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Evaluating Practitioner Cyber-Security Attack Graph
Configuration Preferences

Harjinder Singh Lallie, Kurt Debattista, Jay Bal
University of Warwick, WMG, Gibbets Hill Road, Coventry, CV4 7AL

Abstract

Attack graphs and attack trees are a popular method of mathematically and visually rep-
resenting the sequence of events that lead to a successful cyber-attack. Despite their popu-
larity, there is no standardised attack graph or attack tree visual syntax configuration, and
more than seventy self-nominated attack graph and twenty attack tree configurations have
been described in the literature - each of which presents attributes such as preconditions
and exploits in a different way. This research proposes a practitioner-preferred attack graph
visual syntax configuration which can be used to effectively present cyber-attacks.

Comprehensive data on participant (n=212) preferences was obtained through a choice
based conjoint design in which participants scored attack graph configuration based on
their visual syntax preferences. Data was obtained from multiple participant groups which
included lecturers, students and industry practitioners with cyber-security specific or gen-
eral computer science backgrounds.

The overall analysis recommends a winning representation with the following attributes.
The flow of events is represented top-down as in a flow diagram - as opposed to a fault
tree or attack tree where it is presented bottom-up, preconditions - the conditions required
for a successful exploit, are represented as ellipses and exploits are represented as rectan-
gles. These results were consistent across the multiple groups and across scenarios which
differed according to their attack complexity. The research tested a number of bottom-up
approaches - similar to that used in attack trees. The bottom-up designs received the lowest
practitioner preference score indicating that attack trees - which also utilise the bottom-up
method, are not a preferred design amongst practitioners - when presented with an alterna-
tive top-down design. Practitioner preferences are important for any method or framework
to become accepted, and this is the first time that an attack modelling technique has been
developed and tested for practitioner preferences.

Keywords: attack modelling, threat modelling, cyber-security, security usability, security
visualisation

1. Introduction

Attack modelling techniques (AMTs) - such as attack trees, fault trees and attack graphs,
are used to model cyber-attacks and visualise the sequence of events that lead to a success-
ful attack. AMTs are constructed using a combination of shapes - such as circles, rectangles
and ellipses, to represent cyber-attack constructs such as preconditions and exploits. This is
referred to as the visual syntax (Moody, 2010), visual rhetoric (Scott, 1994) or visual gram-
mar (Kress and Van Leeuwen, 1996). The visual syntax configuration of modelling systems
such as fault trees (IEC, 1990) and Petri nets (Peterson, 1977) is standardised. This is not the
case for attack graphs or attack trees, and authors use self-nominated graph configurations
to model the attack, resulting in more than 70 different attack graph and more than 20 dif-
ferent attack tree visual syntax configurations. Furthermore, there are very few empirical
evaluations of the effectiveness of AMTs in aiding cyber-attack perception.
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The study found that the attack graph method was more effective than the fault tree
method. This was particularly notable given that attack trees (which are based on the fault
tree method) are a competing methodology for presenting cyber-attacks.

A number of studies have attempted to measure the effectiveness of AMTs (Stdlhane
and Sindre, 2007; Opdahl and Sindre, 2009; Hogganvik and Stelen, 2007). However, these
studies reveal a number of research gaps which the present study attempts to address re-
lating to the AMT coverage, statistical significance, and the importance of grounding such
studies with firm pedagogic underpinnings. The study by Lallie et al. (2018) was the first
to investigate the effectiveness of attack graphs in aiding cyber-attack perception by under-
taking a subjective evaluation of attack graphs and fault trees to determine which method
was more effective in aiding cyber-attack perception. In the first study, ‘effectiveness” was
defined as the ability of a participant to respond correctly to a question requiring the in-
terpretation of the visual syntax of a given AMT. This demonstrated an awareness of how
attacks are perpetrated and an understanding of the attack modelling technique.

The study also outlined the need for further research and in particular to identify what
further visual syntax improvements could be made to the attack graph method to increase
visual congruency and yield better perceptive acceptance amongst cyber security practi-
tioners.

The present research is motivated by the need to make cyber-security more “usable” and
the recognition that better techniques and methods are required to aid the perception and
assessment of cyber-attacks. Quite often, observers find the analysis and understanding
of complex patterns difficult and challenging (Kasemsri, 2006; Staheli et al., 2014). Well
designed diagrams and graphical systems can aid this process (Moody, 2007; Kang et al.,
2015). AMTs have potential value in aiding the perception and assessment of cyber-threat
and attack by enabling observers to search and recognise relevant information in a dia-
gram (Keller and Tergan, 2005; Homer et al., 2008; Dondossola et al., 2011; Staheli et al.,
2014). AMTs can help remove the intellectual burden from security experts - who have
to understand and evaluate numerous potential options and make evaluations of cyber-
attack scenario likelihoods (Roschke et al., 2011). In such circumstances, AMTs provide
effective tools and workspaces (Fink et al., 2009) to make this process clearer and simpler
and thereby facilitate easier discussion and debate (Dondossola et al., 2011).

The present study considers the following research question: ‘to what extent does symbol
usage and event flow in attack graphs affect perceptive preference in participants?’ The research
question is answered through a conjoint study which attempts to understand whether prac-
titioners prefer a particular visual syntax configuration over another and therein to identify
an optimal attack graph configuration design.

The study makes the following two contributions. To the best of the authors” knowl-
edge, this is the first study to perform an evaluation of the effectiveness of attack graph
configurations. The study adopts a novel method - conjoint analysis, not used in such eval-
uations before, in order to measure participant preferences.

