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Abstract:
The substation communication protocol used in smart grid allows the transmission of messages
without integrity protection for applications that require very low communication latency. This
leaves the real-time measurements taken by phasor measurement units (PMUs) vulnerable to
man-in-the-middle attacks, and hence makes high voltage to medium voltage (HV/MV) substa-
tions vulnerable to cyber-attacks. In this paper, a lightweight and secure integrity protection
algorithm has been proposed to maintain the integrity of PMU data, which fills the missing in-
tegrity protection in the IEC 61850-90-5 standard, when the MAC identifier is declared 0. The
rigorous security analysis proves the security of the proposed integrity protection method against
ciphertext-only attacks and known/chosen plaintext attacks. A comparison with existing integrity
protection methods shows that our method is much faster, and is also the only integrity protection
scheme that meets the strict timing requirement. Not only the proposed method can be used in
power protection applications, but it also can be used in emerging anomaly detection scenarios,
where a fast integrity check coupled with low latency communications is used for multiple rounds
of message exchanges. This paper is an extension of work originally reported in Proceedings of
14th International Conference on Security and Cryptography (Jolfaei and Kant, 2017).

1 Introduction

This paper addresses the integrity problem
of protection messages in generic object oriented
substation event (GOOSE) communications at
medium- and high-voltage substations. In pro-
tection applications, time is a critical component
and therefore a fast communication plays an in-
tegral role in maintaining operation reliability of
power systems. Examples of time critical ap-
plications are load shed (Adamiak et al., 2014)
and synchrophasor-assisted transfer trip (Kundu
and Pradhan, 2014), where a trip signal is sent
from a substation to another that could be more
than 100 miles away. Clearing a fault quickly
is paramount for protecting electrical equipment

from damage and a delay in relay-to-relay com-
munications could be detrimental to the power
grid. Given the sensitivity of the issue, commu-
nication networks impose requirements that are
very stringent, for instance, IEC 61850 standard
limits the transfer time for protection messages to
1
4 cycle or 4 ms (for 60 Hz lines) for the most crit-
ical messages. Over the past two decades, many
power companies have already deployed hundreds
or thousands of PMUs and phasor data concen-
trators (PDCs) that have no cryptographic accel-
eration (Pappu et al., 2013). These devices can-
not maintain the strict 4 ms latency requirement
when they are equipped with conventional hash
based techniques, such as a cipher-based MAC
(CMAC) (Dworkin, 2007) and a hash-based MAC



(HMAC) (Khan et al., 2007), because of the la-
tency implied by the overheads.

Traditionally, as explained in IEC 61850-90-
5 (IEC 61850-90-5, 2012), when the latency im-
plied by the MAC implementation cannot be tol-
erated, messages are transmitted in the absence
of integrity protection, as shown in Table 2. This
leaves the data vulnerable to man-in-the-middle
attacks, which can alter the current phasor of the
bus, for instance, to a value greater than the max-
imum rated current of the line or even to zero
amperes. This would trigger protective relays to
switch on and off, which could be costly to elec-
trical equipment and perturb the grid, potentially
leading to blackouts.

To meet the 4 ms latency requirement, we
looked for a lightweight and a non-hash-based so-
lution. A potential solution is in the use of a
fast checksum, which has the advantage of having
less computational cost. Checksums are common
methods for detecting accidental data corruption,
for instance, in TCP (Zander et al., 2007) and
ZLIB (Sofia et al., 2015); and compared to MACs,
they impose much less computational overheads.
However, since checksums can be easily spoofed,
we propose a novel integrity protection method,
which hides checksum bits inside payload data
using a fast bit permutation technique. The pro-
posed integrity protection method uses an ID-
based key exchange protocol that does not require
any service center to distribute keys or devices
to keep directories of keys. Our rigorous secu-
rity analysis shows no weaknesses in the proposed
method, and demonstrates no simple method of
recovering the secret key. We also confirm the se-
curity of the proposed integrity protection method
against ciphertext-only attacks and known/chosen
plaintext attacks. To the best of our knowledge,
the proposed method is the first secure technical
solution that meets the strict communication la-
tency requirements in protective relaying in trans-
mission and distribution substations.

The remainder of this paper is organized as
follows. Section 2 describes the application and
security requirements of smart grid. Section 3
summarizes the related work. Section 4 provides
details of the proposed embedding and integrity
verification algorithms. The security of the pro-
posed method is evaluated using an adversarial
model in Sections 5. Section 6 evaluates the per-
formance of the proposed method with respect to
computational complexity and running time, and
the results are compared with previous works.
Section 7 discusses the applications where the

proposed integrity protection could be utilized
to maintain strict time latency, high throughput,
and low energy consumption. Finally, Section 8
concludes that the proposed scheme is secure, ef-
ficient and feasible.

2 Smart Grid Applications and
their Requirements

The supervisory control and data acquisition
(SCADA) systems in emerging smart grids mon-
itor, control and protect power system compo-
nents by making use of a network of PMUs. As
shown in Figure 1, synchronous PMUs are in-
stalled in various locations (key substations) of
the transmission and distribution lines and cap-
ture voltage magnitude, phase, and line frequency
30 to 60 times a second. PMU measurements
could be used for different smart grid applica-
tions, all of which have their own latency re-
quirements depending upon the kind of system
response they are dealing with. Based on latency
requirements, there are two main classes of appli-
cations: Energy management applications with a
latency of seconds and power system protection
applications with a tight latency of milliseconds.

In energy management applications, PMUs
send their measurements along with their global
position system (GPS) location to PDCs. This
is done through a publish-subscribe mechanism,
where the PMUs work as publishers to which the
PDCs subscribe. A PDC receives data from many
(typically 3 to 32) PMUs, and then sorts and ag-
gregates the received data based on a time-tag.
The aggregated data is then relayed using a two-
way communication system to a number of local
control centers (LCCs), which coordinate their
actions interacting with a federated control center
(FCC). Subsequently, LCCs draw the best overall
snapshot solution using all PMU measurements
(Weng et al., 2016).

In protection applications, time is critical and
therefore a fast message communication is re-
quired. Figure 2 shows examples of time crit-
ical applications, such as short circuit analysis
(Bose, 2010), relay protection (Neyestanaki and
Ranjbar, 2015), oscillation detection (Moslehi
and Kumar, 2010), frequency and voltage sta-
bility monitoring (Zhang et al., 2010), load
shed (Adamiak et al., 2014) and synchrophasor-
assisted transfer trip (Kundu and Pradhan, 2014)
where a trip signal is sent from a substation to
another that could be more than 100 miles away.
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Fig. 1: Typical model of a power grid architecture.
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Fig. 2: Applications of PMU measurements based on latency requirement.

