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Abstract

Moving Target Defense (MTD) utilizes granularity, flexibility and elasti-
city properties of emerging networking technologies in order to continuously
change the attack surface. There are many different MTD techniques pro-
posed in the past decade to thwart cyberattacks. Due to the diverse range of
different MTD techniques, it is of paramount importance to assess and com-
pare their effectiveness. However, each technique causes distinct (dynamic)
changes in the network, making an objective comparison difficult. In this pa-
per, we incorporate MTD techniques into a temporal graph-based graphical
security model, and develop a new set of dynamic security metrics to assess
and compare their effectiveness. To this end, we first categorize and com-
pare different attack and defense efforts. Second, we describe the temporal
graph-based graphical security model to capture dynamic changes made by
various MTD techniques in the network. We then develop a new set of se-
curity metrics for attack and defense efforts to evaluate the effectiveness of
the MTD techniques. We implement two different MTD techniques, namely
network topology shuffle and software diversity, and show their effectiveness
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against a targeted attack scenario in our experimental analysis. The results
demonstrate that the proposed dynamic security metrics can capture differ-
ent properties of MTD techniques, permitting a more fine-grained comparison
and offering guidance for selecting the most effective MTD technique.

Keywords: Emerging Networking Technology, Moving Target Defense,
Security Analysis, Security Metric, Security Model

1. Introduction

Emerging networking technologies (ENTs), such as cloud computing [Mell
and Grance, 2011] and Software-Defined Networking (SDN) [Akhunzada et al.,
2016, Masoudi and Ghaffari, 2016], are shifting from static hardware-based
networks to dynamic programmable software-based networks. The granular-
ity, flexibility and elasticity properties of ENTs provide new and innovative
approaches to enhance the network security. However, those ENTs also bring
forward a new set of attack vectors that are targeted by the attackers [Kreutz
et al., 2015]. Moving Target Defense (MTD) is one of the novel proactive de-
fense mechanisms that benefits from the ENTs and their properties, with an
objective to continuously change the attack surface to thwart cyberattacks
[Evans et al., 2011, Zhuang et al., 2012].

There are many different MTD proposed such as [Okhravi et al., 2011,
Vikram et al., 2013, Zhang et al., 2012, Zhuang et al., 2013]. Since there is
a large number of MTD techniques available, it is important to assess the
effectiveness of MTD techniques to optimally select which ones to deploy.
Various assessment frameworks have been proposed to compare the effective-
ness of MTD techniques [Lei et al., 2016, Maleki et al., 2016, Zaffarano et al.,
2015]. However, comparing the effectiveness of MTD techniques requires an
in-depth knowledge of both the attacker and the defender capabilities. In
practice, it is infeasible to specify all the capabilities of attackers and defend-
ers due to uncertainties [Jafarian et al., 2014]. Moreover, the attack surface
of the network changes frequently as MTD techniques change the network
configurations periodically and spontaneously to mitigate cyberattacks. As
a result, a transition from one network state to another shifts the attack
surface accordingly, and such change should be captured when assessing the
effectiveness of MTD techniques.

It is infeasible in practice to enhance the security all the time for con-
sequent network states, resulting in some network states with a negative im-
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pact on security. Here, the term network state refers to the particular config-
uration of the network, which may be changed to a different one when MTD
techniques are triggered1. Hence, comparing the MTD techniques should not
only evaluate their effectiveness against cyberattacks, but also evaluate the
shifting attack surface between the network states. In order to evaluate the
shifting attack surface between the network states, the security metrics must
be able to capture the changing security information. However, existing se-
curity metrics do not capture the changing security information as the attack
surface shifts.

In this paper, we address the aforementioned problems by assessing the
effectiveness of MTD techniques using newly developed dynamic security
metrics based on attack and defense efforts. To do this, we utilize a graph-
ical security model, namely the T-HARM Yusuf et al. [2016], and formalize
the changes made by MTD techniques. Moreover, we develop a set of new
dynamic security metrics that captures the shifting attack surface of the
network when MTD techniques are used. The first step is to categorize at-
tack efforts based on their characteristics and also categorize defense efforts
based on the cost and constraints associated with the network components,
services and communications. Then, we use T-HARM to incorporate and
capture MTD techniques based on their characteristics. Further, we develop
a new set of dynamic security metrics that captures the security changes in
the network. These metrics are used to measure the effectiveness of MTD
techniques. Lastly, we demonstrate the capabilities of our proposed approach
through a comparative analysis. Our contributions are summarized as fol-
lows.

• Categorize attack and defense efforts;

• Formalize the changes made by MTD techniques;

• Develop a new set of dynamic security metrics to evaluate the effect-
iveness of MTD techniques;

• Experiment an in-depth comparison of MTD techniques via comparat-
ive analysis using the proposed security metrics, and demonstrate their

1Since we are interested in comparing different MTD techniques, we only consider
changes in the network states with respect to MTD techniques only (i.e., other network
changing events, such as updates, are not considered)
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applicability.

The rest of the paper is organized as follows. Related work is presented in
Section 2. Categorization of attack and defense efforts is proposed in Section
3. Incorporating the MTD techniques into the temporal graph-based graph-
ical security model is presented in Section 4. The new set of dynamic security
metrics is formulated in Section 5. Comparative analysis of MTD techniques
is presented in Section 6. Our findings and limitations are critically discussed
in Section 7, and finally Section 8 concludes this paper.

2. Related Work

Prior to MTD, the general field of intrusion response systems (IRS)
provided an automated defense selection, providing both reactive and proact-
ive defense approaches. Kreidl and Frazier [Kreidl and Frazier, 2004] intro-
duced a host-based autonomic defense system by applying a feedback control.
They utilized a partially-observable Markov Decision Process (POMDP), and
computed the trade-offs between the failure cost and the maintenance cost.
Holgado et al. [Holgado et al., 2017] proposed a multi-step attack predic-
tion method using a Hidden Markov Model, and demonstrated the effect-
iveness against DDoS attacks. Miehling et al. [Miehling et al., 2018] used
a Condition Dependency Graph, an extension to an Attack Graph [Sheyner
et al., 2002], which embedded a state space to quantify the progression of
the attacker over time. Another application of graphical security model is
proposed by Zonouz et al. [Zonouz et al., 2009], where they presented a re-
sponse and recovery engine using the model named Attack Response Tree,
which is an extension from the Attack Tree [Schneier, 1999], that uses a
competitive Markov decision process. The IRS solutions provide effective
defense selection against identified attacks, but their effectiveness in the dy-
namic network environment has not been studied. Also, the IRS solutions
do not periodically adapt to the changing dynamic network environments.
Although decision-theoretic approaches can be used to address this issue,
their applicability is restricted to the defined threat model, as the evaluation
results are dictated by the threat model used. To address this issue, MTD
techniques provide capabilities to periodically adapt their solutions to the
changing network environment.

New MTD techniques are evaluated by analyzing the changes in the se-
curity posture of the network [Kampanakis et al., 2014, Luo et al., 2014,
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MacFarland and Shue, 2015]. However, there is only a few security met-
rics available to measure and compare the effectiveness of MTD techniques.
Evans et al. [Evans et al., 2011] proposed an approach to evaluate the effect-
iveness of MTD techniques by evaluating the probability of an attack success.
However, they only focused on the randomization-based MTD techniques,
which are difficult to be compared with non-probabilistic MTD techniques
(i.e., outcomes are either true or false). Zhuang et al. [Zhuang et al., 2012]
proposed to use simulation-based approaches, but they investigated only the
rate of attack success for proactively changing the network without taking
into account the cost associated with the defender. Xu et al. [Xu et al.,
2014] proposed a three-layer model to evaluate and compare the effective-
ness of MTD techniques. The model evaluates the MTD techniques from
a mission-oriented security point of view, but they do not provide how to
formulate and interpret the mission, as well as the general approach to incor-
porate the mission into the model domain. Zaffarano et al. [Zaffarano et al.,
2015] proposed a quantitative framework considering the mission-oriented
security view, and developed new metrics to evaluate the attacker and de-
fender missions. However, the scope of the mission is limited to productivity,
success, confidentiality and integrity, and the proposed metrics only provide
a high-level security overview without capturing the changes made between
the network states when MTD techniques are deployed (i.e., the metrics do
not take into account the low level changes made in the network). Maleki et
al. [Maleki et al., 2016] proposed to use a Markov-model-based framework
to measure the effectiveness of MTD techniques based on security capacity,
which is derived from the MTD technique and its deployed system’s para-
meters. However, they only considered the probability of a successful attack
to defeat the MTD technique in relation to the attackers time and cost spent.
As a result, they lack multiple security views of different MTD techniques.
Lei et al. [Lei et al., 2016] proposed to use a multi-layer network resource
graph (MNRG) and a change-point detection in real time to capture changes
in the network. However, this approach lacks the availability of metrics to
conduct a comparative analysis for MTD techniques (i.e., cannot provide dif-
ferent security perspectives). Zhu and Basar [Zhu and Başar, 2013] proposed
to use a two-person zero-sum game approach to design a multi-stage MTD
system, where an MTD technique is used to change the defense strategy
by adapting to the attack pattern. However, the game is based on qualit-
ative damage metric only, which does not provide information to evaluate
and compare the effectiveness of the MTD system. There are many other
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game theory-based MTD system designs, but they do not take into account
various security metrics to assess their effectiveness. Our previous work in
[Hong and Kim, 2016] used graphical security models to capture the proper-
ties of MTD techniques, but the overall security changes are not provided as
existing security metrics used cannot capture and represent changes in the
network.

