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Abstract

Organization have to deal with a plethora of IT security threats nowadays and to ensure smooth and

uninterrupted business operations, firms are challenged to predict the volume of IT security vulner-

abilities and to allocate resources for fixing them. This challenge requires decision makers to assess

which system or software packages are prone to vulnerabilities, what impact exploits might have, and

how many vulnerabilities can be expected to occur during a certain period of time. The academic

literature has increasingly drawn attention to the need for predicting IT security vulnerabilities.

However, only limited research has addressed the problem of forecasting IT security vulnerabilities

based on time series that deal with the specific properties of IT security vulnerabilities, i.e., rareness

of occurrence and high volatility. To address this shortcoming, we apply established methods which

are capable of forecasting events characterized by rareness of occurrence and high volatility. Based

on a dataset taken from the National Vulnerability Database (NVD), we use the Mean Absolute

Error (MAE) and Root Mean Square Error (RMSE) to measure the forecasting accuracy of single,

double and triple exponential smoothing methodologies, Croston’s method, ARIMA, and a neural

network-based approach. We analyze the impact of the applied forecasting methodology on the

prediction accuracy with regard to its robustness along the dimensions of the examined system and

software packages ”operating systems”, ”browsers” and ”office solutions” and the applied metrics.

To the best of our knowledge, this study is the first that analyzes the effect of prediction techniques

and applies forecasting metrics that are suitable in this context. Our results show that the optimal

forecasting methodology depends on the software or system package as some methods perform poorly

in the context of IT security vulnerabilities, that absolute metrics can cover the actual prediction

error precisely and that the prediction accuracy is robust within the two applied forecasting-error

metrics.
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1. Introduction

The impact of information technology (IT) security vulnerabilities can be substantial: In an

industry study, IBM estimates the reputation-related costs which result from software security

vulnerabilities leading to a disruption of business operations to range in the millions of dollars per

disruption (IBM Global Study, 2013). The economic consequences of breaches have been examined5

by FireEye, a network security company. Specifically, their data breach cost report for 2016 revealed

that 76 % of respondents would take their business away from a vendor that had demonstrated

negligent data handling practices (eWeek, 2016; FireEye, 2016). Similarly, the 2016 Cost of Data

Breach report by the Ponemon Institute and IBM Security showed that the average total cost of a

breach is US$4 million, an increase of 29% since 2013, with disruptions in daily operations being10

the most severe category of impact (Ponemon Institute, 2016). In the aftermath of a breach, firms

are challenged to mitigate the long-term financial impact by restoring customers’ trust. In essence,

these reports indicate that vulnerabilities pose permanent risks for firms for which they need to

be prepared to deal with. These risks are as diverse as they are plentiful, e.g., network attacks

(GhasemiGol et al., 2016), loss or theft of personal data, loss or theft of commercially sensitive15

information, inoperable IT systems (making the business unable to function after being hacked),

intellectual property infringement, and defamation or extortion, which can lead to serious financial

damage (ContractorUK, 2016).

These economic damages raise the general question of how to control the impact of such vulner-

abilities. In particular, this challenge requires decision makers to assess which system or software20

packages are prone to vulnerabilities, what impact exploits might have, and how many vulnerabil-

ities can be expected to occur during a certain period of time. The importance of this assessment

as an input for system and software acquisition, maintenance, and replacement is reinforced by a

recent study: Results from Veracode’s Bug Bounty survey of 500 IT decision makers working in

cybersecurity revealed that 83% of vendors have released code before testing or resolving security25

issues for bugs (Veracode, 2016; Software Testing NEWS, 2016).

Extant literature offers a plethora of managerial decisions which are contingent on accurate

predictions of vulnerabilities. For instance, the expected number of vulnerabilities can be used as

a measure of trustworthiness before a certain system or software package is acquired (Kim et al.,

2007) or discontinued. Furthermore, assessing the expected number of vulnerabilities can provide30

valuable input for allocating and prioritizing limited resources for inspecting, patching and testing

of an existing software portfolio (Kim et al., 2007; Shin et al., 2011; Walden et al., 2014). Plus,

predicting trends in the number of known vulnerabilities that could occur helps decision-makers

to take proactive actions to minimize the threats that vulnerabilities may pose (Venter and Eloff,
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2004).35

The overall impact of security vulnerabilities can be estimated based on the amount of the

potential collateral damage and the frequency of occurrences. Our study focuses on the research

challenge of predicting the number of security vulnerabilities in subsequent periods of time. To

reliably predict the number of vulnerabilities for a particular system or software package, forecasting

methods must account for three fundamental properties of security vulnerabilities (Gegick et al.,40

2009): First, vulnerabilities are rare events (Shin et al., 2011); to be specific, it is not uncommon

that there are several months in which no vulnerabilities are reported. Second, with respect to

those months where vulnerabilities are observed, there are a few periods where a comparatively

high number of vulnerabilities is reported. For instance, 19 vulnerabilities (CVE-2012-1126 to

CVE-2012-1144) were reported for the Firefox browser in April, 2012 (MITRE Corporation, 2017a),45

while there were none in May and June, 2014. And third, time series of vulnerabilities are not

necessarily stationary1, which means that they do not have the same expected value and the same

variance at each point in time. A reason for this is the development of software within the version

history. While some versions represent minor changes, other versions include substantial changes

in the software. For example, the completely overhauled Firefox implemented in the new Quantum50

version represented major changes in performance and security. These include a stricter and more

confined framework for extensions and additional sandboxing (Mozilla, 2017). In our study, we

therefore take into account different versions of each package and examine them separately.

The academic literature dealt with the study of IT security vulnerabilities using regression tech-

niques for prediction (Shin and Williams, 2008; Chowdhury and Zulkernine, 2011; Shin et al., 2011;55

Zhang et al., 2011; Shin and Williams, 2013; Walden et al., 2014), machine learning techniques

(Neuhaus et al., 2007; Gegick et al., 2009; Nguyen and Tran, 2010; Scandariato et al., 2014), statis-

tical analyses with the help of reliability growth models and vulnerability discovery models (Ozment,

2006; Ozment and Schechter, 2006; Joh, 2011) and time series analysis (Roumani et al., 2015; Last,

2016). While an evaluation of these methods shows sound performance values, we observe that none60

of these approaches considered methods which account for the unique rareness of occurrence and

high volatility of vulnerabilities. Furthermore, only two recent studies (Roumani et al., 2015; Last,

2016) focus the prediction from a time series perspective. While Roumani et al. (2015) uses ARIMA

and exponential smoothing for the prediction of security vulnerabilities, Last (2016) analyzed the

forecast of vulnerabilities from different browsers, operating systems, and video players using both65

regression models (Linear, Quadratic, and Combined) and machine learning techniques. Both stud-

ies show an acceptable fit and can be helpful to predict vulnerabilities. However, the techniques

1”A time series is stationary if its statistical properties (mean, variance and autocorrelation) are held constant

over time” (Ferreiro, 1987, p. 65).
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applied in these studies are not appropriate for the specific properties of security vulnerabilities

discussed before (rareness of occurrence and high vulnerability). There can be methods used and

evaluated, in particular Croston’s method which is designed for time series with a lot of null zero70

values 2. Consequently, this implies that the prediction accuracy can differ due to the characteristics

of the forecasting methodology.

Furthermore, the particular system or software package under consideration needs attention as

different packages have different release cycles and different number of vulnerabilities that is not

taken into account when they are not grouped together. It is necessary to differentiate between75

different versions due to changes within the development history. We therefore argue that the

prediction accuracy depends on the system or software packages. For instance, the number of

vulnerabilities is related to the market share and the maturity stage of the product: Alhazmi et al.

(2007) for example points out that if a system or software starts to attract attention and users

start switching to it, the number of vulnerabilities will increase. Another example is the degree of80

maturity. A system or software is likely to have more vulnerabilities in their early stages rather

than a mature one which has been used and tested for years.

Finally, the usage of suitable accuracy metrics is also a crucial point when examining the forecast

quality. The academic literature provides a lot of accuracy metrics (cf. the literature reviews on

accuracy metrics Hyndman and Koehler (2006); Hyndman et al. (2006); Willemain et al. (2004);85

Willmott et al. (1985)), however not all are suitable when the time series are zero-inflated. For

example, prediction accuracy metrics which compute the percentage error of the forecast and actual

vulnerabilities are not adaptable by definition. These metrics produce infinite / undefined values

when there are no actual vulnerabilities reported for a time t.

The aforementioned arguments concerning the methodology, object and metrics of vulnerability90

prediction result in the research question

”How accurately can different forecasting methodologies predict IT security vulnerabilities?”,

where we analyze the accuracy with regard to its robustness along the dimensions of examined

system and software packages and applied metrics. To the best of our knowledge, this study is the

first that analyzes the effect of forecasting methodologies which take into account the uniqueness95

and rareness of vulnerability time series and applies forecasting metrics that are suitable in this

context.

The remainder of the paper is structured as follows: Next, we provide an overview of related

work. In Section 3, we explain our methodology and the data set. In Section 4, we present and

discuss the results of our empirical study. The paper closes with a summary.100

2In our study zero means that no IT security vulnerabilities are reported within the observed time horizon.
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2. Research Background

In this section, we give a short overview of related research by discussing and highlighting current

research streams of IT security vulnerabilities and their forecasting.

2.1. IT Security Vulnerabilities

Currently, there is no standardized definition of the term security vulnerability, and answering105

the question “what a security vulnerability is” remains a challenge (Microsoft Corporation 2015).

We adopt the terms “vulnerability” and “exposure” of the U.S. MITRE Corporation as “security

vulnerability” for two reasons: First, the “Common Vulnerabilities and Exposures” (CVE) entries

are not only used by many empirical papers (Singh et al., 2016; Johnson et al., 2016; Younis et al.,

2016; Chatzipoulidis et al., 2015; Ozment, 2006; Ozment and Schechter, 2006; Joh, 2011; Wang et al.,110

2008; Last, 2016) but also by information security product and service vendors (Schryen, 2011, 2009)

such as Adobe, Apple, IBM or Microsoft (MITRE Corporation, 2017b); and second, the definition

of vulnerabilities in the context of the CVE program covers weaknesses in the computational logic

found in software and hardware components that, when exploited, result in a negative impact on

confidentiality, integrity, or availability (MITRE Corporation, 2017c). Therefore, we adopt the CVE115

system’s definition of an information security vulnerability being “a mistake in software that can

be directly used by a hacker to gain access to a system or network” (MITRE Corporation, 2017c).