Delay requirements for power system networks
depend on a number of parameters, such as the
specific protection equipment used. Most power
line equipment can endure faults or short cir-
cuits for up to approximately five power cycles
before experiencing irreversible damage or affect-
ing other segments in the network. This trans-
lates to total fault clearance time of less than 84
ms. However, as a safety precaution, actual op-
eration time of protection systems is limited to
approximately 70 percent of this period, includ-
ing fault recognition time, command transmission

time and line breaker switching time (Wetterwald
P. and Raymond J., 2015). Some system compo-
nents, such as large electromechanical switches,
require particularly long time to operate and take
up the majority of the total clearance time, leav-
ing only a 10 ms window for the communications
part of the protection scheme, independent of the
distance to travel. Given the sensitivity of the
issue, communication networks impose require-
ments that are even more stringent, for instance
IEC 61850 standard limits the transfer time for
protection messages to 1

4 cycle or 4 ms (for 60 Hz
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Fig. 3: An overview of IEC 61850-90-5 Standard.

lines) for the most critical messages.

Control centers use the IEC 61850-90-5 stan-
dard to communicate with smart measurement
units (IEC 61850-90-5, 2012). This standard (as
shown in Figure 3) utilizes a generic object ori-
ented substation event (GOOSE) protocol for fast
relay-to-relay communications. Since GOOSE
messages are time critical, they are only associ-
ated with three layers of the open systems inter-
connection (OSI) model, namely, physical, data-
link, and application layers. IEC 61850 utilizes
a standardized Ethernet frame with a maximum
payload size of 1492 bytes (Fan et al., 2015).
The number of required measurements depends
on the topology of the power grid as well as the
requirements of optimal estimation of the system
states (Martin, K., Zwergel, A., and Kapostasy,
D., 2015). Generally, in each substation, the prin-
cipal bus voltages should be included in the mea-
surement set. To this end, several PMUs are nor-
mally used to cover a large substation. The size
of measurement data depends on the number of
voltages that a PMU measures. Table 1 gives
the size of payload data in transmission and dis-
tribution substations under various PMU/PDC
configurations.

Although the use of PMUs has facilitated the
efficient management and delivery of power in
current smart grids, it is vulnerable to integrity
attacks. The standard for formatting and deliv-
ery of PMU data (IEEE Standard C37.118 (Mar-
tin et al., 2008)) includes no end-to-end security
mechanisms, and transmits messages in plain-
text without any mechanism to protect their in-
tegrity. Although, a cyclic redundancy check
(CRC) (Sobolewski, 2003) is used in the PMU
data frame, the integrity protection of a CRC
is null, as it cannot detect intentional tamper-
ing. To this end, IEC 61850-90-5 mandates the

use of a number of message authentication code
(MAC) algorithms (Table 2) in combination with
UDP/IP and/or IGMP/DSCP protocols (IEC
61850-90-5, 2012), where the use of MAC algo-
rithms is determined by an identifier in the mes-
sage header based upon latency requirements.

The complete deployment of IEC 61850-90-5
will take a long time (Seyed Reza et al., 2016)
because of the compatibility issues of the stan-
dard as well as the hardware issues. For example,
there are still many PMUs and PDCs in operation
that have no cryptographic acceleration (Pappu
et al., 2013). In addition, when the latency im-
plied by the MAC implementation cannot be tol-
erated, IEC 61850-90-5 allows the transmission of
messages in the absence of integrity protection, as
shown in Table 2. This mainly happens in protec-
tion applications where time is critical and there-
fore a fast message communication is required.
In such applications, the use of MAC algorithm
is largely disabled by setting the identifier to zero.
This leaves the PMU data vulnerable to man-in-
the-middle attacks, which can alter the current
phasor of the bus, for instance, to a value greater
than the maximum rated current of the line or
even to zero amperes. This would trigger pro-
tective relays to switch on and off, which could
be costly to electrical equipment and perturb the
grid, potentially leading to blackouts.

3 Related work

Recent research has mainly been focused on pre-
serving the integrity of PMU data in applications
where latency is on the order of seconds (rather
than milliseconds), such as static state estima-
tion, power flow analysis and model validation.
The integrity problem in such applications can
be addressed using conventional hash based tech-
niques, such as a cipher-based MAC (CMAC)
(Dworkin, 2007) and a hash-based MAC (HMAC)
(Khan et al., 2007). However, these solutions can-
not be used in power system protection because
of the latency implied by the overheads. Despite
the importance of data integrity in the protec-
tion of power equipment, only a few technologi-
cal solutions have been given, (Guo et al., 2007;
Zhang et al., 2008; Abuadbba and Khalil, 2015;
Abuadbba et al., 2016), which mainly utilized
steganographic methods. Compared to crypto
primitives, steganographic methods normally re-
quire less memory, power and processing capabil-
ities, which can suit the constrained capabilities
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Table 1: Size of payload data under various PMU/PDC configurations

#PMU
voltage

PMU
data

PDC data size (N PMUs) Applicability

channels size(B) N = 3 N = 6 N = 10

1 40 104 200 328 Single phase line in distribution systems
3 56 120 216 344 3-phase power transmission lines
6 80 144 240 368 power transmission lines
8 96 160 256 384 power transmission lines
10 112 176 272 400 power transmission lines

Table 2: Allowed values for MAC value calculation

Identifier MAC algorithm
Key size
(bits)

0 None None
1 SHA-256 80
2 SHA-256 128
3 SHA-256 256
4 AES-GMAC 64
5 AES-GMAC 128

of smart grid infrastructure.

In (Guo et al., 2007), Guo et al. proposed a
fragile watermarking method for protecting the
integrity of payload data. In this scheme, pay-
load is firstly split into groups of variable size.
The size of the group is determined adaptively as
a function of the data itself. A secure hash func-
tion, such as MD5, is then applied to each data
element in the payload. If the hash value is zero,
then the data element marks the end of the group.
A watermark is formed by both the current group
hash value and the group hash value of the next
group. The watermark is stored in the least sig-
nificant bits of all data elements. However, Guo
et al.’s watermarking scheme needs to compute a
secure hash function several times. Therefore, it
is computationally expensive for the microproces-
sors used in PMUs.

In (Zhang et al., 2008), Zhang et al. pro-
posed an end-to-end, statistical approach for the
integrity protection of sensory measurement data
using a direct spread spectrum sequence (DSSS)
based watermarking technique. In this scheme,
the measurement data, which is sent from the
sender nodes, is visualized as an image at differ-
ent time snapshots, in which every sender node
is viewed as a pixel and its value corresponds to
the gray level of the pixel. Following this equiv-
alency, a watermark is embedded in this image
in a distributed fashion at each node. Given the
watermark as a prior knowledge, the receiver is
then able to verify the integrity of the measure-

ment data. However, the proposed method is dis-
closed using known/chosen plaintext attacks, be-
cause the size of embedding data is much smaller
than the size of payload data, and watermarks
are generated under the same key.

