"
19 proce s s = subproces s . Popen (bash_command . s p l i t () , s tdout=

subproces s . PIPE)
20 l og in_t i = s e l f . t e s t i n s t a n c e s . get (" l o g i n " , None)
21 auth = HTTPBasicAuth(l og in_t i . get (' user ') , l o g in_t i . get ('

password '))
22 r=reques t . get (' https :// aes . ehea l th . l o c a l / log in ' , auth=auth)
23 r e su l t_d i c t=r . j son ()
24 value=re su l t_d i c t [" token "]
25 output , e r r o r = proce s s . communicate ()
26 return value
27 de f t cprep lay (s e l f , inputs) :
28 i f input == True :
29 re turn True
30 e l s e :
31 bash_command = " tcprep lay −− i n t f 1=en0 t e s t . pcap"
32 proce s s = subproces s . Popen (bash_command . s p l i t () , s tdout=

subproces s . PIPE)
33 output , e r r o r = proce s s . communicate ()
34 return check_change_value (output)
35 de f r o l l b a ck (s e l f , inputs) :
36 return Fal se
37 de f appendAtomics (s e l f) :
38 s e l f . appendAtomic (s e l f . nmapRun , s e l f . r o l l b a ck)
39 s e l f . appendAtomic (s e l f . tcpdump , s e l f . r o l l b a ck)
40 s e l f . appendAtomic (s e l f . tcprep lay , s e l f . r o l l b a ck)

Figure 15: Code of the probe for evaluating property �replay attack vulnerability"

invalidate a certi�cation process for property authorization-based privacy. Sec-
ond, the current framework supports veri�cation of system model structure with
respect to real execution traces, being able to discover discrepancies between the
system behavior in laboratory and production environments (e.g., a backdoor
in the case of property authentication data con�dentiality). All these activities
require deep inspection of the system and can be carried out using either probes
or meta-probes. Meta-probes, compared to normal probes, are less invasive, do
not require the cloud providers to open their system to the outside releasing
sensitive data, and do not interfere with the normal execution of the system, at
the price of a reduced loss of evidence quality. In addition, meta-probes do not
enlarge the attack surface by introducing new testing/monitoring components

29

or interface. We note that probes are anyway fundamental to test/monitor
the system in production by re-evaluating activities carried out in laboratory.
Finally, as shown by the variety of veri�ed properties, our framework can be
easily applied to any classes of properties. Each class requires a recon�guration
of probe/meta-probes on the basis of the corresponding system/evidence col-
lection model, leaving their working unchanged, as well as the working of the
certi�cation manager.

To conclude, we recall that our approach cannot guarantee that the model
is always 100% valid. There are cases where the model is not re�ecting the
system implementation due to improper modeling and missing events from the
execution traces (hidden paths). Hidden paths often refer to unlikely or unknown
events that are di�cult to catch if not properly modeled, such as undisclosed
system vulnerabilities. Still, our approach guarantees that once a hidden path
is executed, it is immediately caught (new path discovery in Section 3.1) and
added to the model. To �ll in this gap, in our future work, we plan to use
fuzzing and mutation techniques to produce synthetic models used to reveal
hidden paths.

6. Related Work

The rising interest in certi�cation schemes for the cloud has fostered the
de�nition of several certi�cation processes focusing on di�erent aspects of cloud
services (e.g., security, performance). Examples of certi�cation initiatives in-
clude Cloud Security Alliance STAR, EuroCloud, FedRAMP, TRUSTed Cloud
Data Privacy Certi�cation, to name but a few. Although cloud certi�cation
is reaching its maturity, it still lacks of a well-established certi�cation process.
Also, according to Lins et al. (2016a,c); Anisetti et al. (2014a), one of the major
barriers that impedes cloud certi�cation adoption is the lack of �exibility and
the consequent di�culties in supporting cloud peculiarities, such as continuous
architectural and environmental changes.

