

City, University of London Institutional Repository

Citation: Mohavedi, Y., Cukier, M. & Gashi, I. (2019). Vulnerability Prediction Capability: A

Comparison between Vulnerability Discovery Models and Neural Network Models.
Computers and Security, 87, 101596. doi: 10.1016/j.cose.2019.101596

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/22680/

Link to published version: https://doi.org/10.1016/j.cose.2019.101596

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

Vulnerability Prediction Capability: A Comparison

between Vulnerability Discovery Models and

Neural Network Models

Yazdan Movahedia, Michel Cukiera , Ilir Gashib

a Center for Risk and Reliability, University of Maryland, College Park, USA

{ymovahed, mcukier}@umd.edu
b Center for Software Reliability, City, University of London, London, U.K.

ilir.gashi.1@city.ac.uk

Abstract— In this paper, we introduce an approach for

predicting the cumulative number of software vulnerabilities

that is in most cases more accurate than vulnerability

discovery models (VDMs). Our approach uses a neural

network model (NNM) to model the nonlinearities associated

with vulnerability disclosure. Nine common VDMs were used

to compare their prediction capability with our approach.

The different models were applied to vulnerabilities

associated with eight well-known software (four operating

systems and four web browsers). The models were assessed in

terms of prediction accuracy and prediction bias. Out of eight

software we analyzed, the NNM outperformed the VDMs in

all the cases in terms of prediction accuracy, and provided

smaller values of absolute average bias in seven cases. This

study shows that NNMs are promising for accurate

predictions of software vulnerabilities disclosures.

Keywords— Vulnerability Discovery Model, Neural

Network Model, Time Series, Vulnerability Discovery Process,

Prediction, Software Reliability.

I. INTRODUCTION

Researchers have modeled new vulnerabilities
disclosure trends using data from a variety of vulnerability
databases. The goal of most of these studies is to find the
model, which fits best the vulnerability disclosure process
and, using that model, to predict the number of
vulnerabilities that may be discovered for a given product
[1]–[6]. Predicting the frequency of disclosures for
vulnerabilities is useful for vendors of these products as well
as the end-users as it helps them with resource allocation. In
addition, such estimates can also provide useful
information for evaluating the risk associated with a product
that can be used by insurance companies [7].

Vulnerability discovery models (VDMs) were
developed to predict future software vulnerabilities based
on their historical behavior. Although VDMs are often
accurate in terms of curve fitting, they might not perform
well in prediction [8]. Indeed, VDMs are often not powerful
enough to take the nonlinear nature of vulnerability
disclosure into consideration.

In this paper, we introduce a nonlinear modeling
approach based on neural networks to predict the total
number of software vulnerabilities in 30-day time intervals.
We compare the prediction capability of the neural network
model (NNM) with nine commonly used VDMs. We

applied the models to vulnerability data associated with four
well known operating systems (OS) (Windows, Mac, Cisco
IOS (the OS associated with Cisco), and Linux), as well as
four well-known web browsers (Internet Explorer, Safari,
Firefox, and Chrome).

Our work makes the following contributions:

 We introduce an approach using NNM to model the
nonlinearities associated with vulnerability
disclosure;

 We compare the capability of the NNM and nine
VDMs in predicting the total number of software
vulnerabilities in 30-day time intervals on eight
well-known software (We predicted the
vulnerabilities reported in years 2016, 2017, and
2018.);

 We show that the NNM outperforms the VDMs in
all the cases in terms of prediction accuracy, and
provides smaller values of absolute average bias in
seven cases.

The rest of the paper is organized as follows. Section 2
describes the related work. Section 3 describes the dataset
used in the analysis. Section 4 lists the VDMs used in our
analysis. Section 5 introduces the approach using an NNM
to model discovery process of software vulnerabilities.
Section 6 presents the results of using the dataset with the
models for prediction. Section 7 discusses the main findings
and some limitations. Finally, Section 8 presents
conclusions and provisions for future work.

II. RELATED WORK

Over the years, many vulnerability discovery models
(VDMs) have been developed to predict future software
vulnerabilities based on their historical behavior.

The earliest effort at modeling software reliability was a
Markov birth-death model [9]. A good overview of several
software reliability growth models (SRGMs) that
characterize the process of software defect-finding is
provided in [2]. The earliest study on modeling the
vulnerability discovery process [10] proposed the first
VDM termed the Anderson Thermodynamic (AT) model.
Rescorla [4], [5] proposed a VDM to estimate the number
of undiscovered vulnerabilities. Alhazmi et al. [11]
proposed the application of SRGMs to vulnerability

2

discover modeling. They also introduced a logistic VDM
known as Alhazmi–Malaiya Logistic (AML) model, which
assumes a symmetrical shape around the peak discovery
rate value [6]. A Weibull distribution-based VDM was
proposed by Kim [12]. Li et al. [13] empirically showed
that, in comparison to other reliability models, a Weibull
model is better for defect occurrence across a wide range of
software systems.

Several studies applied existing VDMs or a modified
versions of them to different types of software packages,
such as OSs and web servers, to simulate the vulnerability
discovery rate and predict the number of vulnerabilities that
may potentially be present but not yet found [14]–[17].
Other studies tried to increase the accuracy of vulnerability
discovery modeling by taking the skewness of the
vulnerability data into consideration [8] or using the
clustering techniques [18], [19], commonly used in social
media studies [20] .

In recent years, some software vulnerability disclosure
process models were developed using traditional time series
models like Auto Regressive Moving Average (ARIMA)
[21]. However, vulnerability disclosure data contain a lot of
nonlinearity and thus traditional time series models might
not be appropriate [22]. Pokhrel et al. [23] compared the
modeling capability of linear and nonlinear time series for
three OSs (i.e. Windows 7, Mac OS X, and Linux Kernel).
They developed models based on ARIMA, Artificial Neural
Network (ANN), and Support Vector Machine (SVM)
settings.

III. DATASET

The dataset used in this paper was collected from the
National Vulnerability Database (NVD) maintained by
NIST, and collected using the same approach followed by
[24]. We leveraged the vulnerability CVE IDs to compare
the reporting date of each vulnerability in NVD with the
dates in other public repositories on vulnerabilities1. We

updated the reporting dates to the earliest date that a given
vulnerability was publically known in any of the
vulnerability databases they used.