In (Abuadbba and Khalil, 2015), Abuadbba
and Khalil proposed a steganographic method,
which protects the integrity of smart grid read-
ings by hiding a confidential information (a
fingerprint) bit-by-bit inside the detailed sub-
band coefficients of the discrete wavelet trans-
form (DWT) of the payload data. Although this
method is much faster than MAC-based solutions,
it cannot protect the integrity of the complete
payload data, because the adversary can simply
spoof a fradualent message by modifying the ap-
proximation coefficients of DWT of the payload
data. In other words, only one pair of covertext
and stegotext is enough to break the integrity pro-
tection algorithm. In addition, the embedding
process makes irreversible distortions at the loca-
tion of hidden bits in the covertext. Therefore, a
portion of measurement data will be lost, which
may impact the decision making process of con-
trol centers. The transmitted stegotext is highly
prone to intentional (interference) and uninten-
tional (noise) attacks rendering the steganogra-
phy based integrity protection solutions imprac-
tical. Indeed, any slight change in the transmit-
ted stegotext will result in the loss of embedded
information, and more significantly, loss of faith
in the received GOOSE message. To this end,
Abuadbba et al. (Abuadbba et al., 2016) com-
bined a 3D DWT based steganographic method
with an error detection and correction technique,
namely, BCH syndrome codes, to detect and re-
cover any change in the payload data. However,
the size of hidden data is much less than the
size of payload data, and therefore, similar to
(Abuadbba and Khalil, 2015), the location of the
embedded data is easily disclosed by making use
of known/chosen covertext attacks.

It follows that steganography by itself cannot
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Table 3: Notations

Notation Description

N The number of bytes in a plaintext
P A plaintext represented by an 8N -bit array
X A checksum represented by a 16-bit array
E An expanded text represented by a (8N + 15)-bit array
C A ciphertext represented by a (8N + 15)-bit array
p(i) A binary value at the position i (0 ≤ i ≤ 8N − 1) of the plaintext
x(d) A binary value at the position d (0 ≤ d ≤ 15) of the checksum
e(w) A binary value at the position w (0 ≤ w ≤ 8N + 15) of the expanded text
c(j) A binary value at the position j (0 ≤ j ≤ 8N + 15) of the ciphertext
K The set of secret keys
P The set of N bytes in a plaintext P , that is, P = {P0, P1, . . . , PN−1}
C The set of N + 2 bytes in a ciphertext C, that is, C = {C0, C1, . . . , CN+1}
L The set of byte locations for a plaintext P with N bytes, that is, L =

{l | l = 0, 1, . . . , N − 1}
Pr(Pt,Ct) The probability that the resulting sequence of the t-th query and response is

(Pt,Ct)
Pr(Ct+1|(Pt,Ct)) The probability that a ciphertext Ct+1 is transmitted by the sender as the next

message, given the sequence of current query and response pairs (Pt,Ct)

sufficiently address the integrity problem, and it
needs to be combined with another method, such
as hashing or encryption, to make the stegotext
secure from attacks. To this end, we propose a
novel lightweight solution for the integrity prob-
lem, which is secure from well-known attacks.

4 Proposed Integrity Protection
Scheme

The building blocks of the proposed scheme are
explained in following subsections. The notations
used in the explanation are listed in Table 3.

4.1 16-bit Fletcher Checksum

The 16-bit Fletcher checksum has two variants:
a one’s complement and a two’s complement ver-
sion. In this paper, we used the former, because
it provides better error detection than the latter
(Nakassis, 1988). The 16-bit Fletcher checksum
is calculated iteratively over a sequence of 8 bit
blocks, namely, P0, P1, . . . , PN−1, by maintaining
two unsigned one’s-complement 16-bit accumula-
tors R and S, whose contents are initially zero.
The pseudo-code of the 16-bit Fletcher checksum
is given in Algorithm 1. It could be shown that
at the end of the Fletcher’s loop, R will con-
tain the 8-bit one’s complement sum of all 8 bit
blocks in the payload data, and S will contain

N ·P0 +(N −1) ·P1 + · · ·+PN−1. One advantage
of the Fletcher algorithm is that it detects the
transposition of octets/words of any size within
the data stream. The error detection proper-
ties of the Fletcher checksum is comparable to
CRCs (Sobolewski, 2003) with significantly re-
duced computational cost.

4.2 Permutation-only Encryption

The permutation-only encryption scheme shuf-
fles the bit locations within an expanded text E,
which is constructed by appending the checksum
X to the payload data P . The bit permuta-
tion process dissipates the statistical structure of
the expanded text into long range statistics. To
permute the bit locations, a sequence of pseudo-
random numbers is constructed by a concatena-
tion of three pseudo-random sequences generated
from a linear congruential pseudo-random num-
ber generator, defined by the following recurrence
relation:

yj+1 = (h · yj + q) mod 232, (1)

where 0 ≤ j ≤ d 8N+16
3 e, h mod 4 = 1,

q mod 2 = 1, and y0 is arbitrary. If h
and q are selected appropriately, for example,
h ∈ {2891336453, 29943829, 32310901} and q ∈
{3, 5, 7}, the generated sequences pass formal sta-
tistical tests (Bellare et al., 1997). To avoid rep-
etition, differing seeds are used to initiate linear
congruential generators. The pseudo-random se-
quence is then sorted in an ascending order, and
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Algorithm 1 16-bit Fletcher checksum

1: procedure Fletcher(P )
{Fletcher computes the checksum value X,
given a payload P }

2: R← 0, S ← 0
3: for i← 0, N − 1 do
4: R← (R + Pi) mod 255
5: S ← (S + R) mod 255
6: end for
7: X ← (S � 8) + R

. S � 8 denotes a logical left shift of S by 8
bits

8: end procedure

Algorithm 2 Permutation-only encryption

1: procedure Permutation(E,K)
{Permutation rearranges the bit locations,
given an expanded textE and a key
K = (y′

0, y
′′
0 , y

′′′
0 )}

2: for j ← 0, d 8N+16
3
e do

3: y′
j+1 ← (h1 · y′

j + q1) mod 232

4: y′′
j+1 ← (h2 · y′′

j + q2) mod 232

5: y′′′
j+1 ← (h3 · y′′′

j + q3) mod 232

6: y3j ← y′
j+1, y3j+1 ← y′′

j+1, y3j+2 ← y′′′
j+1

7: end for

8: X ← sort {yw}8N+15
w=0

9: for j ← 0, 8N + 15 do
10: c(j)← e(xj)
11: end for

12: end procedure

therefore, a unique index order number is ob-
tained. To complete the permutation, each bit
of the expanded text E is relocated according
to its corresponding index order. The permuted
array forms the ciphertext C. More precisely,
C = {c(j) | c(j) = e(xj), for 0 ≤ j ≤ 8N + 15}.
The permutation-only encryption scheme is de-
scribed in Algorithm 2.

