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Abstract:  

Quantitative risk assessment can play a crucial role in effective decision making about 

cybersecurity strategies. The Factor Analysis of Information Risk (FAIR) is one of the most 

popular models for quantitative cybersecurity risk assessment. It provides a taxonomic 

framework to classify cybersecurity risk into a set of quantifiable risk factors and combines 

this with quantitative algorithms, in the form of a kind of Monte Carlo (MC) simulation 

combined with statistical approximation techniques, to estimate cybersecurity risk. However, 

the FAIR algorithms restrict both the type of statistical distributions that can be used and the 

expandability of the model structure. Moreover, the applied approximation techniques 

(including using cached data and interpolation methods) introduce inaccuracy into the FAIR 

model. To address restrictions of the FAIR model, we develop a more flexible alternative 

approach, which we call FAIR-BN, to implement the FAIR model using Bayesian Networks 

(BNs). To evaluate the performance of FAIR and FAIR-BN, we use a MC method (FAIR-MC) 

to implement calculations of the FAIR model without using any of the approximation 

techniques adopted by FAIR, thus avoiding the corresponding inaccuracy that can be 

introduced. We compare the empirical results generated by FAIR and FAIR-BN against a large 

number of samples generated using FAIR-MC. Both FAIR and FAIR-BN provide consistent 

results compared with FAIR-MC for general cases. However, the FAIR-BN achieves higher 

accuracy in several cases that cannot be accurately modelled by the FAIR model. Moreover, 

we demonstrate that FAIR-BN is more flexible and extensible by showing how it can 

incorporate process-oriented and game-theoretic methods. We call the resulting combined 

approach “Extended FAIR-BN” (EFBN) and show that it has the potential to provide an 

integrated solution for cybersecurity risk assessment and related decision making. 

Keywords:  

Cybersecurity Risk Assessment; FAIR Model; Bayesian Networks; Monte Carlo Simulation; 

Risk Aggregation; Adversarial Risk Analysis; Game Theory. 

 

 

  



 
 

 
 

Contents 

1. Introduction ........................................................................................................................ 1 

2. Related work ....................................................................................................................... 3 

3. Overview of the FAIR model ............................................................................................. 4 

3.1 FAIR model structure: taxonomy and aggregation .......................................................... 4 

3.2 FAIR model algorithms: simulation-based calculation .................................................... 6 

4. Modelling FAIR using Bayesian networks ........................................................................ 7 

5. Simulation and evaluation using Monte Carlo ................................................................. 12 

5.1 Implementing the FAIR model using Monte Carlo ....................................................... 12 

5.2 Accuracy evaluation ....................................................................................................... 13 

6. Experimental analysis ....................................................................................................... 13 

6.1 Experimental tests complying with assumptions of the FAIR model ............................ 14 

6.1.1 Experimental tests of risk aggregation processes .................................................... 14 

6.1.2 Experimental tests of subsidiary risk factors in the FAIR model ............................ 16 

6.2 Experimental tests of other practical scenarios .............................................................. 16 

6.2.1 LEF follows long-tailed distributions ...................................................................... 17 

6.2.2 LEF and LM using other statistical distributions .................................................... 18 

6.2.3 LEF with fixed values .............................................................................................. 19 

6.3 Summary conclusions from experiments ....................................................................... 19 

7. The extended FAIR-BN models ....................................................................................... 20 

7.1 Extending the FAIR-BN using a process-oriented model .............................................. 20 

7.2 Extending the FAIR-BN using game theory (adversarial risk analysis) ........................ 22 

8. Discussion ............................................................................................................................ 24 

9. Conclusion ........................................................................................................................... 25 

Acknowledgments.................................................................................................................... 26 

Appendix A: The Bounded Metalog Distribution ................................................................... 27 

Appendix B: Application of BMD in Risk Aggregation ......................................................... 29 

Appendix C: Factorization of the BN for 𝑅𝐴2 process ........................................................... 31 

Appendix D: Experimental Results for Subsidiary Risk Factors............................................. 32 

Appendix E: Experimental Results with Euclidean Distance Measurement ........................... 33 

Reference ................................................................................................................................. 34 

 

  



 
 

 
 

List of Figures and Tables 

Figure 1 Taxonomy structure of the FAIR model ..................................................................... 1 

Figure 2 Risk aggregation structure in the FAIR model ............................................................ 5 

Figure 3 𝑅𝐴1result of FAIR-BN ................................................................................................ 9 

Figure 4 Risk factors involved in 𝑅𝐴2 ...................................................................................... 9 

Figure 5 BNs used to implement the 𝑅𝐴2 risk aggregation process ....................................... 10 

Figure 6 𝑅𝐴2 result of FAIR-BN ............................................................................................. 11 

Figure 7 FAIR-BN for calculating 𝐹𝑃 and 𝐹𝑆 ........................................................................ 11 

Figure 8 Related variables in the 𝑅𝐴2 process ........................................................................ 15 

Figure 9 Results comparison of 𝐿𝑃 distributions ..................................................................... 17 

Figure 10 Results comparison of 𝐿𝑃 distributions ................................................................... 18 

Figure 11 A 𝑅𝐴1 result of FAIR-BN with inputs following TNormal distributions ............... 20 

Figure 12 FAIR-BN extended by a process-oriented model ................................................... 21 

Figure 13  The defender’s influence diagram .......................................................................... 23 

Figure 14  The BN according to the defender’s ID ................................................................. 23 

Figure 15 Decision results of the defender’s ID ...................................................................... 24 

Figure 16 Factorization of the BN in the 𝑅𝐴2 process ............................................................ 31 

 

Table 1 Output and input factors and functions used in the FAIR model ................................. 6 

Table 2 Types of risk aggregation process ................................................................................ 8 

Table 3 Results comparison of 𝐿𝑃 distributions ...................................................................... 15 

Table 4 Results comparison of 𝐿𝑇 distributions ...................................................................... 15 

Table 5 Results comparison of 𝐿𝑃 distributions ...................................................................... 17 

Table 6 Results comparison of 𝐿𝑃 distributions ...................................................................... 18 

Table 7 Results comparison of 𝐿𝑃 distributions ...................................................................... 19 

Table 8  Comparison results of 𝑀𝑃𝐿𝐸𝐹 = 𝐹𝑇𝐸 ×  𝑃𝑉 ........................................................... 32 

Table 9 Comparison results of 𝐹𝑃 = Poisson (𝜆 = 𝑀𝑃𝐿𝐸𝐹) .................................................. 32 

Table 10 Comparison results of 𝐹𝑆 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛 = 𝐹𝑃, 𝑃 = 𝑃𝑆𝐿) ................................... 32 

Table 11 Results of 𝑃𝑉 = 𝑃(𝑃𝑇𝐶 > 𝑃𝑅𝑆) .............................................................................. 32 

Table 12 Results comparison of 𝐿𝑃 distributions .................................................................... 33 

Table 13 Results comparison of 𝐿𝑇 distributions .................................................................... 33 

Table 14 Results comparison of 𝐿𝑃 distributions .................................................................... 33 



 

1 
 

1. Introduction 

Cybersecurity has become a critical issue for most organizations due to their increasing reliance 

on IT systems and the increased complexity of the network environment [1].  Organizations 

face a diverse range of cyber-attack risks, which can cause data breach and more serious 

consequences [2], including forced interruptions in online services, impaired corporate 

reputation, and ultimately financial losses. To mitigate or even prevent these risks, 

Cybersecurity Risk Assessment (CRA) is required, since it can support risk managers to 

prioritize risks, allocate restricted resources to alleviate them, and make further defence 

decisions [3] [4].  

Factor Analysis of Information Risk (FAIR) is a well-known CRA framework [5, 6] and has 

been widely applied and recognized in academic research [7] [8] [9] [10] and industry [11] [12]. 

To structure risk analysis, it uses a taxonomy to classify risk (financial loss) into risk factors 

and represent the relationships between these risk factors as shown in Figure 1. 

 
Figure 1 Taxonomy structure of the FAIR model 

FAIR covers more aspects of CRA compared to other prominent CRA frameworks [13]. It 

considers the capability contest between attackers and defenders, vulnerability of information 

assets, the frequency of successful attacks, and consequent financial losses, which has provided 

a good foundation for structuring CRA. The FAIR model is a combination of the FAIR 

taxonomy and statistical techniques and is used to conduct quantitative risk assessment [14] 

[15]. In this paper, we unpick the assumptions and algorithms used in the FAIR model and 

identify a number of potential serious limitations. Firstly, since the FAIR model uses only 

triangular distributions to simulate input risk factors of the model, alternative statistical 

distributions (especially long-tailed distributions [16] [17]) for input factors may be poorly 

approximated; this introduces inaccuracy. We provide detailed experimental analysis for this 

in Section 6. Secondly, it is difficult to extend the model to accommodate other modelling goals 

and perspectives. To address these limitations, we develop a more flexible alternative approach, 

which we call FAIR-BN, to implement the FAIR model using Bayesian Networks (BNs) [18] 

[19]. FAIR-BN subsumes the existing features of the FAIR model while: (1) allowing a wider 
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set of distributions to represent and process input variables; and (2) supporting both a deeper 

model of the cyber-attack-defend process and decision making and evaluation. 

By employing BNs, we connect the FAIR model with other advanced CRA models to enhance 

the original model, for example to analyse interaction between attackers and defenders. 

Interaction between attackers and defenders is a crucial element in CRA, since it influences 

both risk assessment and decision making about control deployment. However, the related 

analysis in the FAIR model is simplified and is relatively high-level. BNs have been widely 

applied in modelling more detailed features of the cyber-attack-defend process, for instance, 

from the process-oriented perspective, such as attack graphs [20], and from the game-theoretic 

perspective, such as Adversarial Risk Analysis (ARA) [21]. In our work, we have incorporated 

a process-oriented model and a game-theoretic model with the FAIR-BN to provide the 

integrated risk assessment and management solution. We call them Extended FAIR-BNs 

(EFBNs). 

We evaluate the quantitative accuracy of FAIR and FAIR-BN using results generated by the 

proposed FAIR-MC and the measurement J divergence [22] [23]. FAIR-MC is a Monte Carlo 

(MC) simulation based implementation of the FAIR model. We construct FAIR-MC strictly 

complying with the inference mechanism assumed by the FAIR model. The major difference 

between FAIR-MC and the FAIR model is in how a core calculation process, called risk 

aggregation, is performed. The FAIR model uses cached data generated from a kind of MC 

method combined with statistical approximation techniques, including applying Bounded 

Metalog Distributions (BMDs) [24] and an interpolation method to carry out risk aggregation. 

The application of these approximation techniques introduces inaccuracy into the FAIR model. 

In comparison, FAIR-MC uses simulation to conduct risk aggregation without using extra 

approximation techniques and thus avoids introducing the sequential inaccuracy. Moreover, in 

each test, we generate a much larger number (one million) of samples using FAIR-MC to 

represent the standard and measure the distance between this standard and results (represented 

one thousand samples respectively) generated by the FAIR model and FAIR-BN using J 

divergence. We assume that the smaller J divergence the model has against the FAIR-MC, the 

more accurate the model is. 