Accordingly, vulnerabilities allow attackers to successfully violate security policies, for example, by

executing commands as another user, by reading or changing data although such access should

be restricted, by posing as another entity, or by conducting a denial of service attack (MITRE120

Corporation, 2017c; Telang and Wattal, 2007).

A schematic classification of vulnerabilities is shown in the figure below:

Figure 1: Classification of Vulnerabilities (Schryen, 2011).
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Vulnerabilities can occur for several reasons, starting from programming errors, malicious soft-

ware engineers or unintentional behaviors (Schryen, 2011) and, even though firms strive to reduce

security vulnerabilities through technological attempts (Hinduja and Kooi, 2013), it remains a chal-125

lenging task to detect vulnerabilities. Furthermore, if a vulnerability is detected, an open question

is still whether to publish the vulnerability or not. While there are some critical voices to publish as

the probability of vulnerability rediscovery to be negligible (e.g., Rescorla (2005)), studies show that

vulnerabilities are correlated in terms of rediscovery, and therefore should be announced publicly

(Ozment, 2005). In this work, we focus on the published vulnerabilities in order to better forecast130

them in the future.

2.2. IT Security Vulnerability Forecasting

The following table illustrates the IT security vulnerability forecasting literature we could iden-

tify:
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Table 1: IT Security Vulnerability Prediction Models

Article Applications Used

Predictors

Prediction Technique Data Source

Regression Techniques

Shin and Williams (2008) JavaScript Engine of

Firefox

Code Complexity Logistic Regression Mozilla Foundation

Security Advisories &

Bugzilla

Chowdhury and

Zulkernine (2011)

Firefox Web Browser Complexity, Coupling

and Cohesion

Naive Bayes, Decision

Tree, Random Forest,

Logistic Regression

Mozilla Foundation

Security Advisories &

Bugzilla

Shin et al. (2011) Firefox Web Browser,

Red Hat Linux Kernel

Complexity, Code Churn,

Developer Activity

Logistic Regression Mozilla Foundation

Security Advisories &

Bugzilla & National

Vulnerability Database &

Red Hat Security

Advisory

Smith and Williams

(2011)

WordPress, WikkaWikki SQL Hotspots Logistic Regression WordPress &

WikkaWikki

Vulnerability Reports
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Zhang et al. (2011) Adobe, Internet Explorer,

Linux, Apple, Windows

Period of Time between

Vulnerabilities

Linear & Regression

Models (Least Mean

Square & Multi-Layer

Perceptron & RBF

Network & SMO

Regression % Gaussian

Processes)

National Vulnerability

Database

Shin and Williams (2013) Firefox Web Browser Complexity, Code Churn,

Prior Faults

Logistic Regression Mozilla Foundation

Security Advisories &

Bugzilla

Walden et al. (2014) PHPMyAdmin, Moodle,

Drupal

Complexity, Source Code,

Vulnerability Locations

Random Forest National Vulnerability

Database, Project

Announcements

Machine Learning

Neuhaus et al. (2007) Mozilla Project Imports and Function

Calls

Support Vector Machine Mozilla Foundation

Security Advisories &

Bugzilla

Gegick et al. (2009) Cisco Software System Non-Security Failures Classification and

Regression Tree Models

Cisco Fault-Tracking

Database

Nguyen and Tran (2010) JavaScript Engine of

Firefox

Component Dependency

Graphs

Bayesian Network, Naive

Bayes, Neural Networks,

Random Forest, Support

Vector Machine

Mozilla Foundation

Security Advisories &

Bugzilla
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Scandariato et al. (2014) Android Applications Text Mining of Java Code Decision Trees, k-Nearest

Neighbor, Naive Bayes,

Random Forest, Support

Vector Machine

Source Code of Used

Applications with Fortify

Source Code Analyzer

Statistical Models

Ozment (2006) OpenBSD Number of Failure Data Reliability Growth

Models

OpenBSD Web Page,

ICAT, Bugtraq, OSVDB,

ISS X-Force

Ozment and Schechter

(2006)

OpenBSD Time between Failures Statistical Code Analysis,

Reliability Growth

Models

OpenBSD web page,

ICAT, Bugtraq, OSVDB,

ISS X-Force

Joh (2011) Windows XP, OS X 10.6,

IE 8, Safari

Number of Vulnerabilities Vulnerability Discovery

Models

NVD, Secunia, OSVDB

Time Series Analysis

Last (2016) Different Browsers,

Operating Systems,

Video Players

Number of Vulnerabilities Linear & Regression

Models (Linear,

Quadratic, and

Combined), Machine

Learning

National Vulnerability

Database

Roumani et al. (2015) Chrome, Firefox, Internet

Explorer, Safari, Opera

Number of Vulnerabilities ARIMA, Exponential

Smoothing

National Vulnerability

Database
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The above table shows that the extant literature mainly uses regression techniques for prediction135

(Shin and Williams, 2008; Chowdhury and Zulkernine, 2011; Shin et al., 2011; Zhang et al., 2011;

Shin and Williams, 2013; Walden et al., 2014). For instance, Shin and Williams (2008) adopted code

complexity that differentiate vulnerable functions and investigated whether code complexity can be

useful for vulnerability detection. The results indicate that complexity can predict vulnerabilities

at a low false positive rate, but at a high false negative rate. In a similar work, Shin et al. (2011)140

examined if complexity, code churn, and developer activity can be used to distinguish vulnerable

from neutral files, and to forecast vulnerabilities. Shin and Williams (2013) showed that fault pre-

diction models and vulnerability prediction models provide good accuracy in forecasting vulnerable

code locations across a wide range of classification thresholds. Chowdhury and Zulkernine (2011)

developed an approach to automatically predict vulnerabilities based on historical data, complexity,145

coupling, and cohesion by using four alternative statistical and data mining techniques. The results

indicate that structural information from the non-security realm such as complexity, coupling, and

cohesion is useful in vulnerability prediction. In their study they were able to predict approximately

75 % of the vulnerable-prone files. Walden et al. (2014) compared the vulnerability prediction ef-

fectiveness based on complexity, source code, and vulnerability locations in the source code for the150

forecast of vulnerable files. They showed that text mining provides a high recall for PHPMyAdmin,

Moodle, and Drupal code analysis.

Besides approaches using mainly regression techniques, there are other used predictors and tech-

niques as well. For example, Smith and Williams (2011) analyzed whether SQL hotspots provide

a useful heuristic for the prediction of web application vulnerabilities. Their analysis reveals that155

the more SQL hotspots a file contains per line of code, the higher the probability that this file will

contain vulnerabilities. Neuhaus et al. (2007) introduced a support vector machine based tool that

achieved high accuracy in predicting vulnerable components in software code based on imports and

function calls. Furthermore, Gegick et al. (2009) created a classification and regression tree model

to determine the probability of a component having at least one vulnerability. The evaluation shows160

that non-security failures provide useful information as input variables for security-related predic-

tion models. Nguyen and Tran (2010) demonstrated that dependency graphs are another viable

option to predict vulnerable components and Scandariato et al. (2014) used the source code of An-

droid applications as input for text mining approaches, statistical methods and artificial intelligence

techniques to determine which components of a project are likely to contain vulnerabilities. After165

validating their approach by applying it to various Android applications, they determined that a

dependable prediction model can be built.

Statistical models were also used to examine vulnerability predictions. For instance, (Ozment,

2006; Ozment and Schechter, 2006) used reliability growth models and statistical analyses showed

that these have acceptable one-step-ahead predictive accuracy for the set of independent data points.170
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Joh (2011) applied vulnerability discovery processes in major web servers and browsers: The analyses

show reasonable prediction capabilities for both time-based and effort-based models for datasets from

Web servers and browsers.

More recently, time series analysis has also been used to forecast the number of vulnerabil-

ities. For example, Roumani et al. (2015) considered time series models (ARIMA, exponential175

smoothing) for the prediction of security vulnerabilities. The results reveal that time series models

provide a good fit and can be helpful to predict vulnerabilities. Last (2016) analyzed the forecast of

vulnerabilities from different browsers, operating systems, and video players using both regression

models (Linear, Quadratic, and Combined) and machine learning techniques. The evaluation of

these methods indicates significant predictive performance in forecasting zero-day vulnerabilities.180

However, a more detailed analysis of these approaches uncovers three issues: 1) The literature on

predicting the number of IT security vulnerabilities from a time series approach is rather sparse. 2)

Predictions on which software components are more likely to be vulnerable do not provide insights

into the volume of vulnerabilities that will occur. And 3), none of these research foci address the

uniqueness of vulnerabilities, namely, rareness of their occurrence and high volatility (as noted in185

Section 1). We therefore concentrate on predicting the number of IT security vulnerabilities from a

time series perspective taking into account methods and accuracy metrics that are suitable for these

two properties inter alia. The next section explains the different methods and accuracy metrics we

used in this study.

3. Methodology and Data190

In this section, we motivate and outline the forecast methodologies implemented in our study

and introduce a consistent notation (Subsection 3.1), present accuracy metrics to compare the

different forecast approaches, which are suitable in the context of security vulnerability forecasting

(Subsection 3.2). Finally, we describe the data set in terms of analyzed software systems (Subsection

3.3).195

3.1. Forecasting Methodologies

In line with the study of Nikolopoulos et al. (2016), we implement a multiple forecasting approach,

where we compare several forecasting methods and evaluate their performance in terms of forecasting

accuracy.

We forecast time series of monthly security vulnerabilities using the forecasting horizons of one,200

two, and three months. We evaluate the results against a test set of held out security vulnerability

data. Time-series forecasting approaches are organized in five main research streams: (Exponential)

Smoothing methods, regression methods, (advanced) statistical models, neural networks and (other)

data mining algorithms (Wang et al., 2009). We refer to Chatfield (2000), who identifies key aspects
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which need to be considered when choosing a forecasting method. These include the properties of205

the time series being forecasted and the forecast accuracy of the method.