The rest of this paper is structured as follows. Section 2 begins by outlining the the-
ory of attack graphs before proceeding to explore and critique previous research into the
effectiveness of AMTs. The Section concludes by introducing the application of conjoint
analysis to the understanding of participant preferences. Section 3 outlines the design of
the study and in particular, the conjoint design used in the present study. Section 4 presents
the results of the study.

2. Background and Related Studies

This section outlines three key areas of background research namely: attack graphs and
attack modelling techniques, previous studies into the evaluation and comparison of attack
modelling techniques and conjoint design and its” application in previous studies.

2.1. Attack Graphs

AMTs represent cyber-attacks by using semantic methods (formal languages) and/or
visual syntax in the form of a tree/graph /net. The visual representation of an attack utilises
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Figure 1 - Sample Attack Graph

symbolic modes of expression to visualise one or more of the three fundamental cyber-attack
constructs which are: the preconditions/postconditions of a cyber-attack; exploits; and pre-
condition logic. This is referred to herein as the visual syntax configuration. Examples of
these are given in Figure 1 where a precondition is represented as a rectangle, an exploit
as an ellipse and precondition logic by the presence or absence of an arc connecting two
edges.

Attack graphs and attack trees are both variants of a graph based representation of a
cyber-attack. Graph based representations are generally divided into two broad research
groupings: the attack graph and the attack tree groups, and there is a notable divide be-
tween research papers that focus on the description and analysis of one or the other with
barely even an acknowledgement of the existence and application of the other.

However, this paper takes the view that essentially, attack graphs and attack trees (and
their variants) can be described in generic graph based terms which apply to both, and that
other than the representation of event flow as top-down in attack graphs and bottom-up in
attack trees, there are very few differences between the two.

For example, the only difference between the attack graph proposed by Li et al. (2006)
and the threat tree (a form of attack tree) by Marback et al. (2013) is that the event flows
top-down in the former and bottom-up in the latter. The same applies to the attack graphs
by Bhattacharya et al. (2008) and Sen and Madria (2017), and the attack trees by Tentilucci
etal. (2015), Buoni et al. (2010) and Espedalen (2007). There are numerous further examples,
and consequently, this paper focuses on attack graphs in general having recognised that the
visual syntax problem described herein apply to both.

An attack graph can be represented as a mathematical abstraction of attack paths that
might be perpetrated against a given system (Sawilla and Ou, 2007; Nanda and Deo, 2007).
The graph comprises of nodes which represent exploits/attacks/events and edges which
represent a change of status.

The nodes in the graph can represent a range of elements such as an exploit (Noel
et al., 2004; Bhattacharya et al., 2008; Alhomidi et al., 2012), an event (Cheung et al., 2003;
Aguessy, 2016; Sundaramurthy et al., 2011) or a status (Heberlein et al., 2012; Dacier et al.,,
1996; Ortalo et al., 1999).

Edges in an attack graph can be directed - to represent specific transitions, or undi-
rected - to represent a general connection between two nodes and generally represent the
perpetration of an exploit.

Attack graphs and fault trees comprise of two fundamental elements represented as
graph data structures of the form: G(V; E) which comprises of vertices: v € V and edges:



e € E which represent relationships between the vertices (Jha et al., 2002b). An attack graph
can be expressed as a tuple of the form G = (S, 1, S, Ss, L, E) where:

¢ Sis a finite set of states,

e 7 C S x Sis a transition relation

e Sy C Sis a set of initial states

* S; C Sis a set of success states — for example obtaining root or user privileges on a
particular host

L: S — 247 is a labelling of states with a set of atomic propositions (AP)

E is a finite set of exploits which connect the transition between two states

The definition outlined above by Jha et al. can be applied to most attack modelling
systems including attack trees and fault trees.

Although attack graphs are a popular method of representing and modelling cyber-
attacks, other than the study by Lallie et al. (2018), there is a dearth of research on under-
standing the effectiveness of attack graphs in aiding cyber-attack perception.

2.2. Previous AMT Comparison Studies

Previous research into the effectiveness of AMTs has considered the effectiveness of
misuse cases (Meehre, 2005), misuse case maps (Karpati et al., 2010, 2011), attack trees
(Flaten and Lund, 2014) and the CORAS language (Hogganvik and Stelen, 2005, 2006,
2007). Studies have also engaged in comparing techniques such as the Common Crite-
ria, misuse cases and attack trees (Diallo et al., 2006); DREAD, NIST SP800-30, OCTAVE-S
and CORAS (Buyens et al., 2007); misuse case and FMEA (Stalhane and Sindre, 2007); at-
tack trees and misuse cases (Opdahl and Sindre, 2009); and misuse case maps and misuse
sequence diagrams (Katta et al., 2010). An overview of research in this domain is provided
in Table 1.

The studies highlighted in Table 1 attempt to measure the effectiveness of the AMT,
some also attempt to understand user perceptions of the technique i.e. to understand user
preferences for the given technique (Maehre, 2005; Stdlhane and Sindre, 2007; Opdahl and
Sindre, 2009; Karpati et al., 2010, 2011; Katta et al., 2010).

A considerable body of research has shown that user acceptance of a framework or
method is vital if it is to be successful (Dillon and Morris, 1996; Moody, 2003; Buabeng-
Andoh, 2012). The studies by Opdahl and Sindre (2009); Karpati et al. (2010) and Katta et al.
(2010) demonstrate that there may not always be a correlation between user acceptance and
effectiveness of the technique.

The studies outlined in Table 1 make a useful contribution to understanding the effec-
tiveness of AMTs, however, there exist a number of research gaps relating to: AMT cover-
age; statistical significance; insufficient grounding of variables; and conceptual differences
in the AMTs being compared. Furthermore, few if any of these studies have attempted to
understand ‘why’ participants prefer one method over another.