We empirically compare the results generated by FAIR and FAIR-BN with a focus on accuracy 

under different statistical scenario assumptions, and in particular ‘long tail’ assumptions. We 

use three empirical cases to test if the FAIR model can maintain accuracy in different scenarios 

where the assumptions differ. We also compare the performance of FAIR-BN against FAIR in 

all of these cases. Experimental results illustrate that the FAIR-BN and the FAIR model provide 

consistent results compared with FAIR-MC in general. However, in certain cases, FAIR-BN 

provides more accurate results, especially in the long-tail case. These evaluation results lay the 

foundation for confidently implementing and extending the FAIR model using Bayesian 

Networks.  

The contributions of this work are: (1) we provide a detailed and in-depth analysis of the 

assumptions of the FAIR model, which has hitherto not appeared in the literature, and reveal a 

number of important limitations; (2) we propose a new approach called FAIR-BN that 
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incorporates the same modelling assumptions used by the FAIR model but also supports wider 

assumptions and can be more easily extended; (3) we construct a Monte Carlo (MC) simulation 

(FAIR-MC) without using the approximation techniques that applied by FAIR and introduce J 

divergence [22] [23] to perform accuracy evaluation for the FAIR model and FAIR-BNs; (4) 

we evaluate the performance of the FAIR model and the proposed FAIR-BN and identify cases 

where the FAIR model produces inaccurate results; (5) we construct EFBNs incorporating the 

FAIR-BN with a process-oriented model and a game-theoretic model to provide integrated risk 

assessment and in tandem illustrate how the FAIR-BN can be expanded.  

The paper is structured as follows. In Section 2, we introduce related cybersecurity work with 

a focus on how it might be used in the FAIR-BN approach. In Section 3, we introduce the FAIR 

model focusing on its taxonomic structure and algorithms. In Section 4, we describe FAIR-BN, 

i.e. how to faithfully represent the FAIR model using BNs. We describe FAIR-MC and J 

divergence in Section 5. Experiments evaluating the performance of the FAIR model and the 

FAIR-BN are provided in Section 6. In Section 7, we provide examples illustrating flexibility 

and expandability of the FAIR-BN. We discuss pros and cons of the FAIR model, FAIR-BN 

and FAIR-MC in Section 8 and provide conclusions in Section 9. 

2. Related work 

FAIR is applied in [9] to assess loss event frequencies of smart grid cyber threats and is 

employed by [10] to evaluate threats of Android malware. However, both studies only applied 

the qualitative framework of FAIR. The FAIR model is applied in [7] to analyse risk in cloud 

computing. In general, these studies fail to provide deeper insight into, or evaluation of, the 

FAIR model; nor do they suggest how its deficiencies might be addressed. In this paper, we 

aim to remedy this. 

The FAIR model provides a relatively high-level risk assessment framework. To model more 

detailed features of the cyber-attack-defend process and support decision making and 

evaluation, we propose extending the FAIR by eliminating its limitation of expandability using 

our proposed FAIR-BN and by connecting it with other dedicated CRA models. There are two 

kinds of models that we explore as enhancements of the FAIR-BN, process-oriented risk 

assessment models and game-theoretic models. 

Several process-oriented risk assessment methods for CRA have been developed in recent 

decades. Typical paradigms include threat trees [25], attack trees [26], attack graphs [27] and 

defence trees  [28]. These methods provide graphical notations which illustrate the attacker’s 

goals with possible routes to reach these goals and then help to identify the controls regime 

required to thwart the attack threat. For instance, the defence tree is an extension of attack trees 

with added leaves representing controllable countermeasures. However, in general, these 

studies fail to consider the capability of attackers and the frequency with which that the attack 

might be successfully executed to endanger financial losses. To alleviate such drawbacks, 

Bayesian Attack Graphs (BAG) [20, 29] and the security graph model [30] have been proposed 

as alternatives. These approaches apply Bayesian probabilistic logic to conduct CRA. However, 

none of them provides a unified risk aggregation mechanism for producing an interpretable 
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risk evaluation result. In our work, we have implemented a unified risk aggregation mechanism, 

based on the work of [31], using BNs and producing financial losses to represent risks. 

Game-theoretic methods have also been widely applied to cybersecurity issues [32-35]. 

Specifically, a game-theoretic model is applied to solve the network defend-attack problem in 

[36]. However, a recognized feature of game-theoretic solutions is the lack and asymmetry of 

information, such as the absence of knowledge about the attacker’s strategy domains or payoffs 

[37]. Several ways to capture the uncertainty in game theory are proposed in [38] [39] [21]. 

Among them, [21] is a monograph that describes how to use the perspective of Adversarial 

Risk Analysis (ARA) to address the uncertainty in game theory. A broad review of applications 

of ARA in a variety of game contexts (i.e. simultaneous games, sequential games, etc.) is 

provided in [21] and extended in [40] and [41]. In ARA, the decision problem can be structured 

and represented by an Influence Diagram (ID), which is a generalization of a BN. For cases 

with more than one decision makers, Multi-Agent Influence Diagrams (MAIDs) are proposed 

as an extension of IDs [42]. A game model can hardly guide risk managers for decision making 

and consequence evaluation individually. Given this, incorporating the game model with 

unified payoff modelling is a feasible solution but can usually be neglected in game theory 

studies, especially in the cybersecurity context. In our work, we have explored the combination 

of a game-theoretic model and the FAIR-BN, which can support decision making about defend 

deployment in the defend-attack game and predict residual loss posed by cyber-attack within 

the integrated model.  

An attempt to improve the flexibility of FAIR by using BNs was proposed in [8]. This work 

applied a part of the FAIR framework to assess the success frequency of cyber-attack events in 

smart grids. However, this work does not consider the whole FAIR structure nor use 

quantitative reasoning. In our work, we present a complete implementation of the FAIR model 

using BNs and explore directions for improving it by incorporating process-oriented models 

and game-theoretic models.  

Here the application of BNs is focused on their ability to represent probabilistic reasoning (i.e. 

implementing the FAIR model) and causal reasoning (i.e. the process-oriented model in 7.1) together, 

derived from subject matter expertise and from the structure of the networked system. However, 

it is possible, using data alone, to learn the BN graph structure and/or the strengths of statistical 

associations between variables. In this way, they offer a universal approach to causal and 

statistical reasoning, complementing the absence of data with expertise and vice versa. 

Relevant examples include [43, 44].  

3. Overview of the FAIR model 

3.1 FAIR model structure: taxonomy and aggregation 

The taxonomy structure of the FAIR model [5, 14] was shown in Figure 1, with the risk classes 

being modelled. Risk (financial loss) is defined by Loss Event Frequency (LEF) and Loss 

Magnitude (LM). LEF is defined as the frequency that a threat agent will inflict harm on an 

information asset within a given timeframe and itself is a function of Threat Event Frequency 
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(TEF) and Vulnerability (V), where the former represents ‘the frequency that a threat agent 

will act against an asset’, whilst the latter is defined as ‘the probability that an asset will be 

unable to resist the actions of a threat agent’ [6]. TEF is the frequency that a threat agent will 

come into contact with an asset and the probability that a threat agent will act against an asset 

once contact occurs (referred to as Contact Frequency (CF) and Probability of Action (PoA) 

respectively). V is the difference between the level of force that a threat agent is capable of 

applying against an asset (Threat Capability (TC)) and the strength of control (Resistance 

Strength (RS)). LM is categorized as either a Primary Loss (PL) or Secondary Loss (SL) (these 

are assumed to be exhaustive and mutually exclusive [14]). In the FAIR model, PL represents 

the direct losses from assets and threats whilst SL represents secondary consequential losses 

such as negative organizational and external environment after effects. Furthermore, secondary 

loss is broken down into the Secondary Loss Event Frequency (SLEF) and the Secondary Loss 

Magnitude (SLM).  

The key feature of the FAIR model is that the structure and taxonomy are fixed and cannot be 

extended, so any differences in assumptions cannot be supported (such as a different, perhaps 

more detailed way, to model threats and defences). 

Figure 2 shows the FAIR risk aggregation calculations diagrammatically and shows the 

statistical operations and objects needed to calculate risk using the FAIR taxonomy. The FAIR 

model makes many, quite reasonable assumptions, but some are implicit. Total losses are 

calculated by adding primary and secondary losses, each of which is calculated by multiplying 

loss frequency and loss magnitude, but with the caveat that secondary loss events can only 

occur given that primary loss events have occurred beforehand. In this way, an element of 

causal conditioning is introduced into the risk aggregation process that is not immediately 

obvious. Secondary loss frequency is, therefore, a function of the primary loss frequency. If 

there is zero chance of a secondary loss, then there will no secondary loss events to aggregate. 

Primary losses are also treated differently from secondary losses in that there are the causal 

assumptions; frequency of primary losses is calculated from threat event frequency and 

vulnerability.  

 
Figure 2 Risk aggregation structure in the FAIR model 
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(Risks are shown as grey rectangles, frequency measures as boldly outlined rectangles, probability measures as dotted 

rectangles and financial loss magnitude measures as undashed white rectangles. Operators are shown as (+) or (x) for 

addition and multiplication) 

3.2 FAIR model algorithms: simulation-based calculation  

The FAIR model proposes a series of functions relating variables (risk factors), which 

statistically or probabilistically represent the functional relationships between a factor and its 

sub-factors [14]. We summarize the factors and functions in Table 1. 

Table 1 Output and input factors and functions used in the FAIR model 

 

Analysis proceeds from bottom to top (step 7 to step 1) through the risk aggregation structure 

using the function declared for each input-output factor combination. The FAIR model is built 

in Excel and uses an add-in sample generating tool, SIPmath [15]. In the model, each risk factor 

is represented as a random variable, from which generated samples are stored in a column of 

data, which is referred to as a Stochastic Information Packet (SIP). The sample distribution of 

each factor can either be calculated from its sub-factors or randomly simulated using a 

triangular distribution specified by the user. Functions listed in Table 1 can be performed on 

corresponding sample vectors.  

Risk assessment through the FAIR model includes two procedures: assessing loss event 

frequencies (calculating factors 3-7) and aggregating loss magnitudes using assessed 

frequencies to calculate the total loss (calculating factors 1-2). By simulating samples for input 

factors and operating these samples following corresponding functions, loss event frequencies 

can be calculated, which is straightforward.  

A key process in FAIR is Risk Aggregation (RA), where the compound sums, 𝐿𝑃 and 𝐿𝑆, of 𝑛 

Independently Identically Distributed (IID) loss magnitude random variables, 𝐿𝑀𝑃 and 𝐿𝑀𝑆 ,  

is computed where 𝑛 is determined by a value from frequency variables,  𝐹𝑃 and  𝐹𝑆, [31] [45]. 
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A Poisson distribution, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), is used to model primary loss frequency, 𝐹𝑃, using a mean 

frequency estimate,  𝑀𝑃𝐿𝐸𝐹, following the function  𝐹𝑃 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 𝑀𝑃𝐿𝐸𝐹). As is shown 

in [46], the FAIR model simplifies the risk aggregation process that could be conducted using 

Monte Carlo (MC) simulation directly. Instead, the FAIR model uses cached simulation results 

combined with a statistical approximation technique to simplify this process for more efficient 

calculation.  