Recently, research on certi�cation schemes for cloud services mostly con-
sidered testing-based and/or monitoring-based evidence (e.g., Anisetti et al.
(2014a); Ardagna et al. (2016); Spanoudakis et al. (2012); Cloud Security Al-
liance (2017); Modic et al. (2016); Stephanow et al. (2016); Kunz and Stephanow
(2017); Li et al. (2017); Stephanow and Khajehmoogahi (2017)). The testing
and monitoring activities take place by directly interacting with the system un-
der certi�cation and checking speci�c properties, using a system model that is
assumed to be a correct representation of the system itself. In this context, sev-
eral approaches to cloud certi�cation have been provided and are summarized in
the following. Lins et al. (2016b) propose a conceptual architecture for cloud ser-
vice certi�cation based on continuous monitoring. The architecture relies on a
loop that involves cloud service auditors and service providers: the auditors con-
tinuously monitor the services and report any inconsistencies to the providers,
which are required to solve them. To increase cloud transparency and trustwor-
thiness, the architecture assumes the involvement of cloud service customers who

30

are constantly updated about the services' health. Anisetti et al. (2014a) pro-
pose a chain of trust for cloud certi�cation, which relies on model-based testing
and monitoring techniques to collect certi�cation evidence. Spanoudakis et al.
(2012) present a hybrid, incremental, and multilayer framework for cloud certi�-
cation based on service monitoring. Munoz and Mãna (2013) propose a di�erent
strategy based on trusted computing platforms for certifying cloud-based sys-
tems. Modic et al. (2016) present an approach, called Moving Intervals Process,
for real-time cloud security assessment, which supports over-provisioning to as-
sure better global security of the acquired cloud services. Stephanow et al.
(2016) describe a test-based certi�cation framework, based on randomized and
non-invasive testing, for evaluating opportunistic providers. Di Cerbo et al.
(2013) present an extension to the Digital Security Certi�cate in Kaluvuri et al.
(2013) and an approach to continuous monitoring of certi�ed properties. Bous-
quet et al. (2015) propose an approach that �rst uses a context-based language
to express security and assurance properties on distributed resources, and then
enforces these properties by automatically con�guring available resources. Dif-
ferent research projects also focused on assurance and certi�cation. SPECS
project (Rak et al. (2013); Casola et al. (2016); Luna et al. (2017)) provides
a security-oriented framework for cloud security SLA speci�cation and life cy-
cle management. The framework supports the de�nition of security contracts
specifying the security guarantees o�ered by a cloud service, and including obli-
gations and responsibilities of each involved party. It also monitors contract
conformance at runtime and can re-negotiate them in case of incidents. In this
context, security Service Level Agreement (secSLA) in Trapero et al. (2017)
is an example of framework that integrates di�erent security controls and is
implemented as part of SPECS project. The approach in this paper could be
applied within SPECS project, using de�ned SLAs as certi�cates associated
with services. OPTET project (2013) aims to understand the trust relation
between di�erent stakeholders, o�ering methodologies, tools, and models that
provide evidence-based trustworthiness. The project puts high emphasis on evi-
dence collection during system development, enriched by monitoring and system
adaptation to maintain its trustworthiness. Di�erently from the above works,
the approach in this paper follows a systematic process in de�ning the system
models and the evidence collection, and provides a trustworthy certi�cation pro-
cess that combines model-based certi�cation of cloud services and veri�cation of
model correctness according to time, probability, and con�guration constraints,
and attack paths. Our approach continuously checks the consistency between
the cloud service implementation and the service execution traces, accomplish-
ing cloud peculiarities and providing continuous certi�cation evaluation across
cloud environmental changes. Although our examples focused on security, the
approach is generic and can be applied to all quality properties that can be
modeled using the presented formalism.

Model-based approaches have also been used to provide the evidence needed
to certify cloud service quality. Model-based veri�cation of software compo-
nents is in fact increasingly becoming the �rst choice technique to assess the
quality of (cloud) software systems, providing a systematic approach with solid

31

theoretical background. Existing studies consider di�erent modeling techniques
targeting speci�c aspects of cloud services (e.g., security, performance). Among
them, several studies focus on modeling the system �ow. Accorsi et al. (2011)
propose Comcert, a Petri Net-based automated approach for the certi�cation of
business process compliance. Yeung (2006) de�nes a mapping from WS-CDL
and BPEL4WS into communicating sequential processes, to verify whether the
obtained orchestrations behave as expected in the corresponding choreography.
Diaz et al. (2006) model temporal properties as a timed automata, then use UP-
PAAL model checker to simulate and analyze the system behavior. Maalej et al.
(2013) present service compositions load testing based on Timed Automata to
model the service workload. Abbors et al. (2013) present an approach and a
tool (MBPeT) for services' performance testing, using Probabilistic Timed Au-
tomata to describe how users interact with services. Our paper improves on
the above papers by providing an approach where the correctness of the system
model is not given for granted. A methodology and algorithms for the veri-
�cation of model correctness is provided and is at the basis of a trustworthy
evidence collection and certi�cation process.