Many evaluation methodologies have been proposed to compare the ef-
fectiveness of MTD techniques, but they lack appropriate security metrics to
capture the details of changes made to the network when those techniques are
deployed. Pendleton et al. [Pendleton et al., 2016] surveyed security metrics
for the security assessment, and they reported that more direct measurements
to assess the effectiveness of MTD techniques are needed, such as the security
gained and/or the attack efforts by deploying MTD techniques. This paper
aims to address some of the key issues identified from the previous work,
namely; (1) to capture and categorize attack and defense efforts required
when MTD techniques are deployed, (2) to propose a new set of security
metrics reflecting attack and defense efforts, and (3) to investigate the usab-
ility of the proposed metrics taking into account the trade-off between attack
and defense efforts, and the overall effectiveness of different MTD techniques.

3. Categorization of Attack and Defense Efforts

Attack and defense efforts vary depending on the imposed threat. For ex-
ample, a route randomization may be used against DDoS attacks [Jia et al.,
2014], while IP shuffling may be used against probing/reconnaissance types
of attacks [Jafarian et al., 2014]. Hence, only the MTD techniques designed
to mitigate the same type of threats (i.e., have the same security objectives)
should be compared. Another approach to match MTD technique instances
to individual attack/threat instances can be used to identify which cyberat-
tacks can be mitigated [Xu et al., 2014]. However, this approach is imprac-
tical as it requires enlisting and matching all MTD techniques and attack
instances, which can be time-consuming and error-prone due to a lack of
attack instance classification, as well as new attack instances that are be-
ing discovered. Moreover, certain MTD techniques are probabilistic [Huang
and Ghosh, 2011, Maleki et al., 2016, Manadhata, 2013], resulting in a more
complex relationship between the MTD techniques and attack instances to
evaluate the effectiveness. Instead, we take into account effort-based at-
tacker and defender actions that would benefit or obstruct the attacker. We
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Figure 1: Categorizing Attack Efforts

assume that increasing the attack efforts will deter cyberattacks, based on the
definition of the MTD that continuously changing the attack surface thwarts
cyberattacks. To compare MTD techniques, relevant attack and defense ef-
fort categories are selected and evaluated. This simplifies the matching MTD
technique instances to individual attack instances. These attack and defense
efforts will also form the basis of new dynamic security metrics for assessing
the effectiveness of MTD techniques, which are presented in Section 5. First,
we categorize attack efforts in Section 3.1, followed by the categorization of
defense efforts in Section 3.2.

3.1. Categorization of Attack Efforts

Attack efforts vary depending on the complexity of the attack scenarios,
which are dependent on the security characteristics of the network configura-
tion. Hence, identifying security characteristics of the network configuration
can be used to evaluate the attack efforts. The security characteristics of
using MTD techniques can be specified by the changes made in the network
configuration, which do not require the complex relationships between MTD
technique and attack instances. This approach simplifies the attack model
that only requires their characteristics, in comparison to enlisting all possible
attack instances. Moreover, attack instances are related to changes made in
the network rather than directly to the individual MTD technique instances.
As a result, MTD techniques are compared based on their characteristics to
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make cyberattacks more difficult, rather than checking individually which cy-
berattacks they can mitigate. That is, MTD techniques are evaluated based
on maximizing attack efforts, instead of against individual attack instances.

Figure 1 shows the categorization of attack efforts. It shows two subcat-
egories of the attack efforts, based on Reconnaissance and Resource. Recon-
naissance is an action taken by the attacker to gather information. This is
further divided into Scanning and Frequency, where Scanning observes the
network configurations, and Frequency specifies the amount of scanning. Re-
source specifies the properties of the attacker, which divides into Capability
and Time. Capability specifies the ability of the attacker (e.g., knowledge
of attacks, tool availability etc), and Time specifies how much time would
be/has taken for the cyberattack. New dynamic security metrics are proposed
to capture those attack efforts in Section 5.1. Although the categorization
of attack efforts does not capture all possible ways, our module-based ap-
proach allows flexible changes to the categorization (i.e., subcategories can
be added, updated and removed without disrupting other subcategories). In-
dividual and different selections of the attack efforts subcategories can then
be evaluated to compare the effectiveness of the MTD techniques.

3.2. Categorization of Defense Efforts

When deploying MTD techniques, network administrators also need to
consider the cost associated with them and the trade-offs (e.g., security versus
performance). Similar to attack efforts, we consider the defender’s efforts
made when deploying MTD techniques. Figure 2 shows the categorization
of defense efforts. It shows three subcategories on the basis of network com-
ponents; network nodes, services, and communications. All MTD techniques
make changes, either directly or indirectly, within those network compon-
ent categories. Nodes (e.g., hosts) can be changed using MTD techniques
such as software and application diversity [Cox et al., 2006, Jackson et al.,
2011, Nguyen-Tuong et al., 2008], which require time and resources to do so.
Services form a platform for interaction (e.g., applications), which requires
adoption and deployment of new services and maintenance. This can be
changed using MTD techniques such as network level diversity [Newell et al.,
2013, Williams et al., 2009]. Communications (e.g., connections between net-
work nodes) can be changed using MTD techniques such as topology shuffle
[Hong et al., 2017, MacFarland and Shue, 2015], virtual machine migration
[Jia et al., 2014], and IP shuffling [Jafarian et al., 2012, 2014]. Similarly with
attack efforts, new dynamic security metrics capturing each subcategory of
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defense efforts are presented in Section 5.2. Defense efforts can also be rep-
resented as modules, which can be updated where necessary.

4. Temporal Graphical Security Model

We use a temporal graphical security model, namely a Temporal Hier-
archical Attack Representation Model (T-HARM) [Yusuf et al., 2016], and
incorporate MTD techniques in order to capture the properties of attack and
defense efforts. We implement dynamic security metrics in the T-HARM to
assess the effectiveness of MTD techniques, which are captured as described
below. An SDN shown in Figure 3 is used as a toy example. We assume each
host in the example has one vulnerability vi, where i corresponds to the host
number. In this section, we extend the T-HARM capabilities to incorpor-
ate MTD techniques by capturing the changes made to the network. First,
we describe the network states in Section 4.1. Then, Section 4.2 presents
the formalism of the T-HARM, and we describe the MTD technique char-
acteristics and definitions to incorporate them into the T-HARM in Section
4.3.

4.1. Network States

In this paper, we use the term network states to represent different
network configurations and settings at various times. This includes, but
not limited to, applications and operating system changes, network topo-
logy changes, vulnerability patches and other possible network configuration
changes. The network state is changed when MTD techniques are deployed
onto the network, in order to shift the attack surface. Hence, we capture dif-
ferent network states arising from MTD techniques modifying the network at
different times. Of course, the network configuration may be changed by the
system configuration settings and policies other than the MTD techniques.
However, we are only concerned with comparing MTD techniques, and there-
fore, such changes are not considered in this paper. By capturing the changes
made by MTD techniques, we can evaluate the changes in the attack surface
and the security posture of the network, which forms the foundation of com-
paring different MTD techniques. An attacker may learn the deployed MTD
technique over time, and evolves the attack strategy in order to bypass it.
But even if the attacker changes the attack pattern, it does not change the
network states. Even if the attacker learns how to evolve the attack pattern,
there are still relative efforts associated with the change. For example, if
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(a) Architecture of the example SDN

(b) Reachability of the SDN at t1 (c) Reachability of the SDN at t2

Figure 3: An Example SDN

an attacker increases the number of port scanning to discover all hosts in a
network that has deployed IP shuffling, then the attacker is increasing the
attack efforts (here, the probing rate) in order to bypass the IP shuffling. On
the other hand, if the attacker changes the network configuration in order to
bypass the deployed MTD technique, it will reflect the ineffectiveness of the
deployed MTD technique as it did not protect the network by allowing the
attacker to bypass its defense by modifying the configurations. However, this
changes in the configuration will be captured using the T-HARM as a new
network state, which will then be evaluated and reflect the short-comings of
the MTD technique exploited. Hence, an evolving attacker will either in-
crease the attack efforts, or introduce vulnerable network states, which can
be assessed using the proposed approach.
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4.2. T-HARM

Given a set of network states S, we first formally define the T-HARM as
follows.

Definition 1. (Yusuf et al. [2016]) The T-HARM is a 3-tuple (N,H, V ),
where N = {nt0 , nt1 , . . . , ntn} is a set of HARM for each network state sti
at time ti for i ∈ N, and each nti corresponds to sti . H = {h0, h1, . . . , hx}
is a finite set of all hosts in the network, and V = {v0, v1, . . . , vy} is a finite
set of all vulnerabilities found in the network. Further, Hti ⊆ H is a set of
hosts that are in the network state at time ti, and similarly Vti ⊆ V is a set
of vulnerabilities that are in the network state at time ti.

The HARM for each network state is 2-layered consisting of an Attack
Graph [Sheyner et al., 2002] at the upper layer and Attack Trees [Schneier,
1999, 2000] at the lower layer that models the reachability of hosts and vul-
nerability information, respectively. The individual HARM captured at each
time ti then can be defined as follows.

