
Automated Poisoning Attacks and Defenses in Malware Detection Systems:
An Adversarial Machine Learning Approach

Sen Chena,b, Minhui Xuec,d, Lingling Fana,b, Shuang Haoe, Lihua Xua,∗, Haojin Zhud, Bo Lif

aEast China Normal University, Shanghai, China
bNanyang Technological University, Singapore

c New York University Shanghai, Shanghai, China
dShanghai Jiao Tong University, Shanghai, China

eUniversity of Texas at Dallas, USA
fUniversity of California, Berkeley, USA

Abstract

The evolution of mobile malware poses a serious threat to smartphone security. Today, sophisticated attackers can
adapt by maximally sabotaging machine-learning classifiers via polluting training data, rendering most recent machine
learning-based malware detection tools (such as Drebin, DroidAPIMiner, and MaMaDroid) ineffective. In this paper,
we explore the feasibility of constructing crafted malware samples; examine how machine-learning classifiers can
be misled under three different threat models; then conclude that injecting carefully crafted data into training data
can significantly reduce detection accuracy. To tackle the problem, we propose KuafuDet, a two-phase learning
enhancing approach that learns mobile malware by adversarial detection. KuafuDet includes an offline training
phase that selects and extracts features from the training set, and an online detection phase that utilizes the classifier
trained by the first phase. To further address the adversarial environment, these two phases are intertwined through a
self-adaptive learning scheme, wherein an automated camouflage detector is introduced to filter the suspicious false
negatives and feed them back into the training phase. We finally show that KuafuDet can significantly reduce false
negatives and boost the detection accuracy by at least 15%. Experiments on more than 250,000 mobile applications
demonstrate that KuafuDet is scalable and can be highly effective as a standalone system.

Keywords: Malware Detection, Adversarial Machine Learning, Poisoning Attacks, Manipulation, KuafuDet

1. Introduction

Since last decade, the software development has been witnessed a massive shift toward mobile applications. With
the growth of mobile applications and their users, the security and privacy concerns are increasingly becoming the
focus of great concern to various stakeholders. For instance, more and more users store personal data in their mobile
devices, even carrying out financial transactions such as online banking and shopping from their smartphones. Some
of these data can be very sensitive. Consequently, hackers can have substantial financial gain from such sensitive data
and thus find mobile devices to be lucrative targets.

It is not surprising that the demand for tools of automatically analyzing and detecting malicious applications has
also grown. Most of the researchers’ and practitioners’ efforts in this area target the Android platform, the largest share

∗Corresponding author. Email address: lhxu@cs.ecnu.edu.cn.
We would like to thank Pwnzen Infotech Inc. for providing us with a copy of mobile malware to conduct the study, especially the Pwnzen
Infotech Inc. co-founder Zhushou Tang for exchanging helpful industry experience. This work was supported in part by the National Natural
Science Foundation of China, under Grant 61502170, 61272444, 61411146001, U1401253, and U1405251, in part by the Science and Technology
Commission of Shanghai Municipality under Grant 13ZR1413000.

Email addresses: ecnuchensen@gmail.com (Sen Chen), minhuixue@nyu.edu (Minhui Xue), ecnujanefan@gmail.com (Lingling Fan),
shao@utdallas.edu (Shuang Hao), lhxu@cs.ecnu.edu.cn (Lihua Xu), zhuhaojin@gmail.com (Haojin Zhu), lxbosky@gmail.com (Bo
Li)

Preprint submitted to Computers & Security 1

ar
X

iv
:1

70
6.

04
14

6v
3

 [
cs

.C
R

]
 3

1
O

ct
 2

01
7

of the mobile market. There has been a plethora of research in malware detection for Android. Static and dynamic
analyses are two generic techniques primarily implemented by two approaches: signature-based (Schlegel et al., 2011;
Zhou et al., 2012, 2013) and behavior-based (Yan and Yin, 2012; Wu et al., 2014; Tam et al., 2015; Graziano et al.,
2015; Rasthofer et al., 2016). Information flow analysis-based approach (Arzt et al., 2014; Li et al., 2015; Gordon
et al., 2015; Enck et al., 2014; Wong and Lie, 2016) is also proposed to detect Android malware. We note that machine
learning is one of the most promising techniques in detecting mobile malware (Aafer et al., 2013; Arp et al., 2014;
Yang et al., 2014; Zhang et al., 2014; Rasthofer et al., 2014; Avdiienko et al., 2015; Yang et al., 2015; Dash et al.,
2016; Chen et al., 2016a; Meng et al., 2016; Fan et al., 2016; Idrees et al., 2017; Feizollah et al., 2017). However,
machine learning approaches also have a weakness: they are susceptible to adversarial countermeasures by attackers
aware of their use. First, through reverse-engineering, attackers may become aware of classifiers and their parameters
used to evade detection. Second, more sophisticated attackers can actively tamper with the classifiers by injecting
well-crafted data into training data. Therefore, with Android’s policy of open-source kernel, malware writers can gain
an in-depth understanding of the mobile platform, hence intentionally alter the training set to reduce or eliminate its
detection efficacy.

To our knowledge, most up-to-date work using machine learning mainly focused on detection accuracy and as-
sumed that feature extraction is considered in an ideal environment (Chen et al., 2016c; Mariconti et al., 2017). No
evasion techniques were conducted in the feature space when using machine learning-based detection approach. In
this paper, we consider a threat model within a specific class of attacks, named poisoning attack, in which the attacker
is assumed to control a subset of samples or inject additional seeds at will in order to mislead the learning algorithm.
For example, in malware detection, a sophisticated attacker may have a good command of the whole training set and
deliberately inject poisoning patterns to compromise the performance of the classifiers, which becomes more prone
to misclassify malicious applications as benign ones. This threat model conceptually underlies adversarial machine
learning: it involves gradients of the function f represented by the learned model (e.g., SVM, logistic regression,
K-Nearest Neighbor) in order to evaluate it on an input x. Attackers can then fully automatically either identify
individual input features that are perturbed to achieve misclassification (Papernot et al., 2016).

To test the ramifications of these causative attacks, we develop an adversarial model with three types of attackers
according to different aggressiveness of attacks to simulate the real-world attacks. To do this, we adopt an customized
adversarial crafting algorithm, characterized by the aggressiveness of attacks, to generate the crafted camouflage
samples. The abstraction of crafting steps is somehow restricted in three ways. (i) To preserve the functionality of
the modified application, we only add or remove features; (ii) we add a restricted number of features. For simplicity,
we therefore decide to add entries to the AndroidManifest.xml and Smali files; (iii) since obscuring semantic features
is much more challenging than confusing syntax features, we only use syntax features to craft samples. In spite of
these restrictions in crafting, we achieve a significantly high misclassification rate on malicious applications when
using 564 original non-robust features. To further perform a longitudinal comparison, we also apply our poisoning
attack to Drebin (Arp et al., 2014), DroidAPIMiner (Aafer et al., 2013), and MaMaDroid (Mariconti et al., 2017),
the three most recent machine-learning detection systems in academia. We thus validate that the threat model and the
poisoning attack are indeed viable in malware detection. We conjecture that almost all the state-of-the-art machine-
learning malware detection systems are suffering from the poisoning attack we exhibited in the paper.

To handle these adversarial attacks, we propose KuafuDet, a learning enhancing defense system with adversarial
detection that includes an offline training phase that selects and extracts contributing features from the training set for
preprocessing, and an online detection phase that utilizes the classifier trained by the first phase. Comparing to exist-
ing work, these two phases act together, through a self-adaptive learning scheme, as an iterative adversarial detection
process. Additionally, we introduce the camouflage detection for verifying false alarms to protect against poisoning
attacks. By using similarity analysis, the camouflage detection is applied to iteratively detect against malicious data
distortion. In concrete, we train 16,000 Android application samples that are equally distributed, which are down-
loaded from Contagio Mobile Website,1 Pwnzen Infotech Inc. and Drebin (Arp et al., 2014). All 195 robust features
are extracted using static analysis on the given application, pruned by information gain. We further evaluate the results
on 4,000 applications. Our best detection classifier achieves up to 96% accuracy without adversarial environment, and
by at least 15% accuracy when coping with the most powerful attackers, along with both low false negatives. Further-
more, we conduct an empirical evaluation on our test set and select 1,000 malware as samples out of the set of 10,400

1http://contagiominidump.blogspot.hk/

2

http://contagiominidump.blogspot.hk/

malicious samples and scan them using KuafuDet and other industrial malware detecting tools, such as Kaspersky
and McAfee encapsulated in VirusTotal.2 The coverage of KuafuDet significantly outperforms these top-of-the-line
antivirus systems. Finally, we perform the entire process of KuafuDet, using real-time streaming, on a server with
16 GB memory, quad-core i7-4800MQ at 3.6 GHz, and 1 TB hard drives and show that KuafuDet is scalable and
efficient.

In this paper, we make the following key contributions that are fourfold.

1. We propose that poisoning attacks can be exhibited by three types of attackers in the real world, ranging from
weak, strong, and sophisticated degrees. We hold evidence that the real-world mobile malware dataset is able
to truly reflect three types of attackers we defined.

2. We adopt a customized adversarial crafting algorithm, semantically characterized by the aggressiveness of
attacks, to generate the crafted camouflage samples using syntax features to largely simulate the real-world
attacks.

3. We show that our poisoning attack is able to mislead DroidAPIMiner (Aafer et al., 2013), Drebin (Arp et al.,
2014), and MaMaDroid (Mariconti et al., 2017), the three most recent machine-learning detection systems in
academia.

4. We propose a two-phase iterative adversarial based detection, termed KuafuDet, wherein similarity-based fil-
tering is used to identify the false negatives that are the camouflaged malicious applications, further reinforcing
the resilience of the malware detection system.

Our experiments show that attackers can also poison features while preserving maliciousness, and our experi-
ments verify that the resulting fake variants with poisoned features impaired discriminative classifiers and succeed in
lowering the detection score in a test environment. Other main findings are as follows:

• We observe that different feature categories have different impacts on crafted camouflage samples. The effect
rate of API call leads to greater perturbation than permission.

• We emulate the feature extraction for all types of features that Drebin used and find that Drebin-used feature
extraction is substantially more computationally complex and does not necessarily boost the accuracy.

• We find that in the data-imbalanced (benign-malicious ratio) environment, the accuracy of KuafuDet gradually
degrades as we put in more benign applications, but the accuracy still remains relatively high.

• We find that similarity-based filtering analysis and re-labeling have an excellent performance to handle against
adversarial attacks.

To the best of our knowledge, this is the first paper to accommodate a newly designed two-phase adversarial
machine learning mechanism into mobile malware detection to limit the possibility of mimicry and poisoning attacks,
and further propose a learning enhancing system through adversarial detection of Android malware.