Since we are using permutation as a basic
mechanism in our algorithm, the plaintext cannot
be all 0’s or all 1’s, since the permutation would
not do anything in that case. In case of the PMU
data, this cannot happen since the PMU includes
items such as frequency and time stamp that can
never be zero or negative if it is valid. Further-
more, no real SCADA system should accept an
input without at least an elementary range and
other sanity checks; therefore, even if arbitrary
bit patterns are sent to it, it will simply discard
them. Furthermore, if such patterns are suffi-
ciently observed frequently, it would trigger an
alarm, which would notify the control center of
potential availability attacks. It is also possible

Algorithm 3 Checksum embedding

1: procedure Embedding(P ,K)
{Embedding embeds a Fletcher checksum and
generates a ciphertext C, given a plaintext P
and a key K}

2: X ← Fletcher(P )
3: E ← [P ,X]

. P and X are concatenated to form E
4: C ← Permutation(E,K)

5: end procedure

Algorithm 4 Integrity verification

1: procedure Verification(C,K)
{Verification checks the integrity of a
transmitted payload, given a ciphertext C
and a key K}

2: E ← Permutation(C,K)
3: P ← [e(0), e(1), . . . , e(8N − 1)]
4: X ← [e(8N), e(8N + 1), . . . , e(8N + 15)]
5: X′ ← Fletcher(P )
6: if X 6= X′ then
7: Integrity verification is failed
8: end if

9: end procedure

for our integrity mechanism to append additional
random bits on the transmit side that are re-
moved on the receiver side.

4.2.1 Cryptographic Properties

The recurrence relations used in Algorithm 2 are
fast, and require minimal memory (32 bits) to
preserve the state. This allows the simulation of
multiple independent streams. Moreover, there
is no repetition in the permutation sequence, be-
cause the period of each linear congruential gener-
ator 232 is by design much larger than 8N+16. To
further study the statistical properties, the NIST
SP800-22 tests (L’Ecuyer and Simard, 2007) were
applied to a sequences of 10 million bits gen-
erated using the linear congruential generators.
The test results are reported in Table 4 using P -
value, which summarizes the strength of the ev-
idence against the randomness (null) hypothesis.
For these tests, each P -value is the probability
that a perfect random number generator would
have produced a sequence less random than the
sequence that was tested, given the kind of non-
randomness assessed by the test. A P -value less
than 0.01 is an indication that the randomness
hypothesis is false with a confidence level of 0.99.
As shown in Table 4, the sequence passed the test.

The pseudo-random numbers generated by
linear congruential generators are known to be
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Table 4: NIST SP 800-22 test results

Tests P-value

Frequency test 0.8263
Frequency test within a block 0.0959
Runs test 0.4726
Test for the longest run of ones in a block 0.5797
Binary matrix rank test 0.7882
Spectral test 0.2366
Non-overlapping template matching test 0.4256
Overlapping template matching test 0.5724
Maurer’s “Universal statistical” test 0.8801
Linear complexity test 0.8063
Serial test 0.0802
Approximate entropy test 0.7637
Cusums test 0.6700
Random excursion test 0.2172
Random excursion variant test 0.4014

predictable in their simplest form (Plumstead,
1983). Even if the parameters y0, h, q, and b are
unknown (used as the secret key), the sequence of
numbers produced by a linear congruential gener-
ator is still predictable given some of the yj for j
(0 ≤ j ≤ 8N + 15) (Plumstead, 1983). However,
this predictability does not imply that a crypto-
graphic algorithm using a linear congruential gen-
erator is breakable, because the random numbers
used by the permutation algorithm are interme-
diate values, which are not made public.

4.2.2 Salting Procedure

To avoid using the same permutation mapping,
the key is randomized with a salt value. Since
GOOSE is a connectionless protocol, it would
require out-of-band synchronization for employ-
ing key randomization. Such out-of-band syn-
chronization is difficult to achieve in the con-
strained substation environment. Therefore, to
avoid out-of-band synchronization, the key is
salted with the status number (a 32-bit counter)
in the GOOSE message to generate differing per-
mutations in every dlog2(8N + 16)e − 1 PMU
transmissions, where N is the number of plain-
text bytes. This helps to resist certain types of
cryptanalysis, such as plaintext attacks and pre-
computed rainbow table attacks (Oechslin, 2003).
If the limit of the status number (that is, 232) is
reached, the GOOSE protocol re-establishes the
number (namely roll-over), and the secret key
is re-synced. For example, for N = 128 bytes,
the key is salted every 10 transmissions using a
counter, which is 32 bits in most microprocessors.
Assuming PMU sampling rate of 60 per seconds,

re-keying is needed only every 232

6 seconds or 22
years, which is much longer than re-syncing peri-

ods chosen for other reasons.

4.3 Embedding and Verification
Procedures

The Embedding and Verification algorithms are
defined over three sets, namely the plaintext P ,
the ciphertext C, and the key K, respectively.
P is not an arbitrary set, and it follows IEEE
C37.118 (Martin et al., 2008). Each key deter-
mines a mapping from a set of plaintext into a
set of ciphertext, and vice versa. The embedding
procedure computes the checksum X of the plain-
text P ; it appends the checksum to the payload
data P , and then, permutes the expanded data
using a fast keyed bit shuffler. More precisely,
C = Πk[P ,X], where X = Fletcher(P ),
and [P ,X] denotes the concatenation of P and
X. The embedding process is described in Algo-
rithm 3.

The content verification procedure is the in-
verse procedure of checksum embedding. To ver-
ify the integrity of transmitted messages, the re-
ceiver first decrypts the received message C us-
ing a shared key K; recomputes the checksum
value X′, and then, compares it with the embed-
ded checksum X. If the computed and received
checksum mismatch, then this shows that there
was a message modification. This procedure is
detailed in Algorithm 4.

4.4 Key Exchange

IEC 61850-6 recognizes the burden of implement-
ing cryptography on PMUs/PDCs with relatively
low processing power and allows the transmission
of GOOSE protection messages, which require a
strict 4 ms response time, without integrity pro-
tection. Our proposed solution covers this miss-
ing integrity gap. However, since the proposed
integrity protection method uses a symmetric en-
cryption algorithm, its security highly depends
on the initial key agreement, rekeying, and re-
vocation. To address this concern, we propose
a secure and efficient key management between
PMUs and PDCs in transmission and distribution
substations. In the PMU/PDC communication
model, the participants, namely, group members
are PDCs and PMUs, through which a PDC re-
ceives data streams from multiple PMUs and cor-
relates them in real-time into a single data stream
that is transmitted to a computer via an Ethernet
port. A PDC can use multicast to communicate
with all of the PMUs in its range. PMUs regis-

8



ter with the PDC to form a group. During the
registration, the group key is exchanged through
a centralized model (PDC as the cluster head).
The PDC can also re-initiate the contact (rekey
process) with group PMUs.

Previous group key schemes (Felde et al.,
2017) cannot be deployed directly since 1) they
require a service center to store key directo-
ries, 2) they are not able to minimize the down-
time during smart grid’s operation, and 3) Most
PMU/PDCs are equipped with limited memory
and low-capacity micro-controllers, which tend to
be restricted in their storage capability and com-
putation.