To prepare the cached data, samples of  𝐿𝑃 corresponding to  𝐹𝑃 and 𝐿𝑀𝑃 pairs are simulated, 

and statistical parameters are derived from the samples and stored. These parameters are then 

used to construct an approximated quantile distribution function (Bounded Metalog 

Distribution (BMD)) approximating 𝐿𝑃. After obtaining the BMD of 𝐿𝑃, samples of 𝐿𝑃 can be 

generated from the BMD expression using uniformly distributed random probabilities. We 

provide details of how the BMD is constructed within the FAIR model in Appendix A and 

demonstrate how the FAIR model uses BMDs and cached data to produce risk aggregation 

results in Appendix B.  

We have already highlighted the implicit basic causal assumptions about cyber events 

embedded within the FAIR model, namely that the secondary and primary losses are 

conditionally dependent, by definition. There is also an implicit statistical assumption in FAIR, 

namely that triangular distributions are used throughout to model user inputs. However, such 

distributions might not always be valid or suitable. For instance, an expert may wish to 

represent their uncertainty about an input parameter using some other statistical distributions 

or may wish to vary how  𝐹𝑃  is calculated, perhaps by including information gained from 

complementary analysis, such as kill graphs or that derived from adversarial risk analysis. We 

propose using Bayesian Networks (BNs) as an alternative way to implement, extend the FAIR 

model and eliminate its restrictions, which is described in section 4 and 7.  

4. Modelling FAIR using Bayesian networks 

Bayesian Networks (BNs) are widely used for probabilistic reasoning and have very wide 

applicability, including enabling statistical reasoning such as machine learning from data [47, 

48], diagnostic inference and causal reasoning [49]. In this paper, we use BNs as an alternative 

to FAIR, in the form of FAIR-BN, and extend FAIR-BN incorporating process-oriented and 

game-theoretic methods. 

A BN is a directed acyclic graph representing a factorization of a joint probability distribution, 

consisting of nodes representing variables and arcs representing causal or probabilistic 

relationships (the qualitative part) with probabilistic weights (the quantitative part) sometimes 

modelled using statistical and deterministic functions. In a BN, each node 𝑋𝑖 has an associated 

probability table, 𝑃((𝑋𝑖| 𝑝𝑎(𝑋𝑖)), called the Conditional Probability Table (CPT) of 𝑋𝑖 given 

its parent variables, 𝑝𝑎(𝑋𝑖). For a node 𝑋𝑖 without parents, the CPT is the marginal probability 

distribution of  𝑋𝑖, 𝑃(𝑋𝑖) . The conditional-independent relationship among variables, 

represented by the absence of arcs, allows simplification of a BN’s joint probability distribution 

which can be represented by the product of CPTs. Furthermore, the marginal distribution of 

the child variable can be obtained by marginalizing over its parent variables in the joint 
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distribution [19]. For example, considering a simple BN consisting of three nodes, in which 

nodes A and B are parents of node C, and CPTs are 𝑃(𝐴), 𝑃(𝐵) and 𝑃(𝐶|𝐴, 𝐵), we can get the 

joint distribution of this BN from 𝑃(𝐴, 𝐵, 𝐶) =  𝑃(𝐴) 𝑃(𝐵)𝑃(𝐶|𝐴, 𝐵)  and calculate the 

marginal distribution of the child node C following 𝑃(𝐶) = ∑ 𝑃(𝐴, 𝐵, 𝐶)𝐴,𝐵 . 

 

More generally, the joint distribution of a BN can be calculated following formula (1):  

                                          𝑃(𝑋1, … . , 𝑋𝑛) = ∏ 𝑃((𝑋𝑖| 𝑝𝑎(𝑋𝑖)) 
𝑛
𝑖=1      (1) 

This significantly reduces the complexity of inference tasks in BNs. The CPT embodies the 

probabilistic reasoning mechanism into BNs. More relevant details are carefully explained in 

[19].  In this paper, we have used AgenaRisk [50], a commercial BN package, to build BNs 

and perform calculations. AgenaRisk contains off-the-shelf functions for performing inference 

on hybrid BNs (those containing both continuous and discrete nodes), influence diagrams and 

for performing compound sum calculations. FAIR-BN and EFBNs can all be implemented 

using AgenaRisk. 

As explained in Section 3, Risk Aggregation (RA) is the core reasoning process of the FAIR 

model, since all the calculations throughout the model recursively calculate the total loss from 

the derived loss event frequency and loss magnitude distributions. However, the relationship 

between the involved factors and the mechanism used when conducting RA is implicit in the 

FAIR model’s assumptions. In this subsection, we reveal the mechanism of the RA process 

and propose algorithms to implement RA using BNs based on the work in [31]. Finally, we 

provide the BN for calculating loss event frequencies which includes calculating output factors 

3-7 listed in Table 1. The accuracy of the BN’s results is then evaluated. The relevant 

experimental results are provided in Section 6. 

There are two types of risk aggregation (denoted as 𝑅𝐴1 and 𝑅𝐴2) needed in FAIR-BN as 

shown in Table 2. 

Table 2 Types of risk aggregation process 

 

To show how 𝑅𝐴1  is implemented using BNs, we introduce the calculation of 𝐿𝑝 =

𝑅𝐴1(𝐹𝑝, 𝐿𝑀𝑝) as an example. This calculation is conducted using n-fold convolution [31] [45]. 

Assuming that, in a given period, a cyber event can happen n times where n is any number 

between 0 and the upper bound N, and the event has a fixed Loss Magnitude distribution 𝐿𝑀𝑃, 

the primary loss distribution 𝐿𝑃 can be calculated following the n-fold convolution shown by 

formula (2): 

                                  𝐿𝑃 = 𝑃(0)𝐿𝑃0 + 𝑃(1)𝐿𝑃1 + 𝑃(2)𝐿𝑃2 +⋯+ 𝑃(𝑁)𝐿𝑃𝑁  (2) 
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Here 𝐿𝑃𝑛  represents the n-fold distribution of  𝐿𝑀𝑃 , with  𝐿𝑃0 = 0, 𝐿𝑃𝑛 = 𝐿𝑃𝑛−1 + 𝐿𝑀𝑃 for 

 𝑛 = 1 𝑡𝑜 𝑁 and 𝑃(𝑛) is the probability of  𝐹𝑃  = 𝑛. This n-fold convolution method, which 

conducts 𝑅𝐴1 based on probabilistic inference, has been implemented by the compound sum 

function in AgenaRisk. In Figure 3, we show a 𝑅𝐴1 result given input distributions for primary 

loss frequency and magnitude. 

 
Figure 3 𝑅𝐴1result of FAIR-BN 

with 𝑀𝑃𝐿𝐸𝐹 following  𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 20,𝑚𝑙 = 80,𝑚𝑎𝑥 =  180)  

whilst 𝐿𝑀𝑃 following  𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 100,𝑚𝑙 =  175,𝑚𝑎𝑥 = 200) 

 

The BN shown in Figure 4 models the relationships among associated variables involved in the 

risk aggregation process 𝑅𝐴2.  

 
Figure 4 Risk factors involved in 𝑅𝐴2 

 

In the 𝑅𝐴2 process, the distribution of Total Loss (TL), 𝐿𝑇, can be calculated by conducting 

risk aggregation on the joint frequency 𝐹𝑃&𝑆 and the corresponding Loss Magnitudes (LM), 

which is denoted as 𝐿𝑇 = 𝑅𝐴2 (𝐹𝑃&𝑆,  𝐿𝑀𝑃,  𝐿𝑀𝑆).  We, therefore, extend the n-fold 

convolution represented by formula (2) to that shown in formula (3): 

                                  𝐿𝑇 = ∑ [∑ 𝑃(𝐹𝑃 = 𝑛, 𝐹𝑆 = 𝑚)
𝑛
𝑚=0 × (𝐿𝑃𝑛 + 𝐿𝑆𝑚)]

𝑁
𝑛=0    (3) 

In formula (3) 𝐿𝑃𝑛  represents the n-fold distribution of 𝐿𝑀𝑃  with 𝐿𝑃0 = 0, 𝐿𝑃𝑛 = 𝐿𝑃𝑛−1 +

 𝐿𝑀𝑃 for  𝑛 = 1 𝑡𝑜 𝑁 , whilst  𝐿𝑆𝑛  represents the n-fold distribution of 𝐿𝑀𝑆  with 𝐿𝑆0 = 0,

𝐿𝑆𝑚 = 𝐿𝑆𝑚−1 + 𝐿𝑀𝑆 for 𝑚 = 1 to 𝑛. The function 𝑃(𝐹𝑃 = 𝑛, 𝐹𝑆 = 𝑚) is the joint frequency 
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distribution that represents the probability that  𝐹𝑃  = 𝑛  and  𝐹𝑆  = 𝑚 . We simplify this 

expression as 𝑃𝑛,𝑚. We use the BNs (a), (b) and (c) in Figure 5 to illustrate the  𝑅𝐴2 process 

represented by formula (3). 

 
Figure 5 BNs used to implement the 𝑅𝐴2 risk aggregation process 

We firstly simplify the BN (c) to BN (e) in Figure 5, by creating total loss variables 𝑇𝑛,𝑚 which 

represent the compound results of the associated probability densities, 𝐿𝑃𝑛 and 𝐿𝑆𝑚. By doing 

so, 𝐿𝑇  can be calculated by aggregating densities of  𝑇𝑛,𝑚  following the joint frequency 

distribution. This calculation can be very space inefficient. One solution is to factorize this 

density aggregation process. A general way of doing so is referred to as the Compound Density 

Factorization (CDF) method. A CDF method is proposed to calculate 𝑅𝐴1 in [31]. We have 

extended this 1-Dimension CDF method to a 2-Dimensions CDF method to implement risk 

aggregation on the joint frequency distribution as the  𝑅𝐴2  process. We use AgenaRisk to 

implement the related algorithms which are described in Appendix C. An example result 

showing how 𝑅𝐴2 is calculated is shown in Figure 6. 
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Figure 6 𝑅𝐴2 result of FAIR-BN 

with 𝑀𝑃𝐿𝐸𝐹 following 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 20,𝑚𝑙 =  80,𝑚𝑎𝑥 = 180),  

𝑃𝑆𝐿 following  𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 0.2,𝑚𝑙 = 0.3,𝑚𝑎𝑥 =  0.7), 

 𝐿𝑀𝑃 following  𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 100,𝑚𝑙 = 240,𝑚𝑎𝑥 = 400)  

whilst 𝐿𝑀𝑆 following  𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 80,𝑚𝑙 = 140,𝑚𝑎𝑥 = 200) 

 

Loss event frequency is also modelled in FAIR using some statistical dependencies on threat 

event frequency and vulnerability variables. These are themselves dependent on contact 

frequency, probability of action and threat capability and resistance strength respectively. 

Given BNs can model statistical relationships, they can quite naturally be modelled as shown 

by the BN in Figure 7. Additionally, it is possible to extend/replace nodes in this BN to allow 

us to upgrade a FAIR-BN, incorporating everything FAIR can do, thus providing greater 

flexibility. 

 
Figure 7 FAIR-BN for calculating 𝐹𝑃 and 𝐹𝑆 
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5. Simulation and evaluation using Monte Carlo  

5.1 Implementing the FAIR model using Monte Carlo 

Monte Carlo (MC) methods are a broad class of computational algorithms that generate 

numerical results from repeated random sampling [51]. In this section, we describe how we use 

MC simulation methods to implement functions in the FAIR model as listed in Table 1 with a 

focus on the risk aggregation processes. This series of MC simulations constitute the FAIR-

MC. Note that in our FAIR-MC, we do not employ the BMD approximation nor use cached 

data. This is the most significant difference between the FAIR-BM and the FAIR model. 