In our study, we use two types of forecasting methods. The first group of forecasting methods

we use are not in particular designed for the purpose of zero-inflated time series 3. Yet, these

methods are used both in practice and academic literature widely, and very recently for predicting

the number of IT security vulnerabilities (Roumani et al., 2015). These forecasting methods within210

this first group comprise single, double and triple exponential smoothing methods (SES, DES, and

TES) which are also referred to as single exponential, Holt’s linear trend method, and Holt-Winter’s

method. In addition, we implement an ARIMA based approach, which is an advanced statistical

model.

Regarding our context, time series of IT security vulnerabilities differ from conventional series215

in the respect that they have multiple periods of zero values. Forecasting methodologies that are

appropriate for zero-inflated time series are thus especially suitable in our context (Ogcu Kaya and

Demirel, 2015). Such time series with a lot of zero values are well-known in intermittent demand

analysis: Many scholars have recognized and contributed to the problems of predicting infrequent

and irregular demand patterns, i.e., the observed demand during many periods is zero, interspersed220

by occasional periods with irregular non-zero demand (Johnston and Boylan, 1996).

We therefore use a second group of forecasting methodologies that are designed for the purpose

of handling such time series. In particular we apply Croston’s method and a Neural Network

based approach. Croston (1972) highlighted the inadequacies of common methods for intermittent

demand forecasting and developed a method, which is one of the widely used forecasting methods for225

intermittent demand (Shenstone and Hyndman, 2005; Syntetos et al., 2015). From a methodological

point of view, it is built upon the estimation from the demand size and inter-arrival rate: The original

time series is decomposed into a time series without zero values and a second one that captures

durations of zero valued intervals (Herbst et al., 2014). In addition, we want to shed light on the

following methodological association with Croston’s method and SES: When data is aggregated, i.e.230

in our case if we had grouped the different versions together, the zero-inflation of the data would have

been decreased. In the academic literature, it is discussed that such an aggregation could lead to

time series containing no zero values for the higher aggregation levels (where the mean intermittent

demand interval will be equal to unity) (Petropoulos and Kourentzes, 2015). In this special case,

Croston’s method is equivalent to SES in the case where all periods have non-zero demands and235

the literature suggests to use SES instead (Petropoulos and Kourentzes, 2015). However, as we

separated different versions of software and system packages, this is not the case for our data.

3Zero-inflated time series are time series which contain a lot of zero values and show a high volatility when a value

occurs.
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Therefore, we include Croston’s method. Furthermore, the suitability of Croston’s method for such

time series has been empirically shown. It performs more effectively in forecasting zero-inflated and

intermittent demand time series data (e.g., Kourentzes (2013); Gutierrez et al. (2008)). For example240

Willemain et al. (1994) have demonstrated that Croston’s method gives superior forecasts to some

competing methods when predicting zero-inflated time series.

Besides Croston’s method, we use a Neural Network based approach that ”are used to provide

dynamic demand rate forecasts, which do not assume constant demand rate in the future and can

capture interactions between the non-zero demand and the inter-arrival rate of demand events”245

(Kourentzes, 2013, p. 198). Kourentzes (2013) have shown evidence for the applicability of neural

network approaches in predicting zero-inflated time series. Therefore, we include both Croston’s

method and artificial neural networks, which better address the specific characteristics of security

vulnerability time series data.

The predicted outcome variable ŷt+h|t, used throughout the paper, is defined as the forecasted250

value ŷ at time (t + h), where t is the starting time and h the proposed forecast horizon. In our

study we test three different forecasting horizons covering short (one month, h = 1), medium (two

months, h = 2), and long (three months, h = 3) time frames.

3.1.1. Exponential Smoothing Methods

Single Exponential Smoothing255

The idea behind SES is to weigh the most recent observations against the observations from the

more distant past using the parameter α. Forecasts are calculated using weighted averages where

the weights decrease exponentially as observations lie further in the past. In other words, smaller

weights are associated with older observations. SES only depends on the linear parameter lt, which

denotes the level of the series at time t. Due to this definition, SES predicts every value into the260

future with the same value, derived from the last observed level. Our outcome variable can in this

case be described as ŷt+1|t. For smaller values of α more weight is given to the observations from

the more distant past. The equation for single exponential smoothing is listed in the following:

ŷt+h|t = ŷt+1|t = lt (1)

lt = αyt + (1− α)lt−1

Double Exponential Smoothing

Single exponential smoothing can be extended to allow forecasting of data with a linear trend

which is called the double exponential smoothing method. This was done by Charles C. Holt in

1957. This method is slightly more complicated than the original one without trend. In order to

13



add the trend component to the outcome variable ŷt+1|t the term bt, which denotes the slope of the

time series at time t:

ŷt+h|t = lt + hbt (2)

lt = αyt + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

While Parameter lt still denotes the level, bt represents the slope of the time series. The weight265

β is used to weigh the slope between the two most recent observations against the observations from

the more distant past using the parameter α.

Triple Exponential Smoothing

This approach is an extension of DES with added seasonality often referred as triple exponential

smoothing (TES). There are three components in this model (cf. Equation 3). As in the previous

model, the first denotes the level, while the second represents the trend component. In TES, the

third term st denotes the seasonality component. The outcome variable ŷt+1|t can thus be defined

as follows:

ŷt+h|t = lt + hbt + st+hm−m (3)

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m

Where hm = [(h− 1) mod m] + 1, which ensures that the estimates of the seasonal parameters

came from the correct season.270

While Parameter lt and bt are analogously defined to SES and DES, the weight γ is introduced

to weigh the seasonality component over the m most recent time periods.

3.1.2. ARIMA

In an Auto Regressive Integrated Moving Average (ARIMA) model, the future value of a variable

is assumed to be a linear function of several past observations and random errors. ARIMA models

combine differencing with auto-regression and a moving average model. We used the ARIMA(p, d, q)

model where p is the order of the autoregressive part, d is the degree of first differencing involved

and q is the order of the moving average part. The general equation of an ARIMA(p, d, q) model is

the following (Der Voort et al., 1996; Hyndman and Athanasopoulos, 2018):

ŷ′t+h|t = c+ Φ1y
′
t + Φ2y

′
t−1 + . . .+ Φpy

′
t−p + θ1et−1 + θ2et−2 + . . .+ θqet−q + et (4)
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where yt denotes the number of vulnerabilities at time t, ŷt+h|t is the forecast of the time series y. c is

a constant and Φp are the coefficients (to be determined by the model) of the autoregressive model.275

et is a zero mean white noise error factor and together with the coefficients θq forms the moving

average terms. Since stationarity is a requirement for ARIMA forecasting models and security

vulnerabilities have been found to be non-stationary (Arora et al., 2006, 2010), we appropriately

transformed the data using differentiation. With this, ŷ′t+h|t and y′t are the differenced series (degree

of differentiation depending on d).280

3.1.3. Croston’s Method

In order to account for the characteristic properties of security vulnerability time series data, we

choose Croston’s method as an additional forecasting method, specifically the bias-adjusted version

of Croston’s method developed by Syntetos and Boylan (1999). The method of Croston (1972)

separately forecasts the non-zero periods’ magnitudes and the inter-arrival time between successive

non-zero periods using SES. ŷt+h|t is then defined as forecasted mean of security vulnerabilities.

This method basically decomposes the intermittent vulnerabilities into two parts: the number of

non-zero vulnerabilities ẑt+h|t and the time interval between those vulnerability periods v̂t+h|t, and

then applies the single exponential smoothing on both parts. Croston’s method uses only one weight

parameter α, for both SES parts, therefore, ŷt+h|t, the estimate of mean non-zero vulnerabilities at

time t, is defined as follows:

ŷt+h|t =
ẑt+h|t

v̂t+h|t
(5)

ẑt+h|t =

zt if yt = 0

αyt + (1− α)zt if yt 6= 0

v̂t+h|t =

vt if yt = 0

αyt + (1− α)ŷt if yt 6= 0

Croston’s method is widely used in the intermittent demand forecasting and furthermore “the stan-

dard method to be used in the industry nowadays, being implemented in many ERP systems and

dedicated forecasting software” (Petropoulos et al., 2016).

3.1.4. Neural Network285

The last method, which makes use of neural networks (Nnet), is also particularly useful when

dealing with zero-inflated time series. It has been used extensively to predict lumpy and intermittent

demand and has shown good accuracy (Gutierrez et al., 2008; Kourentzes, 2013; Amin-Naseri and

Tabar, 2008). We applied a feed-forward neural network with a single hidden layer. While J

denotes the number of time series observations used as input pj for the neural network, the number290

of forecasted security vulnerabilities ŷt+h|t are defined as follows:
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ŷt+h|t = β0 +

I∑
i=1

βig

γ0j +

J∑
j=1

γijpj

 (6)

where w = (β,γ) are the weights of the network with β = [β1, ..., βI ] and γ = [γ11, ..., γIJ ] for

the output and the hidden layers respectively. The β0 and γ0j are the biases of each neuron, which

function as the intercept in a regression for each neuron. I is the number of hidden nodes in the

network and g(·) is a non-linear transfer function, which is in our case the sigmoid logistic function295

and provides the nonlinear capabilities to the model.

3.2. Accuracy Metrics

The literature on accuracy metrics can be divided into four types of forecasting error metrics

(Hyndman et al., 2006): Absolute metrics such as the mean absolute error (MAE) or root mean

square error (RMSE), percentage-error metrics such as the mean absolute percent error (MAPE)300

or mean arctangent absolute percentage error (MAAPE), relative-error metrics, which average the

ratios of the errors from a designated method to the errors of a naive method (e.g., Median Relative

Absolute Error (MdRAE)) and scale-free error metrics, which express each error as a ratio to an

average error from a baseline method (Mean Absolute Scaled Error (MASE)).