Definition 2. (Yusuf et al. [2016]) A 2-layered HARM is a 3-tuple nti =
(Uti , Lti , Cti), where Uti is an upper layer using an Attack Graph that captures
only the reachability of hosts that establishes attack paths, Lti is a lower layer
that is a set of Attack Trees that only captures the vulnerability information
of each host in the upper layer, and Cti is the mapping between the upper
layer hosts to each lower layer Attack Tree model (i.e., for every host, there
is an associated Attack Tree).

Finally, the upper and the lower layers of the HARM are defined respect-
ively as follows.

Definition 3. (Yusuf et al. [2016]) The upper layer of the HARM is a 2-tuple
Uti = (Hti , Eti) at time ti, where Hti is a finite set of hosts in the network,
and Eti ⊆ Hti ×Hti is a set of edges.

Definition 4. (Yusuf et al. [2016]) The lower layer of the HARM is a
set of Attack Trees Lti = {lh1 , lh2 , . . . , lhj

} at time ti, where an Attack
Tree instance associated with an upper layer host hj ∈ Hti is a 4-tuple
lhj

= (Ati , Bti , cti , rootti) with lhj
∈ ATti , where Ati ⊆ Vti is a set of

vulnerabilities, Bti = {bjti | b
j
ti ∈ {AND,OR}} is a set of logical gates,

cti ⊆ {bjti → ek}∀bjti , ek ∈ Ati ∪ Bti is a mapping of gates to vulnerabilities
and other gates, and rootti ∈ Ati ∪ Bti is the root (i.e., the root node either
a vulnerability or a gate connecting vulnerabilities and other gates).

12
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Given the definitions above, the example SDN shown in Figure 3 is de-
noted as follows.

Example 1. The T-HARM of the example is T−HARMeg = (Neg, Heg, Veg),
where Neg = {neg,t1 , neg,t2}, Heg = {A, h1, h2, . . . h7}, and Veg = {v1, v2, . . . , v7}.
Further, Heg,t1 = Heg,t2 = Heg (i.e., all hosts appear in both time t1 and t2,
and similarly Vt1 = Vt2 = Veg.

Example 2. The 2-layered HARM for the example at time t1 is neg,t1 =
(Ueg,t1 , Leg,t1 , Ceg,t1).

Example 3. The upper layer of the HARM neg,t1 is Ueg,t1 = (Heg,t1 , Eeg,t1),
where Heg,t1 = H, and Eeg,t1 = {{A, h1}, {A, h2}, {A, h3}, {h1, h4}, {h1, h5},
{h2, h4}, {h2, h6}, {h3, h4}, {h4, h7}, {h5, h6}, {h6, h7}} is a set of edges.

Example 4. The lower layer of the HARM neg,t1 is a set of Attack Trees
Leg,t1 = {lh1 , lh2 , . . . , lh7}. For instance, an attack tree of a host h1 is lh1 =
(Ah1,t1 , Bh1,t1 , ch1,t1 , rooth1,t1), where Ah1,t1 = v1, Bh1,tt = {OR1}, ch1,tt =
{(OR1, v1)}, and rooth1,t1 = OR1.

The HARM models the security posture of each network state, which
can be used to compute attack paths and incorporate exploitability for each
vulnerability using the CVSS BS [Yusuf et al., 2016]. Given the definition of
the T-HARM above, we incorporate MTD techniques based on their charac-
teristics in the next section.

4.3. MTD Technique Characteristics and Definitions

MTD techniques are mainly classified into three categories [Hong and
Kim, 2016]; (i) Shuffle, (ii) Diversity, and (iii) Redundancy. Each category
of MTD techniques changes the network configuration in a different way. We
extend our previous work in [Hong and Kim, 2016], to incorporate changes
by MTD techniques in the T-HARM as follows.

4.3.1. Shuffle

Shuffle-based MTD techniques rearrange the existing network configura-
tions, such as VM migration [Jia et al., 2014], network path reconfiguration
[Hong et al., 2017, Rohrer et al., 2014], host mutation [Jafarian et al., 2012]
at the network level and address space randomization [Evans et al., 2011]
at the application level. The network level shuffle-based MTD techniques
change the network topology and/or the connectivity of hosts. Hence, we
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can capture the topological changes to create new instances of the HARM at
different time intervals ti. This is defined in the T-HARM as follows.

Definition 5. Given {hx, hy} (where hx ∈ H, hy ∈ H) to be updated (i.e.,
add or remove) at time ti+1 as a result of the shuffle-based MTD technique,
the upper layer of the HARM in nti+1

changes to (Hti+1
, Eti+1

), where there
are no changes in the set of hosts (i.e., Hti+1

= Hti), and Eti+1
Eti⊕{(hx, hy)}.

Example 5. For the path reconfiguration shown in the example SDN between
neg,t1 and neg,t2 , the transition is captured from Ueg,t1 to Ueg,t2 such that
Heg,t1 = Heg,t2 = H (i.e., no changes in the host as defined above), and
Et2 = Et1 ⊕ {(A, h5), (h1, h4), (h2, h6), (h3, h6)}.

On the other hand, shuffle in the application level only affects individual
hosts in order to withstand attacks. Hence, the lower layer of the T-HARM
captures the changes in the security posture of the host. Consequently, the
resulting effects are as same as deploying the diversity-based MTD tech-
niques. Therefore, it is defined in Definition 6.

4.3.2. Diversity

Diversity-based MTD techniques have different network and system com-
ponent configurations while maintaining the identical operations and func-
tions. This includes network routing node diversification [Newell et al., 2013],
virtual machine diversity [Williams et al., 2009] at the network level and
data diversity [Nguyen-Tuong et al., 2008], software diversity [Cox et al.,
2006, Jackson et al., 2011, O’Donnell and Sethu, 2004] and web application
diversity [Taguinod et al., 2015] at the application level. The diversity-based
MTD techniques do not alter the connectivity of the network components in
both the network and the application levels. Hence, only the lower layer of
the T-HARM is changing through different time ti. As a result, however, it
will change the set of attack paths when the set of vulnerabilities is changed
between the network states (i.e., attackers need a different set of exploits to
carry out a multi-stage attack). This can be defined in the lower layer of the
HARM only, and used in each state of the T-HARM as follows.

Definition 6. Using the diversity-based MTD technique, let a set of vulner-
abilities changed (i.e., added or removed) as a result is given by a func-
tion d(hti+1

) ⊆ V . Then, the lower layer of the HARM in nti+1
is up-

dated with Ati+1
= Ati − d(hti+1

), Bti+1
= {bjti+1

| bjti+1
∈ {AND,OR}},

cti+1
⊆ {bjti+1

→ ek}∀bjti+1
, ek ∈ Ati+1

∪Bti+1
, and rootti+1

∈ Ati+1
∪Bti+1

.
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This is not applicable in the example SDN, but any diversity technique
will result in changes to the lower layer of the HARM at ti+1.

4.3.3. Redundancy

Redundancy-based MTD techniques replicate existing network compon-
ents in order to provide high availability, mainly concerned with denial of
service types of attacks. This includes routing path redundancy [Al-Wakeel
and Al-Swailemm, 2007], virtual machine redundancy [Jia et al., 2014] at
the network level and data redundancy [Nguyen-Tuong et al., 2008], server
redundancy [Gorbenko et al., 2009, Huang et al., 2006] at the application
level. The network level redundancy-based MTD techniques change the net-
work topology by adding new connections with the replicas. The upper layer
HARM is extended with replicated nodes, and the corresponding lower layer
nodes are created. This can be captured in the T-HARM as follows.

Definition 7. Let the replicated host in the network be hr
ti+1

, then the
upper layer of the HARM in nti+1

changes to (Hti+1
, Eti+1

), where Hti+1
=

Hti ∪ {hr
ti+1
}, and Eti+1

⊆ Hti+1
×Hti+1

.

Redundancy in the application level separates into two; (1) functional
redundancy (e.g., servers), and (2) resource redundancy (e.g., data). Only
in case of (1), vulnerabilities are duplicated. Even though they are the same
set of vulnerabilities, the multiplicity may decrease the attack efforts. This
can be defined in the T-HARM as follows.

Definition 8. Let a set of vulnerabilities added by the replication be V r
ti+1
⊆

{vti+1
| vti+1

∈ V }. Then, the lower layer of the HARM in nti+1
is updated

with Ati+1
= Ati∪V r

ti+1
, Bti+1

= {bjti+1
| bjti+1

∈ {AND,OR}}, cti+1
⊆ {bjti+1

→
ek}∀bjti+1

, ek ∈ Ati+1
∪Bti+1

, and rootti+1
∈ Ati+1

∪Bti+1
.

Similarly with the diversity techniques, redundancy will result in changes
to either the upper layer or the lower layer of the HARM at time ti+1 de-
pending on which type of redundancy is used.