AMT coverage. There are no known studies that have attempted to understand the ef-
fectiveness of attack graphs in aiding cyber-attack perception in comparison with other
techniques. Although there are conceptual similarities in the visual syntax of attack trees
and attack graphs, only three of the studies under review considered attack trees (Diallo
et al., 2006; Opdahl and Sindre, 2009; Fldten and Lund, 2014).

The study by Diallo et al. (2006) and Opdahl and Sindre (2009) compared conceptually
different visual structures - common criteria method, misuse cases and attack trees; and
misuse cases attack trees respectively. This can be problematic because the differences in
the syntax being compared may be so different so as to render wide raising opinions.

In a number of studies (Mahre, 2005; Diallo et al., 2006; Buyens et al., 2007; Karpati
et al., 2010; Flaten and Lund, 2014) the number of participants have been too small to allow
for statistically significant conclusions.



Table 1 - Previous AMT comparison studies

AMT Description of Study [ Effectiveness Measurement n [ pref! [ Citation

Misuse cases Effectiveness of AMT and practitioner perceptions Case study with observations 10 i Meehre (2005)

The Common Criteria, mis- | High level analysis of the ‘learnability, usability, solution inclusive- | Self-observation/critical evaluation 2 Diallo et al. (2006)

use cases and attack trees ness, clarity of output, and analyzability’ of AMTs

DREAD, NIST SP800-30, Which AMT ‘performs best’ Observational. Completion of a risk reduction exer- 1 Buyens et al. (2007)

OCTAVE-S and CORAS cise using the four techniques

Misuse case and FMEA Compearison of techniques for ability to identify user related fail- | 80 minute task to analyse scenarios and identify fail- | 42 TAM | Stélhane and Sin-
ures ures dre (2007)

Attack trees and misuse | Comparison of techniques in aiding practitioner perception in | 2x90 minute controlled experiments to measure per- | n=28 TAM | Opdahl and Sindre

cases threat identification formance and perception and (2009)

n=35"

Misuse case maps Effectiveness in aiding non-expert stakeholders develop an under- | Questionnaire response 12 TAM | Karpati et al. (2010)
standing of multi-stage intrusions

Misuse case maps Effectiveness in aiding observers find vulnerabilities and mitiga- | Controlled experiment/test to solve series of tasks | 33 TAM | Karpatietal. (2011)
tions and self-reported TAM score

Attack trees Suitability for modelling cyber-threat and in aiding experts under- | Qualitative interview 2 Flaten and Lund
stand threat (2014)

Misuse case maps and mis- | Comparison of techniques for understanding, performance and | 90 minute task comprising of T/F questions (under- | 42 TAM | Katta et al. (2010)

use sequence diagrams perception standing), identifying/listing vulnerabilities (perfor-

mance)

CORAS The effect of visual syntax on understanding a risk scenario using | Questions relating to model navigation and under- | 25 Hogganvik  and
the CORAS language standing of concepts Stelen (2005)

CORAS What is the preferred method of visualising vulnerabilities and vi- | Survey comparing alternative representations of risk | 33 Hogganvik  and
sualising risk? comparison of the UML profile and the standard | scenarios Stelen (2006)
UML use case icons

CORAS An empirical investigation of risk modeling preferences among | Questionnaire emailed to participants to make selec- | 33 Hogganvik  and
professionals and students to improve tion between modelling alternatives Stelen (2007)

1 pref: Preference/acceptance testing method. i=interview; TAM=Technology Acceptance Model (Davis, 1985)

2 2 separate experiments



The studies by Meehre (2005); Diallo et al. (2006); Hogganvik and Stelen (2006, 2007);
Buyens et al. (2007), and Flaten and Lund (2014) outline the need to ground the selection
and design of AMT attributes with firm pedagogic underpinning. Quite often, there is little
or no rationale provided as to why particular design decisions were made. For example,
Hogganvik and Stelen ‘borrowed’ the and operator from the fault tree methodology in or-
der to remain ‘fault tree compliant’. However, the motivation behind maintaining fault tree
compliance is not explained, no other syntax is borrowed from fault trees.

Chaufette and Haag (2007) use rectangles, rounded rectangles and hexagons to repre-
sent preconditions interchangeably, however their usage is neither justified or explained.
This problem applies to most attack graph and attack tree based visual representations.

2.3. Conjoint Design

The research methods outlined in Table 1 range from observational studies (Mahre,
2005; Diallo et al., 2006; Buyens et al., 2007), participant tasks (Stdlhane and Sindre, 2007;
Opdahl and Sindre, 2009; Karpati et al., 2011; Katta et al., 2010), questionnaires (Karpati
et al., 2010; Hogganvik and Stelen, 2006, 2007) and interviews (Flaten and Lund, 2014).
User perception of AMTs is typically reported through an interview (Maehre, 2005) or a
questionnaire based on TAM (Technology Acceptance Model) (Stdlhane and Sindre, 2007;
Opdahl and Sindre, 2009; Karpati et al., 2010, 2011; Katta et al., 2010). TAM examines the
causal links between behavioural attitudes and intentions to use technology (Dauda and
Lee, 2015).

An alternative novel method of measuring user preference is through a conjoint design.
Conjoint analysis is a form of discreet choice research which allows for a measurement to
be made of population preferences and for preferences to be weighted in terms of the value
held by the population for particular attributes that influence the preferences. Conjoint
analysis can provide an indication of the trade offs that a population is willing to make
between the attributes.