From the above-mentioned accuracy metrics, percentage-error metrics, relative-error metrics305

and the mean absolute scaled error are not suitable for the following reasons: As we deal with zero-

inflated time series, percentage-error metrics such as the MAPE are not well-defined, i.e. MAPE

has the significant disadvantage that it produces infinite or undefined values for zero or close-to-zero

actual values (Kim and Kim, 2016). Other percentage-error metrics which were developed for zero-

inflated time series have some other drawbacks. For instance, although MAAPE is being designed310

for the purpose of intermittent demand forecasting (Kim and Kim, 2016), it lonely to interpret

the forecasting accuracy seems not to be sufficient due to its definition drawback: Regardless the

prediction, it maps every value to the worst value of π
2 when the actual value is zero (yt = 0).

Relative-error metrics have similar shortcomings because it would involve division by zero and

therefore not adaptable to zero-inflated time series as well (Hyndman et al., 2006). The fourth315

group of metrics, the mean absolute scaled error, is also not suitable in our context as we applied a

rolling origin forecasting evaluation. Due to this, it is not usable in our context as the denominator

becomes indefinite. To sum up, neither of these metrics is appropriate for zero-inflated time series

because zero observations may yield division by zero problems (Syntetos and Boylan, 2005).

Therefore and in line with other studies (e.g., Arora and Taylor (2016); Taylor and Snyder (2012);320

Zhao et al. (2014)), in this study we use absolute forecast accuracy metrics due to the following

reasons: First, both the mean absolute error (MAE) and the root mean square error (RMSE) can

reflect the prediction accuracy of zero-inflated time series. Second, both accuracy metrics are widely
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used in the forecasting literature and third, as absolute error metrics are calculated as a function

of the forecast errors so that we can interpret the deviation in alignment with the structure of the325

time series. In the academic literature, a combination of metrics of MAE and RMSE is suggested

to assess the model performance (Chai and Draxler, 2014). In the next subsection, we explain the

MAE and the RMSE and in Subsection 3.2.3, we associate the accuracy metrics and time series

structure in order to interpret the MAE and RMSE values.

3.2.1. Accuracy Metric: Mean Absolute Error330

In order to capture the absolute forecasting error and to interpret our results, we assessed the

Mean Absolute Error (MAE). The MAE is one of the most commonly used metric for evaluating

the absolute error defined as the average of the absolute errors between the measured and predicted

values (Gospodinov et al., 2006):

MAE =
1

N

N∑
t=1

(|yt − ŷt|) . (7)

The MAE is a scale-dependent accuracy metric and uses the same scale as the data being335

measured (Hyndman et al., 2006). As our datasets contain only IT security vulnerabilities, we

can compare the absolute forecast errors between the different versions of software and system

application packages.

A value of 0 means a perfect forecast accuracy: All predicted values are equal to the real values.

To give a sense for interpretability, we want to provide some examples for MAE as well with the340

same examples we used before for explaining MAE’s values.

Let us assume that the number of actually published security vulnerabilities during a period t

equals yt = 10. Let us further assume that the number of predicted vulnerabilities equals ŷt = 11.

As we have only one observation, the value of MAE would get a value of 1, which is close to its

theoretical minimum of 0.345

Let us now assume that the number of actually published security vulnerabilities during a period

t equals yt = 5. Let us further assume that the number of predicted vulnerabilities equals 100, i.e.

ŷt = 100. As we have only one observation, the value of MAE would get a value of 95. However,

regarding MAE, the value of 95 is not enough to explain the interpretability of MAE solely which

we want to highlight with the following example: If the actually published security vulnerabilities350

during a period t had been yt = 10000 and the predicted vulnerabilities equaled 10095, the MAE still

would have been 95 but on a reasonable fit as we had only an overestimation of 0.95% while in the

first scenario we had an overestimation of 95%. These examples show that for the interpretability

of MAE, we have to associate the MAE value with the actual published security vulnerabilities as

MAE is a sum of error terms et : R≥0 → R≥0 for t ∈ N with et : (|yt − ŷt|).355
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3.2.2. Accuracy Metric: Root Mean Square Error

We further assessed the Root Mean Square Error (RMSE) in order to capture the absolute

forecasting error and to interpret our results. The RSME is also one of the most commonly used

metric for evaluating the absolute error and is defined as

RMSE =

√∑N
t=1 (yt − ŷt)2

N
. (8)

The RMSE is similar to the MAE a scale-dependent accuracy metric and uses the same scale as360

the data being measured (Hyndman et al., 2006). However, they are more sensitive to outliers than

MAE by definition (Hyndman and Koehler, 2006).

A value of 0 means a perfect forecast accuracy: All predicted values are equal to the real values.

To give a sense for interpretability, we want to provide some similar examples for RMSE.

Let us assume that the number of actually published security vulnerabilities during a period t365

equals yt = 10. Let us further assume that the number of predicted vulnerabilities equals ŷt = 11.

As we have only one observation, the value of RMSE would get a value of 1, which is close to its

theoretical minimum of 0.

Let us now assume that the number of actually published security vulnerabilities during a period

t equals yt = 5. Let us further assume that the number of predicted vulnerabilities equals 100, i.e.370

ŷt = 100. As we have only one observation, the value of RMSE would get a value of 9025. This

simple example shows that such outliers have significant impacts on the RMSE’s value. However,

regarding RMSE, the value of 9025 is not enough to explain the interpretability of RMSE solely which

we want to highlight with the following example: If the actually published security vulnerabilities

during a period t had been very large such as yt = 1000000 and the predicted vulnerabilities equaled375

1000095, the RMSE still is 9025. However, comparing the RMSE of 9025 in the latter case, we have

a very low overestimation close to zero while in the first scenario, we have an overestimation of

95%. These examples reveal that to interpret RMSE, we have to associate its value with the actual

published security vulnerabilities as RMSE is a mapping of error terms et : R≥0 → R≥0 for t ∈ N

with et : (yt − ŷt)2.380

3.2.3. Accuracy Metrics and Time Series Structure

We explained in the Subsections 3.2.1 and 3.2.2 how MAE and RMSE is defined. Comparing

both metrics, MAE is less sensitive to extreme values than RMSE (Li and Heap, 2011; Willmott,

1982; Willemain et al., 2004). When the differences between the MAE and RMSE are close to each

other, it means that very large errors are unlikely to have occured (Li and Shi, 2010). The academic385

literature does not provide exact ranges for both the MAE and RMSE as acceptable values depend

on the underlying context (Willmott and Matsuura, 2005) but in general low values close to the
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theoretical minimum of zero are considered to be good Chaplot et al. (2000). We can use both the

MAE and RMSE to give a sense of the interpretabilitiy and the relation of both accuracy metrics

regarding the predicted and the actual values. Consider the following exemplary time series of390

vulnerabilities by assuming y the actual published and ŷ the predicted vulnerabilities in the time

frame {t = 1 . . . 6}:

Table 2: Example of Actual Published and Predicted Vulnerabilities.

t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

y 0 0 1 0 5 0

ŷ 0 0 0 2 5 0

A closer look at the predicted values in this examples reveals that only in t = 3 and t = 4 we

have a slight mismatch between the actual and the predicted values with one being underestimated

(y3 = 1 and ŷ3 = 0) and an overestimation in t4 with y4 = 0 and ŷ4 = 2. So, all in all, the forecasted395

values are good which is reflected in the value of MAE and RMSE. The computation shows that

MAE is rather low with 0.5 and is close to its theoretical minimum. The RMSE is 0.83 is very low

as well and close to its theoretical minimum. In this example, the mean of of the actual published

vulnerabilities is 0.5 and the mean of the predicted vulnerabilities is 1.16: Comparing the means

with the MAE and RMSE values, it shows that there is a good fit of the predicted vulnerabilities.400

We can state that a low mean of actual published vulnerabilities over a wide time frame (e.g., 5

years) indicates that the time series contains a lot of zero values. Using MAE and RMSE assures

us to reflect upon the prediction accuracy in a meaningful manner. A low MAE and RMSE close to

the mean of the actual vulnerabilities shows that there is a good fit of the prediction method. On

the other hand, a high MAE and RMSE which means that they are greater than the mean of the405

actual vulnerabilities, indicates that the deviation of the predicted vulnerabilities is high and the

prediction accuracy rather poor.

3.3. Dataset: National Vulnerability Database

We select a dataset from the National Vulnerability Database (NVD)4, which provides a com-

prehensive list of unique vulnerability and exposure data and maps it to corresponding system or410

software package (Martin, 2001). The NVD is a freely available US government data source main-

tained by the National Institute of Standards and Technology (NIST). Since its launch in 1997,

it has reported standardized information about almost 80,000 software vulnerabilities. Although

there do exist other security vulnerability databases, which are often community projects, such as

4The NVD-XML-Files are available at https://nvd.nist.gov/download.cfm.
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Table 3: Description of the Software and System Package

Application Domain Software / System Package Release Date Open Source

Browser Mozilla Firefox 2002 Yes

Browser Google Chrome 2008 Partially

Browser Internet Explorer 1995 No

Browser Safari 2003 No

Office Microsoft Office 1990 No

Office Thunderbird 2004 Yes

OS Mac OS X 2001 No

OS Ubuntu 2004 Yes

OS Microsoft Windows 1985 No

Vulners (www.vulners.com), The Exploit Database (www.exploit-db.com), or Packet Storm’s Vul-415

nerability Database (www.packetstormsecurity.com), the NVD database still remains widely used

and the most exhaustive resource for security vulnerability data. The dataset has been shown to be

particularly useful for “understanding trends and patterns in software vulnerabilities, so that one can

better manage the security of computer systems that are pestered by the ubiquitous software security

flaws” (Zhang et al., 2011).420

Table 3 shows a description of the application domains and corresponding software and system

packages covered in our analysis.

Within these application domains, we analyze a balanced mix of closed source and open source

software packages comprising the most prevalent software solutions in terms of market share. Our

dataset covers the time period from January 2002 to June 2016. We further distinguish the system425

and software packages along their major version releases, since a package’s version can serve as a

reliable predictor for its vulnerability discovery rate (Alhazmi et al., 2005). We use the version

numbers provided by the NVD database for each security vulnerability and group them by their

major releases. Since the objective of our paper is to forecast recently appearing security vulner-

abilities we focus on the root version of the software product where the vulnerability appeared430

first. Some vulnerabilities remain unpatched over multiple software versions and are therefore listed

under multiple versions in the NVD dataset. Despite the fact that this total number, as reported

on the NVD website, accurately reflects the number of vulnerabilities present in a specific software

product and version, we filter for the number of uniquely originating vulnerabilities. Although this

approach results in different sample sizes, we avoid aggregating multiple versions of a particular435

package to account for the individual vulnerability characteristics of each major version 5. Finally,

5An exception to this are the Firefox versions starting from version 7 and Thunderbird versions since the versioning
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the vulnerabilities were aggregated per month to generate an adequate dataset for our analysis.