An efficient solution is to share a symmet-
ric group key between all multicast participants.
With the support of the shared key (group key),
the integrity of multicast communication data
can be maintained and verified. The group key is
updated (that is, rekeyed) using a Diffie-Hellman
key exchange, when all keys are exhausted or
when a member joins/leaves the group. Although
Diffie-Hellman key exchange between PMUs and
PDC is expensive in terms of communication
overheads and computational costs, it is feasi-
ble, because in PMU/PDC communication, PMU
and PDC devices have stationary membership.
The group membership change events, for exam-
ple, joining/leaving are rare, unless a device be-
comes faulty and/or a new PMU/PDC device is
installed in the substation. In addition, given
that the minimum size of payload data is 40 bytes
in a single channel PMU measurement (Table 1),
the key should be salted every 8 transmissions
using a counter, which is 32 bits in most micro-
processors. Assuming PMU sampling rate of 60

per seconds, re-keying is needed only every 232

7.5
seconds or 18 years, which is much longer than
re-syncing periods chosen for other reasons.

We propose an ID-based key exchange proto-
col that uses a Diffie-Hellman public key distri-
bution scheme and the device identification in-
formation (ID) instead of the public key used in
the Diffie-Hellman scheme. The advantage of our
scheme is that it does not require any services
of a center to distribute keys or devices to keep
directories of keys.

4.4.1 Algorithm Setup

Step 1: When the network is set up, a trusted
key generation center in substation generates two
prime numbers p and q, each about 256 bits long,
and determines a prime number e and an integer

d, satisfying e · d (mod(p− 1) · (q − 1)) = 1, with
both e and d less than n = p · q. It also deter-
mines an integer g, which is a primitive element
in GF (p) and GF (q). The trusted key generation
center generates and publishes (n, g, e) but keeps
(p, q, d) secret.

Step 2: For an authorized device A, the trusted
key generation center assigns it a randomly gen-
erated ID, named IDa, and computes sa = ID−da

mod n. Then, the trusted key generation cen-
ter stores (n, g, e, IDa, sa) into a smart card and
issues it to A.

Step 3: For an authorized device B, the trusted
key generation center assigns it a randomly gen-
erated ID, named IDb, and computes sb = ID−db
mod n. Then, the trusted key generation cen-
ter stores (n, g, e, IDb, sb) into a smart card and
issues it to B.

Step 4: A and B respectively input/insert these
secret value to their devices via secure channel,
for example, through physically touch methods
via smart cards.

Step 5: A randomly generates an integer ra and
computes ta = gra+IDb · sa. B randomly gener-
ates an integer rb and computes tb = grb+IDa · sb.
Step 6: A and B exchange (IDa, ta) and
(IDb, tb).

Step 7: A and B compute the followings to re-
trieve the key.

ka = ((g−IDa · tb)e · IDb)
ra mod n

= gerarb mod n, (2)

kb = ((g−IDb · ta)e · IDa)rb mod n

= gerbra mod n. (3)

5 Security Analysis

Mathematically, the adversary could be consid-
ered as an oracle machine which has access to
the sender’s embedding function without knowing
the key. The adversary asks n number of queries
from the sender’s embedding function to obtain
a set of n plaintext and ciphertext pairs, that is,
∆ = {(Pt,Ct) | t = 1, 2, . . . , n}. If the adversary
successfully breaks the integrity protection algo-
rithm, the location of the checksum is disclosed,
and therefore, the adversary can create a forgery
that cannot be detected by the verification algo-
rithm of the receiver. The spoofing query is suc-
cessful if the adversary receives a positive verifi-
cation response (Ct+1, 1) from the receiver. This
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type of spoofing represents a rather strong adver-
sary, but is realistic in smart grid settings, since
the messages could be intercepted and potentially
forged. The above discussion suggests that defin-
ing security against such a strong adversary is
usually not a simple task.

Before we analyze the security of our proposed
method, we point out why simpler variants of the
same idea are insecure. Suppose that we encrypt
the payload data using pseudo-random permuta-
tions, that is, C = Πk(P ). Permutation dissi-
pates the statistical structure of the payload into
long range statistics. Choosing a permutation of
large length size can exponentially increase the
number of possible permutations of payload, that
is, #(π) = (8N)!. This exponential search space
can make the statistical attacks cumbersome by
increasing the size of a payload data. However,
the encryption of payload bits can only maintain
data confidentiality, rather than integrity. As ex-
plained in (Krawczyk, 2001), an adversary can
simply spoof a new message by modifying the bits
in transit.

Another variant is to hide a checksum in-
side the payload data. This could be achieved
by using a steganographic method, for instance,
an LSB method (Cogranne and Retraint, 2013).
However, this method is not secure from chosen-
covertext attacks and chosen-stegotext attacks
(Cohen and Lapidoth, 2002). Only one pair of
chosen covertext and stegotext is enough to dis-
close the location of hidden checksum, which is
sufficient to bypass the integrity protection algo-
rithm. This problem could be solved by encrypt-
ing or hashing the embedded payload (that is,
expanded text). However, this solution is not ap-
propriate because of the high latency induced by
cryptographic primitives.

Now we analyze the security of the pro-
posed integrity protection method, that is, C =
Πk[P ,X].

5.1 Ciphertext-Only Attack

Theorem 1. The proposed integrity protection
scheme is secure from ciphertext-only attacks.

Proof. In a ciphertext-only attack, the adversary
is able to observe the transmitted ciphertext (that
is, the embedded GOOSE message), and then, re-
calculate the checksum value of the first N bytes
in every possible permutation, that is, (8N + 16)!
checksum recalculations (in worst case). If the
value of the recalculated checksum corresponds

to the last two bytes of a permutation, then the
checksum bytes and their locations will be dis-
closed. However, this is infeasible for a large N .
As discussed in Section 1, the minimum size of a
PMU data is 40 bytes, which means the adversary
needs to recalculate at least 2.11 × 10664 check-
sums. This number of computations is extremely
large, and thus makes the ciphertext-only attack
impractical. A less computationally intensive ap-
proach is to simply try to guess the key. How-
ever, brute-force attacks are not feasible, because
the proposed algorithm employs three 32-bit se-
cret seeds (recall Algorithm 2), which makes the
key size more than 80 bits, that is, the minimum
key space recommended by NIST (Barker et al.,
2016). This requires checking 1028 possibilities,
which too is infeasible.

5.2 Known-Plaintext Attack

In the following, we derive an information the-
oretic bound on the success probability of the
query adversary, who spoofs after making t oracle
queries, under the assumption that the key is not
changed during the queries. To this end, we use
the following lemmas for the proof of Theorem 2.

Lemma 1. Let (Pt,Ct) be a pair of query and
response with Pr(Pt,Ct) 6= 0, let Ct+1 de-
note a ciphertext with Pr(Ct+1 | (Pt,Ct)) 6=
0, and let K = K((Pt,Ct), (Ct+1, 1)). Then,
Pr(Ct+1|(Pt,Ct)) · log2(Pr(Ct+1|(Pt,Ct))) ≤∑

k∈KPr(k,Ct+1 | (Pt,Ct)) · log2(Pr((Pt,Ct),
(Ct+1, 1))) ·Pr(Ct+1|k, (Pt,Ct)).