The rest of the paper is organized as follows. Section 2 defines the research problem. Section 3 presents the
motivations and challenges. Section 4 provides the system overview followed by the implementation shown in Sec-
tion 5. Section 6 summarizes experimental evaluation. Section 7 discusses limitations. Section 8 surveys related
work. Finally, Section 9 concludes the paper.

1.1. A Note on Ethics

In this paper, we are very aware of the potential impact on malicious apps disclosure or exploited by other mali-
cious third parties. In particular, in order to illustrate this methodology, the collection of mobile malware used and
crafted was strictly followed by the Privacy Policy of the Pwnzen Infotech Inc., and conformed to the non-disclosure
agreement (NDA) of the Pwnzen Infotech Inc. Furthermore, to facilitate research on mobile malware detection,
we make the malicious Android applications (except those from Pwnzen Infotech Inc.) used in the paper publicly
available to other researchers under http://nsec.sjtu.edu.cn/kuafuDet/kuafuDet.html, but no attempt was

2https://www.virustotal.com/

3

http://nsec.sjtu.edu.cn/kuafuDet/kuafuDet.html
https://www.virustotal.com/

made to provide data from Pwnzen Infotech Inc. for people outside of our research group because of intellectual
property. Only Pwnzen Infotech Inc. authorized employees, using internal computer systems from Pwnzen Infotech
Inc., can have access to the dataset. Finally, we informed the team of the Pwnzen Infotech Inc. of the potential newly-
discovered malicious apps in order to help Pwnzen Infotech Inc. improve the quality of its products and services. We
believe this study performs an important public service, as it shows that even state-of-the-art anti-virus systems are
somehow futile. Our ultimate goal is to inform developers and users of such potential poisoning attack, so that more
comprehensive countermeasures can be taken in the future.

2. Problem Definition: Adversarial Machine Learning

We denote a sample set by {(xi, yi) ∈ (X,Y)}ni=1, where xi is the ith malware sample vector of which each com-
ponent exhibits the selected feature; if xi has the jth component, then xi j = 1; otherwise xi j = 0. yi ∈ {0, 1}, n is
the total number of malware samples, and X ⊆ {0, 1}m is a m-dimensional feature space. In this paper, we consider
binary classifiers with only two output classes where the attacker crafts malware dataset to evade detection and hence
achieves his goals. The attacker tries to move away malware dataset yi = 1 in any direction by adding a non-zero
displacement feature vector δi to xi|yi=1. For example, attackers may add good attributes to mobile malware to evade
binary classifiers. We note that attackers will not be able to modify legitimate benign applications since an honest
author has no interest in having his benign application classified as malware. Hence, crafting an adversarial sample x∗,
misclassified by the function f (where f : x→ y = f (x)), from a benign sample x can be formalized as the following
problem (Szegedy et al., 2014):

x∗ = x + δx s.t. f (x + δx) , f (x), (1)

where δx = x is the minimal perturbation yielding misclassification and f can be the corresponding softmax function.
The goal of adversarial sample crafting in malware detection is to mislead the detection system, causing the

classification for a particular application to change according to the attackers wishes. In this paper, we only focus on
the poisoning attack that results in malicious behavior being misclassified as benign (false negatives), because Inter-
Component Communication (ICC) analysis is used to reduce false positives (Li et al., 2015; Octeau et al., 2016). We
also assume the attacker has full access to the classifier used, and can inject as many variants’ features as possible at
will to the given classifier. For this reason, following by the Equation (1), we further denote xmax

i j (= 1) and xmin
i j (= 0)

as the maximum and the minimum values that the jth feature of the ith sample can take. Then a poisoning attack can
be characterized in the following:

C f (xmin
i j − xi j) ≤ δi j ≤ C f (xmax

i j − xi j), ∀ j ∈ [1,m],

= C f (0 − xi j) ≤ δi j ≤ C f (1 − xi j), ∀ j ∈ [1,m],
(2)

where C f ∈ [0, 1] controls the aggressiveness of attacks. C f = 0 indicates no attacks, while C f = 1 indicates the most
aggressive attacks. To test the ramifications of causative attacks and clearly elaborate the challenges, we develop an
adversarial model with three types of attackers with the corresponding C f values.
Weak attacker (C f = 0.33). Our weak attacker is not aware of the statistical properties of the training features or
labels at all. This attacker simply fakes additional labels with random binary features to poison the training dataset.
Strong attacker (C f = 0.67). Our strong attacker is aware of the features we use for training and can has access
to our ground-truth dataset (which comes from public sources). This attacker can manipulate partial features in the
training data. However, this attacker is resource constrained and cannot manipulate any mobile application statistics
which would require more time. The strong attacker crafts features by randomly selecting public available Android
malware and then faking additional labels, so that the partial training labels can become nearly identical.
Sophisticated attacker (C f = 1). Our strongest attacker, named sophisticated attacker, has full knowledge of our
training feature set. Additionally, this attacker has sufficient time and economic resources to create arbitrary mobile
application statistics. Therefore, the sophisticated attacker can fully manipulate almost all training features, which
creates scenarios where relatively benign mobile applications and real-world malicious mobile applications appear to
have nearly identical attributes at the training phase.

To do this, we adopt the adversarial crafting algorithm (Papernot et al., 2016) based on the Jacobian matrix

J f =
∂ f (X)
∂X

=

[
∂ fi (x)
∂x j

]
i∈{0,1}, j∈[1,m]

4

where f0(x) outputs x is benign and f1(x) outputs x is malicious, with f0 (x)+ f1 (x) = 1. To craft an adversarial sample,
we use 73 benign features and 102 malicious features detailed in Section 5.1. We then take mainly two steps. In the
first step, we compute the gradient of f with respect to x to estimate the direction in which a perturbation in x would
change f ’s output. In the second step, we choose a perturbation δ of x with maximal positive gradient into our target
class Yyi=0|yi=1 denoted y′, and we customize the adversarial crafting algorithm (Papernot et al., 2016) according to
our adversarial model with three types of attackers (C f), to indicate the probability (Equation (2)) of adding a specific
feature. After computing the gradient, we iteratively choose a target feature of which the gradient is the largest for
our target class and then update its value in x to obtain our new input vector. We then re-update the gradient and
repeat this process until either (i) we reach the bounded allowed changes (loop bound) or (ii) we successfully achieve
a misclassification.

We didn’t attempt to formalize the malware detection as an optimization problem, saying to maximize accuracy
at the lowest resource cost with minimal adversarial perturbations, because simply using optimization may not be
aligned with how we semantically understand the human malicious behaviors and motivations. For future research,
we wish to generate an exact mapping rule between machine-crafted mobile malware and read-to-use malicious apps
in the wild, and ultimately wish to provide a foundation for developing sustainably-secure anti-malware systems in
the face of dynamic cyber-maneuvers.

3. Motivations and Challenges

In this section, to highlight our contributions, we motivate our malware detection model by incorporating adver-
sarial environment witnessed in the real world and then review several challenges of our work.

SMS-related	malware
1. Privacy	leakage
2. Premium	service	subscription
3. C&C	communication	medium
4. Malicious	spread

Main	attacks	of	malware:	
1. Privacy	leakage
2. Financial	charge
3. Privilege	escalation
4. Rapid	increasing	of	adware

Vulnerability	exploited	attack
1. Spread	across	markets
2. Malware	and	vuls work	in	

collusion	together
Adversarial	attack

year

Figure 1: A timeline of Android malware

3.1. Evolutionary Chain

malware

sophisticated case: WhatsApp

strong case: Second Lock

weak case: Polaris Office

benign apps

Delete camouflage codeAdversarial
Region

Figure 2: The process from benign to malicious: the black dots refer to malicious apps, the white dots refer to benign apps, and the gray dots are
originally malware but misclassified as benign due to the camouflage code injected in the adversarial region. The gray dots turn darker with the
deletion of camouflage code and finally turn all black, exposing its malicious nature. The arrows direct toward the transformation process.

Figure 1 describes an evolutionary chain of mobile malware advancements that has been observed along the
timeline: ranging from the seed explosion to the recent adversarial attack. Earlier menaces of malware are mainly
pertinent to compromised SMS related functions. With every new technology comes abuse, the Android market is

5

no exception. Since 2014, malware samples can be easily exploited by Android vulnerabilities, which heavily drives
an arms race for the adversarial detection of mobile malware. As the nature of the attack is shifting from small-scale
and low-tech towards large-scale and skilled ones, the additional efforts will have to be directed at taking targeted
strategies to detect stubborn malware.

3.2. Adversarial Samples
In previous work (Chen et al., 2016a), a number of malware samples in the dataset are misclassified into benign

ones. We zoom in these misclassified samples and witnessed several real-world cases that reflect adversarial attacks
from this dataset. Each observation corresponds to the three types of attackers defined above.

Weak attacker. Embedding a good portion of benign code into a malicious app (e.g., manifest attributes and non-
logical code in java code). Felt et al. (Felt et al., 2011) show that more than half of Android applications are overpriv-
ileged, such as misusing AndroidManifest.xml configuration. We carefully analyze the false negative samples using
mapping relations between permissions and API calls, and find that some declared permissions remain unused at the
development stage. We can see from Figure 3 that part of the code in the AndroidManifest file of Polaris Office is
misclassified as benign. Although #1 to #7 permissions are declared, they have not been used at all since the app
does not demonstrate corresponding behaviors. These permissions extracted as features for training classifiers weakly
mislead the classification outcomes. As shown in Figure 2, we delete redundant code (#1 – #7) that is irrespective of
the logical behavior of the sample. After we repeat the classification process, surprisingly the sample is classified as
malicious.

<uses-permission android:name="android.permission.MANAGE_ACCOUNTS"/>
<uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS"/>
<uses-permission android:name="android.permission.VIBRATE"/>
<uses-permission android:name="android.permission.CAMERA"/>
<uses-permission android:name="android.hardware.camera"/>
<uses-permission android:name="android.hardware.camera.autofocus"/>
<uses-permission android:name="android.permission.GET_TASKS"/>

1
2
3
4
5
6
7

Figure 3: A case of permissions overprivileged

Strong attacker. Hiding a good portion of malicious code into other formats in the application package. Some
alternative malicious applications use techniques such as dynamic loading techniques to hide a good portion of ma-
licious code into other formats. Usually these malicious code blocks include sensitive API calls. API calls used by
most of machine learning classifiers will dramatically lead to the misclassification. For example, SecondLock behaves
as same as “egdata” does. Some malicious code blocks or executable files are hidden in the files of other formats,
such as jar, so, jpg, and data. These files contain sensitive API calls, such as DownloadManager.enqueue and
DownloadManager.query, which are hidden by malware. The “assets” folder of SecondLock contains a png format
file, which is not a standard png file and can be dynamically loaded. It can prevent the application from updating
or automatically downloading other malicious applications. As shown in Figure 2, we show two steps to correct the
classification results. In step one, we remove five unused permissions, the result of classification moves toward the
hyperplane, though the final result remains benign. In step two, we add some sensitive API calls that are hidden in
the png file (e.g., DownloadManager.enqueue and DownloadManager.query). This particular sample is finally
classified as malicious.