We will analyze the reported vulnerabilities associated with
four well-known OSs: Windows (1995-2018), Mac (1997-
2018), Cisco IOS (the OS associated with Cisco) (1992-
2018), and Linux (1994-2018), as well as four well-known
web browsers: Internet Explorer (1997-2018), Safari (2003-
2018), Firefox (2003-2018), and Chrome (2008-2018).
These software have been selected because they are the
most widely used and have the most vulnerabilities in the
database. Figure 1 shows the detection frequency of all
vulnerabilities associated with each software over time
intervals of 30 days. We also plotted the 180-days moving
average (MOVAVG) for each software to gain a better
understanding of vulnerability detection trend. As is shown,
the maximum value of MOVAVG for all cases occurred
after 2015. For each software, the variable we used in this
research is the cumulative number of vulnerabilities
reported in 30-day time intervals. In other words, we
divided the study period associated with a given software
into intervals of 30 days, and counted the total number of
vulnerabilities detected in each time interval.

For each software, we analyze all vulnerabilities
reported for any of its versions. Thus, for each software, all

TABLE I. NUMBER OF VULNERABILITIES PER SOFTWARE

OS Windows Mac Cisco IOS Linux

Total 3434 2908 698 5812

Train 2472 2081 522 3184

Test 962 827 176 2628

Web Browser IE Safari Firefox Chrome

Total 1862 994 1784 1906

Train 1289 701 1331 1229

Test 573 293 453 677

 Histogram of the number of detected vulnerabilities per 30 days together with its 180-days moving average for the studied OSs and

Web browsers. The X-axis represents time (Year). The Y-axis shows the frequency of discovered vulnerabilities over 30 days time

intervals. The dark and light colors show data associated with the training and test datasets (see Section VI).

1 We looked at the following ones: http://www.cvedetails.com/,

https://cxsecurity.com/, http://www.security-database.com/ and
http://www.securityfocus.com/

3

 Classification of Considered Time-based VDMs

the vulnerabilities reported for any of its versions were
included. For instance, all the vulnerabilities reported for
mac_os, mac_os_server, mac_os_x, and mac_os_x_server
were put together to create a vulnerability database for Mac.

In addition, regarding our analysis, we divided the
vulnerability dataset associated with each software into two
groups; training and testing. The training data set consists
of all the vulnerabilities reported before 2016. The testing
data set consists of vulnerabilities reported in years 2016,
2017, and 2018. Table I represents the total number of
vulnerabilities per software, as well as the number of
vulnerabilities in the train and test datasets.

IV. VULNERABILITY DISCOVERY MODELS (VDMS)

Vulnerability discovery models (VDMs) can be
classified into two categories: time-based and effort-based
VDMs. Time-based VDMs count the vulnerabilities of a
given software as a function of calendar time while the
effort-based VDMs, introduced by Alhazmi et al. [6],
consider changes in environmental factors over lifetime of
the software such as number of installations, share of
installed base of a specific software, etc. (see [6] for more
information regarding effort-based models). In this paper,
we will only use time-based models since the data sources
we have used only have data about vulnerability report
dates, and not installations of the different software. Figure
2 shows a classification of time-based VDMs used in this
research based on [16]. These models are the most common
VDMs used in the literature. We considered at least one
model from each class.

S-shaped VDMs divide the process of vulnerability
discovery into three phases as shown in Figure 3. Phase 1
represents the learning phase, which starts from the
introduction of the software and continues until the
beginning of the period referred to as “Sustained Growth”
as a consequence of increasing popularity of the software
[8]. During the learning phase, the vulnerability discovery
intensity function is an increasing function. Phase 2 or the
linear phase is the period when most of the vulnerabilities
are expected to be detected.

TABLE II. TABLE OF MODELS AND THEIR EQUATIONS

Model Equation

NHPP Power-law [18] Ω(𝑡) = (𝛽−𝛼). 𝑡𝛼

Gamma-based VDM [8] Ω(𝑡0) = ∫
𝛾

Γ(𝛼)𝛽𝛼
𝑡𝛼−1𝑒

−
𝑡

𝛽
𝑡0
𝑡=0

𝑑𝑡

Weibull-based VDM

[12] Ω(𝑡) = 𝛾{1 − 𝑒
−(

𝑡

𝛽
)
𝛼

}

AML VDM [6] Ω(𝑡) =
𝐵

𝐵𝐶𝑒−𝐴𝐵𝑡+1

Normal-based VDM [8] Ω(𝑡) =
𝛾

1+𝑒
−
(𝑡−𝜇)
𝑠

Rescorla Exponential

(RE) [5] Ω(𝑡) = 𝛾(1 − 𝑒−𝜆𝑡)

Rescorla Quadratic

(RQ)[5] Ω(𝑡) =
𝐴𝑡2

2
+ 𝐵𝑡

Younis Folded (YF)

[25]
Ω(𝑡) =

𝛾

2
{erf (

𝑡 − 𝜏

√2𝜎
) + erf(

𝑡 + 𝜏

√2𝜎
)}

Linear Model (LM)

[26]
Ω(𝑡) = 𝐴𝑡 + 𝐵

 Three Phases for S-shaped Models

The intensity function of this phase is constant. Phase 3 or
the saturation phase is the period when most of the
vulnerabilities have been discovered [16]. The vulnerability
discovery intensity function for the saturation phase is
decreasing. This phase will not appear as long as a
significant number of vulnerabilities are still undetected.

The five S-shaped VDMs used in the paper based upon
their capability in modeling skewed data can be classified
as follows: two right-skewed distributions (Gamma-based
VDM, Younis Folded VDM), one flexible-skewed
distribution (Weibull-based VDM), and two symmetrical
distributions (Alhazmi–Malaiya Logistic (AML) model and
Normal distribution-based model). These VDMs are
selected because they are the most well-known VDMs used
in modeling the vulnerability discovery process [8].