Conjoint analysis is based on the theory of welfare economics (Phillips et al., 2002)
which proposes that users - when presented with a choice of options, will prefer one choice
over another in an attempt to maximise utility. This makes it reasonably straightforward
to model preferences and interrelationships. Conjoint analysis better represents realistic
tradeoff based decision-making in comparison with typical attitudinal surveys which typ-
ically do not impose resource constraints.

Participants are required to consider competing scenarios - each of which contain all or
a subset of the attributes under review and outline scenario preferences. Conjoint analysis
measures and quantifies the contribution of individual attributes within a configuration as
well as the entire configuration itself and attribute combination contribution.

3. Methodology

The present study seeks to understand the extent to which visual syntax elements such
as symbol usage, symbol count and event flow affect perceptive preference amongst par-
ticipants.

The study utilises a within-participant design comprising of five independent variables
(iv): background (b), event flow (ef), precondition (pr), exploit (ex), and scenario (sc).

The background iv is a between-participants variable which is divided into seven groups.
These groups are:

a. Final year/MSc/PhD students - subdivided into those studying cyber-security
(cybgtq, n=66) and general computer science/IT (cmpgy, n=27).

b. Lecturers whose teaching focuses largely on cyber-security (cybj,., n=17) and those
that focus on teaching computer science/IT (cmpy,., n=14)

c. Practitioners who have decision making/consultancy/management responsibilities
(cybian, n=34) and those who work in the cyber-security industry and have responsi-
bility for analysing cyber-attacks (cyb., n=20)

d. Practitioners working in the computing/IT industry (cmppr., n=34)



3.1. Attribute and Attribute Level Design

The proposed attack graph design contains three ‘attributes’ - event flow, precondition and
exploit. These attributes were previously described in Lallie et al. (2018). Each attribute has
a number of ‘levels” which correspond to the visual syntax used to represent the attribute.

The attribute levels were determined through a systematic literature review of more
than 370 academic papers on the subject of attack graphs and attack trees. Popular attribute
configuration methods are shown in Table 2. Although the table presents a review of the
use of shapes in attack graph visual syntax, the same shapes have also been used in attack
trees.

The attack graph design methodology was designed in accordance with the "Physics of
Notations” diagram design methodology proposed by Moody (2010). The ‘Physics of Nota-
tions” are a set of nine evidence based principles drawn from various disciplines includ-
ing: cognitive psychology, perceptual psychology, communication theory and cartography.
These principles form the guidelines for ‘effective diagrams’ and outline how shapes, lines,
colour and other diagrammatic variables (Bertin, 1983) should be manipulated to enable
better cognitive perception.

The representation of preconditions and exploits using plaintext, ellipse, rectangle, tri-
angles and circle are popular forms of representation. Of these, the circle and triangle were
rejected because they were the least frequently used - possibly because of the difficulty in
framing textual attack descriptions within these shapes as opposed to an ellipse and rect-
angle. The selected attribute levels therefore are plaintext, ellipse and rectangle.

Ellipses and rectangles are also used in other system modelling methods such as flow
charts, data flow diagrams, fault trees, attack trees, use-case modelling (Jacobson, 2011),
DRAKON charts (Parondzhanov, 1995) and UML activity diagrams.

The corresponding attributes and levels (ivs) are:

Event flow (ef). The ef attribute represents the direction of information flow. This at-
tribute is divided into two levels, top-down (ef;) - as used in flow charts and attack graphs,
or bottom-up (ef},) as used in fault trees and attack trees.

Exploit (ex). The ex attribute corresponds to the configuration of shapes used to repre-
sent exploits. This attribute has three levels: ellipse (ex.), rectangle (ex,) and plaintext (exp).

Precondition (pr). The pr attribute corresponds to the configuration of shapes used to
represent preconditions. This attribute is divided into three levels: ellipse (pr.), rectangle
(pry) and plaintext (prp).

Table 2 - A survey of cyber-attack construct visual syntax in attack graphs

Shape [ Supporting Citations

Plaintext | Cuppens and Miege (2002); Sheyner et al. (2002); Noel et al. (2003); Dawkins and Hale (2004); Fithen et al.
o (2004); Wang et al. (2006, 2007); Bhattacharya et al. (2008); Frigault and Wang (2008); Chen et al. (2009); Lv
£ (2009); Barik and Mazumdar (2011); Jun-chun et al. (2011); Abraham and Nair (2015)
G Ellipse Phillips and Swiler (1998); Ortalo et al. (1999); Swiler et al. (2001); Sundaramurthy et al. (2011); Barik and
§ Mazumdar (2014)
E Rectangle | Ingols et al. (2006); Sawilla and Ou (2007, 2008); Lee et al. (2009); Durkota et al. (2015)
Circle Braynov and Jadliwala (2003); Kotenko and Stepashkin (2006)
Plaintext | Geib and Goldman (2001); Jha et al. (2002a,b); Sheyner et al. (2002); Braynov and Jadliwala (2003); Sheyner
and Wing (2004); Zhang et al. (2005); Noel and Jajodia (2008); Lv (2009)
Ellipse Dacier et al. (1996); Daley et al. (2002); Ning and Xu (2003); Noel et al. (2003); Qin and Lee (2004); Foo et al.
(2005); Jajodia et al. (2005); Liu et al. (2005); Wang et al. (2006); Li (2007); Wang et al. (2007); Bhattacharya
= et al. (2008); Frigault and Wang (2008); Hewett and Kijsanayothin (2008); Chen et al. (2009); Zhong et al.
—'; (2009); Barik and Mazumdar (2011); Jun-chun et al. (2011); Ou and Singhal (2011); Ghosh and Ghosh (2012);
kS Alhomidi et al. (2012); Abraham and Nair (2015)
Rectangle | Cuppens and Miege (2002); Dantu et al. (2004); Kotenko and Stepashkin (2006); ?); Zhong et al. (2009);
Sundaramurthy et al. (2011); Barik and Mazumdar (2014); Flaten and Lund (2014), Durkota et al. (2015)!
Circle Lee et al. (2009); Idika and Bhargava (2012); Albanese et al. (2011)
Triangle Ingols et al. (2006)

L A rectangle with rounded edges
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Scenarios (sc).