The given definition for the T-HARM can be used to capture different
network states generated when deploying MTD techniques. The captured
network states and security information (e.g., attack paths, vulnerability
exploitability) are used to compute a new set of security metrics in the next
section.
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Table 1: Network and Characteristics Terms

Terms Descriptions

S a set of network states

H a set of hosts in the network

V a set of vulnerabilities in the network

AP a set of attack paths

V AR a set of variants

5. Dynamic Security Metrics

Existing security metrics lack the capabilities to represent the shift in the
security posture of networks as the network components change over time.
It is of paramount importance to understand the shifting security posture in
order to provide effective security solutions. To address this issue, we take
into account attack and defense efforts to develop a set of new security met-
rics to capture the effects of MTD techniques with respect to changes in the
network using the T-HARM. First, Section 5.1 presents the attack efforts
metrics, and Section 5.2 presents the defense efforts metrics. Then, we de-
scribe the use of the metric modules in combinations in Section 5.3. Lastly,
we describe the quantification of these metrics in Section 5.4. Because the
proposed dynamic security metrics are modularized, this approach provides
flexibility to add/modify/remove metrics as necessary. In this section, we
present a few selected metrics for attack and defense efforts as a demonstra-
tion, and a full suite of dynamic security metrics will be developed in our
future work.

The terms and functions used for the network and its characteristics are
shown in Tables 1 and 2, respectively. The cardinality (i.e., the number of
elements) of sets is represented by the vertical lines (i.e., |S| represents the
cardinality of the set of network states).

5.1. Attack Efforts Metrics

The static networks allow attackers to discover vulnerabilities and plan
their attack indefinitely. To increase the attack efforts, the attack surface
can be changed continuously. The objectives for security metrics evaluating
MTD techniques are to capture the change in the security posture as the
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Table 2: Network and Characteristics Functions

Functions Descriptions

t(si) the time duration of an ith network state

t(api) the time duration of an attack exploiting the attack path api

t(vk) the time taken to exploit a vulnerability vk

et(si) the time duration of the edge pair changes in si

et(hj) the time taken to update the edge pairs of a host hj

path(si) the set of AP at the ith network state

vuls(api) the set of vulnerabilities associated with an attack path api

ES(si) the set of edges in the ith network state

Ep(vk) the exploitability of a vulnerability vk using the CVSS

vc(vark, hj) the cost of assigning a variant vark to a host hj

vh(hj, i) the variant of the host hj in the ith network state

dt(vark, hj) the downtime assigning the variant vark to the host hj

attack surface changes. One aspect of the attack surface is the attack paths.
By observing the changes to attack paths, we can evaluate the increase in
the attack efforts.

5.1.1. Scanning: Path Variation

If the network is static, then the set of possible attack paths remains
the same unless the vulnerabilities are changed. When an attacker scans for
vulnerabilities, the attacker can also discover the static nature of the network
if such attack paths are not changed. Therefore, it is critical that attack paths
are changed in order to change the attack surface. As the attack surface
shifts, the dependencies between the vulnerabilities change so do the attack
paths. However, if some attack paths remain (i.e., vulnerability dependencies
are unchanged), then they can still be exploited as their visibility is the same.
Hence, the attack path variation (APV) measures the shift in attack paths as
the network changes when MTD techniques are deployed. We assume that
replacing the existing attack paths with new ones increases the attack effort,
because when the intended attack path changes, the attacker must redesign
the attack strategy and may also need a new set of exploits. That is, APV
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captures the change in the set of attack paths between the network states.
Given the definition above, the difference in attack paths, ∆AP(APi,APi−1),

between the two network states, i and i − 1, can be described as shown in
equation (1). Here, APi represents the set of attack paths found in the
ith network state. The variation in the current set of attack paths is the
difference from the previous set of attack paths. That is, the MTD technique
is less effective when the proportion of attack paths from the previous network
state is large. The set of difference from the previous network state to the
current one reveals the new attack paths which were not in the previous
network state.

∆APi,i−1 =
|APi − APi−1|
|APi|

(1)

We can then compute the APV metric for all consecutive network states
as shown in equation (2). The metric has been normalized by the number of
consecutive network state pairs. This represents the overall changes in the
attack paths and their variations over the observed network states S. This
metric is quantifiable such that it measures how the attack paths are changed
when MTD techniques are deployed. Hence, there are no arbitrary values
that need to be assigned to compute APV.

APV =

∑|S|
i=1 ∆APi,i−1
|S| − 1

(2)

5.1.2. Scanning: Path Number

Increasing the number of attack paths can negatively impact the network
security, as it reveals more choices to be taken by the attacker when the
scanning is carried out. Therefore, changes in the number of attack paths,
∆|AP(APi,APi−1)|, also need to be taken into account. Equation (3) shows the
proportion of attack paths increased. If the number of attack paths stays the
same, then it equates to value 1. But if the previous network state had no
attack paths, then it equates to 0.

∆AP i,i−1 = 1− |APi| − |APi−1|
|APi|

(3)
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Consider now a reduced number of attack paths in the current network
state. Assuming that the attack efforts stay the same (i.e., there is no ad-
vantage), then the effectiveness can be calculated as shown in equation (4).

∆AP i,i−1 = 1− max(|APi| − |APi−1|, 0)

|APi|
(4)

Similarly with APV , we compute the difference between the number of
attack paths for all network states, and then normalize it. Equation (5) shows
the computation of APN metric that measures the differences between the
numbers of attack paths for all network states. The APN metric also does
not need arbitrary assignment of values, it is calculated only based on the
observed number of attack paths from all network states S.

APN =

∑|S|
i=1 ∆AP i,i−1
|S| − 1

(5)

5.1.3. Frequency: Exposure

The attacker is likely to prepare and launch an attack successfully if the
exposure of an attack path is long enough, similar to the attack lifetime
described in [Evans et al., 2011]. Hence, the duration of an attack path
should be minimized to enhance security. However, estimating the amount
of time needed for the attacker to prepare and launch an attack is difficult.
Hence, the best case is to minimize the duration of an attack path exposure.
That is, the goal of the metric is to compute the duration of each attack
path exposed. We use the function t(api) defined in Table 2 to compute the
attack path exposure as shown in equation (6), which is normalized by the
number of attack paths and the total number of network states.

APE = 1−
∑|S|

i=0 t(apj)

|AP | ×∑|S|i=1 t(si)
∀apj ∈ APi (6)

5.1.4. Capability: Knowledge

Costs are one of the important decision constraints for both attackers
and defenders. We estimate the cost of an attack based on the difficulty
of exploiting vulnerabilities using the Common Vulnerability Scoring System
(CVSS) [Schiffman et al., 2004], particularly the exploitability score (from the
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Base Equation of the CVSS) that determines the difficulty of exploiting the
vulnerability (i.e., the knowledge of the attacker will determine the ability
to exploit vulnerabilities with lower exploitability scores etc). We use the
CVSS version 2, as many of the legacy vulnerabilities do not have the version
3 available yet, but new vulnerabilities still have version 2 available, which
is more practical (both versions have the exploitability (sub) score which is
used in this subsection). However, other means of cost metrics can be used to
further categorize the knowledge category of the attacker efforts in addition
to the CVSS exploitability scores.

The attack cost associated with exploiting vulnerability can be calculated
taking into account all possible attack paths. We assume that exploiting the
same variant (e.g., application, operating system and others) does not reduce
the attack efforts. Then, the exploitability of each attack path becomes the
cumulative product of all the vulnerabilities required. The attack cost of
exploitation, ACi, is shown in equation (7).

ACi = 1−
|APi|∏

j=1

(
1−

|apj |∏

k=1

Ep(vk)
)

,where vk ∈ vuls(apj)∀apj ∈ APi

(7)

Using the above equation, we can compute the attack cost associated
with the exploitation of vulnerabilities as shown in equation (8) taking into
account all network states.

ACE = 1−
∑|S|

i=0ACi

|S|
(8)

The inner product computes the exploitability of each attack path and
combines them using the disjoint set theory. This is processed for all network
states which are then normalized (i.e., transformed into the range [0, 1]).

5.1.5. Time: Duration

The amount of time taken for the attacker to compromise each stepping
stone in an attack path is another significant factor, as the longer the attack
takes, the more likely it will be detected. Hence, increasing the amount
of time to attack can negatively affect the attacker. Also, we assume the
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attacker will minimize the time taken for an attack. Hence, we compute
the minimum time taken by the attacker to compromise the target in each
network state based on the time taken to exploit each vulnerability in the
attack path, which is presented as a function t(api). In practice, we can
approximate the minimum time to exploit (i.e., the function t(api)) through
empirical studies [McQueen et al., 2009, Zhang et al., 2014], as well as using
other timing models as appropriate. Assuming that exploiting a vulnerability
has a specific time frame, we do not have to consider the skills of different
attackers. Equation (9) shows the normalized metric representing the time
taken to compromise the target in a given network state. The time has been
normalized by the maximum amount of time to compromise the target by
the attacker.

ACD =

|S|∑

i=0

min(t(apj))

max(t(apj))

|S| ∀apj ∈ APi (9)

5.2. Defense Efforts Metrics

There are costs associated with deploying MTD techniques in the net-
work. In this section, we capture the cost associated with MTD techniques
with respect to the defense efforts presented in Section 3.2.

5.2.1. Resource: Monetary

The network nodes may be changed with another variant, and each vari-
ant has its associated cost. For example, generating a software-based di-
versity may be done automatically by a compiler [Jackson et al., 2011] that
may have low cost, but diversifying the whole virtual machine [Williams
et al., 2009] may have a higher cost to populate all of its functionalities.
Such actions can be converted to monetary values based on the system mis-
sion (e.g., converting downtime to loss of revenue for mission systems). First,
the variant assignment cost, V Ci, associated with a given network state si is
shown in equation (10).