More recently, the works in Anisetti et al. (2014a, 2015, 2014b); Ardagna
et al. (2016) have provided the basic building blocks for the de�nition of a
certi�cation process addressing cloud peculiarities. In this paper, we consider
advanced aspects aimed to guarantee the trustworthiness of the certi�cation
process in a dynamic cloud, including constraints on time relations between
di�erent states of the model, transition probabilities, and con�gurations, and
attack paths for certi�cate validity.

7. Conclusions

The de�nition of trustworthy assurance techniques is the next step for strength-
ening the cloud position as the �rst service provider, also in those critical en-
vironments with strong non-functional (e.g., security, privacy) requirements.
In the last 30 years, several assurance solutions, including audit, certi�cation,
and compliance, have been provided with di�erent levels of trustworthiness and
focusing on di�erent systems (i.e., traditional software, service-based, and cloud-
based systems). In this paper, we proposed a model-based trustworthy certi�ca-
tion process for the cloud that accomplishes cloud requirements. Our approach
starts from the assumption that no trustworthy certi�cation is possible without
a proper veri�cation of model correctness, once the system is deployed in the pro-
duction environment. We therefore provided a methodology (and corresponding
algorithms) for the veri�cation of model correctness against real and synthetic
service execution traces, according to time, probability, and con�guration con-
straints, and attack paths. Our methodology, while focusing on certi�cation, is
general and can be applied to any model-based assurance techniques.

32

Acknowledgments

This work was partly supported by the program �piano sostegno alla ricerca
2015-17� funded by Università degli Studi di Milano. We would like to thank
Rodrigo Diaz and Maria Rosa Vieira Alvarez from ATOS SA for supporting the
evaluation of our approach based on ATOS eHealth application.

References

Abbors, F., Ahmad, T., Truscan, D., Porres, I., April 2013. Model-based per-
formance testing in the cloud using the mbpet tool. In: Proc. of ICPE 2013.
Prague, Czech Republic.

Accorsi, R., Lowis, D.-I. L., Sato, Y., 2011. Automated certi�cation for compli-
ant cloud-based business processes. BISE 3 (3), 145�154.

Alford, T., Morton, G., 2009. The economics of cloud computing. Booz Allen
Hamilton.

Anisetti, M., Ardagna, C., Damiani, E., September 2014a. A certi�cation-based
trust model for autonomic cloud computing systems. In: Proc. of IEEE IC-
CAC 2014. London, UK.

Anisetti, M., Ardagna, C., Damiani, E., Gaudenzi, F., Veca, R., June-July 2015.
Toward security and performance certi�cation of openstack. In: Proc. of IEEE
CLOUD 2015. New York, NY, USA.

Anisetti, M., Ardagna, C., Damiani, E., Saonara, F., May 2013a. A test-based
security certi�cation scheme for web services. ACM TWEB 7 (2), 1�41.

Anisetti, M., Ardagna, C., Damiani, E., Saonara, F., May 2013b. A test-based
security certi�cation scheme for web services. ACM TWEB 7 (2), 1�41.

Anisetti, M., Ardagna, C. A., Damiani, E., El Ioini, N., November 2014b. Trust-
worthy cloud certi�cation: A model-based approach. In: Proc. of SIMPDA
2014. Milan, Italy.

Ardagna, C., Asal, R., Damiani, E., Ioini, N. E., Pahl, C., Dimitrakos, T.,
June�July 2016. A certi�cation technique for cloud security adaptation. In:
Proc. of SCC 2016. San Francisco, CA, USA.

Ardagna, C. A., Damiani, E., October 2014. Network and storage latency at-
tacks to online trading protocols in the cloud. In: Proc. of C&TC 2014.
Amantea, Italy.

Bate, I., Bernat, G., Puschner, P., April-May 2002. Java virtual-machine sup-
port for portable worst-case execution-time analysis. In: Proc. of IEEE
ISORC 2002. Washington, DC, USA.

33

Bellandi, V., Cimato, S., Damiani, E., Gianini, G., Zilli, A., 2015. Toward
economic-aware risk assessment on the cloud. IEEE Security & Privacy 13 (6),
30�37.