4. Empirical Results and Discussion

We predicted the number of IT security vulnerabilities based on the forecasting methodologies

implemented in the R package “forecast” (Hyndman, 2017). Figures 3 to 8 present the prediction440

accuracy (MAE) for nine software and system packages subdivided into the major versions for the

forecasting horizon of three months 6.

4.1. Results

Since there is no substantial difference in forecasting accuracy between forecasting horizons of one

or two months, we focus on the results of the longest forecasting horizon and provide complementary445

results for the other two time horizons in the appendix. Throughout the paper, forecasting accuracy

(MAE and RMSE) is reported for the whole time frame available (cf. Appendix D) and three

month forecasting horizons, unless stated otherwise. We show the performance of all six forecasting

methods and compare different versions of the system and software packages. Figure 2 plots the

time series and forecasts for Internet Explorer (Version 6) for the different forecasting methodologies450

as a representative example 7. The figures display the characteristics of the time series with regards

to its volatility and many zero values (rareness of occurrence). The plots furthermore show that

depending on the forecasting methodology, the difference between the predicted values and the

actual values varies considerably. While SES and Croston’s method produce smooth predictions

with low variability, the other methods rapidly adapt to variations of the time series which has455

impacts on the prediction accuracy.

of these products does not reflect major changes in steps from one version to another. We labeled these as ”rolling

versions”.
6Note that the time frame of ”three months” (h=3) means that vulnerabilities were summed up quarterly. The

prediction pertains to the next quarter.
7As we have a total of 270 different software and system packages and versions, we only provide one representative

example here. The other plots can be obtained from the authors.
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Figure 2: Time Series and Forecasts for Internet Explorer (v6)
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The Figures 3 to 8 show the forecasting accuracy in terms of MAE and RMSE. We observe that

the forecasting accuracy varies depending on the forecasting methodology.
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Figure 3: Prediction Accuracy (MAE) for Operating Systems, h=3 (months)
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Figure 4: Prediction Accuracy (RMSE) for Operating Systems, h=3 (months)
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Figure 5: Prediction Accuracy (MAE) for Browsers, h=3 (months)
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Figure 6: Prediction Accuracy (RMSE) for Browsers, h=3 (months)
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Figure 7: MAE for Office Solutions, h=3 (months)
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Figure 8: Prediction Accuracy (RMSE) for Office Solutions, h=3 (months)

4.2. Discussion

We focus our discussion on how the accuracy of the forecasting methods is affected by the460

software and system packages and we consider the robustness of our results with regard to different

error metrics. Our discussion thereby contributes to the rising stream of literature analyzing IT

security vulnerabilities from a time series perspective and it examines how the prediction accuracy

of IT security vulnerabilities’ time series is impacted by the applied forecasting methodology.

4.2.1. Prediction Accuracy Depending on Software and System Packages465

With the variety of software and systems covered in our study, we have to examine how robust

our results are regarding different packages. We make a few observations: First, there is a tendency,

especially for the software package ”browsers”, that the forecasting methodology SES and Neural

Network are less suitable (cf. Fig. 5 and Fig. A.9 and A.12). In the case of Neural Networks, this

tendency applies to all packages. The reason for the poor results of SES and Neural Networks lies470

in the properties of security vulnerability time series data, rareness of occurrence and a tendency

towards outliers. Both characteristics have an impact on the effectiveness of the applied forecast-

ing methodology. In the intermittent demand literature, this phenomenon is widely known. The

infrequent demand arrivals coupled with variable demand sizes whenever demand occurs render the

problem of accurately estimating the demand especially challenging (Petropoulos and Kourentzes,475

2015). Translating this to our context, this means that the sudden appearance of vulnerabilities for

a few periods results in an overestimation of vulnerabilities in the following periods of time, i.e.,

vulnerabilities are predicted even if there were none. This explains the poor performance of these

two methods.

Second, from an intra-related observation between the different packages, it is evident that for480

some methods, the prediction accuracy varies considerably. For example, within browsers, DES
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together with SES and Neural Networks have achieved significantly poorer prediction accuracies for

Mac OS X (cf. Fig. 5) or TES with SES and Neural Networks for some versions of Google Chrome

(cf. Fig. 6). In general, we observe that the accuracy of the forecasting methodologies depends on

the applied software and system packages, and we note that approximately more or less the same485

prediction accuracy being close to its theoretical minimum for both metrics, except for SES and

Neural Networks (cf. Fig. 3 to Fig. 8 and Fig. A.9 to Fig. A.14). These observations have two

implications: (1) We can state that the choice of a forecasting methodology depends on the software

or system package as some methods are not suitable such as SES and Neural Networks, and (2)

from a managerial point of view, the tendency of low prediction errors offers decision-makers a good490

choice to use these forecasting methodologies in order to anticipate the development of IT security

vulnerabilities of their software and system applications in their organization’s portfolio.

4.2.2. Robustness of Different Measures of Prediction Accuracy

Another issue deserving attention is the robustness of our results in terms of the used forecasting-

error metrics MAE and RMSE. For instance, our discussion in the prior subsection revealed the poor495

performance of SES and Neural Networks. The crucial question is how to interpret these values and

the robustness of the prediction accuracy within the two applied forecasting-error metrics.

We can observe that the poor performance of SES and Neural Networks is independent from the

applied metrics MAE and RMSE - both metrics show the same tendency. For most of the cases,

in the light of our discussion in the prior subsection, we observe that the values of MAE are close500

to zero meaning that the prediction accuracy was high. As RMSE is more sensitive to outliers (cf.

Subsection 3.2.2), its values are higher but the overall tendency for the forecasting methodologies is

the same: The actual absolute prediction accuracy for MAE as well as for RMSE was low in most of

the cases (cf. Tables C.4 to C.6) with the exceptions of SES and Neural Networks for browsers. The

tendency of the other methodologies shows that the forecasting methodologies’ decomposition of505

the zero valued intervals is sufficient to capture the high volatility. Important implications from this

result are that that the prediction error is independent from the applied metrics and the prediction

accuracy was good for the forecasting methodologies despite dealing with time series that contain

many zero values. This is backed up by Table D.7 in which the actual vulnerabilities within the

time frame and the monthly averages are shown. Regarding the latter implication, a closer look510

to Safari v1 reveals that within the time of 13 years, 20 vulnerabilities occurred implying that this

time series contains a lot of zero values and, if vulnerabilities appear, they are volatile.

Regarding the robustness of our results, we observe a same tendency for both forecasting error

metrics which suggests that the outcome of the accuracy of a particular forecasting methodology is

independent from the choice of the metric. There are only slight differences in the metrics: Using515

MAE, we get values closer to zero for almost every forecasting methodology which means it is
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less sensitive to extreme values than RMSE. While RMSE estimation is based on the mean and is

more sensitive to extreme cases and outliers, the MAE estimation is based on the median and is

therefore more robust to outliers. In some cases using SES, we observe that RMSE dropped but

MAE increased. This means that these metrics are better at accounting for extreme cases, but the520

solution is less robust. However, Tables 3 to 8 show only slight variations between MAE and RMSE

for the different forecasting methods. When the MAE and RMSE are close to each other, it means

that very large errors are unlikely to have occurred.

To conclude, we can derive the implications that (1) the metrics MAE and RMSE can measure the

actual prediction error accurately in the context of IT security vulnerabilities and (2) the accuracy525

results of the forecasting methodologies are robust in terms of the independence from the applied

metrics.

5. Conclusion

This paper addresses the problem of forecasting the number of IT security vulnerabilities of

different system and software packages including operating systems, browsers and office solutions.530

The analysis of vulnerabilities with time series methods is a rising stream in the literature to

which our study contributes an extensive analysis of forecasting methodologies. We review the

pros and cons of forecasting error metrics and demonstrate the appropriateness of the absolute

error forecasting metric. Using the metrics MAE and RMSE, we discussed the forecasting accuracy

based on the robustness factors software and system packages and highlight the independence of the535

accuracy results from the metrics.

Our study reveals important implications: First, the selection of a forecasting methodology

depends on the software or system package as some methods show poor performances (such as

SES and Neural Networks). Second, our results are relevant to managerial decision makers as they

demonstrate the accuracy of IT security vulnerability forecasts, which can inform critical decisions540

on organizational software portfolios. Third, we were able to show that absolute metrics overcome

disadvantages of other, e.g., percentage-error metrics and that absolute metrics can cover the actual

prediction error precisely in the context of IT security vulnerabilities. Fourth, we could show that

the accuracy results of the forecasting methodologies are robust in terms of the independence from

using absolute metrics.545

Our study has a few limitations: Although we followed a structured and accurate search process

to identify IT security vulnerabilities from the most extensive database NVD and linked the vul-

nerabilities uniquely to the corresponding root software and system package, we may have missed

vulnerabilities or missed vulnerabilities which are not included in the NVD database. Further, we

could only plot the time series and forecasts for Internet Explorer (Version 6) for the different fore-550

casting methodologies as a representative example as we have a total of 270 different software and

28



system packages and versions.