V Ci = 1−
|Hi|∑

j=1

vc(vark, hj) | vh(hj, i) 6= vh(hj, i− 1)

∀hj ∈ Hi,∀vark ∈ V AR

(10)
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We can compute the normalized variant assignment cost V Ci at the ith
network state by dividing vci by the maximum variant assignment cost al-
lowed for that particular network state as shown in equation (11).

V Ci = 1−
|Hi|∑

j=1

vc(varj) | vh(hj, i) 6= vh(hj, i− 1)

|Hi| ×max(vc(vark))

∀hj ∈ Hi∀{varj, vark} ∈ V AR

(11)

The total cost associated with different diversity when MTD techniques
deployed for all network states is shown in equation (12). The cost has been
normalized by the number of network states.

NV C = 1−
|S|∑

i=1

V Ci

|S| − 1
(12)

5.2.2. Time: Downtime

The time required to replace the node with a different variant causes a
downtime in the network. The aim is to minimize the downtime in order
to continuously provide the network services. Downtimes can be estimated
and measured, which can be used for input to this metric calculations. First,
equation (13) shows the downtime, DTi, calculation of a given network state
si.

DTi = 1−max(dt(vark, hj) | vh(hj, i) 6= vh(jj, i− 1)∀hj ∈ Hi (13)

Equation (14) shows the downtime experienced when assigning new vari-
ants as a result of deploying the MTD techniques in the network. The down-
time has been normalized by the maximum downtime experienced.

NVDT = 1−
|S|∑

i=1

max(dt(vark, hj) | vh(hj, i) 6= vh(jj, i− 1)

(|S| − 1)×max(dt(vark, hj))

∀hj ∈ Hi,∀vark ∈ V AR

(14)
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5.2.3. Overhead: Service

Communication maintenance has some cost associated with it. Restruc-
turing the SDN topology [Hong et al., 2017] may have low overhead, while
maintaining a set of virtual IP address for IP shuffling [Jafarian et al., 2014]
may have more. Such costs depend on which communication service is in use,
and how the communication paths are changed. For the basics, we define
the difference between the edge set as the edge variation cost. We assume
the cost of changing an edge is the same. Then, we only have to count the
number of edge changes between the network states. Networking technolo-
gies deploy edge changes in parallel (e.g., SDN), but the amount of change
still affects the network performance of the affected region. Hence, the more
edge changes, the higher cost is observed (e.g., delay or downtime). The edge
variation cost can be computed as shown in equation (15), where the cost of
each network state is normalized by the maximum edge variation cost, and
the total cost normalized by the number of network states.

EV C = 1−
|S|∑

i=1

|ES(si)	ES(si−1)|
|ES(si)∪ES(si−1)|
|S| − 1

(15)

5.2.4. Delay: Medium

Similar to the downtime under Node category, the communication me-
dium when changed attracts a delay and loss of data between the commu-
nications. Hence, it is important that MTD techniques do not affect the
system performance by limiting the edge variation time. This can be meas-
ured or approximated based on the communication protocol being used with
its specification. Using this metric, the effect in time by deploying different
MTD techniques is captured and compared. The equation (16) shows the
computation of the time duration of the edge pair changes in si.

et(si) = max(et(hj))∀hj ∈ Hi (16)

Based on the equation (16), we can calculate the edge variation time for
all network states as shown in equation (17). The edge variation time is
normalized by the maximum amount of time taken for edge set changes.

EV T = 1−
∑|S|

i=1 et(si)

max(et(si))× (|S| − 1)
∀si ∈ S (17)
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5.3. Application of Dynamic Security Metric Modules

We have described some of the attack and defense effort modules for cap-
turing changes in the security posture when MTD techniques are deployed.
This section describes the use of the proposed metrics using an example SDN,
and further, demonstrates the use of compound dynamic security metrics to
evaluate the effectiveness of MTD techniques. In this section, we use the
example SDN shown in Figure 3.

The reachability of hosts and the running operating system (OS) on each
host at the given network state are shown in Table 3. The network state
s0 is the initial network state, and s1 changes the host reachability only,
while s2 assigns different operating systems to hosts only. We also consider
the transition between the network states as follows: (1) At time t0, the
network state state0 is used for 3 hours, (2) at time t1, the network state is
changed to state1 with the duration of 2 hours, (3) at time t2, the network
state is changed to state0 for 1 hour, and (4) at time t3, the network state
is changed to state2 for 2 hours. Hence, there are four different network
states observed. For instance, S = {s0, s1, s2, s3}, where s0 = s2 = state0,
s1 = state1, and s3 = state2 and the cardinality of S is |S| = 4. The number
of hours is chosen arbitrarily for demonstration only, the actual duration of
each network state can be measured based on reconfiguration schedules. We
consider these network state transitions in the following examples.

The attack goal is to reach the target host H7 through an elevation of
privilege. We assume that each host has a remote-to-root vulnerability, and
different operating systems have different exploitability values, the time taken
to exploit, the variant assignment cost and the variant assignment downtime
as summarized in Table 4. We used random but reasonably assigned values
for demonstration. In practice, these values can be retrieved from empir-
ical studies [McQueen et al., 2009, Zhang et al., 2014], various vulnerability
databases [Gallon and Bascou, 2011, National Institute of Standards and
Technology, 2018], and system and network configuration details. For sim-
plicity, the term Variant Assignment is written in short as Var Assign. We
also assume the time taken to update the set of edges for each host is determ-
ined by the number of edges updated (including addition and removal) from
the previous network state (i.e., the sum of the number of updated edges).
Given the scenario, we describe the computation of each metric below, as well
as the combinations of those metrics to demonstrate the compound metric.
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Table 3: Example SDN Network States

Network State Host Reachability Running OS

state0 A→ {h1, h2, h3} h1: Linux

h1 → {h4, h5} h2: Windows

h2 → {h4, h6} h3: FreeBSD

h3 → {h4} h4: Linux

h4 → {h7} h5: Linux

h5 → {h6} h6: Windows

h6 → {h7} h7: Linux

any host → Outside SDN

state1 A→ {h1, h2, h3, h5} h1: Linux

h1 → {h5} h2: Windows

h2 → {h4} h3: FreeBSD

h3 → {h4, h6} h4: Linux

h4 → {h7} h5: Linux

h5 → {h6} h6: Windows

h6 → {h7} h7: Linux

any host → Outside SDN

state2 A→ {h1, h2, h3} h1: Linux

h1 → {h4, h5} h2: Linux

h2 → {h4, h6} h3: FreeBSD

h3 → {h4} h4: Windows

h4 → {h7} h5: Linux

h5 → {h6} h6: Windows

h6 → {h7} h7: Linux

any host → Outside SDN
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Table 4: Basic Metric Values Associated with Variants

Variant (OS) Exploitability Time Taken to Exploit (hrs)

Linux 0.15 2

Windows 0.2 1

FreeBSD 0.1 4

Var Assign. Cost Var Assign. Downtime (hrs)

Linux 1 0.5

Windows 1 0.2

FreeBSD 1 0.8

5.3.1. APV Computations

The difference between the attack path sets from the example SDN is cap-
tured using the APV metric. For instance, AP0 = {(A, h1, h4, h7), (A, h1, h5,
h6, h7), (A, h2, h4, h7), (A, h2, h6, h7), (A, h3, h4, h7)} is the set of attack paths
in s0 with the cardinality value of AP0 = 5. Then, the APV can be computed
as shown in equation (18).

APV =

∑|S|
i=1

|APi−APi−1|
|APi|

|S| − 1

=
2
5

+ 4
5

+ 4
5

3
= 0.6667

(18)

The APV value represents the variations in the attack paths for all states
in the SDN. Lower APV value means the set of attack paths tends to be
more static. The APV value 0.6667 represents the expected proportion of
changes to the set of attack paths for all the observed network states.
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5.3.2. APN Computations

Similarly with the APV computation, equation (19) shows the APN com-
putation for the example SDN.

APN =

∑|S|
i=1 1− max(|APi|−|APi−1|,0)

|APi|
|S| − 1

=
(1− 0) + (1− 0) + (1− 0)

3
= 1

(19)

There is no change in the number of attack paths as the number of attack
paths for each network state is five, giving the APN value of one. Not
increasing the number of attack paths (or at least maintaining it) is better
than increasing it. On the other hand, if the APN value tends towards zero,
then the number of attack paths is increasing as the network transits to other
network states.

5.3.3. APE Computations

The APE metric measures the amount of attack path exposure for all
network states. Equation (20) shows the APE computation for the example
SDN.

APE = 1−
∑|S|

i=0 t(apj)

|AP | ×∑|S|i=1 t(si)
∀apj ∈ APi

= 1− 40

11× 8

= 0.5455

(20)

If the initial attack paths are exposed in all the network states without
any new attack paths, then the APE value tends toward zero. Hence, it is
better to achieve a high value of APE which represents that an attack path
is only exposed in one network state. In the best case scenario, the APE
value will be the same as 1− 1

|S| , and as the number of network states tends
toward infinity, it becomes one.
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5.3.4. ACE Computations

The ACE metric computes the exploitability for the attacker to reach the
target. We can compute the attack cost associated with exploiting vulner-
abilities in each of the example SDN state as shown in equation (21).

ACE = 1−
∑|S|

i=0

(
1−∏|APi|

j=1

(
1−∏|apj |k=1 Ep(vk)

))

|S|
= 1− 0.0177 + 0.0151 + 0.0177 + 0.0171

4
= 0.9831

(21)

If vulnerabilities have high exploitability value (e.g., 1), the ACE value
tends toward zero. Given the assumed exploitability of the assigned operating
systems is low, the ACE metric value for the example SDN was computed
near one. This means the example SDN configuration is done such that it
increases the attack efforts in terms of the exploitation difficulty.