Benjamin, B., Co�man, J., Glendenning, L., Reller, N., February 2013. Vol-
umeEncryption. https://wiki.openstack.org/wiki/VolumeEncryption.

Bertholon, B., Varrette, S., Bouvry, P., July 2011. Certicloud: A novel TPM-
based approach to ensure cloud IaaS security. In: Proc. of IEEE CLOUD
2011. Washington, DC, USA.

Bousquet, A., Bri�aut, J., Caron, E., María Dominguez, E., Franco, J., Lefray,
A., López, O., Ros, S., Rouzaud-Cornabas, J., Toinard, C., Uriarte, M., De-
cember 2015. Enforcing Security and Assurance Properties in Cloud Environ-
ment. In: Proc. of UCC 2015. Limassol, Cyprus.

Casola, V., De Benedictis, A., Rak, M., Modic, J., Erascu, M., 2016. Auto-
matically enforcing security slas in the cloud. IEEE Transactions on Services
Computing.

Chaudhuri, A., von Solms, S., Chaudhuri, D., 2011. Auditing security risks in
virtual it systems. ISACA Journal 1 (16), https://goo.gl/Fwvi3t.

Cloud Security Alliance, 2017. CSA Security, Trust & Assurance Registry
(STAR). https://cloudsecurityalliance.org/star/, Accessed in Date
February 2015.

Di Cerbo, F., Bisson, P., Hartman, A., Keller, S., Meland, P., Mo�e, M., Mo-
hammadi, N., Paulus, S., Short, S., 2013. Towards trustworthiness assurance
in the cloud. In: Felici, M. (Ed.), Cyber Security and Privacy. Vol. 182 of
Communications in Computer and Information Science. Springer Berlin Hei-
delberg, pp. 3�15.

Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F., 2006. Veri-
�cation of web services with timed automata. Electronic Notes in Theoretical
Computer Science 157 (2), 19�34.

Doelitzscher, F., Ruebsamen, T., Karbe, T., Knahl, M., Reich, C., Clarke, N.,
2013. Sun behind clouds - on automatic cloud security audits and a cloud
audit policy language. International Journal on Advances in Networks and
Services 6 (1�2), 1�16.

Duncan, A., Creese, S., Goldsmith, M., June 2012. Insider attacks in cloud
computing. In: Proc. of IEEE TrustCom 2012. Liverpool, UK.

Ernst, M., Cockrell, J., Griswold, W., Notkin, D., May 1999. Dynamically dis-
covering likely program invariants to support program evolution. In: Proc. of
ICSE 1999. Los Angeles, California, USA.

34

Gai, K., Qiu, M., Zhao, H., 2017. Cost-aware multimedia data allocation for
heterogeneous memory using genetic algorithm in cloud computing. IEEE
Transactions on Cloud Computing PP (99), 1�1.

Gai, K., Qiu, M., Zhao, H., Tao, L., Zong, Z., 2016. Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing. Journal
of Network and Computer Applications 59, 46 � 54.
URL http://www.sciencedirect.com/science/article/pii/

S108480451500123X

Grobauer, B., Walloschek, T., Stocker, E., March-April 2011. Understanding
cloud computing vulnerabilities. IEEE Security & Privacy 9 (2), 50�57.

Herrmann, D., 2002. Using the Common Criteria for IT security evaluation.
Auerbach Publications.

Kaluvuri, S., Koshutanski, H., Di Cerbo, F., Mana, A., June�July 2013. Security
assurance of services through digital security certi�cates. In: Proc. of ICWS
2013. Santa Clara, CA, USA.

Kourtesis, D., Ramollari, E., Dranidis, D., Paraskakis, I., 2010. Increased reli-
ability in SOA environments through registry-based conformance testing of
web services. Production Planning & Control 21 (2), 130�144.

Kunz, I., Stephanow, P., March 2017. A process model to support continuous
certi�cation of cloud services. In: Proc. of AINA 2017. Taipei, Taiwan.

Li, Z., Liao, L., Leung, H., Li, B., Li, C., 2017. Evaluating the credibility of
cloud services. Computers & Electrical Engineering 58, 161 � 175.

Lins, S., Grochol, P., Schneider, S., Sunyaev, A., 2016a. Dynamic certi�cation
of cloud services: Trust, but verify! IEEE Security & Privacy 14 (2), 66�71.