Three real cyber-attacks: scl: Jeep Cherokee attack (Valasek and Miller, 2015), sc?: Stuxnet
attack (Falliere et al., 2011; Langner, 2011) and the sc®: Ukranian powersupply attack (Lee
et al., 2016; ICS-CERT, 2016), were each modelled into the nine attack graph configurations
outlined in Table 3. These scenarios were selected because they are real attacks and experi-
enced participants are likely to be familiar with them.

3.2. Materials

Each attack graph scenario was generated using the cyber-attack graph generator CAGG
tool - a purpose written tool which synthesises an attack definition file and an attack graph
configuration file to produce an attack graph. Both files are configured as an XML schema.
The attack definition file stores the attack sequence with the preconditions, exploits, and any
associated precondition logic. The attack graph configuration file stores the visual syntax
definition - indicating the symbols to be used for each construct.

The screen configuration was a sensitive task. It was important that participants see all
9 graphs on a single screen to enable them to compare scenarios and scores. However, each
graph was too large to be visually meaningful to enable all 9 graphs to appear on the same
screen. Consequently, thumbnails were added for each configuration, each thumbnail pre-
sented a full-sized graph when selected. A sample screen is shown in the supplementary
materials (Section 5.1).

Scenarios within the three screens were randomised. Each question on each screen was
based around the same cyber-attack case study. All participants were presented with the
same scenarios in the same order. Participants were not allowed to revisit screens, and
all participants were asked the same questions in the same sequence. Collectively, these
formed the control variables (cv).

The participants were selected because they have a computing background and were
expected to have some experience of system modelling techniques such as flow charts and
state diagrams. Such participants are likely to relate to and easily understand the attack
graph method. The results of the study are analysed for the entire group (all) and the in-
dividual groups as outlined above. This research somewhat extends the contribution by
Caire et al. (2013) and El Kouhen et al. (2015) who challenge the conventional approach of
‘design by committee’. Caire et al. (2013) showed that novice users propose symbol sets
that are more semantically transparent when compared with experts. In their study, novice
users generated the symbols, chose between them and evaluated their comprehensibility.
Caire et al. (2013) cite the example of BPMN 2.0 which although intended for communicat-
ing with business stakeholders was not designed with any involvement with the intended
audience. In the present study, while the initial 9 designs were proposed by the authors,
prospective end-users selected from these.

298 participants were recruited for the study. 86 participants did not complete the study
leaving 212 valid contributions.



3.3. Configuration Design

The complete attribute is a 2(ef) x 3(pr) x 3(ex) full factorial design rendering 18 con-
figurations. Ordinarily, 18 configurations could be tested as a full factorial design. How-
ever, the study intends to measure participant response to different levels of cyber-attack
complexity represented as three scenarios: sc!,sc? and sc3 (described in Section 3.2) so as
to understand whether preferences change according to scenario complexity. So, sc! has
fewer icons in the attack sequence, and sc® has many more icons in the attack sequence.

The complete attribute set is a 2(ef) x 3(pr) x 3(ex) x 3(s) full factorial design ren-
dering 54 configurations. This is too many configurations for one participant to score. A
selection of these configurations can be evaluated through a fractional factorial design the
results of which are analysed using conjoint analysis. A fractional factorial design enables
the researcher to pre-generate a sufficient smaller number of configurations (referred to as
a ‘plan’) without compromising the main effects of attributes.

A self-generated plan comprising of 9 cards was designed according to the guidelines
proposed by Huber and Zwerina (1996). The design is outlined in Table 3 and can be
described in the form: ef : ex : pr. So, eft, ex,, pry can be shortened to ter.

The present study requires participants to score each representation out of 10. This
enables richer empirical insights into the practitioner preferences.

3.4. Calculating Preferences

The study uses three dependant variables: overall graph utility score (1), attribute part
worth score (pw) and attribute importance value (aiv).

Ordinary least squares (OLS) regression analysis was used to estimate regression coef-
ficients corresponding to the part worth scores (pw) for each attribute level and the relative
importance value of each attribute (aiv). The dependent variable is the participant score for a
configuration and the independent variables are the differences in levels for each attribute.

pw was calculated using the inbuilt conjoint feature in SPSS (Dohle et al., 2010; Wallquist
et al., 2012; Farley et al., 2013; IBM DeveloperWorks, 2016). This is a standard method
for calculating part-worth for each level and the relative importance value of attributes
(Mesias et al., 2011). This model assumes that the preference expressed by a participant is
the aggregate of part-worth scores for the individual attributes. This can be described as:

pw = Bo+ B1X1 + P2Xo + B3X3 + € (1)

Where B is the intercept, B1 B2 and B3 are the coefficients corresponding with the levels
(ef =0,1,ex=0,1,2,pr =0,1,2), X3, Xy and X3 are the attributes ef, ex and pr respectively
and e is the error term.