5.3.5. ACD Computations

The ACD metric computes the ratio of the shortest and longest times
taken for the attacker to exploit the target in each network state. Hence,
lower ACD value represents that a significant proportion of the network states
can be exploited in a shorter time than the expected maximum amount of
time. Equation (22) shows the calculation steps for the example SDN.

ACD =

|S|∑

i=0

min(t(apj))

max(t(apj))

|S| ∀apj ∈ APi

=
4
8

+ 5
8

+ 4
8

+ 5
7

4
= 0.5848

(22)

5.3.6. NVC Computations

The total cost associated with different diversity when MTD techniques
deployed for all network states is shown in equation (23). The NVC value
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has been normalized by the number of network states.

NV C = 1−
|S|∑

i=1

∑|Hi|
j=1

vc(varj)|vh(hj ,i) 6=vh(hj ,i−1)
|Hi|×max(vc(vark))

|S| − 1
∀{varj, vark} ∈ V AR

= 1− 0 + 0 + 2
7

3
= 0.9048

(23)

As only the topology configurations change during the first three network
states, the overall NVC value is high. If the NVC value is low, then the
network state transitions are reassigning variants to the hosts in the network
frequently, which also increases the variant assignment cost.

5.3.7. NVDT Computations

Similarly as the NVC calculations, the NVDT can be calculated as shown
in equation (24).

NVDT = 1−
|S|∑

i=1

max(dt(vark, hj) | vh(hj, i) 6= vh(jj, i− 1)

(|S| − 1)×max(dt(vark, hj))
∀hj ∈ Hi

= 1− 0

3× 0.8
+

0

3× 0.8
+

0.5

3× 0.8

= 0.7917

(24)

The higher NVDT value represents less downtime observed when assign-
ing variants in the network. As the NVDT value converges to zero, it rep-
resents the maximum downtime for all network states.

5.3.8. EVC Computations

The EVC for the example SDN can be calculated as shown in equation
(25). The higher value represents fewer changes to the set of edges between
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the network states which results in lower edge assignment cost.

EV C = 1−
|S|∑

i=1

|ES(si)	ES(si−1)|
|ES(si)∪ES(si−1)|
|S| − 1

= 1−
4
13

+ 4
13

+ 0
13

3
= 0.7949

(25)

5.3.9. EVT Computations

The EVT measures the time taken to assign the edge sets in the network
state, which determines the delay observed in the network. The time taken
to update the edge pairs of a host is assumed to be the number of updated
edges. Then, the EVT calculation for the example SDN is as shown in
equation (26).

EV T = 1−
∑|S|

i=1 et(si)

max(et(si))× (|S| − 1)
∀si ∈ S

= 1− 1

1× 3
+

1

1× 3
+

0

1× 3

= 0.3333

(26)

Although there are only a small number of edge changes, the maximum
edge change for any state is one. Hence, the EVT value for the example SDN
is relatively low. If the EVT value converges to zero, then the maximum delay
for changing the edge set is observed for all network states.

5.3.10. Compound Security Metrics

Security decision makers may have different security requirements and
objectives, in which the interested metrics may change. Our proposed met-
rics are modules, which can be used in any combinations. In general, equa-
tion (27) shows the calculation of the compound security metrics using the
proposed security metric modules. Here, W is a set of weight values with
wi ∈ W , and M is a set of metric modules to be computed with mi ∈ M ,
where |M | = |W | and the weight values add up to one (i.e.,

∑
wi = 1).

outputM,W =

|M |∑

i=1

wi ×mi∀mi ∈M,wi ∈ W (27)
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For example, we wish to compute the effectiveness of the changes made
in the example SDN with respect to the attack cost of exploitation (i.e.,
ACE) taking into account the cost of variant assignment cost (i.e., NVC)
and the edge variation cost (i.e., EVC). Then, the compound security metric
for the scenario can be calculated as shown in equation (28), assuming the
weight values are equal for each metric (i.e., M1

eg = {ACE,NV C,EV C} and
W 1

eg = {1
3
, 1
3
, 1
3
}).

output1M1
eg ,W

1
eg

=

|Meg |∑

i=1

wi ×mi

= 1/3× ACE + 1/3×NV C + 1/3× EV C

= 0.9831/3 + 0.9048/3 + 0.7949/3

= 0.8943

(28)

The given network state scenario for the example achieved 0.9831 taking
into account the attack cost of exploitation ACE, and taking into account
the defense efforts NVC and EVC. On the other hand, if other network states
are generated with a higher cost (i.e., NVC and EVC values were less), then
the compound metric value will consequently be lower.

For comparison, we now compute the effectiveness of the changes made
in the example SDN with respect to the attack path variation (i.e., APV)
taking into account the cost of variant downtime (i.e., NVDT) and the edge
variation downtime (i.e., EVT). Then, the compound security metric for the
scenario can be calculated as shown in equation (29), similarly assuming the
weight values are equal for each metric (i.e., M2

eg = {APV,NV DT,EV T}
and W 2

eg = {1
3
, 1
3
, 1
3
}).

output2M2
eg ,W

2
eg

=

|Meg |∑

i=1

wi ×mi

= 1/3× APV + 1/3×NVDT + 1/3× EV T

= 0.6667/3 + 0.7917/3 + 0.3333/3

= 0.5972

(29)

The two examples above using the compound metrics clearly show that
taking into account the different security objectives of using MTD techniques
(i.e., different security goals) can result in different effectiveness observed.
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In a similar way, other metrics can be combined to produce a compound
security metrics, as well as to assigning different weight values to highlight
certain metrics. One approach to assigning weight values to different dynamic
security metrics is to collect information regarding the operational require-
ments to evaluate the importance of different services of the network. For
example, the network used by a hospital requires high confidentiality and in-
tegrity. In order to achieve this using MTD techniques, higher weight values
are assigned to the dynamic security metrics measuring the Reconnaissance
(e.g., path variation and number, exposure, and cost). On the other hand,
a network used by a media firm requires high availability and less concerned
with the overall security. Then, higher weight can be assigned to minimize
the Communication subcategory of the defense efforts to ensure the opera-
tional requirements. Hence, we can formulate weight templates for different
network systems with different security objectives. However, optimizing the
weight value is out of scope in this paper. We explore the changes to the new
metrics proposed and the trade-off between the attack and defense efforts in
Section 6.

5.4. Dynamic Metric Quantification

In this section, we describe methods to quantify metric values for MTD
techniques. In general, we need to specify three categories of characteristics,
which are: (1) network, (2) defense techniques (e.g., MTD techniques), and
(3) attacker capabilities.

5.4.1. Network-based characteristics

The network-based characteristics can be quantified based on the system
information (e.g., vendor provided performance charts, protocol specifica-
tions etc). For the attack efforts, many of the Reconnaissance subcategories
can be quantified using the network-based characteristics, as this stage of an
attack gathers the system information. Path-based metrics can be computed
using various security models [Kordy et al., 2014] using the system configur-
ation as the input. Similarly, the exposure of the network components can
be quantified from the system descriptions. For the defense efforts, All the
categories can be quantified using the network-based characteristics in con-
junction with the properties of the defense techniques, as described in the
next subsection.
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5.4.2. Defense technique characteristics

Quantifying the defense technique characteristics varies due to the di-
verse and embedded randomness nature of the current defense techniques.
For the case of MTD techniques, they can be deployed onto various layers of
the systems and networks for mitigating different threats. Defense technique
characteristics only affect the defense efforts, and all MTD techniques change
the network configurations in some ways. Hence, they can be quantified in
terms of the system resources. When an MTD technique is deployed, we
can quantify the associated efforts by identifying which subcategories are af-
fected. For example, if we deploy a host-to-host path variation (i.e., a shuffle
technique), then this would mostly affect the Service and Communication
subcategories of the defense efforts. We can measure the defense efforts based
on the specification of the path variation settings (e.g., overhead traffic load
(in bytes, also in percentage), such as a new header payload, for deploying
this MTD technique). But if we deploy an operating system diversity (i.e.,
a diversity technique), then this affects mostly the Node subcategory (e.g.,
downtime (in seconds) when changing the OS, cost (in dollars) of purchasing
the OS, cost (in dollars) of required hardware to support the OS etc).

5.4.3. Attack capability characteristics

The most difficult characteristic to quantify is the unknown nature of the
attackers (e.g., attacker’s knowledge, tools available, the time resource avail-
able etc). However, we can still utilize some of the existing data collected to
specify certain metrics based on empirical studies (e.g., vulnerability scoring
systems [McQueen et al., 2009, National Institute of Standards and Techno-
logy, 2018, Zhang et al., 2014]). We can also adopt zero-day vulnerability
analysis approaches [Ingols et al., 2009, Wang et al., 2014] to specify the
attacker capabilities. However, this is out of scope in this paper.