Firstly, we introduce how we implement the 𝑅𝐴1 process using FAIR-MC. The 𝑅𝐴1 process 

represents the calculation of primary loss, 𝐿𝑃,  using risk aggregation of the corresponding loss 

event frequency, 𝐹𝑃, and loss magnitude, 𝐿𝑀𝑃. Assuming 𝑛 samples of 𝐹𝑃 have been generated 

following the specified input distribution (this procedure is straightforward referring to Table 

1), for each simulated sample, 𝑓𝑖, of 𝐹𝑃, we simulate 𝐿𝑀𝑃 sample 𝑓𝑖 times and sum them up to 

get one sample of 𝐿𝑃. Conducting the same procedure for all samples of  𝐹𝑃, we can get 𝑛 

sample of 𝐿𝑃. The simulation result is a vector of size 𝑛, of which each element is  represented 

by formula (4): 

                                                                  𝐿𝑃
𝑖 = ∑ 𝐿𝑀𝑃

𝑘𝑓𝑖
𝑘=0   (4) 

where 𝑖 = 0,… , 𝑛 and 𝐿𝑀𝑃
𝑘 represents the kth simulated sample of 𝐿𝑀𝑃  following the given 

distribution.  

 

The method of generating a sample set for secondary loss using FAIR-MC is quite similar. For 

each sample of the primary loss frequency, 𝑓𝑖, we simulate a sample of the secondary loss 

frequency 𝑓𝑖
′  following the Binomial distribution, 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 = 𝑓𝑖 , 𝑃 = 𝑃𝑆𝐿

𝑖 ) , where 𝑃𝑆𝐿
𝑖  

represents the ith sample of 𝑃𝑆𝐿. Here 𝑃𝑆𝐿  is occurrence probability of the secondary loss.  Then 

we can generate a sample vector for the secondary loss 𝐿𝑆, with secondary loss magnitude 𝐿𝑀𝑆 

as formula (5): 

                                                                  𝐿𝑆
𝑖 = ∑ 𝐿𝑀𝑆

𝑘𝑓𝑖
′

𝑘=0   (5) 

where 𝑓𝑖
′(𝑖 = 0,… , 𝑛) represents the 𝑖 th randomly simulated sample of  𝐹𝑠  which follows a 

Binomial distribution, and 𝐿𝑀𝑆
𝑘 represents the kth simulated sample of 𝐿𝑀𝑆 following the given 

distribution.  

The sample set of the total loss 𝐿𝑇 can be generated based on simulation work above using 

formula (6):  

                                                                     𝐿𝑇
𝑖 = 𝐿𝑃

𝑖 + 𝐿𝑆
𝑖   (6) 

Each sample of the total loss 𝐿𝑇
𝑖  is calculated by summing the corresponding primary loss 

𝐿𝑃
𝑖𝑗
 and secondary loss 𝐿𝑆

𝑖𝑗
.  

Simulating vulnerability, attack capability and, furthermore, the associated primary loss event 

frequency using FAIR-MC is quite straightforward by generating input samples and operating 

samples following functions summarized in Table 1.  
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5.2 Accuracy evaluation  

We evaluate the accuracy of the FAIR model by comparing marginal probability distributions 

produced by the FAIR model against the marginal probability distributions produced by (a) 

FAIR-MC simulation and (b) FAIR-BN.  

Our aim here is to determine whether the approximation techniques used by FAIR give rise to 

undesirable inaccuracies and to compare the accuracy of the FAIR model and the 

corresponding FAIR-BN model. 

The accuracy measure we use is based on K-L (Kullback-Leibler) divergence, which measures 

the distance between two distributions, 𝑝(𝑥) and 𝑞(𝑥) shown by formula (7), [52]:  

                                                          K(𝑝 ∥ 𝑞) = ∫𝑝(𝑥)𝑙𝑛
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥  (7) 

Since 𝐾(𝑝 ∥ 𝑞) is not a symmetric measurement, instead we use a symmetric divergence 

measure referred to as J divergence shown by formula (8) [22] [23] : 

                                                        J(𝑝, 𝑞) = 𝐾(𝑝 ∥ 𝑞) + 𝐾(𝑞 ∥ 𝑝)  (8) 

For each function listed in Table 1, we use FAIR-MC to simulate the output factor using a large 

number of samples (one million). Then, we apply J divergence to measure the distance between 

the sample distribution calculated by FAIR-MC against results generated by the FAIR model 

and the FAIR-BN for each output risk factor. The smaller the J divergence the model has 

against the FAIR-MC, the more accurate the model is.  

6. Experimental analysis  

Our experiments are designed to test the performance of the FAIR model and the FAIR-BN in 

diverse scenarios. We use one million samples generated by FAIR-MC as the standard to 

evaluate the results of the FAIR model and FAIR-BN. In Section 6.1 we evaluate whether 

FAIR-BN can produce consistent results when it complies strictly with the calculation 

assumptions encoded within the FAIR model. These rules include using only triangular 

distributions as inputs and the use of functions summarized in Table 1. These evaluation results 

lay the foundation for confidently implementing and extending the FAIR model using BNs.  

In Section 6.2 we consider more realistic scenarios that do not adhere to the strict assumptions 

underlying the FAIR model. In practical cases, the input data would be much more diverse and 

complicated. For example, there could be a burst in the frequency of an information asset being 

attacked in a timeframe. An indication of this could be the existence of Advanced Persistent 

Threat (APT) [53]. APT can make the targeted information asset dormant under attacks for a 

long time period. For this reason, using right-long-tailed distributions [17] [16], that recognize 

the probability of extremely large frequencies,  to represent the frequency of cyber events is 

realistic.  FAIR’s triangular distributions would be a poor approximation in such scenarios, 

hence introducing inaccuracy. Poor approximations of the data generation process underlying 

the Loss Event Frequency (LEF) and Loss Magnitude (LM) can directly influence the output 

of the model (the ultimate assessment of financial losses posed by cyber events). For this reason, 

we focus our experiments on the 𝑅𝐴1 process and have considered two practical scenarios 
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when LEF follows long-tailed distributions and when LEF is small. Likewise, given the FAIR 

model employs cached data and approximation techniques to simplify the calculation, its 

resulting accuracy may be more strongly impaired when LEF takes fixed values that fall 

between cached values. We have evaluated performance of the FAIR model and the FAIR-BN 

under these three cases in subsection 6.2. 

The results of the FAIR model are generated using the Open Fair™ Risk Analysis Tool [15], 

which is built using Excel. Its method of calculation is described in [14]. We have carefully 

analysed this and have provided more detailed explanation in section 3, Appendix A and 

Appendix B.  We have used AgenaRisk [50], a commercial BN package, to build FAIR-BNs 

and perform calculations. We also have implemented the 𝑅𝐴2 process by developing a program 

using the AgenaRisk Java API. Related theory and algorithm details are provided in Section 4 

and Appendix C. 

We use Matlab [54] to generate samples following the Monte Carlo (MC) method for each test 

and call them the results of FAIR-MC. One million MC samples are used in each test to reflect 

the distribution of the output factor. In all of the tests, we use one thousand samples generated 

by FAIR-BN and the FAIR model respectively to represent the results from the two models. 

We provide mean, variance, and 99th quantile statistics for the risk aggregation results 

generated by FAIR, the FAIR-BN and FAIR-MC as a basis for comprehensive comparison. 

Furthermore, we use J divergence to measure distance between FAIR-MC results and results 

generated by the FAIR model and the FAIR-BN for comparing accuracy of the models. 

6.1 Experimental tests complying with assumptions of the FAIR model 

6.1.1 Experimental tests of risk aggregation processes 

With the assumptions of the FAIR model, 𝐿𝑀𝑃  follows a triangular distribution, 

𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 (𝑚𝑖𝑛 = 100,𝑚𝑙 = 175,𝑚𝑎𝑥 = 200) , whose parameters 𝑚𝑖𝑛 , 𝑚𝑎𝑥  and 𝑚𝑙 

represent lower bound, upper bound and most likely value to simulate 𝐿𝑀𝑃 in the 𝑅𝐴1 process. 

In tandem with this, we change parameters of the  𝑀𝑃𝐿𝐸𝐹  distribution across test cases and 

furthermore set the distribution of 𝐹𝑃  by Poisson ( 𝜆 =𝑀𝑃𝐿𝐸𝐹)  to force diverse shape 

combinations of 𝐹𝑃 and 𝐿𝑀𝑃. 

These three methods generate consistent results for 𝐿𝑃. In our seven tests, the average value of 

J(FAIR, FAIR-MC) is 0.0236 while the average value of  J(FAIR-BN, FAIR-MC) is 0.0230. 

This shows that, given the same input parameters for 𝑀𝑃𝐿𝐸𝐹  and 𝐿𝑀𝑃 , the 𝐿𝑃 outputs generated 

by the FAIR model and the FAIR-BN models are consistent with distributions generated by 

FAIR-MC. More detailed statistics for the seven experimental tests are shown in Table 3. We 

also use Euclidean distance [55] to measure the distance between FAIR-MC against FAIR and 

FAIR-BN. We use Eu(FAIR, FAIR-MC) and Eu(FAIR-BN, FAIR-MC) to represent Euclidean 

distance between FAIR and FAIR-BN against FAIR-MC respectively. In the seven tests 

recorded in Table 3, the average Eu(FAIR, FAIR-MC) vs Eu(FAIR-BN, FAIR-MC) is 0.0283 

vs 0.0232. This result confirms that the three models provide consistent results in these seven 

tests. More detailed results of the Euclidean measurement are given in Appendix E (Table 12). 
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Table 3 Results comparison of 𝐿𝑃 distributions 

with inputs following triangular distributions  

 
Next, we experiment on the 𝑅𝐴2 process, considering 𝐿𝑇 = 𝑅𝐴2(𝐹𝑃&𝑆,  𝐿𝑀𝑃,  𝐿𝑀𝑆). To keep 

inputs consistent with the FAIR model, our experiments on the 𝑅𝐴2  process follow the 

calculations shown in Figure 8, where boldly outlined nodes represent input variables that are 

specified using triangular distributions in the FAIR model. 

 

Figure 8 Related variables in the 𝑅𝐴2 process 

In our experimental tests, 𝐿𝑀𝑃  follows  𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 100,𝑚𝑙 = 200,𝑚𝑎𝑥 = 400), 

𝐿𝑀𝑆  follows 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 80,𝑚𝑙 = 140,𝑚𝑎𝑥 = 200)  and 𝑃𝑆𝐿  follows 

𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 0.2,𝑚𝑙 = 0.3,𝑚𝑎𝑥 = 0.7). Five typical shapes are assigned to 𝑀𝑃𝐿𝐸𝐹 to 

construct test cases. We show experimental results of the 𝑅𝐴2 process in Table 4. 