The attribute importance value (aiv) is calculated by taking the part worth utility range
for each attribute (highest score minus the lowest score), dividing this by the sum of the
part worth utility range for all attributes and multiplying by 100 to give a percentage (Dohle

Table 3 — plan & attribute design

Event flow | Exploit Precondition | desc

Top-down | Ellipse Rectangle eft, exe, pry (ter)
Top-down | Ellipse Plaintext eft, exe, pry (tep)
Top-down | Rectangle | Ellipse eft, ex;, pre (tre)
Top-down | Rectangle | Plaintext eft,exy, pry (trp)
Top-down | Plaintext | Ellipse eft, exp, pre (tpe)
Bottom-up | Ellipse Rectangle efp, exe, pry (ber)
Bottom-up | Plaintext | Ellipse efy, exp, pre (bpe)
Bottom-up | Plaintext | Rectangle efy, exp, pry (bpr)
Bottom-up | Rectangle | Plaintext efp, exr, prp (brp)



et al., 2010; Pullman et al., 2012). The attribute importance value provides an indication of
individual attributes considered to be important by participants. However, it should be
noted that although an attribute can be important, it may not necessarily have a determin-
ing effect on winning configurations.

The total utility (u) for an attack graph is determined as follows:

M:‘Bef+‘33x+,8pr+]/l (2)

where f is an individual part worth score (calculated in Eq 1) and y is the constant term
of the conjoint estimation.

Conjoint analysis is subject to a number of limitations - particularly relating to partic-
ipant fatigue due to complexity; participants simplification strategies where the configu-
ration presents limited choices which do not represent real behaviour (Wyner, 1992); and
codifying subjective inputs.

The first two problems were addressed within the design itself. The fractional factorial
design reduces the number of configurations that participants need to respond to from
a potential 54 down to 27 - thereby enabling responders to focus on the response itself.
The decision to use a rating scale - where participants were able to provide a score of 1 to
10, as opposed to pairwise comparisons reduces the likelihood of participants adopting a
simplification strategy. The problem of codifying subjective inputs was addressed through
a design validation using dummy data which simulated numerous combinations of first,
second, seventh and eighth preferences. The equations outlined in Eq:(1) and Eq:(2) were
applied to show that the plan was effective.

4. Results

The homogeneity of variances for all the levels (p > 0.05) implied little evidence that the
variances between the levels were unequal and the homogeneity of variance assumption
was therefore satisfied.

A Kendall’s tau correlation was run to determine the relationship between rank order
preferences amongst the participants. There was a statistically strong, positive correlation
between the scores (K; = 0.919, p = 0.000). Similarly a Pearson’s r data correlation revealed
a statistically strong positive correlation between the variables (r = 0.991, p < 0.01).

4.1. Identifying Preferred Configurations

The overall utility scores (1) are presented in Table 4 which presents the combined over-
all utility score (all) and subdivides the results for each of the 7 groups. The Table also sub-
divides the results by scenario and presents the overall utility score for each attack graph
configuration. The Table particularly highlights the winning configuration for each of these
subdivisions and also the second most preferred configuration as well as the least preferred
configuration.

The winning graph configuration for the all group and each individual group was tre
(u=8.042). This configuration is presented in Figure 2 (middle) and has the following at-
tributes: event flow is top-down, exploits are represented as rectangles and preconditions as
ellipses.

The winning configuration was followed by ter as the second most preferred config-
uration for the all group (u=7.861) and the individual groups. This configuration has the
following attributes: event flow is top-down, exploits are represented as ellipses and precondi-
tions as rectangles. It is notable that neither of the top two configurations contain plaintext
as an attribute.

tre was the preferred configuration for all the scenarios (sc'...sc) for the all group, and
for 17 out of the 24 individual group scenarios. fer was the preferred configuration for
the following scenarios: sc':cmpyy, cybye and cmpy,.; sc?:cybgy and cmpgy; sc:cybgy and
CMPlec-
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all Cyhstd CMpsid Cyblec

sall Sl 32 S3 Sa]l sl 52 53 sull S1 SZ 53 Sall sl SZ s3
ter || 7.861 || 7945 7.858 7793 || 7.777 || 7.403 7.803 | 7727 || 8178 8276 8206
tep || 6.082 || 5925 6233 6067 || 6.164 || 5513 6279 6343 || 6101 || 5875 6323 6103 || 6434 || 6484 6348 6471
tre 8157 7966  8.019 7915  7.480 7690  7.841 TN 8349 8235
trp || 6359 || 6291 6327 6442 || 6340 || 5887 6280 6494 || 6199 || 6057 6032 6505 || 6354 || 6551 6248 6265
tpe || 6690 || 6518 6674 6867 || 6.625 || 6144 6590 6782 || 6785 || 6762 6809 6782 || 6854 || 6492 6836 7235
ber || 5799 || 5743 5884 5743 || 6085 || 5643 6359 5890 || 5985 || 5696 6165 6095 || 5152 || 5231 5138 5088
bpe || 4628 || 4316 4700 4817 || 4933 || 4384 5010 5042 || 4967 || 4622 5127 5150 || 3828 |[NENGEM 3.698 4117
bpr || 4724 || 4470 4686 4966 || 5009 || 4285 5035 5343 || 5014 || 4950 4842 5251 || 3747 || 383 3525 3.882
brp 4089 4353 4392 4700 4754 4350  4.873 m