In addition, we have also included four non-S-Shaped
VDMs: Rescorla Exponential (RE) model, Rescorla
Quadratic (RQ) model, NHPP Power-law model, and
Linear model (LM). More information about the Rescorla
models and the linear model can be found in [5] and [26],
respectively. When modeling the mean cumulative number
of failures Ω(𝑡) for software reliability evaluations, models
derived from a nonhomogeneous Poisson process (NHPP)
are often used. Allodi [27] showed that the discovered
vulnerabilities may follow a Power-law distribution. The
model used in this paper was applied on vulnerability data
as a VDM in [24] [18]. The main assumption of this model

Time-based
VDMs

Quasi-linear
Models

Rescorla's
Quadratic

S-shaped
Models

Gamma-based

Weibull-based

Normal-based

AML

Younis’s
Folded

SRGM-based
Models

Rescorla's
Exponential

NHPP Power-
law

Phase 2:
Linear

Phase

C
u

m
u

la
ti

v
e
 #

 o
f

v
u

ln
er

a
b

il
it

ie
s

Phase 1:
Learning

Phase

Phase 3:

Saturation
Phase

Linear

4

 The NNM Architecture Used for Our Study

is that the number of discovered vulnerabilities follows a
nonhomogeneous Poisson process. In addition, in NHPP-
based software reliability growth models (SRGMs), the
intensity function (ω(t) = dE[Ω(t)]/dt) is considered to be
a monotonic function [28].

The equations of all the discussed models are presented
in Table II.

V. NEURAL NETWORK MODEL (NNM)

Neural network models (NNMs) consist of a set of
algorithms for modeling and recognizing patterns. NNMs
have been widely used for predicting data with sequential
time series data such as monthly electricity demand of a city
or stock price [22], [29], [30]. Unlike VDMs, NNMs are
capable of integrating the nonlinearity that exist in noisy
time series data. In addition, NNMs are not built upon
assumptions regarding the form of the basic model since
they are completely data driven models. In other words,
NNMs are flexible nonlinear data driven models with
powerful prediction power. Data driven models are very
useful for the cases, where there is not any appropriate
theoretical guidance to explain data generation process. It
has been empirically shown that NNMs are capable of
predicting both linear and nonlinear time series of different
forms [31].

In this study, to predict the number of discovered
vulnerabilities getting over time for a given software, we
use a feedforward NNM, which is the most widely used
neural network [22]. Feedforward NNMs accept a fixed
number of inputs at a time and generate one output. We
assume that the number of future vulnerabilities depend on
the number of vulnerabilities disclosed over the past periods
(lags).

In this study, we use a single hidden-layer NNM for one
step-ahead forecasting. According to [32], a single hidden
layer NNM is capable of approximating any non-linear
function with arbitrary precision. Figure 4 shows the
structure of the NNM used in our study. Our feedforward
NNM consists of three layers called input, hidden, and

output. Each layer is a collection of neurons (nodes) where
the connections are governed by the corresponding weights.
Data have been fed through the input layer, and then they
pass through the one or more hidden layers, and the final
outcome is provided by the output layer.

To predict the present value, several past observations
are used. In other words, the inputs are a p-element subset
of the set {𝑦𝑡−𝑝, . . . , 𝑦𝑡−2, 𝑦𝑡−1}; and 𝑦𝑡 is the output or the

total number of vulnerabilities reported in period t.
Equations 1 and 2 show the formulas associated with the
input and output values of the hidden layer, respectively.
For the output layer, the input and output values are
represented by Equations 3 and 4, respectively.

𝐼𝑗 = ∑ 𝑤𝑗𝑖 × 𝑦𝑖 + 𝛽𝑗

𝑡−1

𝑖=𝑡−𝑝

(𝑗 = 1,… , ℎ),(1)

𝑦𝑗 = 𝑓ℎ(𝐼𝑗)(𝑗 = 1,… , ℎ),(2)

𝐼𝑜 = ∑𝑤𝑜𝑗 × 𝑦𝑗 + 𝛼𝑜

ℎ

𝑗=1

(𝑜 = 1),(3)

𝑦𝑡 = 𝑓𝑜(𝐼𝑜)(𝑜 = 1),(4)

I denotes the input; y denotes the output; p and h are the
number of input and hidden layer nodes, respectively; 𝑤𝑗𝑖
represents the connection weights of the input and hidden
layers; and 𝑤𝑜𝑗 denotes the connection weights of the

hidden and output layers. The bias values of the hidden and
output layers are respectively shown by 𝛽𝑗 and 𝛼𝑜, and are

always between -1 and 1. 𝑓ℎ and 𝑓𝑜 are the non-linear
activation functions associated with the hidden and the
output layers, respectively. As the hidden layer activation
function, we used a hyperbolic tangent function since it is
the function that most widely used [22].

The initial step in designing a NNM is to determine the
optimal number of input nodes (lags) and hidden layer
nodes. Based on the literature, there is no systematic
approach [22]; the most common way of identifying the

5

 Plots associated with training phase of the proposed NNM for Cisco IOS

appropriate number of the nodes (input and hidden) is via
trial and error based upon finding the minimum mean
square error (MSE) of a subset of the training data, used for
initial test and validation [33]. We followed the
optimization approach based upon the algorithm (ADE-
BPNN) introduced in [22] to identify the optimal number of
inputs (lags) and the number of hidden nodes the time series
associated with each software. In [22], it is shown that using
ADE-BPNN improves prediction accuracy relative to basic
NNMs, autoregressive integrated moving average model
(ARIMA), and other hybrid models for time-series data. We
evaluated up to 50 hidden nodes for each time series and
chose the number of hidden nodes that minimized the MSE.
We started with statistically significant lags derived from
the process of evaluating the partial autocorrelation function
(PACF) associated with each time series. In time series
analysis, PACF gives the linear partial correlation of a time
series with its own lagged values and evaluated [34].
However, we cannot only rely on the lags we found from
the PACF since, in such case, the selection of inputs would
be merely based on the identification of a linear model,
while the goal for using NNM is to capture non-linear
correlations, as well. A very good review of existing input
selection methods for NNMs is provided in [35].