Table 4 Results comparison of 𝐿𝑇 distributions 

 

Again, the FAIR and the FAIR-BN models generate consistent 𝐿𝑇 distributions compared with 

the FAIR-MC results. The average value of J(FAIR-BN, FAIR-MC) is 0.0160 while the average 

min mid max FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC

1 0 20 90 5877 5870 5804 9.8E+06 1.1E+07 1.0E+07 13795 14339 13800 0.0174 0.0161

2 0 230 300 28504 27857 27964 1.0E+08 1.2E+08 1.1E+08 46787 49883 46792 0.0332 0.0323

3 20 80 180 14946 14730 14778 2.8E+07 3.3E+07 3.0E+07 27641 28643 27537 0.0230 0.0195

4 60 250 400 37986 37458 37473 1.2E+08 1.4E+08 1.3E+08 60939 63143 61108 0.0239 0.0354

5 20 250 630 48359 47237 47517 3.8E+08 3.8E+08 4.0E+08 92552 93069 93838 0.0194 0.0189

6 15 30 250 15844 15686 15560 7.2E+07 7.1E+07 7.5E+07 36490 36500 36782 0.0168 0.0160

7 15 30 540 31587 31168 30890 3.6E+08 3.9E+08 3.8E+08 77924 78953 78070 0.0312 0.0225

Average: 0.0236 0.0230

Test 
MPLEF Mean Variance 99th J(FAIR,

FAIR-MC)

J(FAIR-BN,

FAIR-MC)

min mid max FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC

1 Include 0 0 200 500 7.2E+04 7.1E+04 7.1E+04 9.4E+08 1.0E+09 1.0E+09 1.4E+05 1.5E+05 1.4E+05 0.0362 0.0119

2 Long tail 50 200 1000 1.3E+05 1.3E+05 1.3E+05 3.9E+09 4.2E+09 4.1E+09 2.8E+05 2.8E+05 2.8E+05 0.0237 0.0122

3 Left skew 20 80 200 3.1E+04 3.1E+04 3.0E+04 1.3E+08 1.5E+08 1.4E+08 5.8E+04 5.9E+04 5.9E+04 0.0320 0.0214

4 Right skew 20 160 200 3.9E+04 3.8E+04 3.8E+04 1.4E+08 1.6E+08 1.5E+08 6.2E+04 6.3E+04 6.3E+04 0.0264 0.0202

5 0 and long tail 0 200 1000 1.2E+05 1.2E+05 1.2E+05 4.1E+09 4.4E+09 4.4E+09 2.8E+05 2.8E+05 2.8E+05 0.0237 0.0145

Average: 0.0284 0.0160

Mean Variance 99th J(FAIR,

FAIR-MC)

J(FAIR-BN,

FAIR-MC)

MPLEF
Test Description 
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value of  J(FAIR, FAIR-MC)  is 0.0284. This shows FAIR-BN and FAIR generate consistent 

results when implementing the 𝑅𝐴2 process and the FAIR-BN model generates slightly more 

accurate results. We also use Euclidean distance to measure the distance between FAIR-MC 

against FAIR and FAIR-BN for the confirmation. The average Eu(FAIR, FAIR-MC) vs 

Eu(FAIR-BN, FAIR-MC) is 0.0378 vs 0.0178, which confirms that the three models provide 

consistent results in these five tests. More detailed results of Euclidean measurement are given 

in Appendix E (Table 13). 

6.1.2 Experimental tests of subsidiary risk factors in the FAIR model 

In addition to the risk aggregation processes 𝑅𝐴1  and 𝑅𝐴2 , there are four other functions 

applied in the FAIR model as listed in Table 1. We have implemented these in FAIR-BN and 

FAIR-MC:  

1. The Mean of Primary Loss Event Frequency (MPLEF) is calculated from the Threat 

Event Frequency (TEF) and Vulnerability (V):  𝑀𝑃𝐿𝐸𝐹 = 𝐹𝑇𝐸 ×  𝑃𝑉 . For this, the 

average value of J(FAIR-BN, FAIR-MC) is 0.0069 and the average value of  J(FAIR, 

FAIR-MC) is 0.0310.  

2. The Primary Loss Event Frequency (PLEF) is derived from MPLEF following 𝐹𝑃 =

𝑃oisson (𝜆 = 𝑀𝑃𝐿𝐸𝐹): here the average value of J(FAIR, FAIR-MC) is 0.0170 and the 

average value of  J(FAIR-BN, FAIR-MC)  is 0.0059. 

3. The Secondary Loss Event Frequency (SLEF) is computed from PLEF and Chance of 

Secondary Loss (CSL) following 𝐹𝑆 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛 = 𝐹𝑃, P = 𝑃𝑆𝐿) and this produces 

an average value of J(FAIR, FAIR-MC) = 0.0213 and the average value of J(FAIR-BN, 

FAIR-MC)  =  0.0053.  

4. The outputs of Vulnerability, which are derived from Threat Capability (Tcap) and 

Resistance Strength (RS) following 𝑃𝑉 = 𝑃(𝑃𝑇𝐶 > 𝑃𝑅𝑆) are probabilities. The FAIR 

model and FAIR-BN have similar performance.   

Experimental results above show that in calculating LEF and its sub-factors both the FAIR 

model and FAIR-BN provide consistent results compared with FAIR-MC. We provide more 

detailed results of these experimental tests in Appendix D (Table 8, 9, 10 and 11). 

6.2 Experimental tests of other practical scenarios 

Here we evaluate the performance of the FAIR model and the FAIR-BN in the 𝑅𝐴1 process 

under two scenarios where LEF follows long tailed distributions and where LEF is small. Also, 

given the FAIR model employs cached data and statistical techniques in simplifying the 

calculation, we also evaluate performance in the 𝑅𝐴1 process where LEF has several fixed 

values, i.e. where poor approximation might be most evident. We focus the experiments on the 

𝑅𝐴1  process in this subsection since it is the core calculation in the FAIR model and can 

directly influence the output of the model (the ultimate assessment of financial losses posed by 

cyber events). 
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6.2.1 LEF follows long-tailed distributions 

We use three right-long-tailed distributions (which have the possibility of extremely large 

values) to represent the LEF: 

 Weibull distribution (shape = 1.5, scale = 100) 

 Log Normal distribution (mean = 3, standard deviation = 0.5)  

 Gamma distribution (alpha = 2, beta = 20)  

Since these are continuous distributions, to keep their features and model frequencies, we have 

used each of them as the parameter 𝜆 for a Poisson distribution to construct the discrete integer 

distributions for the corresponding LEF in our test. LM in these tests follows a Log Normal 

distribution (mean = 5, standard deviation = 0.25). Results generated using the FAIR model, 

FAIR-BN and FAIR-MC for 𝐿𝑃 = 𝑅𝐴1(𝐹𝑃,  𝐿𝑀𝑃)  are recorded in Table 5. We compare 

distributions of primary losses, 𝐿𝑃, generated by these three models in Figure 9. 

Table 5 Results comparison of 𝐿𝑃 distributions 

with 𝐹𝑃 following long-tailed distributions  

 

 

 

Figure 9 Results comparison of 𝐿𝑃 distributions 

with 𝐹𝑃 following long-tailed distributions  

 

The average J(FAIR-BN, FAIR-MC) is 0.0103 in these three test scenarios. This is consistent 

with J(FAIR-BN, FAIR-MC) in the general cases shown in Table 3. However, the average 

J(FAIR, FAIR-MC) is 0.6066, which is significantly larger than the average J(FAIR-BN, FAIR-

MC). The experimental results demonstrate that the FAIR model losses accuracy when dealing 

with long tailed distributions, while FAIR-BN provides more accurate results that are 

consistent with results generated by FAIR-MC. This is illustrated intuitively in Figure 9. We 

also use Euclidean distance as an alternative measurement in this test group, and the results can 

lead to the consistent conclusion. More detailed results of this are given in Appendix E (Table 

14). 

PLEF PLM FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC

1 Weibul l LogNormal 1.4E+04 1.4E+04 1.4E+04 4.3E+07 9.8E+07 9.0E+07 29705 43254 42892 0.7683 0.0074

2 Log Normal LogNormal 3.7E+03 3.5E+03 3.5E+03 2.2E+06 4.3E+06 4.0E+06 7305 10034 10218 0.5412 0.0161

3 Gamma LogNormal 6.4E+03 6.2E+03 6.1E+03 1.0E+07 2.1E+07 2.0E+07 14275 20927 20663 0.5102 0.0073

Average: 0.6066 0.0103

J(FAIR-BN,

FAIR-MC)
Test 

Input Distributions Mean Variance 99th J(FAIR,

FAIR-MC)
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6.2.2 LEF and LM using other statistical distributions 

In addition to the long tail distribution scenario, there are other situations that may require 

different distributions rather than those assumed by FAIR. For example, FAIR uses a Poisson 

distribution, with an input triangular distribution, to simulate the LEF for the further risk 

aggregation. In practice, the Binomial distribution is better suited to model frequency 

distributions with low values of n and higher values for p (the Poisson is the limit version of 

the Binomial where n is large and the probability of success, p, is small).   

We conduct four tests (whose statistical and graphical results are shown in Table 6 and Figure 

10 respectively). To simulate LEF, we use a Binomial distribution (number of trials = 50, 

probability of success = 0.2) in tests 1 - 2 and a Triangular distribution (min = 10, ml = 60, max 

= 100) in tests 3 - 4.  For LM, we use a Triangular distribution (min = 100, ml = 175, max = 

200) in test 1, a Log Normal distribution (mean = 5, standard deviation = 0.25) in tests 2 - 3 

and a Gamma distribution (alpha = 8, beta = 30) in test 4. The results show that FAIR is less 

accurate than FAIR-BN and does not even achieve the accuracy that FAIR has in general cases, 

that we analysed in subsection 6.1.  

Table 6 Results comparison of 𝐿𝑃 distributions 

with 𝐹𝑃 and 𝐿𝑀𝑃 following other distributions  

 

 

Figure 10 Results comparison of 𝐿𝑃 distributions 

with 𝐹𝑃 and 𝐿𝑀𝑃 following other distributions  

PLEF PLM FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC

1 Binomial Triangular 1.7E+03 1.6E+03 1.6E+03 3.6E+05 2.2E+05 2.1E+05 3215 2798 2705 0.1748 0.0138

2 Binomial Log Normal 1.7E+03 1.5E+03 1.5E+03 3.6E+05 2.3E+05 2.1E+05 3237 2733 2656 0.2357 0.0176

3 TriangularLog Normal 9.6E+03 8.6E+03 8.8E+03 9.8E+06 9.9E+06 9.9E+06 15811 16720 16437 0.2240 0.0570

4 Triangular Gamma 1.5E+04 1.4E+04 1.4E+04 2.5E+07 3.1E+07 2.8E+07 25186 28721 27864 0.2561 0.0531

Average: 0.2227 0.0354

J(FAIR-BN,

FAIR-MC)

Input Distributions Mean
Test 

Variance 99th J(FAIR,

FAIR-MC)
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The average J(FAIR-BN, FAIR-MC) in this test group is 0.0354 which is consistent with the 

general cases shown in Table 3. However, the average J(FAIR, FAIR-MC) is 0.2227, which is 

much larger than the average J(FAIR-BN, FAIR-MC). The statistics shown in Table 6 and 

distribution comparisons shown in Figure 10, demonstrate the insufficiency of FAIR in the 

𝑅𝐴1 process when it approximates distributions of input variables using triangular distributions.  