Proof. Let γ denote a function of k. If k ∈ K,
then,γ = 1; otherwise, γ = 0. From Pr(Ct+1 |
(Pt,Ct)) 6= 0, it follows that K 6= ∅ and
Pr((Pt,Ct), (Ct+1, 1)) 6= 0. Accordingly, we can
define a probability distribution Ψ((Pt,Ct),Ct+1)

on k as

Ψ
((Pt,Ct),Ct+1)

(k) =
Pr(Ct+1 | (Pt,Ct)) · γ(k)

Pr((Pt,Ct), (Ct+1, 1))
.

(4)
Since Pr((Pt,Ct), (Ct+1, 1)) =

∑
k∈KPr(k |

(Pt,Ct)) · γ(k), then,
∑

k∈KΨ((Pt,Ct),Ct+1)(k) =
1. Therefore, Ψ((Pt,Ct),Ct+1) is a probability dis-

tribution. If Pr(Ct+1 | k, (Pt,Ct)) 6= 0, then,
γ(k,Ct+1, (Pt,Ct)) = 1; thus, we can rewrite the
conditional entropy as

Pr(Ct+1 | (Pt,Ct)) =∑
k∈K

Pr(k|(Pt,Ct))·Pr(Ct+1|k, (Pt,Ct))·γ(k).

(5)
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By the definition of Ψ((Pt,Ct),Ct+1), we get

Pr(Ct+1|(Pt,Ct)) =
∑

k∈K
Ψ((Pt,Ct),Ct+1)(k)·

Pr((Pt,Ct), (Ct+1, 1)) · Pr(Ct+1 | k, (Pt,Ct)).
(6)

Using Jensen’s Inequality (Briat, 2011) and Equa-
tion 4, we obtain

Pr(Ct+1 | (Pt,Ct))·log2(Pr(Ct+1 | (Pt,Ct))) ≤∑
k∈K

Ψ((Pt,Ct),Ct+1)(k)·Pr((Pt,Ct), (Ct+1, 1))·

Pr(Ct+1 | k, (Pt,Ct))·log2(Pr((Pt,Ct), (Ct+1, 1))·

Pr(Ct+1 | k, (Pt,Ct))) =
∑

k∈K
Pr(k,Ct+1 | (Pt,Ct))·

log2(((Pt,Ct), (Ct+1, 1))·Pr(Ct+1 | k, (Pt,Ct))).
(7)

This proves the lemma.

Lemma 2. For (Pt,Ct) ∈ ∆ with Pr(Pt,Ct) 6=
0, H(Ct+1 | (Pt,Ct)) ≥ − log2(Pr(Pt,Ct)) +
H(Ct+1 | K, (Pt,Ct)).

Proof. From the definition of H(Ct+1 | (Pt,Ct))
and the use of Lemma 1,

H(Ct+1|(Pt,Ct)) ≥

−
∑

Ct+1∈∆
Pr(Ct+1|(Pt,Ct))·log2(Pr((Pt,Ct), (Ct+1, 1))

−
∑

Ct+1∈∆

∑
k∈K((Pt,Ct),(Ct+1,1))

Pr(k | (Pt,Ct))·

Pr(Ct+1 | k, (Pt,Ct))·log2(Pr(Ct+1 | k, (Pt,Ct))).
(8)

This relation is expanded by the definition of
H(Ct+1|K,(Pt,Ct)) as

H(Ct+1|(Pt,Ct)) ≥

−
∑

Ct+1∈∆
Pr(Ct+1|(Pt,Ct))·log2(Pr((Pt,Ct), (Ct+1, 1))

+H(Ct+1 | K, (Pt,Ct)). (9)

Since Pr(Pt,Ct) ≥ Pr((Pt,Ct), (Ct+1, 1)), we
have

H(Ct+1 | (Pt,Ct)) ≥
− log2(Prt(Pt,Ct)) +H(Ct+1 | K, (Pt,Ct)).

(10)

This completes the proof.

We are now in position to prove the follow-
ing lower bound on the success probability of the
query adversary.

Theorem 2. Given the proposed integrity pro-
tection scheme, let Prt denote the probability of
success of an adversary, who spoofs after making

t oracle queries. Then, Prt ≥ |K|
−1
t+1 .

Proof. This proof is a direct application of the
proof used in (Rosenbaum, 1993) to the situa-
tion in which the adversary makes oracle queries
rather than observing messages. From the def-
inition of the conditional mutual information,
I(K;Ct+1 | (Pt,Ct)) = H(K | (Pt,Ct)) −
H(K | Ct+1, (Pt,Ct)) = H(Ct+1 | (Pt,Ct)) −
H(Ct+1 | K, (Pt,Ct)). Hence, it is sufficient to
show that log2(Prt) ≥ H(Ct+1 | K, (Pt,Ct) −
H(Ct+1 | (Pt,Ct)). By the definition of Prt and
using Jensen’s Inequality (Briat, 2011), we obtain

log2(Prt) = log2(
∑

(Pt,Ct)∈∆
Pr(Pt,Ct)·Prt(Pt,Ct))≥∑

(Pt,Ct)∈∆
Pr(Pt,Ct) · log2(Prt(Pt,Ct)).

(11)

The lower bound of log2(Prt(Pt,Ct)) proved in
Lemma 2 yields∑

Ct+1∈∆
Pr(Pt,Ct) · log2(Prt(Pt,Ct)) ≥∑

Ct+1∈∆
Pr(Pt,Ct)·(H(Ct+1|K, (Pt,Ct))−H(Ct+1|(Pt,Ct)))=

H(Ct+1 | K, (Pt,Ct))−H(Ct+1 | (Pt,Ct)).
(12)

Using Inequalities 11 and 12, we obtain

Prt ≥ 2H(K|Ct+1,(Pt,Ct))−H(K|(Pt,Ct)). (13)

Accordingly, − log2(Prt+1)≤− log2(Pr0 × Pr1×
· · · × Prt) ≤ (H(K) − H(K|(P1,C1))) +
(H(K | (P1,C1)) − H(K|(P2,C2))) + · · · +
(H(K|(Pt,Ct)) −H(K|(Pt+1,Ct+1))) = H(K)
−H(K|(Pt+1,Ct+1)) ≤ H(K). Therefore,
log2(Prt) ≥ − 1

t+1H(K). Since keys are equally
likely to be used, and also as the probabil-
ity of success after the observation of t pairs
of plaintext and ciphertext is equal, we have
H(K) = log2(|K|). Therefore, log2(Prt) ≥
− 1

t+1 log2(|K|). This proves the theorem.

In the following, we explain a strategy that a
query adversary may undertake for known plain-
text attacks.
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Lemma 3. Given a permutation-only encryp-
tion primitive, which operates on plaintexts with
8N + 16 number of binary entries, the number of
required known plaintexts n to perform a success-
ful known-plaintext attack is O(dlog2(8N + 16)e).