The NNM developed in this paper was programmed
using Matlab R2018a. For each software, we began our
analysis by dividing the vulnerability dataset into two
groups; training and testing. We used identical data points
for both modeling approaches (VDMs and NNM). The
training dataset consists of all the vulnerabilities reported
before 2016. The testing data set consists of vulnerabilities
reported in years 2016, 2017, and 2018. NNM training is a
complex nonlinear optimization problem. Thus, there is the
possibility to get trapped in local minima of the error
surface. To avoid getting poor results, the training process
should be repeated several times with different random
starting weights and biases [31].

We set the maximum training number equal to 500
epochs. Epoch stands for the total number of times a given
dataset is utilized for training and shows the number of
times the weights in a network were updated [36]. Since

model optimization in deep learning algorithms is done
using the gradient decent method [37], it makes sense to
pass the learning dataset through the network multiple times
accordingly to update the weights and achieve a more
accurate forecasting model [36]. We used the Levenberg-
Marquardt (LM) method as our learning function. The
activation function of the hidden and output layers are the
tansig and purelin functions, respectively. To avoid
overfitting/over training, for each software, we employed a
cross validation method by splitting our dataset into three
subgroups of training data (70%), validation data (15%),
and test data (15%); and checked the validation
performance of the trained network via metrics provided by
Matlab Neural Network toolbox such as gradient decent
(gradient threshold=1.00e-4) and maximum number of
validation checks (max_fail=100). These metrics served as
stop conditions of the training phase. Whenever the
parameters of the network under training met any of these
thresholds, the training process was stopped. Figure 5 shows
the plots associated with the training phase of the NNM for
Cisco IOS. As it is shown, based on the error plot of train
data, there is no sign of overfitting. Moreover, the plots
associated with the test subgroup of training data shows that
the model performed well in the training phase.

VI. RESULTS

We used the nine VDMs and one NNM for the
discovery process of vulnerabilities in eight well-known
software (four OSs and four web browsers). The VDMs
were fitted to the datasets using a non-linear regression
method described in [16].

The analysis of the prediction capability started by
dividing the data into two groups of training and test data.
Both the VDMs and the NNM use a dataset that includes all
vulnerabilities reported for all versions of a given software.
The training period starts from the time when the first
vulnerability associated with a given software was
discovered and continues until 12/31/2015. We calculated
the predictions for the years 2016, 2017, and 2018. As it is
shown in Figure 1, the dark and light bars show the data
associated with training and test datasets, respectively. We

6

split the vulnerability data into intervals of 30 days as is
common in the vulnerability analysis literature [8], [15],
[16].

For the VDMs, during the training period, the training
data was used to estimate model parameters. To avoid
overfitting, 10-fold cross validation was also conducted on
the training data. The estimated final values for each
interval produced by the nine models were compared with
the actual number of vulnerabilities to calculate the
prediction accuracy. For the NNM, for each software, we
used the training data to train the NNM. Using the trained
NNM, we predicted the next values for the intervals in the
prediction period. The prediction accuracy is based on the
comparison between the obtained estimation and the actual
number of vulnerabilities.

For the training part, for VDMs, we applied the Chi-
square (χ2) goodness of fit test [16] to assess how well each
model fits the training datasets. The χ2 statistic is calculated
using the following equation:

χ2 =∑
(𝑆𝑖 − 𝐸𝑖)

2

𝐸𝑖
(5)

𝑁1

𝑖=1

where 𝑆𝑖 and 𝐸𝑖 are the simulated and expected observed

values at 𝑖𝑡ℎ time point, respectively. N1 is the number of
observations in the train dataset (the time blocks used for
simulation). For the fit to be acceptable, the corresponding
χ2 critical value should be greater than the χ2 statistic for
the given alpha level and degrees of freedom. We selected
an alpha level of 0.05. The null hypothesis indicates that the
actual distribution is well described by the fitted model.
Hence, if the p-value of the χ2 test is below 0.05, then the
fit will be considered unsatisfactory. A p-value closer to 1
indicates a better fit. For each VDM, before evaluating its
predictive capability, first we check whether it is
statistically sound or not. If it is not sound (p-value<0.05),
we neglect that model in our evaluation process.

For the training part, for the NNM, out of the models
trained with different number of lags, the optimal analytical
model was selected based on the MSE value. Finally, for
each software, the best selected analytical model was used
to make the prediction for the testing data set (the
vulnerabilities reported in 2016, 2017, and 2018). In this
study, regarding the NNMs, we just reported the results
associated with the best NNM since it was not possible to
include all the trained NNMs per software with different
combination of lags due to space limit.

We calculated two normalized predictability measures,
average error (AE) and average bias (AB) [8]. AE is a
measure of how well a model predicts throughout the test
phase, and AB indicates the general bias of the model which
assesses its tendency to overestimate or underestimate the
number of discovered vulnerabilities. AE and AB are
defined as:

𝐴𝐸 =
1

𝑁2
∑|

Ω𝑡 − Ω

Ω
|

𝑁2

𝑡=1

(6)

𝐴𝐵 =
1

𝑁2
∑

Ω𝑡 − Ω

Ω

𝑁2

𝑡=1

(7)

where N2 is a total number of time points (one per 30 days)
over the prediction period, and Ω is the actual number of
total vulnerabilities at time t, whereas Ω𝑡 is the estimated
number of total vulnerabilities at time t.

In addition, for the VDMs, we report ΔAE𝑖, which
represents the percentage of difference between the AE of
the i-the model and the model with minimum AE.

ΔAE𝑖 = (AE𝑖 − AE𝑚𝑖𝑛) ∗ 100(8)

where AE𝑖 is the AE of the i-th model, and AE𝑚𝑖𝑛 is the
lowest AE one obtains among the set of models examined
(i.e., the best model).

The root mean square error (RMSE) is another metric
often used to calculate fitting errors. However, Mentaschi et
al. [38] showed that for some applications (e.g., high
fluctuation of real data) the lower values of RMSE are not
always a reliable indicator of the accuracy of simulations.
Hence, a corrected estimator HH was proposed by Hanna
and Heinold [39]:

𝐻𝐻 =√
∑ (𝑆𝑖 − 𝑂𝑖)

2𝑁2
𝑖=1

∑ 𝑆𝑖𝑂𝑖
𝑁2
𝑖=1

(9)

where 𝑆𝑖 is the 𝑖𝑡ℎ simulated data, 𝑂𝑖 is the 𝑖𝑡ℎ observation
(test data) and N2 is the number of observations in test
dataset (the time blocks used for simulation). The closer to
zero HH is, the more accurate the model.