To conclude, we hope that our study encourages academics to develop suitable forecasting meth-

ods for IT security vulnerabilities which subsequently improve prediction accuracy.
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Appendix A. MAE Results for 1 and 2 Months560

Appendix A.1. MAE Results for 1 Month
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Figure A.9: Prediction Accuracy (MAE) for Browsers, h=1 (month)
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Figure A.10: Prediction Accuracy (MAE) for Office Solutions, h=1 (month)
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Figure A.11: Prediction Accuracy (MAE) for Operating Systems, h=1 (month)

Appendix A.2. MAE Results for 2 Months

Safari Internet Explorer

Firefox Google Chrome

Sa
fa

ri
1

Sa
fa

ri
2

Sa
fa

ri
3

Sa
fa

ri
4

Sa
fa

ri
6

Sa
fa

ri
7

Sa
fa

ri
8

Sa
fa

ri
9

In
te

rn
et

Exp
lo
re

r
5

In
te

rn
et

Exp
lo
re

r
6

In
te

rn
et

Exp
lo
re

r
7

In
te

rn
et

Exp
lo
re

r
8

In
te

rn
et

Exp
lo
re

r
9

In
te

rn
et

Exp
lo
re

r
10

In
te

rn
et

Exp
lo
re

r
11

Fire
fo
x

0

Fire
fo
x

1

Fire
fo
x

2

Fire
fo
x

3

Fire
fo
x

7

Fire
fo
x

ro
lli

ng

G
oo

gl
e
C
hr

om
e
1

G
oo

gl
e
C
hr

om
e
2

G
oo

gl
e
C
hr

om
e
3

G
oo

gl
e
C
hr

om
e
4

2

10
20

40

2

10
20

40

Method

SES

DES

TES

Croston

Arima

NNet

Figure A.12: Prediction Accuracy (MAE) for Browsers, h=2 (months)

31



Microsoft Office Thunderbird
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Figure A.13: Prediction Accuracy (MAE) for Office Solutions, h=2 (months)
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Figure A.14: Prediction Accuracy (MAE) for Operating Systems, h=2 (months)
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Appendix B. RMSE Results for 1 and 2 Months

Appendix B.1. RMSE Results for 1 Month
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Figure B.15: Prediction Accuracy (RMSE) for Browsers, h=1 (month)
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Figure B.16: Prediction Accuracy (RMSE) for Office Solutions, h=1 (month)
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Figure B.17: Prediction Accuracy (RMSE) for Operating Systems, h=1 (month)

Appendix B.2. RMSE Results for 2 Months565
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Figure B.18: Prediction Accuracy (RMSE) for Browsers, h=2 (months)
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Microsoft Office Thunderbird
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Figure B.19: Prediction Accuracy (RMSE) for Office Solutions, h=2 (months)
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Figure B.20: Prediction Accuracy (RMSE) for Operating Systems, h=2 (months)
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Appendix C. Parameters for Methods and Software / System Packages

Appendix C.1. Forecasting Results for Methods and Software / System Packages (Mean Absolute

Error / Root Mean Squared Error)
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Table C.4: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting Methods and Software / System Packages over a 1

Month Forecasting Horizon

Method SES DES TES Arima Croston Nnet

Firefox Versions

v0 (0.92 / 1.27) (0.75 / 1.28) (0.73 / 1.23) (0.72 / 1.2) (0.63 / 1.14) (1.35 / 1.54)

v1 (1.66 / 1.7) (1.05 / 1.79) (0.96 / 1.62) (1.01 / 1.68) (0.91 / 1.65) (3.61 / 4.1)

v2 (0.72 / 1.12) (0.69 / 1.19) (0.62 / 1.04) (0.61 / 1.02) (0.56 / 1.02) (1.56 / 1.77)

v3 (0.93 / 1.27) (1.95 / 3.34) (0.7 / 1.17) (0.74 / 1.23) (0.64 / 1.16) (1.64 / 1.86)

v7 (15.81 / 5.25) (3.2 / 5.47) (2.87 / 4.83) (2.98 / 4.98) (2.39 / 4.33) (9.37 / 10.64)

v8 rolling (14.86 / 5.09) (3.43 / 5.88) (2.62 / 4.4) (2.95 / 4.92) (2.81 / 5.1) (4.91 / 5.57)

Google Chrome Versions

v1 (0.58 / 0.94) (0.75 / 1) (0.75 / 0.88) (0.82 / 0.94) (0.62 / 0.95) (1.15 / 1.78)

v2 (32.52 / 7.01) (5.63 / 7.49) (5.6 / 6.56) (6.05 / 6.91) (3.97 / 6.09) (7.3 / 11.25)

v3 (37.48 / 7.53) (5.77 / 7.67) (5.75 / 6.73) (6.56 / 7.49) (5.33 / 8.18) (8.75 / 13.5)

v4 (61.42 / 9.63) (7.01 / 9.32) (12.53 / 14.66) (7.2 / 8.22) (5.08 / 7.8) (10.24 / 15.79)

Internet Explorer Versions

v5 (0.7 / 0.79) (0.78 / 1.1) (0.54 / 0.75) (0.63 / 0.88) (0.51 / 0.75) (1.6 / 2.13)

v6 (0.7 / 2.64) (1.89 / 2.66) (1.78 / 2.5) (1.77 / 2.46) (1.99 / 2.92) (2.35 / 3.14)

v7 (0.7 / 0.65) (0.48 / 0.68) (0.45 / 0.63) (0.47 / 0.66) (0.41 / 0.61) (0.67 / 0.89)

v8 (0.7 / 1.68) (1.25 / 1.76) (1.06 / 1.49) (1.11 / 1.54) (1.12 / 1.65) (1.57 / 2.1)

v9 (0.7 / 4.07) (2.91 / 4.11) (2.35 / 3.29) (2.94 / 4.08) (2.63 / 3.86) (3.51 / 4.69)

v10 (0.7 / 3.19) (2.05 / 2.89) (1.99 / 2.79) (1.7 / 2.35) (2.29 / 3.37) (2.48 / 3.31)

v11 (0.7 / 4.84) (3.81 / 5.37) (3.33 / 4.66) (3.25 / 4.5) (2.86 / 4.21) (4.9 / 6.55)
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Table C.4: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting Methods and Software / System Packages over a 1

Month Forecasting Horizon

Method SES DES TES Arima Croston Nnet

Mac OS X Versions

v0 (0.5 / 1.65) (0.63 / 1.67) (0.75 / 1.61) (0.77 / 1.64) (0.4 / 1.54) (1.12 / 1.78)

v2 (0.25 / 0.81) (0.32 / 0.84) (0.36 / 0.77) (0.38 / 0.8) (0.2 / 0.79) (0.92 / 1.46)

v3 (0.31 / 1) (2.49 / 6.63) (0.44 / 0.94) (0.47 / 1) (0.23 / 0.88) (0.89 / 1.4)

v4 (0.4 / 1.31) (0.59 / 1.57) (0.59 / 1.28) (0.58 / 1.24) (0.28 / 1.09) (1.27 / 2.01)

v5 (0.79 / 2.6) (2.17 / 5.77) (1.07 / 2.32) (0.82 / 1.75) (0.59 / 2.32) (2.34 / 3.7)

v6 (0.65 / 2.12) (0.87 / 2.32) (0.86 / 1.85) (0.96 / 2.04) (0.46 / 1.8) (1.83 / 2.9)

v8 (1.48 / 4.84) (1.92 / 5.11) (2.02 / 4.36) (2.21 / 4.72) (1.18 / 4.58) (10.11 / 16.01)

v9 (0.54 / 1.75) (0.85 / 2.26) (0.77 / 1.66) (0.77 / 1.64) (0.41 / 1.59) (1.21 / 1.91)

v10 (5.04 / 16.5) (6.71 / 17.85) (4.01 / 8.66) (7.3 / 15.56) (3.7 / 14.4) (14.1 / 22.34)

v11 (7.63 / 24.98) (33.42 / 88.88) (9.41 / 20.32) (10.54 / 22.49) (5.37 / 20.93) (11.66 / 18.47)

Microsoft Office Versions

Office 2001 (0.3 / 0.43) (0.31 / 0.44) (0.3 / 0.42) (0.3 / 0.42) (0.28 / 0.41) (0.5 / 0.67)

Office 2003 (1.25 / 1.78) (1.28 / 1.8) (1.24 / 1.74) (1.26 / 1.75) (1 / 1.48) (1.62 / 2.16)

Office 2010 (0.57 / 0.81) (0.57 / 0.81) (0.52 / 0.72) (0.59 / 0.81) (0.53 / 0.79) (0.75 / 1)

Safari Versions

v1 (0.05 / 0.4) (0.34 / 0.89) (0.18 / 0.38) (0.18 / 0.39) (0.09 / 0.35) (0.33 / 0.53)

v2 (0.11 / 0.61) (0.24 / 0.65) (0.26 / 0.57) (0.29 / 0.61) (0.17 / 0.66) (0.76 / 1.2)

v3 (21.19 / 8.33) (3.22 / 8.56) (3.51 / 7.59) (3.87 / 8.25) (1.86 / 7.24) (9.73 / 15.41)

v4 (8.6 / 5.31) (2.32 / 6.18) (2.2 / 4.74) (2.31 / 4.93) (1.23 / 4.79) (10.48 / 16.6)

v6 (1.91 / 2.5) (1.01 / 2.68) (1.04 / 2.25) (1.14 / 2.43) (0.74 / 2.89) (2.68 / 4.25)
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Table C.4: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting Methods and Software / System Packages over a 1

Month Forecasting Horizon

Method SES DES TES Arima Croston Nnet

v7 (8.15 / 5.17) (2.1 / 5.58) (2.46 / 5.32) (2.31 / 4.92) (1.06 / 4.15) (4.8 / 7.61)

v8 (44.23 / 12.04) (4.76 / 12.66) (1.22 / 2.63) (4.78 / 10.2) (2.55 / 9.93) (7.78 / 12.32)

v9 (4.91 / 4.01) (1.64 / 4.36) (1.46 / 3.16) (2.04 / 4.36) (0.87 / 3.39) (2.23 / 3.53)

Thunderbird Versions

rolling (0.82 / 1.43) (1.18 / 2.03) (0.8 / 1.34) (0.84 / 1.4) (0.78 / 1.42) (2.91 / 3.3)

Ubuntu Versions

v11.04 (0.39 / 0.67) (0.41 / 0.71) (0.37 / 0.62) (0.38 / 0.64) (0.35 / 0.63) (0.89 / 1.02)

v12.04 (1.76 / 3.08) (2.31 / 3.96) (1.66 / 2.78) (1.82 / 3.03) (1.58 / 2.87) (3.66 / 4.16)

v14.04 (1.07 / 1.86) (3.99 / 6.84) (1.37 / 2.3) (1.14 / 1.91) (1.02 / 1.84) (2.46 / 2.79)