CMPjec cybprc cYbman CMPpre

SaU Sl 52 S3 Sull sl s2 s3 sull Sl SZ SS Sall Sl 52 s3
ter || 7.682 |[JEXEH 7407 W 8142 || 8364 7998 8063 || 7972 || 8057 8014 7.843 || 7641 || 7792 7809  7.653
tep || 6625 | 7.049 6659 6159 || 5647 || 5436 5996 5509 || 6.002 || 6064 5929 6011 || 5988 || 5760 5777  5.850
tre SCH 7967 WAZZBl 8588 | 8584 8408 8773 8264 8329 8611 8113 8130  7.939
trp || 6788 || 7.044 6945 6406 || 6230 || 5983 6425 6284 || 6472 || 6407 6565 6443 || 6411 || 6380 6397 6550
tpe || 689 || 7.082 6868 6791 || 6539 || 6365 6527 6725 || 7.039 || 6807 7.015 7293 || 6519 || 6129 6146 6830
ber || 5336 || 5330 5243 5127 || 6220 || 6138 6300 6223 || 5094 || 5279 5206 4797 || 5605 || 5566 5583  5.819
bpe || 4550 || 4330 4704 4127 || 4617 || 4139 4829 4885 || 4161 || 4029 4207 4247 || 4483 4996
bpr || 4627 || 4588 [JEWENM 4391 || 4754 || 4466 4848 4950 || 4201 || 4165 4528 3911 || 4744 || 4202 4219 5410
brp 3.742 3757 4727 4444 3629 3757 3397 4154 4171 |G

KEY second

Table 4 — Overall Utility Scores (1)



The least favoured configuration for the all group and each individual group was brp
(u=4.297) which has the following attributes: event flow is bottom-up, exploits are repre-
sented as rectangles and preconditions as plaintext.

The least preferred configuration for each scenario in the all group and for 20 out of the
24 individual group scenarios is brp. For the remaining 4 individual group scenarios, the
least preferred scenarios are bpe for: sc':cybjec, cmppre and sc>:cmpyrc; and bpr for: sc?:cmp,.
It is notable that the bottom four configurations for all groups except cyb,. feature the
attribute ef,.

4.2. Part Worth Results

The part worth results outline the utility value of individual attributes and their levels.
These results are presented in Table 6 and Figure 3.

The part worth utility score for ef (pw : ef) for the all group indicated that ef; was the
preferred attribute level for event flow (pw : ef; = 1.031). pw : ex and pw : pr indicated
that plaintext is not a preferred attribute level for representing exploits or preconditions
(pw : exp = —0.809, pw : prp = —1.154). pw : ef was analysed across each scenario (sc),
this analysis revealed that ef; was preferred across all scenarios. Similarly, pw : ex and
pw : pr were analysed across all scenarios, this revealed that ex, and pr, were the least
preferred attribute levels across all scenarios.

Table: 5 outlines the differences in pw for ex and pr. pw : ex indicated a strong preference
for ex; over ex, for the all group (0 = 0.277). Similarly, pw : pr indicated a preference for a
pry over pr, for all (6 = 0.096).

Although rectangle was selected for both ex and pr, there is a greater difference in the
utility difference for ex; : ex. compared with pr; : pre.

Table: 5 shows that there was a preference for ex;, over ex, for all groups except cyby,.
who expressed a preference for ex, over ex, (6 = 0.080) and pr, over pr; (6 = 0.081). These
differences are marginal in comparison with the overall part worth score.

pw : pr(sc?) indicated a marginal preference for pr, over pr, (5 = 0.014). Not only
is this a small difference, sc? is the only scenario for which this preference is expressed.
This preference can be explained by the cmpgy, cyb.. and cmpy,. groups who expressed a
preference for pr, over pr;.

4.3. Importance of Individual Characteristics

Table 7 outlines the attribute importance values (aiv) for all the groups. The conjoint
results indicate that the precondition attribute plays the most important role in preference
choice (aiv =38.5%). The importance scores for event flow (aiv = 32.6%) and exploit (aiv =
28.8%) indicate, that the exploit attribute was the least important in decision making. Al-
though exploit had the lowest importance value, it had the strongest attribute selection score

Table 5 — Differences in pw for exploits and preconditions

combined cYbsia
all sc! sc? sc® all sc! sc? sc?
5(ex, : ex,) 0.277 0.366 0.094 0.375 0.176 0.374 0.001 0.151
5(pr, - pr) 0.09% 0.154 -0.014 0.149 0.076 -0.099 0.025 0.301
CMPstq C]/blec
all sc! sc? sc? all scl sc? sc®
5(ex, : ex.) 0.098 0.182 -0.291 0.402 -0.080 0.067 -0.100 -0.206
S(pry : pre) 0.047 0.328 -0.285 0.101 -0.081 0.164 -0.173 -0.235
CMPlec cy b pre
all sc! sc? sc® all sc! sc? sc®
5(ex; : exe) 0.163 -0.005 0.286 0.247 0.583 0.547 0.429 0.775
§(pr, : pr(,) 0.077 0.258 -0.274 0.264 0.137 0.327 0.019 0.065
Cybmnn CMP pre
all sc! sc? sc® all sc! sc? sc®
o(ex, - exe) 0.470 0.343 0.636 0.432 0.423 0.620 0.620 0.700
(5(pr, : pl’g) 0.040 0.136 0.321 -0.336 0.261 0.299 0.299 0.414

Note: Figures outlined in bold favour an ellipse
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Figure 3 — Part worth scores for all participant groups

indicating that although not as important, the participants expressed high importance for
the attribute level.

Importance values vary from group to group. For example, the lecturer group (cybj,,
and cmpy,.) expressed highest importance for ef, whilst cmpg, cybprc and cmppyc expressed
highest importance for pr.

Importance values vary from group to group. For example, the lecturer group (cybj,.
and cmpj,.) expressed highest importance for ef, whilst cmpg,4, cybprc and cmpy,c expressed
highest importance for pr.