6.2.3 LEF with fixed values  

Given the FAIR model applies approximation techniques to implement risk aggregation, we 

apply seven tests involving loss event frequencies that are of fixed values rather than 

distributions, since it is here that poor approximation might be most evident.  

As shown in Table 7, mean, variance and 99th quantile values of results generated by FAIR, 

the FAIR-BN and FAIR-MC models are consistent with each other across all tests. The average 

of J divergence between FAIR-BN and FAIR-MC is lower than that between FAIR and FAIR-

MC (0.0183 vs 0.0768), leading to the conclusion that the FAIR-BN model is more accurate in 

this scenario. 

Table 7 Results comparison of 𝐿𝑃 distributions 

with 𝐹𝑃 is of fixed values 

 

6.3 Summary conclusions from experiments 

We can conclude that both the FAIR and FAIR-BN models can provide consistent results 

compared with the FAIR-MC standard. However, given that FAIR focuses on simulation 

efficiency, approximates input variables using triangular distributions and uses cached data and 

the interpolation method, the model shows insufficiency in dealing with cases when LEFs 

follow long tailed distributions, LEF and/or LM follow other distributions (rather than 

triangular distributions) and LEF are of fixed values. In these three scenarios, the FAIR model 

shows inaccuracy when conducting the 𝑅𝐴1  process. In comparison, the FAIR-BN model 

provides highly accurate results across all the experimental tests.  

  

FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC

1 60 9.5E+03 9.5E+03 9.5E+03 2.7E+04 2.8E+04 2.8E+04 9.9E+03 9.9E+03 9.9E+03 0.0996 0.0193

2 120 1.9E+04 1.9E+04 1.9E+04 5.4E+04 5.6E+04 5.6E+04 2.0E+04 2.0E+04 2.0E+04 0.0805 0.0163

3 175 2.8E+04 2.8E+04 2.8E+04 7.9E+04 8.0E+04 8.0E+04 2.8E+04 2.8E+04 2.8E+04 0.0626 0.0159

4 230 3.6E+04 3.6E+04 3.6E+04 1.0E+05 1.1E+05 1.1E+05 3.7E+04 3.7E+04 3.7E+04 0.0719 0.0217

5 310 4.9E+04 4.9E+04 4.9E+04 1.4E+05 1.5E+05 1.6E+05 5.0E+04 5.0E+04 5.0E+04 0.0666 0.0179

6 390 6.2E+04 6.2E+04 6.2E+04 1.7E+05 1.8E+05 1.9E+05 6.3E+04 6.3E+04 6.3E+04 0.0875 0.0215

7 630 1.0E+05 1.0E+05 1.0E+05 2.8E+05 2.9E+05 2.9E+05 1.0E+05 1.0E+05 1.0E+05 0.0686 0.0156

Average: 0.0768 0.0183

Test LEF
J(FAIR,

FAIR-MC)

J(FAIR-BN,

FAIR-MC)

Mean Variance 99th
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7. The extended FAIR-BN models 

 A wider range of distributions can be applied to represent input factors in the FAIR-BN 

including for risk aggregation processes and the assessment of loss event frequencies. Here we 

show an example to demonstrate that the FAIR-BN model can accommodate different 

distributions for the loss event frequency and loss magnitude factors used in risk aggregation 

(and could easily do so elsewhere). Figure 11 shows a FAIR-BN model result achieved by 

computing  𝑅𝐴1  with Truncated Normal (TNormal) distributions [56] being assigned to 

primary loss event frequency, 𝐹𝑃, and the corresponding loss magnitude, 𝐿𝑀𝑃, rather than a 

Poisson distribution and a triangular distribution used in the FAIR model.  We use TNormal 

distributions with 0 as their lower bounds to represent PLEF and PLM are not negative. Other 

rational distributions can be applied as well. 

 

Figure 11 A 𝑅𝐴1 result of FAIR-BN with inputs following TNormal distributions 

𝐹𝑃 follows 𝑇𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 40, 𝜎2 = 100, 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 0,𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 200) whilst 

𝐿𝑀𝑃 follows 𝑇𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 400, 𝜎2 = 100,000, 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 0,𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 10,000) 

7.1 Extending the FAIR-BN using a process-oriented model 

In addition to providing more flexibility when modelling input distributions and providing 

more accurate results, more importantly, the FAIR-BN can be easily extended to model the 

causal processes that represent the interactions between cyber attackers and defenders. The 

FAIR-BN model can, therefore, be customized to model these factors directly, as cause-effect 

relationships with associated probabilities. Here we show how we might integrate a simple 

process-oriented model into the FAIR-BN, replacing the calculation of the vulnerability 

variable in FAIR by a richer causal structure. We show this model in Figure 12.
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Figure 12 FAIR-BN extended by a process-oriented model  
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In this model, an information asset is assumed to have three vulnerable aspects (vulnerability 

X, Y, Z) that can be attacked by a threat agent, whilst the threat agent has the capability to attack 

and exploit each of the vulnerabilities. Controls A and B in the example model can be deployed 

to reduce the vulnerabilities for one or more vulnerable aspects. Each control is characterised 

by Operational Effectiveness (OE) which is its probability of reducing vulnerability (i.e. 

controls are not perfect). The OE of a control is determined by two factors: the extent of 

deployment and design effectiveness. The output of the control scenario is the vulnerability 

which represents the probability that the threat agent delivers an attack to the asset successfully. 

The conditioning logic connecting the variables could be modelled using simple Boolean 

“AND” and “OR” relationships and CPTs could be elicited from expert knowledge. The 

probabilities used in this model are an example, which will not influence the reasoning 

mechanism which we have described in section 4. Similarly, other process-oriented risk 

assessment models, such as the kill chain model [57] and attack graphs [20, 29]  can be 

combined with the FAIR-BN for more advanced risk assessment. 

7.2 Extending the FAIR-BN using game theory (adversarial risk analysis) 

In the FAIR model, the vulnerability of an information asset is determined by a contest between 

attackers and the defender. The classical game theory finds the Nash equilibrium for all players 

simultaneously and therefore provides an optimum solution to this contest. However, relatively 

new methods such as Adversarial Risk Analysis (ARA) [58] provide an alternative solution 

whereby the decision problem is analysed from the view of a specific decision maker (attacker 

or defender). For example, from the defender’s point of view, a model considers the likely 

behaviour of the attackers and seeks to optimise the utility of the defender’s decisions. In ARA, 

the decision problem is structured and represented by an Influence Diagram (ID) which 

generalizes Bayesian Networks. Here we show how a sequential defend-attack game model 

borrowed from [21], can be accommodated to construct an EFBN. 

An ID is a directed acyclic graph with three kinds of nodes: decision nodes, shown as rectangles; 

chance nodes, shown as ovals; and utility nodes, shown as diamonds. Figure 13 shows the ID 

of a sequential defend-attack game model in the defender’s perspective [21]. In this model, the 

defender has a discrete set of possible defence levels D = {𝑑1, 𝑑2, … , 𝑑𝑛} , which are 

represented by the decision node D (Defences). After observing the potential defence levels 

that can be implemented, the attacker has a discrete set of possible attack levels A = {𝑎1,

𝑎2, … , 𝑎𝑚}  represented by node A (Attacks). A dashed arc pointing from node D to A 

represents the fact that the attacker’s decision depends on the potential defences. Moreover, 

from the defender’s perspective, the choice made by the attacker is a random variable. Hence, 

node A is a chance node rather than a decision node in this model. Whether the attack is 

successful is represented by the chance node S which is conditional on D and A. Finally, D and 

S determine D’s utility. 
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Figure 13  The defender’s influence diagram 

An example using adversarial risk analysis is shown in Figure 14, which is represented by an 

Influence Diagram (ID) built with a BN.  We assume that the defender’s decision is about 

whether to equip the capability of a defence, 𝑑, to protect a target information asset. Meanwhile, 

after observing the defender’s capability, the attacker would consider whether to deploy a 

corresponding attack capability, 𝑎, against it. Here we give uniform values to the Defence 

Capability node, representing the defender’s open mindedness, while assuming that if the 

attacker finds that the defender has capability 𝑑, the probability that she deploys capability, 𝑎, 

is 0.9, otherwise, the probability under different circumstances would be lower (0.7). This is 

shown by the CPTs in Figure 14.  The CPT of the Success node models how the attacker and 

defence capabilities interact to determine the probability of attacker success.  The utility node 

models the defender’s payoff given the defence capability deployed (utility: -100) and the cost 

of being attacked successfully (utility: -200). Here we specify utilities using individual values 

as an example. The utilities can also be assigned by distributions in this ID.  

 

Figure 14  The BN according to the defender’s ID 

Typically, the aim in decision analysis is to maximize the utility node of the supported decision 

maker. Corresponding to the ID shown in Figure 14, a Decision Tree (DT) can be generated 

using AgenaRisk. We show this DT in Figure 15 (a). The applied algorithms and details for 

generating DTs from hybrid IDs in AgenaRisk are described in [19]. The optimum decision is 

shown with the bold arc in the DT, showing the maximum utility decision for the defender is 
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to deploy the defence capability (utility: -128, otherwise the utility would be -144). By entering 

this decision to the ID, we can assess vulnerability of the asset, shown in Figure 15 (b), which 

can be then used in our FAIR-BN for further analysis.  

 
Figure 15 Decision results of the defender’s ID 

8. Discussion 

We have introduced how we use BNs and the MC method to implement the calculation through 

the FAIR model and compared the performance of the three methods. In this section, we discuss 

performance, efficiency, flexibility, expandability features of the FAIR model, FAIR-BN and 

FAIR-MC from the perspective of cyber analysts and cyber risk managers. 

 

First of all, in general, the three methods provide consistent results. However, the accuracy of 

the FAIR model is inevitably impaired by its tailored algorithms, and this inaccuracy becomes 

more obvious in certain cases, such as in long-tailed distribution scenarios. This is because the 

FAIR model uses triangular distributions to approximate input distributions and relies on 

cached data and interpolation for calculation. As we illustrated in subsection 6.2, when LEF 

has the long-tail feature or LEF and LM follow other distributions, the FAIR accuracy 

decreases. In comparison, FAIR-BN can provide stable and accurate results in general and in 

these specific cases. The calculation of FAIR-MC is intuitive and straightforward. To 

implement calculations through the FAIR model, which are listed in Table 1, FAIR-MC 

generates random samples following determined input distributions and operates these samples 

following the corresponding function to simulate the output variable. Since no other 

approximation techniques are applied, we assume a large number of samples generated by 

FAIR-MC can reflect the distribution of the output variable. Illustrated by the experimental 

results, FAIR-MC and FAIR-BN outperform the FAIR model in accuracy. 

 

The three methods have identical efficiency in calculating LEF and its sub-factors. The FAIR 

model calculation is more efficient when performing risk aggregation compared with the other 

algorithms. This efficiency is achieved by the pre-processing of cached data which is calculated 
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from 27 × 12 × 1000000  samples that are generated by simulation [15]. In comparison, 

FAIR-BN and FAIR-MC can still have comparable efficiency compared with the FAIR model 

in conducting the 𝑅𝐴1 process but require more calculation time in conducting the 𝑅𝐴2 process 

because each calculation is done anew for each case rather than reused from a cache. With 

more computational source available (i.e. Using GPU Clusters) and optimize the code 

efficiency, the gap of computational cost in the 𝑅𝐴2 process will further decrease.  