Sophisticated attacker. Embedding benign logic code in java code and dynamic code loading with reflection. A
few malicious applications add benign logic code in source code. Benign logic code can be executed without any
effects on malicious behaviors, which is used to obscure the feature extraction process to clone benign applications.
This is similar to “testing code.” By embedding benign logic code, the sophisticated attacker can add any code
blocks or any combination of various techniques to mislead the machine learning classifiers, making the classifiers
less robust. Specifically, after the construction of Activity transition relations for WhatsApp, a repackaged malware
from the third party rather than the official version, we find there exist embedded activities, standing alone with some
methods, such as neither being affected by any other activities nor shown up in the system logic. Figure 4 shows
a code segment of WhatsApp with an embedded activity, getMemoryLimited()method initiates a system call to
getMemoryClass(), getLargeMemoryClass(), etc. However, these system calls extracted as features for training
cannot reflect system logic of the sample, which seriously misleads the classification outcomes. We therefore remove

6

public class CalledActivity extends AppCompatActivity {

public void execute() {

// Call the embedded method

getMemoryLimited();

// Call the malicious method

getMaliciousMethod();

}

// Embedding benign logic code

public void getMemoryLimited() {

ActivityManager activityManager =

(ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE);

System.out.println(activityManager.getMemoryClass());

System.out.println(activityManager.getLargeMemoryClass());

System.out.println(activityManager.getRuntime().maxMemory()/(1024*1024);

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 4: A case of Activity embedded with benign API calls

such embedded benign logic code and retrain the classifiers. As shown in Figure 2, once we delete such code step by
step, the malware sample is exposed. Figure 2 also exemplifies that in the adversarial environment, the attack process
is changeable and dynamic.

The alternative approach that one sophisticated attacker may take is through dynamic code loading. Dynamic code
loading usually utilizes reflection mechanism to modify the runtime behavior of applications. It provides ability for
sophisticated attackers to add malicious behaviors (malicious features) without having to change the original appli-
cation, hence mislead the machine learning classifiers. For example, as depicted in Figure 5, sophisticated attackers
can incorporate two malicious methods in the class MaliciousMethodsInDex (lines #1 – #6) – sendDeviceInfo

and sendCredential, and instantiate them via DexClassLoader at runtime. Since the malicious codes are loaded at
runtime, and not part of the application source, it is challenge to classify them as malware through machine learning
classifiers.

class MaliciousMethodsInDex {

// send device info by Socket connection

void sendDeviceInfo (String data) { … }

// send crendential by Http connection

void sendCredential (String data) { … }

}

DexClassLoader loader = new DexClassLoader(…);

Class class = loader.loadClass("MaliciousMethodsInDex");

Object object = class.newInstance();

Method method = class.getDeclaredMethod("sendCredential");

method.invoke();

1

2

3

4

5

6

7

8

9

10

11

12

Figure 5: An loading example of using reflection (demonstrated as dynamic pseudo code)

3.3. Challenges

Class imbalance. We aim to train a classifier that produces binary predictions: each mobile application is classified
as either benign or malicious. If there are significantly more malicious applications in one class than in the other
class, this biases the output of supervised machine learning algorithms. Prior research treats it simply by using 49
different malware families (Zhou and Jiang, 2012). In consequence, our dataset exhibits a modest class imbalance:
We first define 217 Android malware families and then classify them into eight categories, such as Expense, Fraud,
Payment, Privacy, Remote, Rogue, Spread, and System (see Table 1), to present a systematic characterization of
existing Android malware. The eight malware categories represent almost all coverage of existing Android malicious
behaviors. We observe that it is common that many malware families belong to multiple categories in parallel. This
phenomenon indicates that malicious family is not limited to a single malicious behavior. As shown in Table 1, Privacy
and Fraud occupy the highest proportions among all. Therefore, we are able to find the reasonable distribution of our
real-world malware during our data acquisition. As the ratio of malware to benign apps in the real-world is highly
imbalanced, this class imbalance usually represents a significant challenge for reducing false negatives.

7

Table 1: Malware category

Malware category Percentage
Privacy 47.1%
Fraud 33.9%
Rogue 20.1%
Spread 20.1%
System 11.1%
Remote 10.6%
Expense 10.1%
Payment 6.3%

Note: We take a look at malware category with miscellaneous datasets. We find that many Android malware families belong to multiple
malware categories, thereby the sum of percentages is greater than 100%.

Quality of ground-truth dataset. Prior work on malware dataset focused on validating their approaches by using
a small out-dated dataset. These predictors can be used as ground truth for training high-performance classifiers. In
contrast, there is no comprehensive dataset of malware that are available in the real world. We employ as ground truth
the set of malware from five different platforms. In particular, the set obtained from Pwnzen Infotech Inc. is the most
recent malware in the real world. However, we acknowledge this dataset does not cover all platforms uniformly.

4. System Overview

In this section, we provide a high-level overview for our system design.

4.1. Key Ideas

In putting our approach in practice for massive-scale detection, we aim to achieve two important goals: one is
to identify and filter the suspicious false negatives (i.e., the malicious applications that are camouflaged), the other
is to achieve accuracy and scalability at the same time. To achieve these two goals, we propose two key techniques:
similarity-based filtering and two-phase iterative adversarial detection, as shown below.
(i) An automated similarity-based approach to filter suspicious false negatives. In general, attackers have two
characteristics: first, attackers may acquire dual intrinsic attributes of applications, thus we assume the suspicious
ones are the ones with both strong reflection on malicious features and benign features; second, in our threat model,
attackers may have certain level of knowledge of training set, thus we decouple the similarity metrics from machine
learning classifiers. Based on these two characteristics, if the trained classifier could incorporate the similarities across
the applications in the training set to lead to a further fine-grained detection, the learning system would be periodically
enhanced with these newly discovered malware and suspicious false negatives.
(ii) A two-phase iterative adversarial detection approach to achieve accuracy and scalability. False negatives can
be reduced based on our understanding of an attacker’s threat level. Thus self-adaptive learning (SAL) scheme, where
the suspicious false negatives, as well as the identified malicious applications, are fed back to the training process for
a desired trade-off between accuracy and scalability.

4.2. Overall Architecture of KuafuDet

The overall architecture of KuafuDet is shown in Figure 6, which is comprised of two intertwined phases. In
the Training Model phase, KuafuDet extracts features from labeled applications based on our combined set of
contributing features, trains classification model offline, and updates classifiers at a certain interval of time; In the
Online Detection phase, KuafuDet classifies large sets of online Android applications (from multiple online Android
markets) into different categories, benign and malicious; Meanwhile, KuafuDet, through a Self-adaptive Learning
scheme, discovers new information from both the identified malware and the filtered suspicious false negatives from
Camouflage Detector, and incorporates into Training to stabilize the detection accuracy.

8

Online Detection

Feature Extractor ML Classifier

Offline Training

Self-adaptive Learning

Adversarial Detection

Camouflage
Detector

Training Process

Malware Malware

Feature ExtractorFeature Selector

Online Detection

Feature Extractor ML Classifier

Offline Training

Camouflage
Detector

Training Process

Malware
Malware

Feature ExtractorFeature Selector

Self-adaptive Learning

Online Detection

Feature Extractor ML Classifier

Offline Training

Camouflage
Detector

Training Process

Malware
Malware

Feature ExtractorFeature Selector

Self-adaptive Learning

Adversarial Detection

Figure 6: The KuafuDet framework through adversarial detection

5. System Design

In retrospect, the quality of discriminative classifier is the key to the accuracy of malware detection. On one hand,
when the trained classifier is trained once and used for all time, it is not able to corresponding to the new malware.
On the other hand, aggressive attackers may obfuscate their representations in terms of contributing features to impair
discriminative classifiers. Thus it might lead to high false negatives that the malicious applications evade detection.
In order to perform accurate and scalable adversarial detection, our proposed adversarial detection approach contains
two phases, training and detection, intertwined by the self-adaptive learning (SAL) scheme. In particular, we conduct
our similarity-based analysis in Camouflage Detector to filter the suspicious false negatives.

The implementation of KuafuDet involves the following steps:

1. In the feature selection stage, we decompile APKs to generate Smali code via Apktool,3 we extract 195 out of
564 features using manual pruning along with information gain validated.

2. In the training stage, we use different machine learning classifiers, such as Support Vector Machine (SVM),
Random Forest (RF), and K-Nearest Neighbor (KNN), based on 195 dimensional features we selected.

3. In the camouflage detection stage, we perform similarity-based filtering to identify the false negatives that are
the camouflaged malicious applications.

Table 2: Features

Syntax Features Semantic Features

Permission Intent & Hardware API Call Sequence
READ PHONE STATE INTENT.ACTION.DELETE URL.openConnection (chmod 777, Runtime, getRuntime, exec)

WRITE SMS INTENT.ACTION.GET CONTENT TelephonyManager.getDeviceId (getDeviceId, URL, openConnection)
INSTALL PACKAGES HARDWARE.TOUCHSCREEN PackageManager.checkPermission (DownloadManager, Uri, Request, enqueue)

. .

5.1. Feature Selector

The features considered in this study are classified into two categories: syntax features (S{PERM, INT,H, API}) and
semantic features (S′{S equence}).

3http://ibotpeaches.github.io/Apktool/

9

http://ibotpeaches.github.io/Apktool/

5.1.1. Syntax features
Through closely examining more than 250,000 applications from various sources (breakdowns shown in Sec-

tion 6.1), we notice that the malicious applications tend to have drastically different permissions, intents, hardwares
and API calls, which supports the assumption that malicious applications are distinguishable from benign ones. To
facilitate reading, we show a coarse-grained description of syntax features used in this paper.

• Permission (S{PERM}): Each APK has an AndroidManifest file in its root directory, which is an essential profile
including information about the application. Android OS must process this profile before it runs any of instal-
lation. The profile file declares which permissions the application must have in order to access protected parts
of the API and interact with other applications. It also declares the permissions that others are required to have
in order to interact with the application’s components.

• Intent (S{INT }): Communication between different components is mainly through intent, which can be regarded as
the “medium” where information about massive asynchronous data exchange and calls to different components
is shared between different components and applications.

• Hardware (S{H}): Features about requesting access to specific hardware of the smartphone should be declared
in the manifest file, such as NFC and GPS, since the combination of such hardware modules may have harmful
impact on the phone.