Lins, S., Schneider, S., Sunyaev, A., 2016b. Trust is good, control is better:
Creating secure clouds by continuous auditing. IEEE Transactions on Cloud
Computing PP (99), 1�1.

Lins, S., Teigeler, H., Sunyaev, A., June 2016c. Towards a bright future:Ã�
enhancing di�usion of continuous cloud service auditing by third parties. In:
Proc. of ECIS 2016. Istanbul, Turkey.

Luna, J., Taha, A., Trapero, R., Suri, N., 2017. Quantitative reasoning about
cloud security using service level agreements. IEEE Transactions on Cloud
Computing PP (99).

Maalej, A., Hamza, M., Krichen, M., Jmaiel, M., March 2013. Automated sig-
ni�cant load testing for ws-bpel compositions. In: Proc. of IEEE ICSTW
2013. Luxembourg.

35

Merten, M., Howar, F., Ste�en, B., Pellicione, P., Tivoli, M., 2012. Automated
inference of models for black box systems based on interface descriptions. In:
Margaria, T., Ste�en, B. (Eds.), Leveraging Applications of Formal Methods,
Veri�cation and Validation. Technologies for Mastering Change. Vol. 7609 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 79�96.

Modic, J., Trapero, R., Taha, A., Luna, J., Stopar, M., Suri, N., 2016. Novel
e�cient techniques for real-time cloud security assessment. Computers & Se-
curity 62, 1 � 18.

Munoz, A., Mãna, A., June 2013. Bridging the gap between software certi�ca-
tion and trusted computing for securing cloud computing. In: Proc. of IEEE
SERVICES 2013. Santa Clara, CA, USA.

Nunez, D., Fernandez-Gago, C., Luna, J., 2016. Eliciting metrics for account-
ability of cloud systems. Computers & Security 62, 149 � 164.

OpenStack Foundation, July 2016. OpenStack Security Guide. http://docs.
openstack.org/security-guide/.

OPTET project, 2013. D3.1 Initial concepts and abstractions to model trust-
worthiness. http://www.optet.eu/project/.

Rak, M., Suri, N., Luna, J., Petcu, D., Casola, V., Villano, U., Dec 2013.
Security as a service using an sla-based approach via specs. In: 2013 IEEE
5th International Conference on Cloud Computing Technology and Science.
Vol. 2. pp. 1�6.

Ravindran, K., January 2013. Model-based engineering methods for certi�cation
of cloud-based network systems. In: Proc. of COMSNETS 2013. Bangalore,
India.

Spanoudakis, G., Damiani, E., Mana, A., October 2012. Certifying services in
cloud: The case for a hybrid, incremental and multi-layer approach. In: Proc.
of HASE 2012. Omaha, NE, USA.

Stephanow, P., Khajehmoogahi, K., March 2017. Towards continuous security
certi�cation of software-as-a-service applications using web application testing
techniques. In: Proc. of AINA 2017. Taipei, Taiwan.

Stephanow, P., Srivastava, G., Schutte, J., June-July 2016. Test-based cloud
service certi�cation of opportunistic providers. In: Proc. of IEEE CLOUD
2016. San Francisco, CA, USA.

Sunyaev, A., Schneider, S., February 2013. Cloud services certi�cation. CACM
56 (2), 33�36.

Trapero, R., Modic, J., Stopar, M., Taha, A., Suri, N., 2017. A novel approach
to manage cloud security sla incidents. Future Generation Computer Systems
72, 193�205.

36

Ye, L., Zhang, H., Shi, J., Du, X., December 2012. Verifying cloud service level
agreement. In: Proc. of GLOBECOM 2012. Anaheim, CA, USA.

Yeung, W., December 2006. Mapping ws-cdl and bpel into csp for behavioural
speci�cation and veri�cation of web services. In: Proc. of ECOWS 2006.
Zurich, Switzerland.