 

The FAIR model and the proposed FAIR-BN do address “small data”. The input of the FAIR 

model can be based on historical data, expertise or both of them, which makes “small data” 

acceptable. For example, in the FAIR model, the input of Primary Loss Event Frequency (PLEF) 

is a triangular distribution, whose parameters (lower bound, upper bound, and most likely value) 

can be assigned by historical data or by an expert’s knowledge. Large data is not a necessary 

condition here: if a loss event happens five times a year, parameters of the triangular 

distribution can still be determined based on this frequency and adjusted by an expert. The 

FAIR-BN can similarly specify inputs using small data. Moreover, in the FAIR-BN, there is 

more flexibility, since there is no limitation on the input distributions.   

 

In practice, risk factors (i.e. LEF and LM) can have diverse features, but the algorithms of 

FAIR are based on the precondition that input variables follow triangular distributions. 

Otherwise, cached data and the application of the BMD function (see Appendix B) become 

invalid. In contrast, the FAIR-BN and FAIR-MC employ more flexible algorithms which do 

not have limitations of input. Calculations for both FAIR and FAIR-MC are based on sampling, 

which provides no modularized modelling mechanism; hence neither FAIR nor FAIR-MC are 

easily extendable with other mature CRA models for risk assessment and decision making. In 

comparison, FAIR-BN can easily incorporate other dedicated CRA models, which is 

significant in practice. We have illustrated the expandability of FAIR-BN by extending it using 

a process-oriented model and a defend-attack game model in Section 7.  

The three methods all have their pros and cons. When preliminary and high-level risk 

assessment is required, where efficiency is prioritized over the accuracy, the FAIR model 

would be the preferable choice. FAIR-MC is more suitable in cases where greater accuracy is 

required, but no further modular extension of the model is needed. FAIR-BN would be the best 

choice if risk managers or researchers require higher result accuracy, modular expandability of 

the model for more detailed analysis, and integrated decision supporting. 

9. Conclusion 

The FAIR model provides both a methodology and a tool for cybersecurity risk analysis and 

calculation. It is an ideal choice for conducting risk assessment where the focus is on 

calculating expected economic loss arising from cybersecurity risk. However, FAIR makes 

inflexible assumptions that limit both its accuracy for a range of real-world scenarios and the 

possibility of integrating it into other mature CRA models. We have revealed the structure 

underlying FAIR and tested it against algorithmic alternatives in the form of (a) an MC version 

of FAIR (FAIR-MC) and (b) a BN version (FAIR-BN). Experimental results show that, when 
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we adopt the FAIR model’s underlying assumptions and input distribution requirements, both 

FAIR and FAIR-BN produce favourable results when compared with FAIR-MC. However, the 

FAIR model provides less accurate results in a number of scenarios, primarily where we have 

a long-tailed distribution. Hence, the approximation approach embedded within FAIR 

improves efficiency but at a cost in accuracy. In comparison, FAIR-BN provides more stable 

performance in result accuracy across a wider set of scenarios involving widely varied 

distributions, but at a cost in efficiency. 

As well as carrying out an empirical evaluation of FAIR we have also analysed the rigidity of 

FAIR and shown how it can be extended, using FAIR-BN as the foundation, to cope with more 

diverse distributions and statistical functions, but also, more importantly, to accommodate 

causal reasoning for modelling richer defend-attack contexts. We have illustrated this by 

constructing the Extended FAIR-BNs (EFBNs) incorporating a process-oriented model and a 

defend-attack game model. EFBN can model relevant knowledge about the causal processes 

that give risk to cyber events and the likely economic consequences of such events and do so 

in a way that is consistent and compatible with the FAIR model. Based on these results, our 

future research will focus on promoting advanced EFBN, from both process-oriented and 

game-theoretic perspectives, and exploring constructing EFBN from data. 
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Appendix A: The Bounded Metalog Distribution 

A Bounded Metalog Distribution (BMD) is a quantile function of a random variable 𝑀. A 

BMD can be specified by distinct quantile points on the Cumulative Density Function (CDF) 

of 𝑀, and then is used to simulate samples of  𝑀 stochastically in the FAIR model, by inputting 

randomly generated probabilities (from 0 to 1) into its expression. Constructing the BMD of 

the total loss variable is the core of how risk aggregation is effectively conducted in the FAIR 

model. Since BMD is derived from its general version, Metalog Distribution (MD) [24], which 

does not have lower or upper bound, we start from the MD to explain the BMD. 

Given 𝑛 distinct quantile points on the CDF of a random variable, the corresponding n-term 

MD can be uniquely specified. The formal definition is described as below. 

Definition 1 [24]: The Metalog distribution of a random variable M with 𝑛 terms is shown by 

formula (A.1): 

  𝑀𝑛(𝑦; 𝒙, 𝒚) =  (A.1) 

𝑎1 + 𝑎2𝑙𝑛 (
𝑦

1 − 𝑦
) for 𝑛 = 2  

𝑎1 + 𝑎2𝑙𝑛 (
𝑦

1 − 𝑦
) + 𝑎3(𝑦 − 0.5)𝑙𝑛 (

𝑦

1 − 𝑦
) for 𝑛 = 3  

𝑎1 + 𝑎2𝑙𝑛 (
𝑦

1 − 𝑦
) + 𝑎3(𝑦 − 0.5)𝑙𝑛 (

𝑦

1 − 𝑦
) + 𝑎4(𝑦 − 0.5) for 𝑛 = 4  

𝑀𝑛−1 + 𝑎𝑛(𝑦 − 0.5)
𝑛−1
2  for odd 𝑛 ≥ 5  

𝑀𝑛−1 + 𝑎𝑛(𝑦 − 0.5)
𝑛
2
−1𝑙𝑛 (

𝑦

1 − 𝑦
) for even 𝑛 ≥ 6  

Where 𝑦 is a cumulative probability with 0 < y < 1. Column vectors 𝐱 = (𝑥1, … , 𝑥𝑚) and 𝐲 =

(𝑦1, … , 𝑦𝑚) are of length 𝑚(≥ 𝑛). Each pair of (𝑥𝑖, 𝑦𝑖) represents a point on the CDF of the 

random variable 𝑀, with 0 < 𝑦𝑖 < 1, and at least 𝑛 of 𝑦𝑖  are distinct. The column vector of 

scaling constants 𝐚 =  (𝑎1, … , 𝑎𝑛)is given by formula (A.2) 

𝐚 = [𝐘𝑛
𝑇𝐘𝑛]

−1𝐘𝑛
𝑇𝐱  (A.2) 

where 𝐘𝑛
𝑇 is the transpose of 𝐘𝑛, whilst the 𝑚 × 𝑛 matrix 𝐘𝑛 is shown by (A.3): 

 𝐘𝑛 =   (A.3) 

 

  

[
 
 
 
 1 𝑙𝑛 (

𝑦1
1 − 𝑦1

)

⋮

1 𝑙𝑛 (
𝑦𝑚

1 − 𝑦𝑚
)
]
 
 
 
 

 for 𝑛 = 2  
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[
 
 
 
 1 𝑙𝑛 (

𝑦1
1 − 𝑦1

) (𝑦1 − 0.5)𝑙𝑛 (
𝑦1

1 − 𝑦1
)

⋮

1 𝑙𝑛 (
𝑦𝑚

1 − 𝑦𝑚
) (𝑦𝑚 − 0.5)𝑙𝑛 (

𝑦𝑚
1 − 𝑦𝑚

)
]
 
 
 
 

 for 𝑛 = 3 

 

[
 
 
 
 1 𝑙𝑛 (

𝑦1
1 − 𝑦1

) (𝑦1 − 0.5)𝑙𝑛 (
𝑦1

1 − 𝑦1
) (𝑦1 − 0.5)

⋮

1 𝑙𝑛 (
𝑦𝑚

1 − 𝑦𝑚
) (𝑦𝑚 − 0.5)𝑙𝑛 (

𝑦𝑚
1 − 𝑦𝑚

) (𝑦𝑚 − 0.5)]
 
 
 
 

 for 𝑛 = 4 

 

[ 𝐘𝑛−1|
(𝑦1 − 0.5)

𝑛−1
2

⋮

(𝑦𝑚 − 0.5)
𝑛−1
2

] for odd 𝑛 ≥ 5 

 

[
 
 
 
 

 𝐘𝑛−1|

(𝑦1 − 0.5)
𝑛
2
−1𝑙𝑛 (

𝑦1
1 − 𝑦1

)

⋮

(𝑦𝑚 − 0.5)
𝑛
2
−1𝑙𝑛 (

𝑦𝑚
1 − 𝑦𝑚

)
]
 
 
 
 

 for even 6n   

 

The proof that the quantile function of a random variable 𝑀 can be parameterized by points on 

the CDF of 𝑀 is provided in [24].  

The Bounded Metalog Distribution is defined based on Metalog Distribution as below: 

Definition 2 [24]: Bounded Metalog Distribution (BMD) 

A BMD is a modified Melalog distribution which has known lower and upper bounds, 𝑏𝑙 and 

𝑏𝑢 respectively, with 𝑏𝑙 < 𝑏𝑢. It is also called the logit Metalog distribution. The BMD is the 

transformation of a Metalog distribution, in which 𝑧 = 𝑙𝑛 (
𝑥−𝑏𝑙

𝑏𝑢−𝑥
) is Metalog-distributed.  

Setting 𝑙𝑛 (
𝑥−𝑏𝑙

𝑏𝑢−𝑥
) equal to (A.1) and solving for 𝑥, the BMD function with 𝑛 terms can be 

obtained from (A.4): 

𝑀𝑛
𝑙𝑜𝑔𝑖𝑡(𝑦; 𝒙, 𝒚, 𝑏𝑙, 𝑏𝑢) =

{
 

 
𝑏𝑙 + 𝑏𝑢𝑒

𝑀𝑛(𝑦)

1 + 𝑒𝑀𝑛(𝑦)
0 < y < 1

𝑏𝑙                              y =0

𝑏𝑢                             y =1

  (A.4) 

In the FAIR model, the quantile function of the total loss variable is represented by the BMD, 

which is constructed using cached quantile values. Then by randomly generating a 

probability, y, and substituting it in formula (A.4), a sample of the total loss can be simulated. 