• API Call (S{API}): Android API calls monitoring, based on the reverse engineering, can monitor those API calls,
such as sending SMS, accessing user location, and device ID. The Android platform provides a framework API
that applications can be used to interact with the underlying Android OS. The framework API consists of a core
set of packages and classes. Most applications use a fairly large number of API calls.

Here, we use statistical metrics-driven manual pruning (Chen et al., 2016a) with information gain to cross-check
the feature selection. Although information gain facilitates the automatic feature selection, it ignores the class infor-
mation and distribution of the features. When these features are used to detect malware, the performance would drop
down dramatically. For example, READ INPUT STATE (resp. ACTION.SET WALLPAPER) corresponds to Permis-
sion (resp. Intent) exhibits a high information gain than many others but it relates to only a small subset of malware.
Such highly specific features are undesirable for classification. In summary, we generate 175 types of syntax features.

∑ S{PERM, INT,H, API}︷ ︸︸ ︷
#
⋂
S{PERM}

︸ ︷︷ ︸
61

+ #
⋂
S{INT }

︸ ︷︷ ︸
12

+ #
⋂
S{H}︸ ︷︷ ︸

5

+ #
⋂
S{API}

︸ ︷︷ ︸
97

.

5.1.2. Semantic features
The semantic feature (S′{S equence}) represents malicious behaviors that occur sequentially, which are extracted via

static analysis. For instance, the sequence (DownloadManager, Uri, Request, enqueue) in Table 2 indicates
that a download request requires to follow a certain order: construct a request object and transfer the URL of the
file to enqueue method to finish the download process. These sequences can characterize some interesting malicious
behaviors that cannot be captured by the syntax features and can reflect the malicious behaviors more explicitly for
a large number of apps, with the purpose of training classifiers. We de facto take several sensitive behaviors into
consideration, such as “Send SMS,” “Request for chmod,” “Uninstall application,” “Get location,” “Get wifi info,”
and “Start http connection.” We then extract the sequence of key strings that reflect interesting malicious behaviors.
For example, Requesting for chmod is described as the sequence of “chmod 777,” Runtime, getRuntime, and exec, we
define 20 types of semantic features for detecting malware. By generating Android malware, these semantic features
can be extended. ∑

#
⋂
S′
{S equence}

︸ ︷︷ ︸
20

.

10

To characterize each of the applications using static analysis, we generate a final set of 195 out of 564 types of
features, as partially shown in Table 2. In summary, we use 195-dimensional feature vectors for the study (breakdowns
shown in Table A.11).

5.1.3. Justifying Feature Selection
In Drebin, the feature set contains thousands of arbitrary strings that appear in the manifest file or in the dis-

assembled code of the app chosen by developers. In particular, Drebin extracts eight types of features: hardware
components, requested permissions, App components, filtered intents, restricted API calls, used permissions, suspi-
cious API calls, network addresses. These massive features chosen from his dataset act as noises, misleading the
classifier. We readily emulate the feature extraction for all types of features that Drebin used since Drebin authors
do provide the feature vectors of their own dataset for evaluation by other researchers. As shown in Table 3, we
use Drebin dataset (Arp et al., 2014), massive Drebin-used features, and simulate his algorithm. We conclude that
extracting Drebin-used features was a substantially more computationally complex process than our feature selection
due to the sheer number of features extracted. In fact, these features do not necessarily boost the accuracy. Our
approach also validates that 195 types of features used in KuafuDet are proper and will not trigger the classical curse
of dimensionality.

Table 3: Comparison of consequential features (using Drebin dataset)

Detection Tool within Features Used Accuracy
195-dimensional features used in KuafuDet 96.55%
564-dimensional features used in KuafuDet 95.80%
5,000 features used in Drebin 94.05%
500,000 features used in Drebin 93.90%

5.2. Machine Learning Classifiers
With these 195-dimensional features that result from our feature selector, we utilize a number of popular algo-

rithms widely used in security contexts, including Support Vector Machine (SVM), Random Forest (RF), and K-
Nearest Neighbor (KNN). We leverage existing implementations of these algorithms in WEKA (Hall et al., 2009). In
particular, SVMs seek to determine the maximum margin hyperplane to separate the classes of malicious and benign
applications. When a hyperplane cannot perfectly separate the binary class samples based on the features we fed in,
we then tune the parameters such as regularization penalty and non-negative slack variables. We also perform multi-
ple rounds of stratified random sampling due to the data imbalance as stated in Section 3.3. Random Forest (RF) and
K-Nearest Neighbor (KNN) are also tuned in an analogous manner.

5.3. Camouflage Detector
To further discover camouflage in malware, we manually pick a fair number of applications from the farthest

very benign outcomes and very malicious outcomes from the classification hyperplane, respectively. In particular,
these three machine learning algorithms use the corresponding distance to classification hyperplane. And those hand-
picked applications are the most benign and most malicious predictions and would be updated along with training
set updating. We assume these applications have not been poisoned by any malicious third parties. We then measure
the similarity between the training set and the selected most benign applications, and vice versa the selected most
malicious applications after classification. By further tuning the similarity threshold, we relabel the camouflage
malware of the training set as malicious samples to make the classifier robust. Moreover, based on similarity analysis,
we are able to identify the camouflage malware from false negatives. Our similarity-based approach is based on
extracted robust features and those non-bypassed samples that are farthest from the hyperplane.

5.3.1. Measuring Similarity
We use Jaccard index, Jaccard-weight similarity, and Cosine similarity to measure the similarity of applications.

The similarity indices are characterized by two vectors A and B, where A represents the feature vectors of the appli-
cations in the training set and B represents the feature vectors of hand-picked (the most benign or the most malicious)
applications. The similarity indices used in this paper are the following:

11

Very benign outcomes Very malicious outcomes

ML classifier
benign outcomes

Similarity analysis

Union

Camouflage outcomes

Jaccard & Cosine
threshold

JT1 < J < JT2
CT1 < C < CT2

Training data

Very benign outcomes Very malicious outcomes

Hyperplane classification

Figure 7: Choosing very benign and malicious outcomes

Very benign outcomes Very malicious outcomes

ML classifier
benign outcomes

Similarity analysis

Union

Camouflage outcomes

Jaccard
& Jaccard-weight

& Cosine
threshold JT1 < J < JT2

CT1 < C < CT2
WT1<W<WT2

Training data

Very benign outcomes Very malicious outcomes

Hyperplane classification

Figure 8: Similarity analysis

Jaccard index: The Jaccard index, denoted by J(·), is defined as the size of the intersection divided by the size of the
union of the sample sets A and B:

J(A, B) =
|A ∩ B|
|A ∪ B|

=
|A ∩ B|

|A| + |B| − |A ∩ B|
.

Jaccard index is not accurate enough because it does not reflect the actual differences of frequencies. For example,
an API is used 10 times and 100 times respectively in two applications, but the Jaccard distance simply treats them
equally.

Jaccard-weight similarity: The Jaccard-weight similarity is defined as follows, which is computed by two steps.
Step 1. The weight of each component of the feature vector J f is defined as the percentage that the number of

apps which exhibit that feature over the total number of apps.
Step 2. For any two app a ∈ A and b ∈ B, we consider if both the kth component of feature vectors are non-zero,

that is ak = bk = 1, where ak and bk denote the kth component of feature vectors of apps a and b, respectively. We
collapse the Jaccard-weight similarity W(a, b) as follows:

W(a, b) =

∑n
k=1 Jk

f1(ak = bk = 1)∑n
k=1 Jk

f

,

where n = 175 is the dimension of features and 1(·) is the indicator function.

Cosine similarity: The cosine similarity, denoted by cos(θ), is defined using a dot product of the two vectors A and B
divided by the product of their magnitudes as:

cos(θ) =
A · B
‖A‖‖B‖

.

We use Jaccard index (J), Jaccard-weight similarity (W), and Cosine similarity (C) to measure the similarity of
applications. If the similarity between two applications exceeds a certain threshold, the application will be selected as
a malware candidate and fed back to the training process for further fine-grained detection. We want to select as many
malware candidates as possible for periodically retraining the classifiers. To be specific, a low threshold likely leads to
high false negatives, while a high threshold leads to low false negatives. As shown in Figure 8, during our experiments,
we empirically choose parameters JT1 < J < JT2 , WT1 < W < WT2 , and CT1 < C < CT2 as corresponding thresholds
and then take the union of three outcomes for picking the camouflage malware. From an attacker’s perspective, in
order to evade the detection, the fraction of two sets A and B must be below a given threshold 0 < p < 1 for Jaccard
index: |A ∩ B| ≤ p×|A| and |A ∩ B| ≤ p×|B|. An optimal attack strategy is to schedule a group of accounts according to
the set of such action sets A or B that has the maximum cardinality so as to minimize the probability that two accounts

12

are caught. But finding A with the maximum cardinality remains an open problem in intersection set theory (Brunk,
2009), which poses a limitation to the attacker.

6. Experimental Evaluation

We evaluate KuafuDet with applications downloaded from different popular third-party Android markets, as well
as in real industrial environments such as Pwnzen Infotech Inc. The goals are to evaluate our system in aspects
of: (i) the robustness of our detection under three attacks; (ii) the capabilities of accurately detecting malicious
applications; (iii) the efficiency and scalability of real-time analysis, and adaptability to new Android malware; and
(iv) the capabilities of detecting coverage.

Table 4: Datasets for adversarial detection of Android malware

Source Universal Data-driven Analysis Training Test Comparison

Benign 242,500 10,000 8,000 2,400 0

Malicious

Pwnzen Infotech Inc. 4,500 4,500 3,500 1,000 600
Zhou et al. (Zhou and Jiang, 2012) 1,260 1,000 1,000 260 150

Arp et al. (Arp et al., 2014) 4,300 4,200 3,200 700 150
Contagio 340 300 300 40 100

Apps 252,900 20,000 16,000 4,000 1,000

6.1. Experimental Dataset

As mentioned earlier, most studies lack a large number of data samples. We fulfill the need by presenting the
first large collection of 252,900 Android application samples, including 10,400 malicious samples, which covers the
majority of existing to recent ones, as shown in Table 4. Specifically, these 252,900 APK files we collected consist
of 242,500 benign applications that are downloaded from Google Play Store, and the other 10,400 malicious APK
files where 1,260 have been validated in (Zhou and Jiang, 2012) and the remaining are downloaded from Contagio
Mobile Website (340 APKs), Pwnzen Infotech Inc. (4,500 APKs) and (Arp et al., 2014) (4,300 APKs). Our malicious
applications include all varieties of the threats for Android, such as phishing, trojans, spyware, and root exploits. In
the following, we randomly select various portions of benign apps and malicious apps (various ratios of # benign vs #
malicious) for different experimental goals. Specifically, we select 1,000 malware as samples out of the set of 10,400
malicious samples and scan them using KuafuDet and other industrial malware detecting tools. For comparison, the
1,000 samples contain both benchmarks before 2014 and the most recent datasets, more than half of which are the
most recent malware.