37

INPUT
m:=model
T :=execution traces T i

OUTPUT
[bool_value,r]

GLOBAL VARS
rpartial, rnew, rbroken: set of inconsistencies

MAIN
for each trace T i ∈ T

matching_trace(T i, m);
for each path pj ∈ m

if (pj , any_value) 6∈ rpartial∪rnew{
T i=generate(pj);
matching_trace(T i, pj) 6=[1,(T i, pj)] ? rbroken ∪= {(−, pj)};

}
r=rpartial∪rnew∪rbroken;
return r==∅ ? [1,∅] : [0,r];

MATCHING_TRACE(T i, m)
for each path pj ∈ m {

if (pj ≡ T i)
return [1,{(T i, pj)}];

if (pj ⊂ T i)
rnew ∪= {(T i, −)};

if (T i ⊂ pj)
rpartial ∪= {(T i, pj)};

}
return ∅;

Figure A.16: Algorithm MSV for model structure veri�cation.

Appendix A. Model Structure Veri�cation (MSV)

Figure A.16 illustrates the pseudocode of our algorithm for model structure
veri�cation (MSV). MSV receives as input a system model m and a set T of
traces T i (both real and synthetic). It is based on a consistency function ≡
de�ned as follows.

De�nition Appendix A.1 (Consistency Function ≡). Given a trace
T i=〈a1,. . .,an〉∈T and pj=〈l0, . . . , ln〉 in m∈M , T i≡pj i� ∀ak∈T i, ∃ a tran-
sition (lk−1,lk)∈E annotated with action ap s.t. ak and ap refer to the same
service/operation.

MSV sequentially matches all traces with paths (�rst for each cycle in
Main), using function Matching_Trace, and returns as output matching
results [bool_value,r]. FunctionMatching_Trace receives as input the system
model m and a trace T i, and checks whether trace T i can be matched to a path
pj∈m(pj ≡T i). The algorithm sequentially analyses all paths (for each cycle
in Matching_Trace) until a match is found (return [1,(T i, pj)]). Otherwise,
a matching failure of class partial or new path discovery is generated, that is,
there is an inconsistency between the system model and the execution trace that

38

INPUT
mt :=timed system model
T :=timed traces TT i

OUTPUT
unmatched_transitions:={(li,lj)}

MAIN
unmatched_transitions:=∅;
for each TT i ∈ T {

if matching_trace(TT i, mt)==[1,{(TT i, pj)}]
if (TT i 6≡t pj)
for each transition (li,lk) ∈ pj

unmatched_transitions ∪= {(li,lk): λt((li,lk)) is not satis�ed}
}
return unmatched_transitions;

Figure B.17: Algorithm TCV for time constraint veri�cation.

could a�ect an existing certi�cation process and invalidate an issued certi�cate.
Each inconsistency is added to the relevant set (either rnew ∪= {(T i, −)}
or rpartial ∪= {T i, pj}). When all traces have been checked (�rst for each
cycle in Main), paths pj that have not been already matched or for which an
error was not found are checked for broken existing paths (second for each
in Main). A trace for each of these paths pj is created (generate(pj)) and
matched (Matching_Trace(T i , pj)). If Matching_Trace does not return
(T i, pj) a broken existing path inconsistency is raised and (−, pj) added to set
rbroken.

Appendix B. Time Constraint Veri�cation (TCV)

Figure B.17 illustrates the pseudocode of our algorithm for time constraint
veri�cation (TCV). TCV receives as input mt and a set T of timed traces TT i.
It is based on a time consistency function ≡t de�ned as follows.

De�nition Appendix B.1 (Time Consistency Function ≡t). Given a trace
TT :=〈{o1, t1},{o2, t2},. . .,{on, tn}〉∈T (De�nition 3.5) and a path p=〈l0, . . . , ln〉
in mt∈M (De�nition 3.4) with annotations λt((li,lj)), such that TT≡p, TT≡tp
i� ∀ time annotation λt((li,lj)) associated with p , the corresponding TT is such
that the di�erence (tj−ti) between timestamp tj corresponding to lj and ti cor-
responding to li satis�es λt((li,lj)).

For each timed trace (�rst for each cycle in Main), TCV �rst checks
whether it matches a path in mt (function Matching_Trace of algorithm
MSV in Figure A.16). If yes, {(TT i,pj)} is retrieved. It then matches TT i

with pj according to ≡t. If for all pairs TT i≡tpj , then an empty list (suc-
cess) is returned; otherwise a list of transitions (li,lk)∈pj that do not satisfy the
corresponding annotation (failure) is returned.