5. Conclusions

The results of this study provide an insight into practitioner attribute preferences in an
attack graph. The results show that the winning configuration is tre. The event flow in the
winning configuration is top-down and consistent with the representation of models such as
flow charts and state diagrams. The bottom-up design popular with fault trees and attack trees
was strongly rejected and in fact graph configurations which involved a bottom-up design
scored the lowest in all groups except cyby, who scored ber higher than tep. However, that
was the only exception.

The score for top-down based configurations is notable and might explain why the attack
graph proposed by Lallie et al. (2018) proved to be more effective than the fault tree method.
Furthermore, the selection of a top-down design is particularly notable given the popularity
of attack trees which utilise a bottom-up design.

It is useful to discuss the selection of the preferred configuration (tre) within the context
of the attribute importance values. Section 3.4 outlined that although an attribute might be
identified as important, it might not necessarily have a determining effect on the winning
configurations. This was generally the case in the present study. The attribute importance
values for the all group outlined in Table 7 highlighted the precondition attribute as hav-
ing most importance (2iv=38.5) and the exploit attribute as having the least importance
(aiv=28.8). Although the top five preferred configurations presented event flow as top-
down, this shouldn’t be taken to mean that event flow was the most important attribute.
The attribute importance value outlines individual attribute preferences.

13



Table 6 — Part worth utility scores (pw)

all ‘ Cyhstd ‘ CMPstd ‘ Cyhlec ‘ CMpiec ‘ Cybpyc ‘ Cyhman

CMPpre

1.376

1.113

ofi 0846 0909 | 1513 | 1173 0961 1439 1018
efp | -1.031 | -0846 | -0.909 -0.961 | -1.439 | -1.018
9 | ex. | 0266 | 0300 | 0201 [JNEE 0294 | 0141 | 0146
£ | ex 0877 0611 0569
§ | ex, | -0.809 1172 | 0752 | 0715
O e [ 0529 0.635 0.740 | 0.630 | 0377
pry 0.563 0877 0670  0.638
prp | -1.154 | -1.050 | -1.119 | -1.190 | -0.679 | -1618 | -1.300 | -1.015
5949 | 6010 | 5722

1101 | -0.880 | -1.070 | -1410 4113 | -1389 | -1.113

= [exe [ 0302 [ 0328 [ 0188 | 0445 |MNOEYCHN 0375 | 0257 | 0248
ERRCA 063 0702 0370

5 | ex, | 0971 | -1.030 | -0558 | 0952 | -0.493 | -1.297 | -0.857 | -1116

S o | 0571 B 0413 | 0172 | 0758 | 0574 | 0478

pry 0.763 1085 0710 0777

prp | 1295 | 1293 | -1.198 | -0990 | -0.603 | -1.843 | -1283 | -1.255
5.621

0790 0841 | 1569  1.082
efy, | 0987 | 0790 | -0.841 -1.082 | 0.849 | -1404 | -1.113
o] ex 0441 [EIEA
B exy 0.442 0.247
S pre RVl 0.698
prr 0537 [ER
prp -1.088
] 5.551
efi 0816 | 1.559
efy | -1.025 | -0.870 | -0.816
o | ex 0134 | 0132 | 0147 [NV
£ | ex 0941 0583 0.603
§ | er, | -0643 -0.735
S pre 0.476 0.835
prr 0.500
pry | -1101 | 0758 | -1.049 | -1.235 | -1.000 | -1.681 | -1.333 | -1.064
con | 6009 | 6099 | 6189 | 5676 | 5664 | 6104 | 5670 | 6.094
* Constant

The selection of a rectangle for an exploit is consistent with the use of rectangles in fault
trees to represent events and data flow diagrams to represent a process, and with Specification
and Description Language Diagrams to represent tasks. Knowledge and experience with these
modelling systems - particularly data flow diagrams may have influenced participants in

their selection.

An ellipse is not used for similar purposes in many other modelling systems that the
participants may have been aware of. Although the precondition was considered to have
the highest importance in selection decisions, there was less certainty about which shape

winning scores shown in green

(ellipse or rectangle) should represent preconditions.

Table 7 — Attribute importance values (aiv) expressed as percentages
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The study aimed to discover whether preferences would change between scenarios.
Although there were small changes in preference, these were not considered significant
enough to be notable. Furthermore, the study aimed to discover whether preferences
would alter between groups. Here again, although there were some changes between sce-
narios, overall the selection of tre and the rejection of brp held well across all the groups.

5.1. Limitations and Future Work

It is notable that the configuration selected for the attack graph in Lallie et al. was fer
- which was the second most preferred configuration in the present study. There may be
value in performing a similar study to Lallie et al. to consider the effectiveness of tre against
ter - particularly because of what Caire et al. (2013) refer to as the preference performance
paradox where the preferred system is not necessarily the most effective one.

Although it would be useful to understand perceptual preferences relating to visual
syntax such as colour, tone, line width/density/structure, and further attributes such as
attacker capability and attack goals, adding further attributes complicated the study in terms
of the factorial design and would render an overly complex experimental design compris-
ing of too many factors. Now that the preferences for attributes the attributes highlighted
herein have been found, a further study might consider the impact that adding further
attributes has on preference.

The results were gathered from a wide base of students, lecturers and practitioners in
both cyber-security and general computing. The study investigated preferences for expert-
s/practitioners but not non-experts. The study by Lallie et al. (2018) outlined that attack
graphs might be an effective method of presenting cyber-attacks to non-experts. If attack
graphs are to be used for this purpose, it would be useful to understand attack graph pref-
erences amongst non-experts.

Finally, more work should be done to understand the the impact of attack graph com-
plexity on practitioner preferences. Although the present study considered preference de-
cisions over three scenarios - each of which presented increasing levels of complexity, the
changes in complexity were quite small.
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