Proof. In a known-plaintext attack, to disclose
the permutation mapping, which works on ar-
rays of 8N + 16 bits, it is sufficient to input a
plaintext with distinct entries. However, from
the practical point of view, constructing a plain-
text with distinct entries may not be feasible, be-
cause each entry of the plaintext array is from
a finite set {0, 1}, and the number of entry loca-
tions, that is 8N+16, exceeds the number of entry
values. Therefore, a collection of plaintexts, all
of which have repeated entry values, is required
to uniquely determine the underlying permuta-
tion. This problem is equivalent to splitting an
array with distinct entries into a number of ar-
rays whose entry values are equal or less than the
maximum number of entry values. To split the
array, the adversary needs to expand the entries
using n digit expansions in radix 2, where n digits
clearly produce 2n different values. This implies
the following relationship for the number 8N+16
of entry locations:

2n < 8N + 16 ≤ 2n+1. (14)

The inequalities above indicate that the source
entries can be expanded by O(dlog2(8N + 16)e)
digits, and therefore, the source array can split
into O(dlog2(8N + 16)e) plaintexts. In other
words, O(dlog2(8N + 16)e) plaintexts construct
a source array with distinct entries.

5.3 Chosen-Plaintext Attack

In a chosen-plaintext attack, which is a stronger
notion of security compared to a known-plaintext
attack, the aim is to find a procedure with a re-
duced number of required plaintexts.

Lemma 4. Given a permutation-only encryp-
tion primitive, which operates on plaintexts with
8N + 16 number of binary entries, the number of
required chosen plaintexts n to perform a success-
ful chosen-plaintext attack is n = dlog2(8N+16)e.

Proof. Theoretically, the permutation mapping
can be easily deduced using a source array of
size 8N + 16, whose entries are sequentially la-
beled with distinct values 0, 1, . . . , 8N+15. How-
ever, this is not practical, because the encryp-
tion/decryption primitives only operate on binary
values, which are less than the number of entries.

Therefore, to make the attack feasible, the en-
tries are firstly expanded by dlog2(8N + 16)e dig-
its with radix 2. This matrix is then separated
into dlog2(8N + 16)e numbers of plaintexts based
on the digit positions in radix 2. Once permu-
tation is applied to the plaintexts, it produces
dlog2(8N + 16)e ciphertexts with entries in radix
2. A combination of ciphertexts using the posi-
tional digits reveals the mapped locations.

We are now in position to prove the following
theorem.

Theorem 3. The proposed integrity verification
scheme is secure from known/chosen plaintext at-
tacks.

Proof. To falsify the data, the adversary needs to
disclose the permutation mapping. To this end,
following Lemmas 3 and 4, the adversary asks
at least dlog2(8N + 16)e queries from the oracle
machine to determine the permutation mapping.
These queries are made under the assumption
that the same key is used for generating plaintext
and ciphertext pairs in each and every queries.
However, the keys are salted to a frequency less
than the required number of pairs for a success-
ful attack, and are all equally likely to be used.
Nevertheless, the adversary tries to impersonate
the sender by using only one query. Following
Theorem 2, the minimum probability of success
for such attacks is 1√

|K|
, which is negligible. In

addition, the adversary may try to find the per-
mutation period, or may try to exhaust all possi-
ble permutation keys by asking numerous queries.
Such an analysis could provide the adversary with
a number of plaintext and ciphertext pairs, which
had been generated using the same key. However,
the permutation domain grows exponentially by
increasing the size of payload, and this makes the
attack computationally infeasible. For instance,
given a payload data with 100 bytes, 9.33× 10157

queries need to be asked to exhaust all keys. This
is computationally infeasible, and makes the pro-
posed scheme secure from known/chosen plain-
text attacks.

5.4 Salt Attack

In a salt attack scenario, the adversary attempts
to partially disclose the key by comparing differ-
ent pairs of plaintext and ciphertext, which were
made under small modifications of salt value.
Since the status number has linear properties, the
proposed scheme seems to be vulnerable to off-
path attacks (Gilad, Y. and Herzberg, A., 2014).
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The adversary can observe the initial messages,
and hence, determine the status number. The
adversary can then perform a man-in-the-middle
attack, and fabricate a new status number for
the GOOSE message. To this end, the adver-
sary may increase the status number, because a
message with a lower status number than that of
the previously received message will not be pro-
cessed. However, the receiver can easily recognize
the fake GOOSE messages through the verifica-
tion process. Any change in the status number
would result in a different permutation mapping,
which makes the message verification fail at the
receiver side. In addition, knowing the salt value
does not help in finding the secret key, because
permutation indices are constructed by the nu-
merical order of expanded key stream; and thus,
it is not easy to obtain the exact expanded key
from permutation indices. Furthermore, the per-
mutation domain is long, and this makes the ad-
versarial analysis difficult to find pairs which were
encrypted under the same key.

Another attack strategy is to take control over
the status number, before the embedding process,
on the receiver’s side. To this end, the adver-
sary may give the same status (order) to GOOSE
messages. This may provide the adversary with a
number of plaintext and ciphertext pairs that are
generated under the same encryption key. Under
such attack scenarios, the security margin of the
proposed scheme would be dlog2(8N+16)e chosen
queries (as demonstrated in Figure 4). However,
such physical attacks may be impractical, because
the access points of PMUs are physically secured
upon proper configuration, which prevents tam-
pering and reprogramming. Nonetheless, the ad-
versary makes further effort to break the scheme
by making use of less number of chosen queries
(even one). Following Theorem 2, since the per-
mutation domain depends on the size of the plain-
text, the minimum success probability of an ad-
versary, who uses only one query for an attack,
is 1√

(8N+16)!
, which is negligible. Figure 5 de-

picts the log scale curve of the minimum suc-
cess probability of an adversary, who uses at most
dlog2(8N+16)e−1 queries. As shown in Figure 5,
this probability is negligible.

5.5 Key Exchange Attack

It is very difficult to prove the security of the
proposed key exchange method in a strict sense,
but we can demonstrate that it is probably se-
cure. Firstly, the adversary cannot easily ac-

Fig. 4: Number of required queries for a complete
break.

Fig. 5: Min. success probability with dlog2(8N+16)e−
1 queries.

cess PMU/PDC smart cards, because the ac-
cess points of PMUs are physically secured upon
proper configuration, which prevents tampering
and reprogramming. However, the adversary is
able to obtain public values (n, g, e). The adver-
sary attempts to disguise as a legitimate PMU
to exchange keys with PDC. Since it is impossi-
ble for the adversary to obtain (IDPDC , tPDC),
he/she randomly generates a two-tuple (x, y) in
place of (IDPDC , tPDC) and calculates a key with
the equation k = ((g−ID · y)e · x)r mod n, which
is not same as the key generated by PDC, and
hence the adversary cannot fool PDC to accept a
manipulated PMU measurement.