Finally, we measure the efficiency and scalability of KuafuDet performance, and perform the entire process of
KuafuDet, using real-time streaming, on a server with 16 GB memory, quad-core i7-4800MQ at 3.6 GHz, and 1 TB
hard drives.

6.2. Experimental Results

For a meaningful comparison, we list the results that are used to train on different classifiers with respect to the
aspects of false negative (denoted as FN) and accuracy. FN rate refers to all malicious instances that are classified as
benign applications. Accuracy simply measures that the classifier makes the correct prediction. Because we use our
classifier as a tool for prioritizing the response to Android malware disclosures, we focus on improving the accuracy
and reducing the false negative.

13

Table 5: Misclassification rate comparison of adversarial detection

Detection Tool DroidAPIMiner Drebin MaMaDroid KuafuDet (Without AD)
Misclassification rate (FN) 80.05% 75.20% 68.95% 62.60%

6.2.1. Evaluation on attacks against the detection
Our collected dataset (16,000 samples as a training set and 4,000 samples as a test set, shown in Table 4) serves

as a benchmark for evaluating robustness of Android malware detection systems. As mentioned, DroidAPIMiner,
Drebin, and MaMaDroid are the three most recent Android malware detection systems. Since Support Vector Ma-
chine (SVM) is the only jointly-used algorithm by three detection systems, to conduct a fair comparison, we adopt
SVM to investigate the misclassification rate of the three detection systems together with ours (when the adversarial
detection mechanism is not included) under poisoning attacks. We first show that by poisoning their training set, it is
possible to mislead their classifiers, along with ours; we then analyze the robustness of our discriminative classifiers
against the three distinct attack strategies.

(i) Misclassification of Machine Learning Detection Systems.
To perform a longitudinal study, we first apply our poisoning attack to DroidAPIMiner, Drebin, MaMaDroid, and

KuafuDet without adversarial detection (Without AD). Specifically, Without AD means that the camouflage detector
component is disabled. We mimic sophisticated attacks to investigate how ineffective these systems perform under
our poisoning attack. We assume to have control over a subset of samples and automatically generate the crafted
camouflage samples as follows: (i) we can only add or remove features. We must preserve the utility of the modified
application, which we achieve by only adding features from benign set, and only those that do not interfere with the
functionality of the application. (ii) We can add a restricted number of features. We thus validate that adversarial
attack is indeed viable in security critical domains.

More specifically, we customize the adversarial crafting algorithm (Papernot et al., 2016) according to our adver-
sarial model, to indicate the probability of adding or removing a specific feature. Therefore, for machine learning
mechanisms that are based on syntax features, such as DroidAPIMiner and Drebin, we can directly apply our cus-
tomized adversarial crafting algorithm; for machine learning mechanisms that mainly consider semantic and behav-
ioral features, such as MaMaDroid, which relies on application behavior using Markov chain modeling, we instead
target on crafting its feature in terms of call sequences. Specifically, we first extract a set of call sequences that are
only frequently used by benign samples, and then add them to the the malicious samples, to mimic our sophisticated
attack.

As shown in Table 5, we obtain 80.05%, 75.20%, and 68.95% misclassification rates (i.e., FN) on DroidAPIMiner,
Drebin, and MaMaDroid, respectively. We show that our poisoning attack on SVM is successfully validated through
three machine-learning tools.

We here take a detailed discussion on the misclassification rate of the systems:

• Our sophisticated attackers are able to mislead the machine learning detection systems.

• MaMaDroid relies on transitional call sequences, rather than single API calls, to train its classifier, merely
inserting syntax features as we did for poisoning other systems is not considered as a successful attack by our
crafting algorithm. We thereby manipulate its feature space through call sequences.

• MaMaDroid achieves lower misclassification rates than Drebin and DroidAPIMiner in the sophisticated at-
tacks, sacrificing more computational time cost over each application due to call graph construction and feature
extraction. Furthermore, MaMaDroid requires a sizable amount of memory when performing classification
because of its large feature sets and the extraction of call graph.

• KuafuDet (Without AD) also can be attacked through sophisticated attacks and the misclassification rate
(62.60%) indicates that it still suffers from adversarial samples.

14

• DroidAPIMiner, Drebin, and MaMaDroid can be thwarted if we embed native code (as a strong attacker defined
in our threat model) and dynamic code loading with reflection (as a sophisticated attack), because malicious
code is loaded or determined at runtime. The attackers can pollute training data using a large-scale crafted
samples through these techniques.

In conclusion, the state-of-art machine learning-based malware detection systems are possible to be misled by the
poisoning attacks we exhibit in the paper. By their nature, classifiers based on syntax features are more vulnerable
than the ones based on semantic features. On the other hand, semantic features extraction does require more com-
putational costs than syntax features. Hence, statistical robust features, pruned by information gain, are adopted in
KuafuDet to accommodate scalable, generic, and large-scale malware detection. In addition, KuafuDet provides spe-
cific mechanisms to countermeasure the dynamic loading and native code embedding poisonings. KuafuDet parses
the native code and dynamic code from package, and then extracts the corresponding features to keep the robustness
of classifiers.

In summary, we conjecture that almost all the state-of-the-art machine-learning malware detection systems are
suffering from the poisoning attack we exhibited in the paper.

(ii) Robustness of KuafuDet.
Here, we analyze the robustness of our discriminative classifiers when encountering three distinct attack strategies.

The first attack strategy is to launch a causative attack without any knowledge of the training data or ground truth.
This weak attacker in principle amounts to injecting noise into the system. The second attack strategy corresponds to
the strong attacker, who only manipulates partial features in the training set. The third, the most aggressive attacker
we consider is the sophisticated attacker. This attacker can fully manipulate almost all training features to launch
a sophisticated attack, which creates scenarios where relatively benign mobile applications and real-world malicious
mobile applications appear to have nearly identical attributes at the training stage.

Table 6: The performance of adversarial detection

Conventional Detection SVM RF KNN
FN 4.90% 2.50% 3.40%
Accuracy 94.95% 96.35% 95.80%
Attacker Weak Strong Sophisticated Weak Strong Sophisticated Weak Strong Sophisticated
Without AD SVM RF KNN
FN 8.60% 49.80% 62.60% 5.60% 41.80% 55.90% 5.90% 26.20% 45.40%
Accuracy 93.10% 72.50% 64.30% 94.80% 76.40% 67.85% 94.55% 84.40% 72.00%
Within AD SVM RF KNN
FN 5.80% 10.00% 12.60% 4.70% 11.20% 14.50% 4.10% 9.20% 11.60%
Accuracy 94.50% 92.40% 89.30% 95.65% 92.00% 88.85% 95.45% 92.90 90.45%

As shown in Table 6, the weak attacker is not able to force the accuracy of our malware detection below 90%. This
suggests that discriminative classifiers can be relatively robust to this type of random noise-based attack. When dealing
with the strong attacker , performance degrades to approximately 90% accuracy. The sophisticated attacker can cause
the accuracy to drop to approximately 65% by incorporating thousands of training set (green bar in Figure 9). The
sophisticated attacker represents a practical upper bound for the accuracy loss that a realistic attacker can inflict on
our detection system. We see that injecting carefully crafted data into training data can significantly reduce detection
accuracy. However, with the help of adversarial detection, holistic performance upgrades by at least 15% accuracy
with respect to each listed classifier. Hence, performance of our adversarial detection remains above baseline levels
listed in (Meng et al., 2016) even for our strongest attackers due to the use of similarity-based filtering to increase
classifier robustness. Analysis on false negatives has an analogous interpretation (see Figure 10). As shown in Table 6,
the algorithm KNN outperforms other algorithms under adversarial environment because of its higher resistance to
random classification noise, which is aligned with the conclusion drawn from the recent research (Wang et al., 2017).

Figure 11 displays scatter-plots of system accuracy ((T P + T N)/(T P + T N + FP + FN)) as a function of the size of
randomly-crafted datasets, where TP and TN denote the number of samples correctly classified as malicious and
benign, respectively. FP and FN indicate the number of samples mistakenly identified as malicious and benign,

15

0.89

0.64

0.89

0.68

0.9

0.72

0.00

0.25

0.50

0.75

1.00

SVM RF KNN
Classifier

A
cc

ur
ac

y

Under Sophisticated attack With Adversarial Detection

Figure 9: Detection accuracy

0.13

0.63

0.15

0.56

0.12

0.45

0.0

0.2

0.4

0.6

SVM RF KNN
Classifier

F
N

Under Sophisticated attack With Adversarial Detection

Figure 10: Detection false negatives

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

0.6

0.7

0.8

0.9

1.0

100 200 300 400 500 600 700 800 900 1000
Size of a randomly−crafted dataset

A
cc

ur
ac

y

●● ● ● ● ● ●SVM KuafuDet(SVM) RF KuafuDet(RF) KNN KuafuDet(KNN)

Figure 11: The robustness of KuafuDet (accuracy)

respectively. To ease presentation, the plots are fitted by Loess curves with 95% confidence interval bands that
depict the upper and lower confidence bounds for all points within the range of data, making it especially useful for
comparing groups for which no theoretical models exist. As can be seen from Figure 11, as the dataset size grows, the
accuracy drops slightly. This is somewhat expected as more potential evasion takes place. Furthermore, as discussed
earlier, KuafuDet offers significantly better robustness of detection accuracy, regardless of either the size of the dataset
or the type of classifier applied. Analysis on the robustness of recall has an analogous interpretation.

6.2.2. Evaluation on Accuracy
We here compare our work with the previous work with respect to accuracy. We opt to apply a large portion of our

dataset used in KuafuDet, which intergrates the dataset owned by Drebin (Arp et al., 2014) and StormDroid (Chen
et al., 2016a), in order to evaluate accuracy performance. Because the dataset used in DroidAPIMiner and Ma-
MaDroid are not publicly available, to be fair, we do not apply the dataset that is not even used in DroidAPIMiner
and MaMaDroid per se to them to have an asymmetric advantage over it. Hence, Drebin and StormDroid are only
considered. As shown in Table 7, our accuracy rate (96.35%) completely outperforms the accuracy rate in StormDroid
(93.80%) (Chen et al., 2016a) and Drebin (93.90%) (Arp et al., 2014), let alone use our combined dataset.

As evidenced by Table 7, we achieve the highest accuracy because of the feature selection and similarity-based

16

filtering.