Windows Versions

Windows XP (1.09 / 1.54) (1.12 / 1.59) (1.04 / 1.45) (1.08 / 1.52) (0.99 / 1.45) (1.56 / 2.08)

Windows Vista (0.44 / 0.62) (0.48 / 0.68) (0.4 / 0.56) (0.43 / 0.6) (0.39 / 0.57) (0.62 / 0.83)

Windows 7 (0.85 / 1.21) (3.6 / 5.08) (0.75 / 1.05) (0.81 / 1.12) (0.76 / 1.12) (1.45 / 1.94)
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Table C.5: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting Methods and Software / System Packages over a 2

Month Forecasting Horizon

Method SES DES TES Arima Croston Nnet

Firefox Versions

v0 (0.95 / 1.29) (0.76 / 1.3) (0.74 / 1.25) (0.72 / 1.21) (0.64 / 1.16) (1.35 / 1.52)

v1 (1.65 / 1.7) (1.04 / 1.79) (0.96 / 1.62) (1.02 / 1.69) (0.91 / 1.66) (3.56 / 4.02)

v2 (0.72 / 1.13) (0.7 / 1.21) (0.61 / 1.04) (0.62 / 1.02) (0.57 / 1.04) (1.59 / 1.79)

v3 (0.95 / 1.29) (2.09 / 3.6) (0.69 / 1.18) (0.75 / 1.25) (0.67 / 1.22) (1.64 / 1.85)

v7 (16.79 / 5.42) (3.33 / 5.73) (2.92 / 4.94) (3.06 / 5.09) (2.5 / 4.55) (8.98 / 10.13)

v8 rolling (15.15 / 5.15) (3.54 / 6.09) (2.6 / 4.4) (2.98 / 4.95) (2.73 / 4.96) (5.51 / 6.21)

Google Chrome Versions

v1 (0.6 / 0.95) (0.77 / 1.02) (0.78 / 0.89) (0.84 / 0.95) (0.6 / 0.93) (1.32 / 1.71)

v2 (36.55 / 7.45) (6.3 / 8.29) (6.14 / 7.02) (6.48 / 7.35) (4.06 / 6.27) (9.53 / 12.34)

v3 (38.57 / 7.65) (5.93 / 7.81) (5.96 / 6.82) (6.7 / 7.61) (5.18 / 8.01) (10.55 / 13.65)

v4 (61.7 / 9.68) (6.92 / 9.12) (15.83 / 18.1) (7.41 / 8.42) (5.29 / 8.17) (10.67 / 13.81)

Internet Explorer Versions

v5 (0.71 / 0.79) (0.84 / 1.17) (0.54 / 0.75) (0.64 / 0.88) (0.51 / 0.76) (1.58 / 2.14)

v6 (0.71 / 2.68) (1.93 / 2.71) (1.83 / 2.55) (1.84 / 2.54) (2.07 / 3.06) (2.61 / 3.53)

v7 (0.71 / 0.66) (0.49 / 0.69) (0.46 / 0.64) (0.48 / 0.66) (0.41 / 0.61) (0.63 / 0.85)

v8 (0.71 / 1.66) (1.24 / 1.74) (1.05 / 1.46) (1.13 / 1.56) (1.11 / 1.65) (1.53 / 2.08)

v9 (0.71 / 4.12) (2.96 / 4.15) (2.4 / 3.34) (3 / 4.14) (2.87 / 4.26) (3.48 / 4.71)

v10 (0.71 / 2.45) (1.68 / 2.36) (1.66 / 2.31) (1.58 / 2.18) (1.68 / 2.48) (1.86 / 2.52)

v11 (0.71 / 4.96) (3.98 / 5.58) (3.38 / 4.7) (3.27 / 4.51) (3.11 / 4.62) (4.87 / 6.6)
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Table C.5: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting Methods and Software / System Packages over a 2

Month Forecasting Horizon

Method SES DES TES Arima Croston Nnet

Mac OS X Versions

v0 (0.5 / 1.65) (0.65 / 1.68) (0.79 / 1.61) (0.83 / 1.64) (0.4 / 1.57) (0.98 / 1.76)

v2 (0.25 / 0.81) (0.32 / 0.84) (0.38 / 0.77) (0.4 / 0.8) (0.21 / 0.81) (0.77 / 1.39)

v3 (0.3 / 1) (2.75 / 7.14) (0.46 / 0.94) (0.51 / 1.01) (0.24 / 0.94) (0.77 / 1.38)

v4 (0.4 / 1.33) (0.64 / 1.66) (0.63 / 1.29) (0.62 / 1.24) (0.31 / 1.19) (1.05 / 1.88)

v5 (0.78 / 2.57) (2.43 / 6.29) (1.13 / 2.32) (0.89 / 1.77) (0.64 / 2.48) (1.76 / 3.16)

v6 (0.65 / 2.13) (0.91 / 2.36) (0.91 / 1.86) (1.03 / 2.05) (0.48 / 1.85) (1.44 / 2.59)

v8 (1.49 / 4.9) (2 / 5.2) (2.14 / 4.39) (2.4 / 4.77) (1.2 / 4.68) (8.47 / 15.19)

v9 (0.53 / 1.74) (0.87 / 2.27) (0.82 / 1.68) (0.84 / 1.66) (0.4 / 1.57) (1.27 / 2.28)

v10 (5.25 / 17.24) (7.38 / 19.14) (4.35 / 8.9) (8.05 / 15.97) (3.83 / 14.91) (11.63 / 20.85)

v11 (6.11 / 20.08) (35.57 / 92.3) (9.08 / 18.6) (9.99 / 19.83) (4.89 / 19.03) (12.18 / 21.85)

Microsoft Office Versions

Office 2001 (0.3 / 0.43) (0.31 / 0.44) (0.3 / 0.42) (0.3 / 0.42) (0.28 / 0.42) (0.53 / 0.72)

Office 2003 (1.27 / 1.79) (1.29 / 1.82) (1.26 / 1.75) (1.27 / 1.76) (1.08 / 1.61) (1.64 / 2.23)

Office 2010 (0.58 / 0.82) (0.58 / 0.81) (0.52 / 0.73) (0.59 / 0.82) (0.56 / 0.83) (0.75 / 1.01)

Safari Versions

v1 (0.05 / 0.41) (0.38 / 0.99) (0.19 / 0.39) (0.2 / 0.39) (0.1 / 0.37) (0.3 / 0.54)

v2 (0.11 / 0.61) (0.25 / 0.64) (0.28 / 0.57) (0.31 / 0.61) (0.18 / 0.69) (0.59 / 1.06)

v3 (21.31 / 8.37) (3.31 / 8.59) (3.72 / 7.62) (4.18 / 8.29) (2.05 / 7.95) (9.22 / 16.54)

v4 (8.98 / 5.43) (2.53 / 6.56) (2.33 / 4.77) (2.59 / 5.14) (1.29 / 5.01) (8.12 / 14.57)

v6 (1.94 / 2.52) (1.04 / 2.7) (1.1 / 2.26) (1.24 / 2.46) (0.8 / 3.1) (2.41 / 4.32)
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Table C.5: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting Methods and Software / System Packages over a 2

Month Forecasting Horizon

Method SES DES TES Arima Croston Nnet

v7 (8.57 / 5.3) (2.22 / 5.76) (2.55 / 5.22) (2.52 / 4.99) (1.2 / 4.68) (5.21 / 9.34)

v8 (49.8 / 12.79) (6.07 / 15.76) (1.29 / 2.65) (5.89 / 11.68) (2.89 / 11.23) (10.05 / 18.03)

v9 (4.5 / 3.85) (1.63 / 4.22) (1.58 / 3.25) (2.13 / 4.22) (0.85 / 3.31) (2.86 / 5.12)

Thunderbird Versions

rolling (0.82 / 1.43) (1.22 / 2.09) (0.79 / 1.34) (0.84 / 1.4) (0.79 / 1.43) (2.78 / 3.13)

Ubuntu Versions

v11.04 (0.39 / 0.68) (0.42 / 0.73) (0.38 / 0.64) (0.39 / 0.65) (0.38 / 0.69) (0.87 / 0.98)

v12.04 (1.77 / 3.1) (2.39 / 4.1) (1.63 / 2.76) (1.84 / 3.06) (1.6 / 2.9) (3.79 / 4.27)

v14.04 (1.17 / 2.04) (4.78 / 8.22) (1.37 / 2.33) (1.24 / 2.07) (1.07 / 1.95) (2.16 / 2.44)

Windows Versions

Windows XP (1.1 / 1.55) (1.14 / 1.59) (1.05 / 1.46) (1.1 / 1.54) (1.03 / 1.52) (1.52 / 2.06)

Windows Vista (0.44 / 0.62) (0.51 / 0.71) (0.4 / 0.56) (0.44 / 0.61) (0.41 / 0.6) (0.62 / 0.85)

Windows 7 (0.86 / 1.22) (4.04 / 5.67) (0.76 / 1.06) (0.82 / 1.13) (0.76 / 1.13) (1.4 / 1.9)
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Table C.6: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting Methods and Software / System Packages over a 3

Month Forecasting Horizon

Method SES DES TES Arima Croston Nnet

Firefox Versions

v0 (0.99 / 1.32) (0.78 / 1.34) (0.76 / 1.28) (0.73 / 1.22) (0.65 / 1.18) (1.36 / 1.6)

v1 (1.67 / 1.71) (1.05 / 1.81) (0.97 / 1.63) (1.02 / 1.7) (0.91 / 1.66) (3.33 / 3.91)

v2 (0.72 / 1.12) (0.7 / 1.21) (0.62 / 1.04) (0.61 / 1.03) (0.57 / 1.04) (1.41 / 1.65)

v3 (0.95 / 1.29) (2.25 / 3.87) (0.7 / 1.18) (0.75 / 1.26) (0.69 / 1.25) (1.65 / 1.94)

v7 (17.6 / 5.56) (3.55 / 6.1) (3.02 / 5.08) (3.15 / 5.27) (2.65 / 4.83) (8.46 / 9.94)

v8 rolling (15.33 / 5.19) (3.65 / 6.27) (2.64 / 4.43) (2.97 / 4.98) (2.75 / 5.01) (5.32 / 6.25)