6. Comparative Analysis

We conducted an experimental analysis via simulations to assess the ef-
fectiveness of MTD techniques and compare them. This analysis also demon-
strates the functionalities of the proposed metrics based on attack and defense
efforts (as shown in Section 3). To generalize our proposed approach, we con-
duct experimental analysis using a generic network that randomly connects
the hosts, which includes any possible network configurations. By doing so,
the subset of practical network configurations is included in the analysis. In
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section 6.1, we describe the simulation setup including the system and threat
models used for the comparative analysis, and the chosen MTD techniques.
Then, in section 6.2, we present the comparative analysis results using the
proposed dynamic security metrics based on simulations.

6.1. Simulation Setup

6.1.1. System Model

To compare different MTD techniques, we set up a generic dynamic net-
work that could implement various MTD techniques (i.e., host and network
configurations can be dynamically updated). For example, in an SDN cloud
[Azodolmolky et al., 2013, Banikazemi et al., 2013], you can virtualize mul-
tiple VMs with software variants enabled, as well as control the data flow
using the SDN functions. There are three network variables: (1) the number
of hosts, (2) the number of software variants, and (3) the number of network
states. The initial connections between hosts are randomly assigned with a
density value 0 > d > 1 (i.e., a host is connected to d ∗ N number of other
hosts). The system configuration is then changed based on the MTD tech-
niques. The software variants specify different types of vulnerabilities on the
host, while providing an equivalent service (e.g., a database host using an
Oracle SQL server can be replaced with an MS SQL server with appropriate
interface implementation, MS Office can be replaced with Libre Office for
document edition, etc). The number of network states is governed by the
number of iterations made by the MTD techniques.

6.1.2. Threat Model

There are many MTD techniques designed for various threats. For the
purpose of demonstrating the MTD technique comparison, we scope the
threat specific to a privilege escalation based on a STRIDE threat model
[LeBlanc and Howard, 2002]. We further assume that the attacker is located
outside the network, and aims to compromise a specific target host inside the
network. The attacker must carry out a reconnaissance and execute exploit-
ations in a sequence in order to compromise the target host. We also assume
that if the chain of privilege escalation is broken (e.g., a shuffle technique
redirecting service routes), then the attacker loses the privilege gained back
to the last reachable host in the chain.
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6.1.3. MTD techniques

For the above attack scenario, two representative MTD techniques are
considered for the comparative analysis; (1) topology reconfiguration us-
ing the shuffle-based MTD technique [Hong et al., 2017] (shuffle-based for
short), and (2) assigning software variants [Cox et al., 2006] to hosts using
the diversity-based MTD technique similar to the one shown in [Newell et al.,
2013] (diversity-based for short), but focusing on the security perspective in-
stead of satisfying the routing goal described in the paper. Both techniques
are designed to thwart attacks that are penetrating into the networks via
privilege escalations.

To have an in-depth view of the chosen MTD techniques and their effect-
iveness when network configurations change, we investigate how those attack
and defense efforts change with respect to the numbers of hosts, software
variants and network states generated. However, other network properties
(e.g., protocols, IP addresses, port number etc) can be modeled in the T-
HARM to capture different types of attack and defense efforts as well. We
considered the following defense scenarios: (1) no MTD techniques are used
(base case), (2) shuffle-based MTD technique only, (3) diversity-based MTD
technique only, and (4) combination of shuffle and diversity. For the case
of (4), shuffle was applied to the network topology first and then diversified
software on hosts. There are different MTD techniques that can be combined
together, but their effectiveness may vary. Our previous work in [Alavizadeh
et al., 2018, 2017, Hong and Kim, 2016] provide approaches to model combin-
ations of different MTD techniques. However, optimizing the combinations
of MTD techniques for maximizing security is out of scope in this paper.

The exploitability value for each software variant is randomly assigned
uniformly between values 0.1 and 1 inclusive. The downtime, variant assign-
ment cost, edge update time are all assigned with the value of one unit. These
values can be populated from empirical studies or other statistical data to
be more accurate, but our analysis did not take those into account as we are
focusing on comparing different MTD techniques when such parameters are
changed. The following sections present results with respect to the number
of hosts, available software variants and the number of network states. For
attack efforts, a metric value toward one is making the attack more difficult,
and for defense efforts, a metric value toward zero is making the defense more
difficult, vice versa. For the overall combination of attack and defense efforts,
a metric value towards one is beneficial to the defender (i.e., attack efforts
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increased while defense efforts decreased).

6.2. Simulation Results

6.2.1. Varying the number of hosts

As the number of hosts increases, the management of the network be-
comes more complex in order to satisfy various constraints (e.g., perform-
ance, security). Similarly, understanding the attack and defense efforts is
also difficult without examining and collecting security changes made. We
examine how the two chosen MTD techniques change the attack and defense
efforts when the number of hosts changes. Figure 4 shows the result. For
this analysis, we fix the number of software variants to be three, and the
number of network states to be five. Also, the weight distribution among
selected metrics is equal (i.e., each dynamic security metric is equivalently
important).

Figure 4a shows the attacker’s reconnaissance-related metrics (i.e., APV,
APN and APE). As the number of hosts increases, all MTD techniques in-
crease the attack efforts. This is because a large proportion of the attack
paths is changed using MTD techniques. However, shuffling the network to-
pology with a small number of hosts may have a negative impact as it may
increase the number of attack paths. As expected, not deploying any MTD
techniques is not effective in increasing the attack efforts, but it keeps the
number of attack paths constant, which does not increase the APN mod-
ule. Moreover, combining software diversity with topology shuffle does not
necessarily benefit increasing the attack efforts with respect to the attack
paths.

Figure 4b shows the attacker’s resource-related metrics (i.e., ACE and
ACD). It clearly shows that as the number of hosts increases, the normalized
attack cost decreases. With a larger number of hosts, the number of possible
attack paths as well as the attack surface is likely to increase, which decreases
the attack efforts in a sense that it provides more options for attacks. It also
shows that the shuffle-based approach is slightly better than the diversity-
based approach.

Figure 4c shows the defense efforts related to the network nodes (i.e., NVC
and NVDT). There is no network node related costs for No MTD and shuffle-
based MTD technique scenarios as they do not modify the network nodes. As
the number of hosts increases, the metric value decreases for diversity-based
MTD techniques. This is expected as more hosts would require new software
variant assignments to satisfy the MTD condition.
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(a) Measuring the Reconnaissance Attack
Efforts subcategory using a compound se-
curity metric with APV, APN and APE

(b) Measuring the Resource Attack Ef-
forts subcategory using a compound secur-
ity metric with ACE and ACD

(c) Measuring the Node Defense Efforts
subcategory using a compound security
metric with NVC and NVDT

(d) Measuring the Communication De-
fense Efforts subcategory using a com-
pound security metric with EVC and EVT

(e) Overall Effectiveness of MTDs taking
into account both Attack and Defense Ef-
forts

Figure 4: Comparative analysis of Shuffle and Diversity MTD techniques with respect to
the changing number of Hosts
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Figure 4d shows the defense efforts related to the network edges (i.e.,
EVC and EVT). Similarly with network nodes, diversity-based MTD tech-
nique scenarios do not modify the network edges resulting in metric values
of one. Shuffle-based MTD techniques show a similar trend, which increases
the defense efforts (i.e., the metric values decrease) as the number of hosts
increases. There are more edges needed to be changed to satisfy the MTD
condition.

Finally, Figure 4e shows the overall effectiveness of the two chosen MTD
techniques and their combinations with respect to the changing number of
hosts. The result shows that not deploying any MTD technique is the best
solution, because there are no defense efforts needed for this approach. How-
ever, if we increase the weight value of the attack efforts, then not deploying
any MTD technique quickly becomes the worst scenario. This is also ap-
parent when we compute the effort to security gain ratio. Finding a better
distribution of the weight values between the individual metric modules is
needed to take into account different attack and defense efforts proportion-
ally, but this optimization is out of scope in this paper. Taking into account
only the MTD techniques, it shows that the diversity-based MTD technique
would be most suitable when the network has the same number of software
variants and network states, but the number of hosts increases.

6.2.2. Varying the number of software variants

The number of available software variants is a significant factor, as if the
number of variants equals to the number of hosts, no such diversity-based
MTD techniques are necessary. However, it is infeasible in practice, and the
network only has a limited number of variants to assign with. We exam-
ine how the two chosen MTD techniques cope with the number of software
variants changes. Figure 5 shows the result, given the numbers of hosts and
network states are fixed with values 20 and 5, respectively.

Figure 5a shows the attack reconnaissance-related metrics as the number
of variants is increased. It shows that increasing the number of available
variants does not affect significantly to the defense scenarios. The software
diversity provided the highest attack efforts, followed by the combination of
the shuffle and diversity. Without MTD techniques deployed, there are no
changes to the attack paths information.

Figure 5b shows the attack resource-related metrics. There are slight vari-
ations due to the exploitability of variants being assigned randomly. However,
the trend is still observed. Shuffle-only or diversity-only scenarios gradually
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(a) Measuring the Reconnaissance Attack
Efforts subcategory using a compound se-
curity metric with APV, APN and APE

(b) Measuring the Resource Attack Ef-
forts subcategory using a compound secur-
ity metric with ACE and ACD

(c) Measuring the Node Defense Efforts
subcategory using a compound security
metric with NVC and NVDT

(d) Measuring the Communication De-
fense Efforts subcategory using a com-
pound security metric with EVC and EVT

(e) Overall Effectiveness of MTDs taking
into account both Attack and Defense Ef-
forts

Figure 5: Comparative analysis of Shuffle and Diversity MTD techniques with respect to
the changing number of Software Variants
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decrease. This implies that those techniques are less effective as the num-
ber of variants increases. However, their combinations may increase attack
efforts if the deployment configuration can be optimized. However, it is out
of scope in this paper.