Table 7: Accuracy comparison

Detection Tool Accuracy # Malware
KuafuDet 96.35% 10,400
Drebin 93.90% 5,560
StormDroid 93.80% 3,620

6.2.3. Robustness of Imbalanced Data
Our experiments aim to evaluate the robustness of KuafuDet when the ratio goes imbalanced in the adversarial

environment. To evaluate the robustness of KuafuDet in the data-imbalanced environment, we first apply 4,000
malicious and 4,000 benign apps (i.e., 1:1 ratio) for training our classifiers, and gradually add benign ones to achieve
different ratios up to 1:50. To be specific, we conduct experiments with ratios including 1:1, 1:5, 1:10, 1:20, and
1:50. We use 10-fold cross-validation in our experiments. As shown in Table 8, the accuracy degrades as we approach
real-world ratio of malware and benign apps, but the accuracy still remains above 90%. In the self-adaptive scheme,
we, nevertheless, show the capability to tackle the problem of the imbalanced data ratio.

Table 8: Results for different malware to benign apps ratios

Ratio 1:1 1:5 1:10 1:20 1:50
Accuracy 96.40% 96.15% 95.80% 94.60% 93.75%

6.2.4. Evaluation on Time Cost, Scalability, and Adaptability
To support a high-performance malware detection, KuafuDet is designed to run on top of an open-source dis-

tributed stream-processing engine Storm.4 KuafuDet supports a large-scale detection of a data stream by a set of
worker units that connect to each other, forming a topology: A submitted application is first disassembled to extract
its features; then, the metrics-driven pruning and information gain analysis are run, and two-phase iterative adversarial
detection is finally activated. Each operation here is delegated to a worker unit on the topology and all the data asso-
ciated with the application are in a single stream. Running on top of the Storm stream processor, KuafuDet is tested
on the platform of Pwnzen Infotech Inc. We show that the size of the test group is unaffected with the efficiency of
our tool. As shown in Table 9, average detection time per application is less than 3 seconds, which is indeed capable
of scaling up to the massive datasets.

Table 9: Time cost of KuafuDet in units of seconds

APKs Total Time AVG Time/APK
200 518 2.59
400 1066 2.67
600 1578 2.63
800 2097 2.62

1,000 2778 2.78

6.2.5. Evaluation on Coverage
To circumvent the over-fitting issue and to better understand the coverage of KuafuDet, we randomly sample

1,000 malicious applications from 217 Android malware families from our dataset to cover almost all the existing
Android malicious behaviors. We scan them using KuafuDet and other well-known industrial malware detection

4http://storm.apache.org/

17

http://storm.apache.org/

tools, such as Kaspersky and McAfee encapsulated in VirusTotal. Although the coverage of KuafuDet, with the
combined top features, is 96.20%, better than what can be achieved by any individual scanner, including such top-
of-the-line antivirus systems as ESET-NOD32 (79.50%), McAfee (75.50%), Ikarus (72.50%), Kaspersky (72.10%),
and Avira (69.30%), industrial tools deal with millions of applications, many of which are zero-day. We argue that
comparing with industrial tools is to understand the different emphases in academia and industry. The breakdowns of
the coverage study is presented in Table 10.

Table 10: Coverage comparison

Detection Tool Percentage
KuafuDet 96.20%
ESET-NOD32 79.50%
McAfee 75.50%
Ikarus 72.50%
Kaspersky 72.10%
Avira 69.30%
VIPER 67.50%
Qihoo-360 62.30%
Symantec 40.40%

Since KuafuDet decouples the similarity-based filtering from machine learning classifiers, it enables us to peri-
odically enhance the learning system. Moreover, KuafuDet also considers an attacker threat dimension, which makes
the whole system design completely adaptable to new malware.

7. Discussion

Our study is limited in five ways as discussed in the following.
(i) The granularity of classifiers. The hyperplane between benign and malicious can be blurred and subjective, which
depends on specific security requirements and uses cases to determine whether a pattern is really benign or malicious.
For example, if individual users root their own devices and use the game hacking applications, game developers is
very likely to treat them as malicious because they bypass the in-app purchase. In practice, this kind of apps is defined
as “grayware” that has no clear distinctive difference between the benign and the malicious. “Grayware” is now
becoming a great threat to mobile devices since attackers achieve more profit in this way. KuafuDet is a generic and
coarse-grained architecture for classifying applications with high accuracy. As for such grayware, KuafuDet can be
tuned for a specific detection.
(ii) The limitation of decompilation technologies. We extract features from the manifest and Smali files that are
successfully decompiled. However, in our experiments, we find that a few APK files cannot be decompiled success-
fully. As for this situation, we change the decompiling tool in our experiments. For future study, we will explore the
possibility to use reinforcement techniques to prevent the APKs from reverse-engineering. This would increase the
difficulty of unpacking the original APK for attackers.
(iii) The scarcity of empirical samples. Although we find some case studies reflecting the different attacker levels
for machine learning classifiers, we still lack a huge number of samples to scrutinize. We note attackers might be able
to deliberately force the benign and malicious access patterns to co-occur in one log, such as triggering the benign
pattern first and then launching the attack, though we have not observed in the wild. This perhaps requires to dilute
the poisoned logs and possibly requires human analysts to contribute external knowledge. We hope in future study
that using Game Theory is beneficial to our interpretation of the attackers psychology so as to take targeted strategy
to detect stubborn malware.
(iv) The limitation of selected features. Although the 195 features are representative and extracted by using statistical
metrics-driven manual pruning with information gain in our experiments, new malicious behaviors might disturb the
feature space, making the system less effective.
(v) The limitation of similarity-based approach. (1) Attackers can somehow approximate our similarity-based
approach by inferring the similarity thresholds used. However, it is actually difficult to infer our selected samples that
are used to calculate the thresholds. Furthermore, the thresholds will change as selected samples update over time, for
which attackers will take great efforts to exploit. (2) KuafuDet, through a self-adaptive learning scheme, discovers
new information from both the identified malware and the filtered suspicious false negatives from camouflage detector.

18

We acknowledge that this process would cause false positives. For example, SMS-related applications are benign
applications, but they also have sensitive behaviors that are typical in Android malware.

8. Related Work

Contemporary machine learning-based techniques typically model the detection problem as a binary classification
problem. Together with system analysis techniques, the malicious behaviors can be studied and employed to increase
their detection performance, especially for mobile applications in the wild.

8.1. Machine Learning-based Detection

Arp et al. (Arp et al., 2014) built the Drebin system, which works with a massive feature set extracted from
the manifest file and the app’s source code and trains an SVM classifier for malware detection. Although Drebin
has accommodated thousands of features with an impressive performance results, it suffers two challenges: first, the
malware is out-dated and well recorded in malware detection tools; second, a comprehensive coverage of different
attacking and evasion techniques is missing.

DroidAPIMiner (Aafer et al., 2013) mainly extracts the top 169 API calls, which are used more frequently in
the malware than in the benign set, package level information, as well as some dangerous parameter information as
features to analyze a large corpus of Android malware. Because of the evolution of both malware and the Android
API, it requires constant retraining on most common calls.

Most recently, Chen et al. Chen et al. (2016c) suggest the use of semantic features of mobile apps to retain
classifier value over time, building on the intuition that certain semantic attributes of mobile malware are invariant.
Experiments verify that the incorporation of semantic features can significantly improve the performance of Android
malware classification. Deo et al. Deo et al. (2016) propose to assess the quality of binary classification by using
probabilistic predictors. Although they both consider retraining, adversarial environment is missing.

MUDFLOW (Avdiienko et al., 2015) argues that the pattern of sensitive information flows in malware is statisti-
cally different from those in benign apps. From an application, MUDFLOW uses static analysis to extract the flow
paths, and these flow paths are then mapped to a feature vector used in a specific classifier. DroidSIFT (Zhang et al.,
2014) is unique in designing features in terms of the generation of API dependency graphs G for each app, and the
construction of the feature vector of the app. The features represent the similarity of the graphs G corresponding to the
database of graphs of known benign apps and malware apps. Finally, the feature vectors are used in anomaly detec-
tion. However, the dataset for detection is not large enough, yielding low effectiveness and confidence in classification.
DroidMat (Wu et al., 2012) uses a static feature-based mechanism, which considers static information (e.g., permis-
sion, intent messages, API calls) for detecting Android malware. It uses K-means algorithm to enhance the malware
modeling capability and KNN algorithm to classify apps as benign or malicious. However, it does not extract seman-
tic features for training and does not take adversarial environment into consideration. Shabtai et al. (Shabtai et al.,
2012) presented a host-based malware detection system that continuously monitors mobile devices to detect malicious
data using a supervised machine learning anomaly detection technique. It focuses on host-based malware, while our
approach focuses on mobile malware detection in adversarial environment. Most recently, MaMaDroiD (Mariconti
et al., 2017) is built to maintain resilience to API changes, but it requires a large amount of memory when performing
classification and a substantial amount of time per app.

8.2. Evasion Techniques

Currently, the issues of understanding machine learning security in adversarial settings mainly focus on spam
email detection (Zhang et al., 2016; Brückner et al., 2012; Biggio et al., 2014; Debarr et al., 2013; Wang et al., 2014).
Recently, many statistical adversarial models are proposed to construct effective adversarial samples, such as using
deep neutral networks (Papernot et al., 2016; Grosse et al., 2016; McDaniel et al., 2016; Li and Li, 2016; Shen et al.,
2016). As seen from a generic perspective, Wang et al. (Wang et al., 2016) utilized the notation of topological spaces
and oracles to explain why an adversarial sample can bypass a classifier, and they generated a sufficient and necessary
condition to determine the robustness of classifiers under adversarial environment. Goodfellow et al. (Goodfellow
et al., 2014) explained and generated adversarial samples for adversarial training to reduce test error. However, all of

19

these studies did not focus on specific causation leading to evasion in the mobile malware context. They also did not
show the feasibility how these adversarial samples work in the wild.

For conventional malware evasion, one straightforward evasion technique is to repackage a benign app with small
snippets of malicious code added to several classes. Moreover, attackers could also use reflection, dynamic code
loading, or native code (Poeplau et al., 2014). Such attempts to escape detection are likely to be deemed suspicious.
Among them, DroidChameleon (Rastogi et al., 2014) integrates three types of transformation techniques and generates
obfuscated mobile malware. Mystique (Meng et al., 2016) develops a framework to automatically generate malware
covering four attack features and two evasion features to obfuscate the generated malware. For the general defense,
Cao et al. (Cao and Yang, 2015) presented a proof-of-concept machine unlearning prototype that can rapidly forget
data to regain privacy, security, and usability. The current paper is an extension of a poster (Chen et al., 2016b).