Tables III- IV present the values of AE, AB, HH, ΔAE𝑖,
and p-value (we used * to show the models with p<0.05) for
the cases we analyzed per model (VDMs and NNM),
respectively. We also used the term “NS” as the ΔAE𝑖 value
of the models with p<0.05, which stands for Not
Satisfactory. AB can be positive (for overestimation) or
negative (for underestimation), while AE is always positive.
In each case, we first found the best VDMs by comparing
their prediction accuracy and then compared the accuracy
of those models with the NNM. In other words, for the
VDMs, the model that has the smallest value of AE was
selected as having the best prediction capability and is
highlighted in yellow. In addition, the VDMs with ΔAE𝑖 <
2 were also selected as the best forecasting VDMs, which,
show similar prediction capability compared to the best
model (the model/models with ΔAE𝑖 = 0). In addition, the
normalized error values ((Ω𝑡 − Ω)/Ω) associated with each
case are plotted in Fig. 6. As it is shown, the models with
less fluctuations yield higher accuracy.

Based on the results provided by tables III-IV, in terms
of prediction accuracy (AE and HH), the NNM led to most
accurate results in all of the eight software we analyzed. To
be more precise, for Windows, the NNM’s average error
(AE) is 2.6%, and, at least, is 1.1% smaller than the AEs
associated with the best VDMs, which were Power-law and
RQ. For Mac, the NNM outperforms the best VDMs

7

TABLE III. PREDICTION ACURRACY FOR OSS (VDMS & NNM)

 Windows Mac

 AE AB HH %𝜟𝑨𝑬𝒊 p-value AE AB HH %𝜟𝑨𝑬𝒊 p-value

Gamma 0.063 -0.061 0.095 2.568 0.686 0.218 -0.218 0.263 14.373 0.193

Weibull 0.091 -0.091 0.131 5.454 0.936 0.233 -0.233 0.287 15.880 0.703

AML 0.138 -0.138 0.187 NS 0.011* 0.278 -0.278 0.351 20.401 0.301

Normal 0.138 -0.138 0.187 NS 0.011* 0.278 -0.278 0.351 20.401 0.301

Power-law 0.037 0.025 0.040 0.000 0.466 0.074 -0.074 0.080 0.000 0.138

RE 0.106 0.106 0.100 NS 0.026* 0.024 0.017 0.037 NS 0.000*

RQ 0.039 0.030 0.042 0.205 0.888 0.082 -0.082 0.090 0.776 0.193

YF 0.114 -0.114 0.158 7.687 0.200 0.256 -0.256 0.320 18.195 0.193

LM 0.192 -0.192 0.235 NS 0.001* 0.313 -0.313 0.392 NS 0.000*

NNM 0.026 -0.018 0.036 NA NA 0.021 -0.019 0.025 NA NA

 Cisco IOS Linux

 AE AB HH %𝜟𝑨𝑬𝒊 p-value AE AB HH %𝜟𝑨𝑬𝒊 p-value

Gamma 0.018 0.001 0.025 0.000 0.900 0.268 -0.268 0.353 7.804 0.640

Weibull 0.019 0.006 0.028 0.106 0.901 0.267 -0.267 0.352 7.751 0.640

AML 0.076 0.076 0.088 5.776 0.660 0.272 -0.272 0.366 8.249 0.335

Normal 0.076 0.076 0.088 5.775 0.660 0.272 -0.272 0.366 8.248 0.335

Power-law 0.019 0.006 0.028 0.114 0.232 0.267 -0.267 0.352 7.734 0.640

RE 0.131 0.131 0.148 11.304 0.142 0.190 -0.190 0.239 0.000 0.506

RQ 0.154 -0.154 0.172 NS 0.000* 0.278 -0.278 0.369 8.851 0.222

YF 0.092 0.092 0.108 7.427 0.941 0.240 -0.240 0.313 4.991 0.109

LM 0.422 -0.422 0.567 NS 0.000* 0.441 -0.441 0.643 NS 0.000*

NNM 0.017 -0.014 0.024 NA NA 0.041 0.026 0.044 NA NA

TABLE IV. PREDICTION ACCURACY FOR WEB BROWSERS (VDMS & NNM)