Figures 5c and 5d show the defense efforts. They show that as the number
of variants increases, the metric values increase as well. Since there are more
variants already in the network to work with, both shuffle and diversity-based
MTD techniques change less number of network components to satisfy the
MTD goal (i.e., to continuously change the attack surface). As the number
of variants converges to the number of hosts, the defense effort metric tends
toward value one.

Finally, Figure 5e shows the overall effectiveness of the two chosen MTD
techniques and their combinations with respect to the changing number of
software variants. In contrast to the changing number of hosts, both shuffle
and diversity-based MTD techniques are better than no MTD techniques
deployed, even with equal weights to the defense efforts. On the other hand,
the combined shuffle and diversity MTD technique performed poorly, because
it does not benefit when the number of variants is increased, while defense
efforts are increased as both shuffle and diversity-based MTD techniques are
implemented.

6.2.3. Number of Network States

MTD techniques can generate multiple network states that hold certain
security properties at different times. For this experiment, we vary the num-
ber of network states generated by the chosen MTD techniques (while no
MTD technique is static). We examine the effectiveness of MTD techniques
as the number of network states generated grows large. In practice, there
are tens of thousands of network states. But for comparing our chosen MTD
techniques, we did not need so many observations to identify the changing
attack and defense effort trends. For more complex MTD techniques, more
network states generated can be observed to identify the changing attack and
defense efforts using the proposed approach. Figure 6 shows the result, given
the numbers of hosts and software variants are fixed with values 20 and 3,
respectively.

Figure 6a shows the attack reconnaissance-related metrics. It shows that
increasing the number of network states does not have a large impact on the
path-based attack efforts. Specifically, the software diversity increases the
APE value when the number of network states increases, but at the same time

40



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) Measuring the Reconnaissance Attack
Efforts subcategory using a compound se-
curity metric with APV, APN and APE

(b) Measuring the Resource Attack Ef-
forts subcategory using a compound secur-
ity metric with ACE and ACD

(c) Measuring the Node Defense Efforts
subcategory using a compound security
metric with NVC and NVDT

(d) Measuring the Communication De-
fense Efforts subcategory using a com-
pound security metric with EVC and EVT

(e) Overall Effectiveness of MTDs taking
into account both Attack and Defense Ef-
forts

Figure 6: Comparative analysis of Shuffle and Diversity MTD techniques with respect to
the changing number of Network States
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the APV value decreases. APE is increased as software variants are assigned
to decrease the exploitability, but APV is decreased as the diversity does not
significantly change the set of attack paths. Similarly, the topology shuffle
approach diversifies the network that decreases the exploitability, but this is
achieved by shuffling only a small subset of edges in the network that results
in decreasing APV value. Hence, within path-based attack efforts, there were
trade-offs that balanced the effectiveness of the chosen MTD techniques.

Figure 6b shows the attack resource-related metrics. Only the shuffle-
based MTD techniques benefited as the number of network states increased.
In detail, shuffling the network topology increased both ACE and ACD,
while software diversity remained consistent. Shuffling the network topology
can increase the length of attack paths, while diversifying software cannot.
Hence, more network states can increase the ACD value, as well as the ACE
by increasing the mean attack path length.

Figure 6c shows the defense efforts related to the network nodes. Al-
though not very effective, the defense efforts related to diversity are increas-
ing (i.e., metric values are decreasing). On the other hand, Figure 6d shows
the defense efforts related to the network communication that capture the
defense efforts related to shuffle. The defense efforts are reduced as the num-
ber of network states increased (i.e., metric values are increasing), because a
similar proportion of edges is changed which is distributed over multiple net-
work states. However, there is a limit to the number of network states that
can be generated which hold MTD conditions required by the shuffle-based
MTD techniques, which will set the upper-bound of the defense efforts.

Finally, Figure 6e shows the overall effectiveness of the two chosen MTD
techniques and their combinations with respect to the changing number of
network states. Since other defense scenarios other than using the shuffle-
based MTD techniques did not show significant changes, only the shuffle-
based MTD techniques benefited with an increased number of network states.
Even if the weight values are changed, the effect will be similar as there are
no other significant changes observed.

7. Discussion

Although many methodologies and methods are proposed to evaluate the
effectiveness of MTD techniques, there are lacks of metrics to capture the
details of security impact when the network changes [Pendleton et al., 2016].
In this paper, we have categorized attack and defense efforts based on the
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shift in the attack surface when the network changes. Using the attack and
defense efforts, we proposed a new set of security metrics in order to evaluate
the effectiveness of MTD techniques. Furthermore, a comparative analysis
via simulations demonstrated the usability of our proposed metrics in order to
compare MTD techniques, as well as to observe the trade-offs between attack
and defense efforts. In this section, we discuss our findings and limitations
of our work.

7.1. Comparing MTD Techniques

We have proposed a new set of security metrics that capture the prop-
erties of attack and defense efforts as the network changes over time. We
demonstrated this through a comparative analysis via simulations, where
the numbers of hosts, variants, and network states are taken into account.
The results showed that there is a trade-off between the attack and defense
efforts, as increasing the attack efforts also increases the defense efforts (i.e.,
reducing the security risk increases the security cost). We have observed
that in most cases, not using any MTD techniques showed the worst case for
the attack efforts even though there are no defense efforts needed (i.e., the
benefit of deploying MTD techniques has a better trade-off compared to not
deploying any). These results showed that MTD techniques can enhance the
security posture of the network.

Depending on what changes are likely to be made to the network, one can
maximize the attack efforts while maintaining the minimum defense efforts
made. For example, the shuffle-based MTD technique is more effective than
the diversity-based MTD technique when considering multiple network states
to be generated, while it is the opposite if the network is expected to be
expanding with a growing number of hosts. In our future work, we will
consider incorporating more MTD techniques to evaluate their effectiveness
to review their characteristics in more details.

7.2. MTD Techniques and Threats

We have mainly focused on the effectiveness of MTD techniques against
the privilege escalation-based attacks in our comparative analysis. By fo-
cusing on a specific threat, we have classified the properties of attack and
defense efforts related to that threat more precisely. However, it also scoped
the ability to evaluate various MTD techniques that are designed for mit-
igating other threats. To address this issue, the effort-based categories also
need to be expanded to evaluate other threats. The modular design of the
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effort-based categories allows flexible additions and updates of the current
category model. Hence, we can add effort categories (and subcategories) for
other threats as necessary without altering the existing ones. Moreover, some
of the existing categories (e.g., cost-related) may be applicable to multiple
threats, which can be used to compare various MTD techniques. We will
further expand the effort-based categories to include various threats, as well
as developing a set of security metrics to measure them in our future work.

7.3. Security Metric Modules and Weights

One of the main contributions of this paper is the proposal for a new set
of security metrics that can evaluate the effectiveness of MTD techniques.
These metrics can take into account attack and defense efforts as the net-
work state changes over a period of time. By modulating those metrics,
it is more convenient to compare, as well as to apply different weighting
factors to different components of the compound metrics based on the user’s
perceived importance of different attack and defense efforts (i.e., the weight
assigned to individual dynamic security metrics can be dictated by the user
requirements). Some security metrics may not be normalized due to the
boundary-less nature (e.g., system risk), but the focus was to observe effort-
based metrics. However, incorporating non-effort-based metrics will also be
considered in our future work.

Weight values assigned to each modularized metric is important, as it
determines how much attack or defense efforts are made with regards to the
selected metric. In our experiment, we assigned the same weight values to
all metrics, but in practice, they could be different. For example, assigning a
variant will have a significant cost to the defense node category, while SDN
shuffling will have less cost to the communication category with respect to
variant assignment. We will further investigate the practical weight value
assignment strategy to further extend our findings in this paper.

7.4. Parameter Measurement

One of the major issues is to identify which subcategories of the attack and
defense efforts are needed in order to characterize an MTD technique, and
the relative efforts between them. For example, the value 0.5 computed for
the downtime subcategory may be more significant compared to the value
0.8 computed for the service overhead in the defense efforts. To address
this issue, we have proposed a compound security metrics to assign different
weights (i.e., the importance) between different dynamic security metrics.
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However, the method to assign those weights is currently done manually. In
the future, we will investigate how to systematically assign the importance
between the dynamic metrics.

To measure attack and defense efforts, properties of the network and MTD
techniques were quantified. Some parameters, however, were more difficult
to measure. For example, we can collect the number of attack paths and
attack paths variations by evaluating different network states captured, but
relying on the impact scores from the vulnerability databases may not fully
reflect the practical aspects of exploiting the vulnerability. However, there
are various empirical studies as well as many efforts to make the databases
more practical, and we expect the accuracy of those data would increase over
time.

8. Conclusion

In this paper, we have incorporated MTD techniques into a T-HARM
to model changes in the security of the dynamic networks and categorized
attack and defense efforts for capturing the effectiveness of MTD techniques.
Moreover, a new set of dynamic security metrics has been developed in or-
der to provide comprehensive evaluation methodologies to compare different
MTD techniques. Our experimental analysis for two concrete examples of
MTD techniques has demonstrated the comparisons of them, where the pro-
posed metrics provided an in-depth detail of their effectiveness in terms of
attack and defense efforts.
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