6 Experimental Performance
Evaluation

In addition to security analysis, the performance
of the integrity protection algorithm is also an
important factor to consider, especially for real-
time GOOSE communications, which require a
high level of efficiency. The computational com-
plexity of the integrity protection algorithm is the
summation of complexities of the 16-bit Fletcher
checksum generation and the bit permutation
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Table 5: Algorithm performance comparison

Algorithm Speed (KB/s)

Proposed method 424
MD5 147
Chaskey 145
ChaCha20-Poly1305 94
AES-128-CCM 70
AES-128-EAX 70
AES-128-GCM 41

process. Given an array of length n, the complex-
ity of computing the 16-bit Fletcher checksum is
α · n, where α is a constant. The computational
complexity of the bit permutation process is the
sum of complexities of the pseudo-random num-
ber generation and the radix sorting procedure.
The computational complexity of generating n
pseudo-random numbers using a linear congru-
ential generator is β · n, where β is a constant.

In addition, given an array of length n, radix
sorting rearranges the array in linear time. There-
fore, in the worst case, a permutation of an array
with length n is achieved using µ·n computations,
where µ is a constant. Accordingly, the compu-
tational complexity of the integrity protection al-
gorithm is (α+ β + µ) · n.

Given that the maximum size of payload
data is 1492 bytes, a feasible integrity protec-
tion method should have a minimum through-
put of higher than 373 kilobytes per second
(KB/s). This allows parties to communicate re-
liably within the maximum acceptable latency (4
ms). Since the most recent microprocessors in
substation automation systems use ARM Cortex-
M processor cores, we evaluated the throughput
of the integrity protection algorithm on an ARM
Cortex-M0 platform with 48 MHz frequency.

For this experimental evaluation, we use K =
(1, 2, 3) as a representative key for the perfor-
mance analysis. We also compared our per-
formance results with that of MD5, Chaskey,
ChaCha20-Poly1305, AES-128-CCM, AES-128-
EAX, and AES-128-GCM on the same platform
(Birr-Pixton, 2015; Mouha et al., 2014). The
benchmark results on an ARM Cortex-M0 mi-
croprocessor are shown in Table 5. Benchmarks
show that all methods have the same computa-
tional complexity O(n), where n is the number of
message bytes. O(n) gives an asymptotic bound
c · n, which describes a linear growth for a signif-
icantly large n. However, since n is bounded, the
constant factor c makes a difference in running
time. Compared to previous schemes, as con-
firmed by the run-time analysis shown in Table 5,

the proposed integrity protection method is much
faster, and it is the only scheme that meets the
minimum speed requirement, that is, 373 KB/s.
This fast integrity checking opens the use of en-
ergy anomaly detection methods when multiple
message exchange is required.

7 Applicability to Other
Environments

The generality of our proposed integrity pro-
tection implies that it can also be utilized in ap-
plications that require strict time latency, high
throughput, or low energy consumption. Some
examples of these situations include the GOOSE
protocol where the prime requirement is latency,
intelligent transportation systems (ITS) where
encryption throughput is of highest importance,
and body sensor networks (BSNs) where energy
consumption is a major concern.

For example, in ETSI Intelligent Transporta-
tion System (ITS) security standard (Festag,
2014), the most stringent latency requirement for
messages conveying imminent safety danger is 20
ms (Bertini, 2015). With a typical 200B message
size, this amounts to security processing rate of
20 KB/sec on both transmit and receive sides.
Furthermore, given a typical safety message rate
of 10/sec/vehicle, and a communication range of
300 meters, a vehicle may need to verify about
1000 messages/sec (Ahmed-Zaid et al., 2006). In
the worst case, several of these messages may
arrive at the receiving vehicle almost simultane-
ously, and an even faster processing would be re-
quired to meet the 20 ms delay limit. Verifying
the message integrity at such high rates would re-
quire specialized processors and hinder V2V de-
ployment.

In general, the utilization of the proposed
method is subject to following restrictions:

• Encryption keys need to be randomized with a
salt value to a frequency less than dlog2(8N +
16)e. In PMU data frame, the minimum size
of payload data is 40 bytes, and therefore,
key should be salted after every 8 commu-
nications. Frequent salting could be prob-
lematic in applications where the payload is
very small; therefore, the algorithm may not
be useful for environments using very small
messages unless those messages are artificially
padded.

• All 1’s and all 0’s bit patterns are not legit-
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imate for data payload; otherwise, the algo-
rithm cannot be used. Therefore, as suggested
in Subsection 4.2, the mechanism can always
add some random bits on the transmit side
and remove them on the receive side.

8 Conclusions

In this paper, we proposed a lightweight and se-
cure integrity protection algorithm for maintain-
ing the integrity of PMU data in protective re-
laying applications. To be more precise, our pro-
posed algorithm is used in the absence of in-
tegrity protection in IEC 61850-90-5, when the
HMAC identifier is set to zero. The proposed
method computes a 16-bit Fletcher checksum of
the payload data, embeds it into the payload
data, and then, shuffles the payload bits using a
fast permutation-only encryption scheme. Since
the proposed integrity protection method uses
a symmetric encryption algorithm, its security
highly depends on the initial key agreement. To
this end, the scheme uses an ID-based key ex-
change protocol that does not require any ser-
vice center to distribute keys or devices to keep
directories of keys. We analyzed the security
of our method with respect to a query adver-
sary. Our analysis showed no weaknesses in the
proposed method, and demonstrated no simple
method of recovering the secret key. It also con-
firmed the security of the proposed integrity pro-
tection method against ciphertext-only attacks
and known/chosen plaintext attacks. A compari-
son with a number of existing integrity protection
methods showed that despite having the same
level of computational complexity, the proposed
method is much faster, and it is the only integrity
protection scheme that meets the speed require-
ment. Since our algorithm is not intimately tied
to smart grid communications protocols, it can
be used in many other environments where low
latency, high throughput, or low energy consump-
tion is important.
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(2016). Robust data-driven state estimation for
smart grid. IEEE Transactions on Smart Grid,
pages 1–12.

Wetterwald P. and Raymond J. (2015). Deterministic
networking utilities requirements, IETF draft,
detnet.

Zander, S., Armitage, G., and Branch, P. (2007). A
survey of covert channels and countermeasures
in computer network protocols. IEEE Commu-
nications Surveys & Tutorials, 9(3):44–57.

Zhang, P., Li, F., and Bhatt, N. (2010). Next-
generation monitoring, analysis, and control for
the future smart control center. IEEE Transac-
tions on Smart Grid, 1(2):186–192.

Zhang, W., Liu, Y., Das, S. K., and De, P. (2008).
Secure data aggregation in wireless sensor net-
works: a watermark based authentication sup-
portive approach. Pervasive and Mobile Com-
puting, 4(5):658–680.

16


	Submitted1A
	FedUni ResearchOnline
	https://researchonline.federation.edu.au


	Submitted1