 IE Safari

 AE AB HH %𝜟𝑨𝑬𝒊 p-value AE AB HH %𝜟𝑨𝑬𝒊 p-value

Gamma 0.233 -0.233 0.272 9.251 0.624 0.156 -0.156 0.201 12.634 0.245

Weibull 0.233 -0.233 0.272 9.205 0.624 0.187 -0.187 0.245 15.704 0.739

AML 0.157 -0.157 0.175 NS 0.003* 0.231 -0.231 0.304 NS 0.048*

Normal 0.157 -0.157 0.175 NS 0.003* 0.231 -0.231 0.304 NS 0.048*

Power-law 0.233 -0.233 0.271 9.198 0.624 0.030 0.026 0.037 0.000 0.378

RE 0.149 -0.149 0.164 0.818 0.403 0.133 0.133 0.141 NS 0.012*

RQ 0.232 -0.232 0.270 9.096 0.624 0.041 0.040 0.047 1.087 0.549

YF 0.141 -0.141 0.155 0.000 0.285 0.211 -0.211 0.278 18.093 0.986

LM 0.384 -0.384 0.501 NS 0.012* 0.204 -0.204 0.248 NS 0.009*

NNM 0.066 -0.066 0.072 NA NA 0.027 0.024 0.034 NA NA

 Firefox Chrome

 AE AB HH %𝜟𝑨𝑬𝒊 p-value AE AB HH %𝜟𝑨𝑬𝒊 p-value

Gamma 0.051 0.035 0.066 0.151 0.378 0.281 -0.281 0.367 0.000 0.735

Weibull 0.049 0.031 0.064 0.030 0.307 0.317 -0.317 0.422 3.578 0.735

AML 0.081 -0.081 0.112 NS 0.012* 0.307 -0.307 0.405 2.569 0.641

Normal 0.081 -0.081 0.112 NS 0.012* 0.307 -0.307 0.405 2.569 0.641

Power-law 0.069 0.067 0.089 2.015 0.307 0.167 0.167 0.191 NS 0.000*

RE 0.161 0.161 0.174 11.231 0.115 0.364 0.364 0.383 NS 0.000*

RQ 0.096 0.096 0.113 4.696 0.193 0.077 0.077 0.102 NS 0.000*

YF 0.049 -0.032 0.069 0.000 0.150 0.304 -0.304 0.402 2.269 0.117

LM 0.101 -0.101 0.123 5.204 0.087 0.302 -0.302 0.374 NS 0.000*

NNM 0.037 -0.012 0.051 NA NA 0.033 -0.013 0.038 NA NA

(Power-law, and RQ) by having 5.3%, and 6.1% smaller
average errors, respectively. For Cisco IOS, this difference
is at least 0.1%. Linux and Chrome are two of the cases
where the NNM provides far better predictions than those
from VDMs by being 14.9%, and 24.8% more accurate. For
IE, this difference is at least 7.5%. The average error of the
NNM for Safari is 0.3% and 1.4% smaller than those from
the best VDMs (Power-law and RQ).

For Firefox, the NNM improved the predictions by 1.2%,
1.4%, and 1.2% compared to YF, Gamma, and Weibull
VDMs, respectively. For Chrome, the VDM with smallest
AE is not statistically sound from the training part. So, we
opt for the next VDM with p-value>0.05 and smallest AE,
which is Gamma. In this case, the NNM accuracy
improvement is 24.8%. Overall, the highest differences in
prediction accuracy between the NNM and the VDMs were

found in Chrome (24.8%), Linux (14.9%), IE (7.5%), and
Mac (5.3%), respectively.

Another factor, which plays an important role in model
selection is the model tendency to overestimate or
underestimate the results. In this research, we provided the
average bias values (AB) as well as the visual fluctuation
trend of normalized prediction errors (Figure 6). Based on
tables III-IV, out of eight software we analyzed, in terms of
magnitude of error, the NNM outperformed the VDMs in
seven cases by having smaller |AB| values. Only for Cisco
IOS, the absolute value of bias provided by the selected
VDMs was at most 1.3% smaller than the one resulted from
the NNM. For Windows, Mac, Linux, IE, Safari, Firefox,
and Chrome, the bias magnitudes provided by the NNM
were smaller than those from the best VDMs (in each case,
we considered the best VDM, which had smallest |AB|) by

8

 Prediction errors for OSs and web browsers. The X-axis indicates time (Year). The Y-axis represents normalized prediction error

values ((Ω𝑡 −Ω)/Ω).

0.7%, 5.5%, 16.4%, 7.5%, 0.2%, 1.9%, and 26.8%,
respectively. Overall, in terms of accuracy, out of the eight
cases we analyzed, the NNM outperformed VDMs in all the
cases. Besides, in terms of magnitude of bias, the NNM led
to smallest bias values in seven cases.

VII. DISCUSSION AND LIMITATIONS

In terms of prediction accuracy (AE and HH),
considering the OSs and web browsers, the NNM led to
more accurate results than the best selected VDMs in all the
cases. Considering only VDMs, the Power-law VDM was
selected as the best model in four cases out of eight. The
Gamma and RQ VDMs were each best compared with other
models in three cases out of eight. The Weibull, RE, and YF
VDMs were each best compared with other models in two
cases out of eight cases we analyzed.

In terms of overall magnitude of bias (i.e., absolute
value of AB), out of the eight cases we analyzed, the NNM
provided smaller absolute values of bias in seven cases
compared to the best VDMs. Only for Cisco IOS, the
absolute value of bias provided by the Gamma VDM
(0.001) was smaller than the one resulted from NN (-0.014).

We believe that the final decision, in equal accuracy
conditions, in terms of bias, is up to the researcher to choose
the best model based upon his/her priorities. However, from
a security point of view, it is better to choose a model, which
provides more conservative prediction results. In the current
study, among the models that were selected as the best
predictors, only two NNMs (Linux and Safari) provided
overestimated results. Other selected NNMs
underestimated the number of vulnerabilities. It can also be
easily inferred from Figure 6, where for Linux and Safari
most of the prediction points associated with the NNMs are
located over the X=0 axis.

In two cases (i.e. Linux and Chrome), the difference
between the prediction accuracy of the NNM and the best
relative VDM is very high (i.e. 14.9% and 24.8%,
respectively). We believe that the reason behind these high
value of differences is not associated with noise, since we

took care of the noise problem in the data by using a cross
validation technique. It is possible to assume that, for these
three cases, the NNM was able to detect another playing
factor in the relative vulnerability discovery processes that
the analytical VDMs were not [40].

Overall, we believe that the NNM’s better performance
compared to VDMs comes from the capability of the NNM
in predicting the nonlinearity nature of the vulnerability
disclosure time series. In addition, most VDMs consider the
vulnerability discovery process as a pure S-shaped curve or
a function with a monotonic intensity function with constant
total number of vulnerabilities. However, the number of
vulnerabilities associated with a given software may change
as newer versions are released. Additionally, VDMs and
traditional time-series functions only use one set of
parameters for estimation. On the other hand, NNMs due to
having multilayer perceptron structure, having multiple
neurons per layer, and using different set of parameters per
neuron provide a more complicated structure for prediction.
Of course, the specific validation method we used to avoid
being trapped by overfitting in the learning phase is another
advantage of using NNMs.

There are several limitations to our work that prevent us
from making more general conclusions. The main limitation
is with regard to using reported published date of
vulnerabilities as their detection date. Vulnerabilities
usually get detected earlier by malicious users than the time
they are officially published. To make sure that this estimate
is as close as possible to the actual date the vulnerability is
known to the world, we looked at different vulnerability
sources and opted for the earliest date reported for a
vulnerability. Better estimates can be obtained if we have
more accurate proxies for calculating attacker effort and
more precise times on when a vulnerability is discovered
and reported (for example, in the dark web), rather than
when it is reported in a public vulnerability database.
However, obtaining this data is difficult: data in the dark
web is highly unstructured and very difficult to add meaning
to what is mined.