39

INPUT
mprob :=probabilistic timed system model
T :=timed traces TT i

OUTPUT
unmatched_transitions:={(li,lj)}

MAIN
unmatched_transitions:=∅;
for each TT i ∈ T {

if matching_trace(TT i, mprob)==[1,{(TT i, pj)}]
for each (l,lk)∈pj

count_traversals[(l,lk)]+=1;
}
for each pj ∈ mprob

for each transition (l,lk) ∈ pj

prob=count_traversals[(l,lk)]/
∑

s count_traversals[(l,ls)];
if ({TT i} 6≡prob pj)
unmatched_transitions ∪= {(l,lk): λprob((l,lk)) is not satis�ed by prob}

return unmatched_transitions;

Figure C.18: Algorithm PCV for probability constraint veri�cation

Appendix C. Probability Constraint Veri�cation (PCV)

Figure C.18 illustrates the pseudocode of the algorithm for probability con-
straint veri�cation (PCV). PCV receives as input mprob and a list T of timed
traces TT i belonging to the time window under evaluation. It is based on a
probability consistency function ≡prob de�ned as follows.

De�nition Appendix C.1 (Probability Consistency Function ≡prob).
Given a set of timed traces TT j (De�nition 3.5) observed in a time window ∆t,
insisting on path p in mprob∈M (De�nition 3.6) with annotations λprob((li,li+1))
and such that TT j≡p, {TT j}≡probp i� ∀ probability annotation λprob((li,li+1))
associated with p , the corresponding timed traces TT are such that the frequency
of executing p satis�es λprob((li,li+1)).

For each timed trace (�rst for each cycle in Main), PCV �rst checks
whether the trace matches a path in mprob (function Matching_Trace of
algorithm MSV in Figure A.16). If yes, a counter of transition traversals is in-
creased (count_traversals) for each transition in the path (second for each
cycle in Main). It then evaluates the probability constraints assigned to each
path in mprob ({TT i}6≡probpj). To this aim, it calculates the probability of
traversing a transition for each state l∈L (

∑
s count_traversals[(l,ls)]). If

the constraint is satis�ed, it is considered to be a positive match, otherwise, not
matching transitions (l,lk)∈pj are added to a list of negative matches. Algo-
rithm PCV then produces as output the list of negatively matched transitions
(empty list means no negative traces were found).

40

INPUT
mr :=trustworthy model

OUTPUT
unmatched_transitions:={(li,lj)}

MAIN
unmatched_transitions:=∅;
for each transition (li,lj)∈mr{

if (check_con�guration(λc((li,lj))) == false)
unmatched_transitions ∪= {(li,lj)};

}
return unmatched_transitions;

Figure D.19: Algorithm CCV for con�guration constraint veri�cation

Appendix D. Con�guration Constraint Veri�cation (CCV)

Figure D.19 illustrates the pseudocode of the algorithm for con�guration con-
straint veri�cation (CCV). CCV takes as input the trustworthy system model
mr and veri�es the con�guration properties de�ned over the model transitions.
For each transition, it calls function Check_Con�guration and depending
on the property to be veri�ed it invokes the appropriate mechanism (e.g., check
con�guration �les, monitor con�guration-dependent execution traces). If the
con�guration constraint does not match the production system con�gurations,
the corresponding transition is added to the list unmatched_transitions.

Appendix E. Attack Path Veri�cation (APV)

Figure E.20 illustrates the pseudocode of our algorithm for attack model ver-
i�cation (APV). APV receives as input the system model m, the attack model
mAT , and a set T of attack traces AT i. APV sequentially matches all traces
with paths in m (for each cycle in Main), using function Matching_Trace,
and returns as output matching results [bool_value,rattack]. Function Match-
ing_Trace receives as input the system model m and an attack trace AT i, and
checks whether trace AT i can be matched to a path pj∈m(T i≡pj). The al-
gorithm sequentially analyses all paths (for each cycle in Matching_Trace);
when a match is found, meaning that an attack has been successfully executed,
the pair (AT i,pj) is added to the attack set rattack.

41

INPUT
m:=system model
mAT :=attack model
T :=attack traces AT i

OUTPUT
rattack: set of successful attacks

MAIN
for each trace AT i ∈ T

matching_trace(AT i, m);
return rattack==∅ ? [1,∅] : [0,rattack];

MATCHING_TRACE(AT i, m)
for each path pj ∈ m

if (AT i≡pj) {
rattack ∪= {(AT i,pj)};
exit(0);

}

Figure E.20: Algorithm APV for attack model veri�cation.

42