In summary, previous work either conducts evasion techniques without considering the feature space or only using
machine learning-based approaches. With our experiments and real-world case studies, it is obvious that attacks can
also poison features while preserving maliciousness, and our experiments verified that the resulting fake variants
with poisoned features impaired discriminative classifiers and succeeded in lowering the detection score in a test
environment. To the best of our knowledge, this is one of the first papers to accommodate adversarial machine learning
into mobile malware detection. We are also the first paper to show the possibility to defend against adversarial attacks
on mobile malware, to the greatest extent.

9. Conclusion

We reviewed several challenges for the malware detection problem. We showed how the conventional machine
learning classifiers can fail against determined attackers. Based on these insights, we designed and evaluated three
types of attackers targeting the training phases to poison our detection. Through simulation, we presented practical
bounds for the accuracy loss to each attacker. To address this threat, we therefore proposed our detection system,
KuafuDet, and showed it significantly reduces false negatives and boosts the detection accuracy by at least 15%.

We argue that it is essential to inform researchers considering how attackers will adapt to the conventional detec-
tion, as well as to inform developers working on the next-generation malware detection systems. We conjecture that
the arms race will be over only when the effectiveness of early detection will sufficiently increase the cost of infection.

References

Aafer, Y., Du, W., Yin, H., 2013. DroidAPIMiner: Mining API-level features for robust malware detection in Android. In: Security and Privacy in
Communication Networks. Springer, pp. 86–103.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., 2014. DREBIN: Effective and explainable detection of Android malware in your
pocket. In: Proceedings of the Annual Symposium on Network and Distributed System Security (NDSS).

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D., McDaniel, P., 2014. Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android apps. In: ACM SIGPLAN Notices. Vol. 49. ACM, pp. 259–269.

Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S., Bodden, E., 2015. Mining Apps for abnormal usage of sensitive data.
In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. Vol. 1. IEEE, pp. 426–436.

Biggio, B., Fumera, G., Roli, F., 2014. Security evaluation of pattern classifiers under attack. IEEE Transactions on Knowledge and Data Engineer-
ing 26 (4), 984–996.

Brückner, M., Kanzow, C., Scheffer, T., 2012. Static prediction games for adversarial learning problems. Journal of Machine Learning Research
13 (Sep), 2617–2654.

Brunk, F., 2009. Intersection problems in combinatorics. Ph.D. thesis, University of St Andrews.
Cao, Y., Yang, J., 2015. Towards making systems forget with machine unlearning. In: Security and Privacy (SP), 2015 IEEE Symposium on. IEEE,

pp. 463–480.
Chen, S., Xue, M., Tang, Z., Xu, L., Zhu, H., 2016a. Stormdroid: A streaminglized machine learning-based system for detecting Android malware.

In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. ACM, pp. 377–388.
Chen, S., Xue, M., Xu, L., 2016b. Poster: Towards adversarial detection of mobile malware. In: Proceedings of the 22nd Annual International

Conference on Mobile Computing and Networking. ACM, pp. 415–416.
Chen, W., Aspinall, D., Gordon, A. D., Sutton, C., Muttik, I., 2016c. More semantics more robust: Improving android malware classifiers. In:

Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. ACM, pp. 147–158.
Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi, M., Kinder, J., Cavallaro, L., 2016. DroidScribe: Classifying Android malware based

on runtime behavior. Mobile Security Technologies (MoST 2016) 7148, 1–12.
Debarr, D., Sun, H., Wechsler, H., 2013. Adversarial spam detection using the randomized hough transform-support vector machine. In: Machine

Learning and Applications (ICMLA), 2013 12th International Conference on. Vol. 1. IEEE, pp. 299–304.

20

Deo, A., Dash, S. K., Suarez-Tangil, G., Vovk, V., Cavallaro, L., 2016. Prescience: Probabilistic guidance on the retraining conundrum for malware
detection. In: Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. ACM, pp. 71–82.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., Sheth, A. N., 2014. TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smartphones. ACM Transactions on Computer Systems (TOCS) 32 (2), 5.

Fan, L., Xue, M., Chen, S., Xu, L., Zhu, H., 2016. Poster: Accuracy vs. time cost: Detecting android malware through pareto ensemble pruning.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, pp. 1748–1750.

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., Furnell, S., 2017. Androdialysis: Analysis of android intent effectiveness in malware
detection. Computers & Security 65, 121–134.

Felt, A. P., Chin, E., Hanna, S., Song, D., Wagner, D., 2011. Android permissions demystified. In: Proceedings of the 18th ACM conference on
Computer and communications security. ACM, pp. 627–638.

Goodfellow, I. J., Shlens, J., Szegedy, C., 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.
Gordon, M. I., Kim, D., Perkins, J. H., Gilham, L., Nguyen, N., Rinard, M. C., 2015. Information flow analysis of Android applications in

DroidSafe. In: Proceedings of the Annual Symposium on Network and Distributed System Security (NDSS).
Graziano, M., Canali, D., Bilge, L., Lanzi, A., Balzarotti, D., 2015. Needles in a haystack: mining information from public dynamic analysis

sandboxes for malware intelligence. In: 24th USENIX Security Symposium (USENIX Security 15). pp. 1057–1072.
Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P., 2016. Adversarial perturbations against deep neural networks for malware

classification. arXiv preprint arXiv:1606.04435.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H., 2009. The WEKA data mining software: an update. ACM SIGKDD

explorations newsletter 11, 10–18.
Idrees, F., Rajarajan, M., Conti, M., Chen, T., Rahulamathavan, Y., 2017. Pindroid: a novel android malware detection system using ensemble

learning methods. Computers & Security.
Li, L., Bartel, A., Bissyandé, T. F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S., Bodden, E., Octeau, D., McDaniel, P., 2015. IccTA: Detecting

inter-component privacy leaks in Android apps. In: Proceedings of the 37th International Conference on Software Engineering. Vol. 1. IEEE
Press, pp. 280–291.

Li, X., Li, F., 2016. Adversarial examples detection in deep networks with convolutional filter statistics. arXiv preprint arXiv:1612.07767.
Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., Stringhini, G., 2017. MAMADROID: Detecting Android malware by

building Markov chains of behavioral models. In: Proceedings of the Annual Symposium on Network and Distributed System Security (NDSS).
McDaniel, P., Papernot, N., Celik, Z. B., 2016. Machine learning in adversarial settings. IEEE Security & Privacy 14 (3), 68–72.
Meng, G., Xue, Y., Mahinthan, C., Narayanan, A., Liu, Y., Zhang, J., Chen, T., 2016. Mystique: Evolving Android malware for auditing anti-

malware tools. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. ACM, pp. 365–376.
Octeau, D., Jha, S., Dering, M., McDaniel, P., Bartel, A., Li, L., Klein, J., Le Traon, Y., 2016. Combining static analysis with probabilistic models

to enable market-scale android inter-component analysis. In: ACM SIGPLAN Notices. Vol. 51. ACM, pp. 469–484.
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., Swami, A., 2016. The limitations of deep learning in adversarial settings. In:

Security and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE, pp. 372–387.
Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., Vigna, G., 2014. Execute this! analyzing unsafe and malicious dynamic code loading in

android applications. In: NDSS. Vol. 14. pp. 23–26.
Rasthofer, S., Arzt, S., Bodden, E., 2014. A machine-learning approach for classifying and categorizing Android sources and Sinks. In: Proceedings

of the Annual Symposium on Network and Distributed System Security (NDSS).
Rasthofer, S., Arzt, S., Miltenberger, M., Bodden, E., 2016. Harvesting runtime values in Android applications that feature anti-analysis techniques.

In: Proceedings of the Annual Symposium on Network and Distributed System Security (NDSS).
Rastogi, V., Chen, Y., Jiang, X., 2014. Catch me if you can: Evaluating Android anti-malware against transformation attacks. IEEE Transactions

on Information Forensics and Security 9 (1), 99–108.
Schlegel, R., Zhang, K., Zhou, X.-y., Intwala, M., Kapadia, A., Wang, X., 2011. Soundcomber: A stealthy and context-aware sound Trojan for

smartphones. In: Proceedings of the Annual Symposium on Network and Distributed System Security (NDSS). Vol. 11. pp. 17–33.
Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y., 2012. Andromaly: a behavioral malware detection framework for Android devices.

Journal of Intelligent Information Systems 38 (1), 161–190.
Shen, S., Tople, S., Saxena, P., 2016. A uror: defending against poisoning attacks in collaborative deep learning systems. In: Proceedings of the

32nd Annual Conference on Computer Security Applications. ACM, pp. 508–519.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R., 2014. Intriguing properties of neural networks. In:

Proceedings of the 2014 International Conference on Learning Representations. Computational and Biological Learning Society.
Tam, K., Khan, S. J., Fattori, A., Cavallaro, L., 2015. CopperDroid: Automatic reconstruction of Android malware behaviors. In: Proceedings of

the Annual Symposium on Network and Distributed System Security (NDSS).
Wang, B., Gao, J., Qi, Y., 2016. A theoretical framework for robustness of (deep) classifiers under adversarial noise. arXiv preprint

arXiv:1612.00334.
Wang, F., Liu, W., Chawla, S., 2014. On sparse feature attacks in adversarial learning. In: Data Mining (ICDM), 2014 IEEE International Confer-

ence on. IEEE, pp. 1013–1018.
Wang, Y., Jha, S., Chaudhuri, K., 2017. Analyzing the robustness of nearest neighbors to adversarial examples. arXiv preprint arXiv:1706.03922.
Wong, M. Y., Lie, D., 2016. IntelliDroid: A targeted input generator for the dynamic analysis of android malware. In: Proceedings of the Annual

Symposium on Network and Distributed System Security (NDSS).
Wu, C., Zhou, Y., Patel, K., Liang, Z., Jiang, X., 2014. AirBag: Boosting smartphone resistance to malware infection. In: Proceedings of the

Annual Symposium on Network and Distributed System Security (NDSS).
Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., Wu, K.-P., 2012. Droidmat: Android malware detection through manifest and API calls tracing. In:

Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on. IEEE, pp. 62–69.
Yan, L. K., Yin, H., 2012. Droidscope: seamlessly reconstructing the os and Dalvik semantic views for dynamic Android malware analysis. In:

Presented as part of the 21st USENIX Security Symposium (USENIX Security 12). pp. 569–584.

21

Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P., 2014. Droidminer: Automated mining and characterization of fine-grained malicious
behaviors in Android applications. In: European Symposium on Research in Computer Security. Springer, pp. 163–182.

Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., Enck, W., 2015. Appcontext: Differentiating malicious and benign mobile App behaviors using
context. In: Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on. Vol. 1. IEEE, pp. 303–313.

Zhang, F., Chan, P. P., Biggio, B., Yeung, D. S., Roli, F., 2016. Adversarial feature selection against evasion attacks. IEEE transactions on
cybernetics 46 (3), 766–777.

Zhang, M., Duan, Y., Yin, H., Zhao, Z., 2014. Semantics-aware Android malware classification using weighted contextual API dependency graphs.
In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM, pp. 1105–1116.

Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S., 2013. Fast, scalable detection of piggybacked mobile applications. In: Proceedings of the third
ACM Conference on Data and Application Security and Privacy. ACM, pp. 185–196.

Zhou, Y., Jiang, X., 2012. Dissecting android malware: Characterization and evolution. In: Security and Privacy (SP), 2012 IEEE Symposium on.
IEEE, pp. 95–109.

Zhou, Y., Wang, Z., Zhou, W., Jiang, X., 2012. Hey, you, get off of my market: detecting malicious apps in official and alternative android markets.
In: NDSS. Vol. 25. pp. 50–52.

22

Appendix A. Syntax and Semantic Features

Table A.11: 175 syntax features and 20 semantic features for training classifiers.

PERMISSION SET WALLPAPER TelephonyManager.getSubscriberId LocationManager.addNmeaListener
ACCESS COARSE LOCATION SET WALLPAPER HINTS TelephonyManager.getVoiceMailNumber LocationManager.addProximityAlert
ACCESS FINE LOCATION STATUS BAR TelephonyManager.hasIccCard LocationManager.addTestProvider
ACCESS LOCATION EXTRA COMMANDS SYSTEM ALERT WINDOW TelephonyManager.isNetworkRoaming LocationManager.clearTestProviderLocation
ACCESS NETWORK STATE UPDATE DEVICE STATS SmsManager.divideMessage LocationManager.getBestProvider
ACCESS WIFI STATE USE CREDENTIALS SmsManager.getDefault LocationManager.getGpsStatus
AUTHENTICATE ACCOUNTS VIBRATE SmsManager.sendDataMessage LocationManager.getLastKnownLocation
BATTERY STATS WAKE LOCK SmsManager.sendMultipartTextMessage LocationManager.requestLocationUpdates
BLUETOOTH WRITE APN SETTINGS SmsManager.sendTextMessage LocationManager.sendExtraCommand
BROADCAST SMS WRITE SETTINGS HttpURLConnection.disconnect WifiManager.addNetwork
BROADCAST STICKY WRITE SMS HttpURLConnection.getContentEncoding WifiManager.calculateSignalLevel
CALL PHONE WRITE EXTERNAL STORAGE HttpURLConnection.getPermission WifiManager.createWifiLock
CAMERA INTENT HttpURLConnection.getRequestMethod WifiManager.disconnect
CHANGE COMPONENT ENABLED STATE action.DELETE HttpURLConnection.getResponseCode WifiManager.enableNetwork
CHANGE CONFIGURATION action.GET CONTENT HttpURLConnection.getResponseMessage WifiManager.getConfiguredNetworks
CHANGE NETWORK STATE action.MAIN HttpURLConnection.usingProxy WifiManager.getConnectionInfo
CHANGE WIFI MULTICAST STATE action.PICK ContentResolver.bulkInsert WifiManager.getDhcpInfo
CHANGE WIFI STATE action.SEND ContentResolver.getType WifiManager.getScanResults
CLEAR APP CACHE action.SET WALLPAPER ContentResolver.openAssetFileDescriptor WifiManager.getWifiState
CONTROL LOCATION UPDATES action.VIEW ContentResolver.query WifiManager.isWifiEnabled
DELETE CACHE FILES category.BROWSABLE ContentResolver.registerContentObserver WifiManager.removeNetwork
DELETE PACKAGES category.DEFAULT ContentResolver.update WifiManager.saveConfiguration
DEVICE POWER category.HOME ContentResolver.delete WifiManager.setWifiEnabled
DISABLE KEYGUARD category.INFO Runtime.getRuntime NotificationManager.cancel
EXPAND STATUS BAR category.LAUNCHER Runtime.exec NotificationManager.notify
FLASHLIGHT HARDWARE Runtime.addShutdownHook PackageManager.checkPermission
GET PACKAGE SIZE camera Runtime.maxMemory PowerManager.isInteractive
GET TASKS camera.autofocus URLConnection.addRequestProperty PowerManager.isScreenOn
INSTALL PACKAGES sensor.accelerometer URLConnection.connect PowerManager.newWakeLock
INTERNET telephony URLConnection.getConnectTimeout SEMANTIC
KILL BACKGROUND PROCESSES touchscreen URLConnection.getContent *Install application*
MODIFY PHONE STATE API CALL URLConnection.getContentType *Uninstall application*
MOUNT UNMOUNT FILESYSTEMS URL.openConnection URLConnection.getDefaultUseCaches *Get installed packages*
NFC URL.openStream URLConnection.getPermission *Monitor URI*
PERSISTENT ACTIVITY URL.getContent URLConnection.getURL *Download file*
PROCESS OUTGOING CALLS TelephonyManager.getCallState URLConnection.setConnectTimeout *Get location*
READ CALL LOG TelephonyManager.getCellLocation URLConnection.setReadTimeout *Read SD card*
READ CONTACTS TelephonyManager.getDeviceId ActivityManager.getLargeMemoryClass *Write SD card*
READ EXTERNAL STORAGE TelephonyManager.getDeviceSoftwareVersion ActivityManager.getRunningAppProcesses *Request for chmod*
READ LOGS TelephonyManager.getNeighboringCellInfo ActivityManager.isLowRamDevice *Start http connection*
READ PHONE STATE TelephonyManager.getNetworkCountryIso ActivityManager.killBackgroundProcesses *Send Sms*
READ PROFILE TelephonyManager.getNetworkOperator ActivityManager.restartPackage *Receive Sms*
READ SMS TelephonyManager.getNetworkOperatorName BluetoothAdapter.cancelDiscovery *Delete Sms*
RECEIVE BOOT COMPLETED TelephonyManager.getNetworkType BluetoothAdapter.getAddress *Intercept Sms receiver*
RECEIVE MMS TelephonyManager.getPhoneType BluetoothAdapter.getBondedDevices *Get wifi info*
RECEIVE SMS TelephonyManager.getSimCountryIso BluetoothAdapter.getRemoteDevice *Get Logs*
RECEIVE WAP PUSH TelephonyManager.getSimOperator BluetoothSocket.connect *Get Class loader*
RECORD AUDIO TelephonyManager.getSimOperatorName DownloadManager.enqueue *Get contacts*
RESTART PACKAGES TelephonyManager.getSimSerialNumber DownloadManager.query *Get account*
SEND SMS TelephonyManager.getSimState LocationManager.addGpsStatusListener *Get phone type/Sim serial number/device id/subscriber id/IMSI*

23

Biography

Sen Chen is pursuing his Ph.D. degree at the School of Computer Science and Software Engineering of East China
Normal University, focusing primarily on areas of smartphone security, Android malware, vulnerability and program
analysis. He has received the MobiCom 2016 Travel Grant Award. He is currently serving as a visiting scholar in
Cyber Security Lab at Nanyang Technological University. He is currently advised by Professor Lihua Xu (ECNU)
and Yang Liu (NTU).

Minhui Xue is pursuing his Ph.D. degree at the School of Computer Science and Software Engineering of East
China Normal University. He is also serving as a visiting scholar at the Courant Institute of Mathematical Sciences
and Tandon School of Engineering at New York University, as well as a research assistant at New York University
Shanghai, advised by Professor Keith W. Ross (NYU and NYU Shanghai). Previously, he received a Bachelor of
Science degree in the field of fundamental mathematics from East China Normal University in July 2013. His current
research interests are in data-driven analysis of online social networks and privacy, focusing primarily on computer
science and mathematics.

Lingling Fan is pursuing her Ph.D. degree at the School of Computer Science and Software Engineering of East
China Normal University, focusing on software testing, model checking, and Android application analysis. She is
interested in software testing and analysis, aiming at bug revelation and bug localization, and malware detection. She
received a Bachelor of Science degree in the field of computer science and technology from ECNU, as an excellent
graduate student of Shanghai. She received an Excellent Student award from ECNU. She is currently advised by
Professor Lihua Xu (ECNU) and Yang Liu (NTU).

Shuang Hao is an Assistant Professor in the Department of Computer Science at the University of Texas at Dallas.
He is broadly interested in all aspects of network and system security. His work follows a measurement and data
driven approach to characterize and detect critical security issues in large-scale systems. His current research focuses
on anomaly detection, underground economics, DNS analysis, web and mobile security. He obtained his Ph.D. in
Computer Science at the Georgia Institute of Technology, and he did a Postdoc at the University of California, Santa
Barbara.

Lihua Xu is an Associate Professor with School of Computer Science and Software Engineering, East China Normal
University. She received her Ph.D. and M.Sc. degree from University of California at Irvine. Her current research
focuses on software engineering, automated software analysis and testing, and mobile security.

Haojin Zhu is currently a Professor with Department of Computer Science and Engineering, Shanghai Jiao Tong
University, China. He received his B.Sc. degree (2002) from Wuhan University (China), his M.Sc.(2005) degree
from Shanghai Jiao Tong University (China), both in computer science and the Ph.D. in Electrical and Computer
Engineering from the University of Waterloo (Canada), in 2009. His current research interests include network se-
curity and data privacy. He serves as the Associate/Guest Editor of IEEE Internet of Things Journal, IEEE Wireless
Communications, IEEE Network, and Peer-to-Peer Networking and Applications.

Bo Li is currently a Postdoctoral Fellow at the EECS department at UC Berkeley University, working with Prof. Dawn
Song. She will join the EECS department at University of Illinois at Urbana – Champaign as an Assistant Professor
in June 2018. Her research focuses on both theoretical and practical aspects of machine learning, security, privacy,
game theory, social networks, and adversarial deep learning.

24

	1 Introduction
	1.1 A Note on Ethics

	2 Problem Definition: Adversarial Machine Learning
	3 Motivations and Challenges
	3.1 Evolutionary Chain
	3.2 Adversarial Samples
	3.3 Challenges

	4 System Overview
	4.1 Key Ideas
	4.2 Overall Architecture of KuafuDet

	5 System Design
	5.1 Feature Selector
	5.1.1 Syntax features
	5.1.2 Semantic features
	5.1.3 Justifying Feature Selection

	5.2 Machine Learning Classifiers
	5.3 Camouflage Detector
	5.3.1 Measuring Similarity

	6 Experimental Evaluation
	6.1 Experimental Dataset
	6.2 Experimental Results
	6.2.1 Evaluation on attacks against the detection
	6.2.2 Evaluation on Accuracy
	6.2.3 Robustness of Imbalanced Data
	6.2.4 Evaluation on Time Cost, Scalability, and Adaptability
	6.2.5 Evaluation on Coverage

	7 Discussion
	8 Related Work
	8.1 Machine Learning-based Detection
	8.2 Evasion Techniques

	9 Conclusion
	Appendix A Syntax and Semantic Features