9

Another limitation is with regard to the way we merged
all vulnerabilities reported for all versions of a given
software to have enough data for training the models. There
are papers that apply VDMs to the vulnerabilities related to
separate versions of software (e.g. Mac OS X) [16], [41] as
well as studies that consider all versions of a software
together [8], [18]. The first group assumes that each piece
of software is an independent and well-defined product, but
detecting the sources of dependency in vulnerability data is
not an easy task.

NNMs, unlike analytical models, are not
mathematically tractable and cannot be easily interpreted by
humans. However, they are capable of detecting the
mechanisms that might be missed by the analytical models.
Therefore, they can be used a guide for modifying those
models. In this research, we showed that more accurate
predictions are also possible using NNMs [40].

VDMs assume that the time between failures represents
total usage time of that product. What we are using is
calendar time, which may not be a good proxy for usage.
Crucially the difference in security is the difficulty in
estimating the “attacker effort” - the total amount of time
that an attacker spends in finding a vulnerability - which is
something that is not needed for reliability (we assume the
users accidentally encounter faults that lead to failures,
hence usage time is a good enough proxy for time between
failures). A useful discussion of this is given in [42].
Attacker effort is something that is very difficult to estimate
and quantify. The purpose of our research is hence to make
as good a use as possible of the publically available security
data to help with decision making. But at the same time to
be clear about the limitations on what we can conclude from
this analysis. The best we can say from the analysis we
present is “the total number of vulnerabilities that will be
reported in the NVD over an interval t for product x is y
with confidence z”. And we show that we can do this
prediction better with NNM than with VDMs for four of the
largest and most commonly used operating system and web
browser families. For some decision makers this may be a
valuable piece of additional information, which they can use
in conjunction with data they have from their own
installations, when deciding on operating systems and/or
web browser, and provisioning of security support services
to deal with new vulnerabilities.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we compared the capabilities of nine
common vulnerability discovery models (VDMs) with a
nonlinear neural network model (NNM) in terms of
predicting the number of future vulnerabilities over a
prediction period of three years. We applied the mentioned
models to vulnerability data associated with four well
known OSs and four well-known web browsers. The
models were assessed in terms of prediction accuracy and
prediction bias. The results showed that the NNM
outperformed the VDMs in all the cases in terms of
prediction accuracy. In terms of overall magnitude of bias,
out of the eight cases we analyzed, the NNM provided the
smallest absolute values of bias in seven cases compared to
the best VDMs. This study shows that neural networks are
promising for accurate predictions of the total number of
publically reported software vulnerabilities over time.

For future work, we plan to find the reason behind the
observed gap between prediction capabilities of the NNMs
versus VDMs, specifically for the two software that we
found considerable difference. We will try to investigate
whether current VDMs are missing a mechanism associated
with the process of vulnerability discovery within their
mathematical structure. We also plan to investigate other
nonlinear model structures using machine learning
algorithms. Among them are Recurrent Neural Network
(RNN) models, used for prediction time series, which may
perform better than NNMs at modeling dependencies
between two points in a sequence. Generally, in NNMs, we
have to choose the length of the input (number of inputs)
beforehand. Then, it is not possible to learn functions that
depends on the inputs that happened a long time ago. This
problem could be solved by having an RNN, which can
theoretically store information from arbitrarily long time
ago.

IX. ACKNOLEDGEMENTS

This research is supported by NSF Award #1223634,
and the UK EPSRC project D3S (Diversity and defence in
depth for security: a probabilistic approach) and the
European Commission through the H2020 programme
under Grant Agreement 700692 (DiSIEM).

REFRENCES

[1] H. Okamura, M. Tokuzane, and T. Dohi, “Optimal Security Patch

Release Timing under Non-homogeneous Vulnerability-Discovery
Processes,” presented at the 20th International Symposium on

Software Reliability Engineering, 2009, pp. 120–128.

[2] M. R. Lyu, Ed., Handbook of software reliability engineering. Los
Alamitos, Calif. : New York: IEEE Computer Society Press ;

McGraw Hill, 1996.

[3] J. A. Ozment, “Vulnerability discovery & software security,”
University of Cambridge, 2007.

[4] E. Rescorla, “Security holes... Who cares?,” presented at the

USENIX Security, 2003.
[5] E. Rescorla, “Is finding security holes a good idea?,” IEEE Secur.

Priv. Mag., vol. 3, no. 1, pp. 14–19, Jan. 2005.

[6] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability
assessment of systems software,” 2005, pp. 615–620.

[7] P. Li, M. Shaw, and J. Herbsleb, “Selecting a defect prediction

model for maintenance resource planning and software insurance,”
EDSER-5 Affil. ICSE, pp. p32-37, 2003.

[8] H. Joh and Y. K. Malaiya, “Modeling Skewness in Vulnerability

Discovery: Modeling Skewness in Vulnerability Discovery,” Qual.
Reliab. Eng. Int., vol. 30, no. 8, pp. 1445–1459, Dec. 2014.

[9] G. R. Hudson, “Program errors as a birth-and-death process,”

System Development Corp., Report SP-3011, Dec. 1967.
[10] R. Anderson, “Security in open versus closed systems—the dance

of Boltzmann, Coase and Moore,” Cambridge University, England,

Technical report, 2002.
[11] O. H. Alhazmi and Y. K. Malaiya, “Modeling the vulnerability

discovery process,” in 16th IEEE International Symposium on

Software Reliability Engineering (ISSRE’05), 2005, pp. 10 pp. –
138.

[12] J. Kim, Y. K. Malaiya, and I. Ray, “Vulnerability Discovery in

Multi-Version Software Systems,” in 10th IEEE High Assurance
Systems Engineering Symposium, 2007. HASE ’07, 2007, pp. 141–

148.

[13] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam,
“Empirical Evaluation of Defect Projection Models for Widely-

deployed Production Software Systems,” in Proceedings of the 12th

ACM SIGSOFT Twelfth International Symposium on Foundations
of Software Engineering, New York, NY, USA, 2004, pp. 263–272.

[14] S. Woo, O. Alhazmi, and Y. Malaiya, “Assessing Vulnerabilities in

Apache and IIS HTTP Servers,” 2006, pp. 103–110.