Google Chrome Versions

v1 (0.62 / 0.97) (0.79 / 1.06) (0.77 / 0.91) (0.83 / 0.97) (0.62 / 0.96) (1.39 / 1.76)

v2 (38.37 / 7.63) (6.71 / 8.97) (6.2 / 7.3) (6.46 / 7.58) (4.14 / 6.36) (9.68 / 12.3)

v3 (40.03 / 7.79) (5.95 / 7.94) (5.86 / 6.89) (6.6 / 7.74) (5.43 / 8.34) (10.94 / 13.9)

v4 (55.13 / 9.14) (6.66 / 8.9) (20.05 / 23.58) (7.2 / 8.45) (5.15 / 7.91) (11.05 / 14.04)

Internet Explorer Versions

v5 (0.71 / 0.79) (0.89 / 1.25) (0.54 / 0.75) (0.64 / 0.88) (0.51 / 0.76) (1.98 / 2.6)

v6 (0.71 / 2.71) (1.95 / 2.74) (1.84 / 2.57) (1.86 / 2.58) (2.06 / 3.06) (2.75 / 3.6)

v7 (0.71 / 0.66) (0.49 / 0.69) (0.46 / 0.64) (0.48 / 0.67) (0.42 / 0.62) (0.69 / 0.9)

v8 (0.71 / 1.68) (1.27 / 1.78) (1.07 / 1.49) (1.15 / 1.6) (1.13 / 1.68) (1.67 / 2.19)

v9 (0.71 / 4.14) (2.97 / 4.18) (2.41 / 3.37) (3.01 / 4.18) (2.93 / 4.36) (3.68 / 4.82)

v10 (0.71 / 2.21) (1.63 / 2.29) (1.62 / 2.26) (1.6 / 2.22) (1.41 / 2.1) (1.9 / 2.49)

v11 (0.71 / 5.09) (4.21 / 5.9) (3.43 / 4.78) (3.29 / 4.56) (3.16 / 4.7) (4.76 / 6.24)
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Table C.6: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting Methods and Software / System Packages over a 3

Month Forecasting Horizon

Method SES DES TES Arima Croston Nnet

Mac OS X Versions

v0 (0.5 / 1.66) (0.66 / 1.68) (0.81 / 1.61) (0.83 / 1.65) (0.41 / 1.59) (0.92 / 1.75)

v2 (0.25 / 0.82) (0.33 / 0.85) (0.39 / 0.77) (0.4 / 0.8) (0.21 / 0.82) (0.71 / 1.36)

v3 (0.3 / 1) (2.96 / 7.59) (0.47 / 0.94) (0.51 / 1) (0.25 / 0.96) (0.72 / 1.38)

v4 (0.4 / 1.32) (0.68 / 1.75) (0.64 / 1.28) (0.62 / 1.24) (0.32 / 1.23) (1.02 / 1.95)

v5 (0.77 / 2.52) (2.68 / 6.87) (1.16 / 2.32) (0.9 / 1.79) (0.63 / 2.43) (1.55 / 2.96)

v6 (0.65 / 2.15) (0.94 / 2.4) (0.94 / 1.87) (1.04 / 2.06) (0.49 / 1.89) (1.4 / 2.67)

v8 (1.5 / 4.95) (2.06 / 5.27) (2.23 / 4.44) (2.42 / 4.81) (1.23 / 4.76) (7.74 / 14.74)

v9 (0.52 / 1.7) (0.97 / 2.5) (0.86 / 1.71) (0.83 / 1.65) (0.39 / 1.52) (1.18 / 2.24)

v10 (5.42 / 17.82) (7.91 / 20.26) (4.41 / 8.78) (8.25 / 16.4) (3.96 / 15.35) (11.39 / 21.7)

v11 (6.63 / 21.8) (35.66 / 91.34) (9.07 / 18.08) (9.73 / 19.36) (4.96 / 19.22) (12.82 / 24.43)

Microsoft Office Versions

Office 2001 (0.3 / 0.43) (0.32 / 0.44) (0.3 / 0.42) (0.3 / 0.42) (0.28 / 0.42) (0.55 / 0.72)

Office 2003 (1.28 / 1.81) (1.31 / 1.84) (1.27 / 1.77) (1.28 / 1.77) (1.13 / 1.68) (1.75 / 2.29)

Office 2010 (0.58 / 0.82) (0.58 / 0.81) (0.52 / 0.73) (0.59 / 0.82) (0.56 / 0.83) (0.75 / 0.98)

Safari Versions

v1 (0.05 / 0.41) (0.43 / 1.11) (0.2 / 0.39) (0.2 / 0.4) (0.1 / 0.37) (0.28 / 0.53)

v2 (0.11 / 0.61) (0.25 / 0.65) (0.29 / 0.57) (0.31 / 0.61) (0.18 / 0.71) (0.53 / 1.01)

v3 (21.47 / 8.41) (3.37 / 8.63) (3.84 / 7.66) (4.19 / 8.33) (2.1 / 8.14) (8.34 / 15.89)

v4 (9.17 / 5.49) (2.65 / 6.8) (2.41 / 4.8) (2.63 / 5.23) (1.31 / 5.08) (7.96 / 15.17)

v6 (1.98 / 2.55) (1.07 / 2.73) (1.13 / 2.25) (1.25 / 2.49) (0.84 / 3.24) (2.16 / 4.13)
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Table C.6: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting Methods and Software / System Packages over a 3

Month Forecasting Horizon

Method SES DES TES Arima Croston Nnet

v7 (8.9 / 5.41) (2.35 / 6.02) (2.63 / 5.24) (2.55 / 5.06) (1.23 / 4.77) (5.06 / 9.65)

v8 (53.76 / 13.3) (6.87 / 17.61) (1.32 / 2.64) (6.25 / 12.44) (2.99 / 11.61) (10.55 / 20.11)

v9 (5.75 / 4.35) (1.75 / 4.49) (1.72 / 3.42) (2.26 / 4.49) (0.86 / 3.33) (2.32 / 4.42)

Thunderbird Versions

rolling (0.82 / 1.44) (1.27 / 2.18) (0.81 / 1.35) (0.85 / 1.42) (0.8 / 1.46) (2.57 / 3.02)

Ubuntu Versions

v11.04 (0.39 / 0.69) (0.43 / 0.74) (0.4 / 0.66) (0.39 / 0.66) (0.4 / 0.73) (0.86 / 1.01)

v12.04 (1.79 / 3.14) (2.47 / 4.24) (1.64 / 2.76) (1.84 / 3.08) (1.63 / 2.97) (3.69 / 4.34)

v14.04 (0.97 / 1.7) (5.61 / 9.63) (1.3 / 2.18) (1.09 / 1.83) (0.88 / 1.6) (1.8 / 2.11)

Windows Versions

Windows XP (1.1 / 1.56) (1.14 / 1.61) (1.05 / 1.47) (1.1 / 1.54) (1.05 / 1.56) (1.6 / 2.1)

Windows Vista (0.44 / 0.63) (0.52 / 0.73) (0.4 / 0.56) (0.44 / 0.61) (0.41 / 0.61) (0.64 / 0.83)

Windows 7 (0.86 / 1.22) (4.47 / 6.28) (0.76 / 1.06) (0.82 / 1.14) (0.77 / 1.14) (1.47 / 1.93)
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Appendix D. Descriptive Statistics

Table D.7: Descriptive Statistics

Software / System Package Version Time Frame Vulnerabilities Monthly Average

Firefox v0 01/08/04 - 01/06/16 74 0.52

v1 01/12/04 - 01/06/16 119 0.86

v2 01/08/05 - 01/06/16 61 0.47

v3 01/12/06 - 01/06/16 117 1.026

v7 01/11/11 - 01/06/16 110 2

v8 rolling 01/12/11 - 01/06/16 196 3.63

Google Chrome v1 01/09/08 - 01/06/16 86 0.92

v2 01/05/10 - 01/06/16 458 6.27

v3 01/05/11 - 01/06/16 499 8.18

v4 01/04/15 - 01/06/16 168 12

Internet Explorer v5 01/03/99 - 01/06/16 157 0.76

v6 01/04/98 - 01/06/16 373 1.71

v7 01/12/05 - 01/06/16 31 0.25

v8 01/05/08 - 01/06/16 99 1.02

v9 01/06/11 - 01/06/16 288 4.8

v10 01/03/13 - 01/06/16 77 1.97

v11 01/12/13 - 01/06/16 152 5.07

Mac OS X v0 01/07/01 - 01/06/16 174 4.83

v2 01/12/02 - 01/06/16 36 0.22

v3 01/11/03 - 01/06/16 53 0.35

v4 01/06/05 - 01/06/16 137 0.79

v5 01/11/07 - 01/06/16 130 1.26

v6 01/03/10 - 01/06/16 22 0.29

v8 01/03/13 - 01/06/16 82 2.10

v9 01/11/13 - 01/06/16 50 1.61

v10 01/11/14 - 01/06/16 51 0.25

v11 01/09/15 - 01/06/16 140 15.56

MS Office 2001 01/12/99 - 01/06/16 16 0.08

2003 01/03/06 - 01/06/16 136 1.11

2010 01/11/10 - 01/06/16 34 0.51

Safari v1 01/06/03 - 01/06/16 20 0.13

v2 01/07/05 - 01/06/16 20 0.15
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Table D.7: Descriptive Statistics

Software / System Package Version Time Frame Vulnerabilities Monthly Average

v3 01/06/07 - 01/06/16 214 1.98

v4 01/02/09 - 01/06/16 91 1.03

v6 01/06/13 - 01/06/16 27 0.75

v7 01/03/14 - 01/06/16 71 2.63

v8 01/11/14 - 01/06/16 78 4.11

v9 01/12/15 - 01/06/16 17 2.83

Thunderbird rolling 01/08/04 - 01/06/16 116 0.82

Ubuntu v11.04 01/09/08 - 01/06/16 17 0.18

v12.04 01/05/12 - 01/06/16 94 1.92

v14.04 01/05/14 - 01/06/16 54 2.16

Windows XP 01/11/01 - 01/06/16 166 0.95

Vista 01/02/07 - 01/06/16 40 0.36

7 01/06/07 - 01/06/16 105 0.97
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