[15] O. H. Alhazmi and Y. K. Malaiya, “Application of Vulnerability

Discovery Models to Major Operating Systems,” IEEE Trans.
Reliab., vol. 57, no. 1, pp. 14–22, Mar. 2008.

10

[16] F. Massacci and V. H. Nguyen, “An Empirical Methodology to
Evaluate Vulnerability Discovery Models,” IEEE Trans. Softw.

Eng., vol. 40, no. 12, pp. 1147–1162, Dec. 2014.

[17] A. K. Shrivastava, R. Sharma, and P. K. Kapur, “Vulnerability
discovery model for a software system using stochastic differential

equation,” in 2015 International Conference on Futuristic Trends

on Computational Analysis and Knowledge Management
(ABLAZE), Greater Noida, India, 2015, pp. 199–205.

[18] Y. Movahedi, M. Cukier, A. Andongabo, and I. Gashi, “Cluster-

based vulnerability assessment of operating systems and web
browsers,” Computing, Sep. 2018.

[19] Y. Movahedi, “Some Guidelines for Risk Assessment of

Vulnerability Discovery Processes,” University of Maryland, 2019.
[20] Z. Rajabi, A. Shehu, and H. Purohit, “User Behavior Modelling for

Fake Information Mitigation on Social Web,” in Social, Cultural,

and Behavioral Modeling, vol. 11549, R. Thomson, H. Bisgin, C.
Dancy, and A. Hyder, Eds. Cham: Springer International

Publishing, 2019, pp. 234–244.

[21] Y. Roumani, J. K. Nwankpa, and Y. F. Roumani, “Time series
modeling of vulnerabilities,” Comput. Secur., vol. 51, pp. 32–40,

Jun. 2015.

[22] L. Wang, Y. Zeng, and T. Chen, “Back propagation neural network
with adaptive differential evolution algorithm for time series

forecasting,” Expert Syst. Appl., vol. 42, no. 2, pp. 855–863, Feb.

2015.
[23] N. R. Pokhrel, H. Rodrigo, and C. P. Tsokos, “Cybersecurity: Time

Series Predictive Modeling of Vulnerabilities of Desktop Operating
System Using Linear and Non-Linear Approach,” J. Inf. Secur., vol.

08, no. 04, pp. 362–382, 2017.

[24] Y. Movahedi, M. Cukier, A. Andongabo, and I. Gashi, “Cluster-
based Vulnerability Assessment Applied to Operating Systems,”

presented at the 13th European Dependable Computing Conference,

Geneva, Switzerland, 2017.
[25] A. A. Younis, H. Joh, and Y. Malaiya, “Modeling Learningless

Vulnerability Discovery using a Folded Distribution,” in

Proceedings of the International Conference on Security and
Management (SAM), 2011, pp. 617–623.

[26] O. H. Alhazmi and Y. K. Malaiya, “Measuring and Enhancing

Prediction Capabilities of Vulnerability Discovery Models for
Apache and IIS HTTP Servers,” in 2006 17th International

Symposium on Software Reliability Engineering, 2006, pp. 343–

352.
[27] L. Allodi, “The Heavy Tails of Vulnerability Exploitation,” in

Engineering Secure Software and Systems, 2015, pp. 133–148.

[28] T. Y. Yang and L. Kuo, “Bayesian computation for the
superposition of nonhomogeneous poisson processes,” Can. J. Stat.,

vol. 27, no. 3, pp. 547–556, Sep. 1999.

[29] A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, “Comparison of
ARIMA and Artificial Neural Networks Models for Stock Price

Prediction,” J. Appl. Math., vol. 2014, pp. 1–7, 2014.

[30] C. Bennett, R. A. Stewart, and C. D. Beal, “ANN-based residential
water end-use demand forecasting model,” Expert Syst. Appl., vol.

40, no. 4, pp. 1014–1023, Mar. 2013.

[31] N. Kourentzes, D. K. Barrow, and S. F. Crone, “Neural network
ensemble operators for time series forecasting,” Expert Syst. Appl.,

vol. 41, no. 9, pp. 4235–4244, Jul. 2014.

[32] A. Aslanargun, M. Mammadov, B. Yazici, and S. Yolacan,
“Comparison of ARIMA, neural networks and hybrid models in

time series: tourist arrival forecasting,” J. Stat. Comput. Simul., vol.

77, no. 1, pp. 29–53, Jan. 2007.
[33] H. G. Hosseini, D. Luo, and K. J. Reynolds, “The comparison of

different feed forward neural network architectures for ECG signal

diagnosis,” Med. Eng. Phys., vol. 28, no. 4, pp. 372–378, May 2006.
[34] D. N. Gujarati and D. C. Porter, Basic Econometrics. McGraw-Hill

Irwin, 2009.

[35] R. May, G. Dandy, and H. Maier, “Review of input variable
selection methods for artificial neural networks,” in Artificial neural

networks-methodological advances and biomedical applications,

InTech, 2011.
[36] S. Siami-Namini and A. S. Namin, “Forecasting Economics and

Financial Time Series: ARIMA vs. LSTM,” ArXiv Prepr.

ArXiv180306386, 2018.
[37] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with

artificial neural networks:,” Int. J. Forecast., vol. 14, no. 1, pp. 35–

62, Mar. 1998.

[38] L. Mentaschi, G. Besio, F. Cassola, and A. Mazzino, “Problems in
RMSE-based wave model validations,” Ocean Model., vol. 72, pp.

53–58, Dec. 2013.

[39] S. R. Hanna, D. W. Heinold, A. P. I. H. and E. A. Dept, and E. R.
& T. Inc, Development and application of a simple method for

evaluating air quality models. American Petroleum Institute, 1985.

[40] R. Iten, T. Metger, H. Wilming, L. Del Rio, and R. Renner,
“Discovering physical concepts with neural networks,” ArXiv

Prepr. ArXiv180710300, 2018.

[41] V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic
method for assessing the versions affected by a vulnerability,”

Empir. Softw. Eng., vol. 21, no. 6, pp. 2268–2297, Dec. 2016.

[42] B. Littlewood et al., “Towards Operational Measures of Computer
Security,” J. Comput. Secur., vol. 2, no. 2–3, pp. 211–229, Jan.

1993.