This is the basic idea of how BMD is implemented to efficiently simulate losses. We explain 

it formally and technically in Appendix B. 
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Appendix B: Application of BMD in Risk Aggregation 

In the FAIR model, Primary Losses (PL) and Secondary Losses (SL) are simulated using the 

same risk aggregation method. Here we use PL as the example to explain how risk aggregation 

is implemented in the FAIR model. Firstly, a large amount of PL samples, 𝐿𝑃, are simulated 

associating with predetermined Frequencies (F), 𝑓𝑗 ,  and different shape modes of Loss 

Magnitudes (LM), 𝑠̂𝑘, using an MC method in advance.  Here 𝑓𝑗 ∈ 𝐹 , with 𝑗 from 0 to 27, 

and 𝐹 is a set of a few predetermined frequencies covering 0 to 1001 (The FAIR model assumes 

that when the frequency is larger than 1001, distributions of 𝐿𝑃  would converge to normal 

distributions. Therefore, 𝐿𝑃  can be represented by normal distributions directly rather than 

using risk aggregation to generate its samples). Moreover, the FAIR model introduces a 

concept, shape mode, classifying all the triangular distributions into 12 shape modes. The shape 

mode, 𝑠̂𝑘, represents the ratio 𝑟 =
𝑀𝑚𝑙−𝑀𝑚𝑖𝑛

𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛
, and is classified into a set of predetermined 

ratios, S = {0, 0.1, 0.2, ⋯, 0.9, 1, 1.01}. These  𝐿𝑃 samples are firstly taken to average over the 

corresponding 𝑓𝑖 , and then used to generate Cumulative Density Functions (CDF) of average 

samples,   𝐿̅𝑃 , corresponding to each pair of  (𝑓𝑗 , 𝑠̂𝑘) . The quantile value vector, 𝐯 =

(𝑣1, … , 𝑣9), associated with nine predetermined quantile probabilities, 𝐲 =

(0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99, 0.999), on each CDF can then be calculated and are 

cached as a vector. By doing so, a 27 *12 sized data matrix is produced. Each element of this 

matrix is a vector, 𝒗, corresponding to a pair of (𝑓𝑗 , 𝑠̂𝑘). This data matrix is prepared and 

provided by the FAIR model [15]. 

Based on the cached data, the FAIR model approximates the quantile value vector, 𝒗, for the 

actual frequency sample  𝑓𝑖  and a LM distribution of ratio,  𝑟, by applying interpolation on 

cached vectors, of which the corresponding  𝑓𝑗  and 𝑠̂𝑘are close to 𝑓𝑖  and 𝑟. We extract the 

interpolation formula from the FAIR model and show it by formula (B.1): 

𝒗 = (𝐼𝑛 (
𝒗𝟏

𝟏 − 𝒗𝟏
) × 𝑎 + 𝐼𝑛 (

𝒗2
1 − 𝒗2

) × (1 − 𝑎)) × 𝑏 + (𝐼𝑛 (
𝒗3

1 − 𝒗3
) × 𝑎 + 𝐼𝑛 (

𝒗3
1 − 𝒗3

) × (1 − 𝑎))

× (1 − 𝑏) 

where 𝑎 =
𝑓𝑚𝑎𝑥− 𝑓𝑖

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
 and 𝑏 =

𝑟𝑚𝑎𝑥−𝑟

𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛
. 

 
    

(B.1) 

In formula (B.1), 𝒗 is the quantile value vector which stores approximated quantile values 

corresponding to  𝑓𝑖  and  𝑟 , while 𝒗1 , 𝒗2  and 𝒗3 are corresponding to  (𝑓𝑚𝑖𝑛,  𝑟𝑚𝑖𝑛),  

( 𝑓𝑚𝑎𝑥 ,  𝑟𝑚𝑖𝑛) and (𝑓𝑚𝑖𝑛, 𝑟max )  respectively. The frequency, 𝑓𝑚𝑎𝑥 , is the frequency in the 

predetermined frequency set,  𝐹 , which is close to and larger than  𝑓𝑖 , while  𝑓𝑚𝑖𝑛 is the 

frequency in 𝐹 , which is close to and smaller than  𝑓𝑖 . The ratio  𝑟, which calculated 

by 
𝑀𝑚𝑙−𝑀𝑚𝑖𝑛

𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛
, represents the actual shape mode of a triangular distribution;  𝑟𝑚𝑎𝑥 is the shape 

ratio in 𝑆, which is close to and larger than 𝑟, while  𝑟𝑚𝑖𝑛 is the shape ratio in 𝑆, which is close 

to and smaller than 𝑟.  
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Therefore, for each pair of (𝑓𝑖, 𝑟), the quantile value vector of the corresponding 𝐿̅𝑃  can be 

approximated using cached data  (𝒗1 , 𝒗2  and 𝒗3) following formula (B.1). The 

approximated  𝒗 is then used to specify the Metalog distribution [24] of  𝐿̅𝑃 . The Metalog 

distribution is a kind of logistic quantile distribution that can be determined by quantile values. 

For example, 𝒗, which contains nine quantile values, can be used to specify a 9-term Metalog 

distribution of 𝐿̅𝑃 . We denote this distribution as 𝑀9(𝑦). Assigning a uniformly generated 

probability to 𝑦, a logistic sample of 𝐿̅𝑃 can be calculated by 𝑀9(𝑦). Since 𝑀9(𝑦) represents 

the logistic sample of 𝐿̅𝑃 related to (𝑓𝑖, 𝑟), the sample of  𝐿𝑃,  𝐿𝑃(𝑖), can be generated by taking 

exponent and changing scale of  𝑀9(𝑦)  following formula (B.2), which is referred to as 

Bounded Metalog Distribution (BMD) in [24]. We have described details of Metalog 

distribution and BMD in Appendix A.   

 𝐿𝑃(𝑖) =  𝑓𝑖 ×(𝑀𝑚𝑖𝑛 +𝑀𝑚𝑎𝑥

𝑒𝑀9(𝑦)

1 + 𝑒𝑀9(𝑦)
)  (B.2) 

In conclusion, the core mechanism of conducting risk aggregation in the FAIR model is to 

construct BMDs of the given ( 𝐹𝑃, 𝐿𝑀𝑃). More precisely, for each sample of 𝐹𝑃, 𝑓𝑖, a BMD is 

specified using cached data and is then used to generate a sample of primary loss, 𝐿𝑃(𝑖), by 

substituting 𝑦  using a uniformly generated probability in formula (B.2). By this way, the 

sample vector of 𝐿𝑃 is generated. By now, we have explained how risk aggregation, 𝑅𝐴, is 

implemented to simulate primary losses in the FAIR model. We denote this simulation by 𝐿𝑃 =

𝑅𝐴(𝐹𝑃,  𝐿𝑀𝑃). In addition, the FAIR model does not distinguish risk aggregation of simulating 

primary losses and secondary losses. In other words, secondary losses are simulated following 

the same way which can be represented by  𝐿𝑆 = 𝑅𝐴(𝐹𝑆,  𝐿𝑀𝑆), where 𝐹𝑆 and 𝐿𝑀𝑆 represent 

frequencies and loss magnitudes of secondary losses respectively. Furthermore, the Total 

Loss, 𝐿𝑇, is simulated by  𝐿𝑇 = 𝐿𝑃 + 𝐿𝑆. 
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Appendix C: Factorization of the BN for 𝑅𝐴2 process 

We demonstrate the adjusted Compound Density Factorization (CDF) method in Figure 16. 

Since each total loss variable  𝑇𝑛,𝑚 is mutually exclusive, i.e. for a given value of N, the sum 

of probabilities related to each possible scenario is equal to one, we factorize the BN (e) by 

introducing extra two kinds of variables. Boolean variables, 𝑊𝑛,𝑚 (with only two states True 

and False) are used to assign weightings proportional to  𝑃𝑛,𝑚 , to each pair of nodes, i.e. 

{𝑇0,0, 𝑇1,0}, {𝐹1,0, 𝑇1,1}, …, {𝐹𝑁,𝑁−1, 𝑇𝑁,𝑁}. Factor variables, 𝐹𝑛,𝑚, are created to calculate the 

weighted aggregation for each step. 

 
Figure 16 Factorization of the BN in the 𝑅𝐴2 process 

The Conditional Probability Table (CPT) for 𝑊𝑛,𝑚 is defined by formula (C.1): 

                                     

𝑃(𝑊𝑛,𝑚−1 = 𝑡𝑟𝑢𝑒) =
 𝑃0,0 +  𝑃1,0+,…+  𝑃𝑛,𝑚−1
 𝑃0,0 +  𝑃1,0+,…+  𝑃𝑛,𝑚

  (C.1) 

The conditionally deterministic expression for variable 𝐹𝑛,𝑚 , which is called a partitioned 

node in the BN parlance, is defined by formula (C.2): 

                                     

 𝐹𝑛,𝑚 = {
 𝐹𝑛,𝑚−1 if  𝑊𝑛,𝑚 = 𝑇𝑟𝑢𝑒

 𝑇𝑛,𝑚 if  𝑊𝑛,𝑚 = 𝐹𝑎𝑙𝑠𝑒
 

 

 (C.2) 

Since 𝑇0,0 and 𝑇1,0 are mutually exclusive, the marginal distribution for variable 𝐹1,0 is 

represented by formula (C.3): 

                                 𝐹1,0 = 𝑃(𝑊1,0 = 𝑇𝑟𝑢𝑒) 𝑇0,0 + 𝑃(𝑊1,0 = 𝐹𝑎𝑙𝑠𝑒) 𝑇1,0  (C.3) 

Similarly, the marginal for variable 𝐹𝑛,𝑚 is represented by formula (C.4): 

                               𝐹𝑛,𝑚 = 𝑃(𝑊𝑛,𝑚 = 𝑇𝑟𝑢𝑒) 𝐹𝑛,𝑚−1 + 𝑃(𝑊𝑛,𝑚 = 𝐹𝑎𝑙𝑠𝑒) 𝑇𝑛,𝑚   (C.4) 

After factorizing the density aggregation process, we can calculate the marginal distribution 

of 𝐹𝑛,𝑚 more efficiently following formula (C.4), which yields the risk aggregation result given 

primary and secondary loss frequencies and their loss magnitudes. We have implemented this 

method using AgenaRisk packages.   
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Appendix D: Experimental Results for Subsidiary Risk Factors 

Table 8  Comparison results of 𝑀𝑃𝐿𝐸𝐹 = 𝐹𝑇𝐸 ×  𝑃𝑉 

with 𝑃𝑉 following 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 0.2,𝑚𝑙 = 0.3,𝑚𝑎𝑥 = 0.7) (the calculation is similar with 𝐹𝑇𝐸 = 𝐹𝐶  ×  𝑃𝐴). 

 

Table 9 Comparison results of 𝐹𝑃 = Poisson (𝜆 = 𝑀𝑃𝐿𝐸𝐹) 

 

 

Table 10 Comparison results of 𝐹𝑆 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛 = 𝐹𝑃, 𝑃 = 𝑃𝑆𝐿) 

with 𝑃𝑆𝐿 following 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑚𝑖𝑛 = 0.2,𝑚𝑙 = 0.3,𝑚𝑎𝑥 = 0.7). 

 

Table 11 Results of 𝑃𝑉 = 𝑃(𝑃𝑇𝐶 > 𝑃𝑅𝑆) 

With 𝑃𝑅𝑆 simulated by 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑀𝑖𝑛 = 0.2,𝑀𝑑 = 0.3,𝑀𝑎𝑥 = 0.7). 

 

  

min mid max FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC

1 Include 0 0 200 500 92.5 93.8 93.3 2329.5 2519.6 2442.9 226.1 241.8 236.3 0.0348 0.0057

2 Long tail 100 200 1000 171.7 173.0 173.2 8570.6 9095.6 9096.7 440.3 456.4 462.0 0.0272 0.0063

3 Left skew 20 80 200 39.7 40.0 40.0 338.2 364.0 356.6 91.7 96.6 95.6 0.0217 0.0058

4 Right skew 20 160 200 50.5 50.7 50.7 431.3 448.3 443.2 102.7 105.4 105.8 0.0453 0.0090

5 0 and long tail 0 200 1000 158.1 159.9 159.9 9287.4 9753.9 9866.9 433.1 458.2 458.4 0.0260 0.0077

Average: 0.0310 0.0069

Test Description 
MeanFTE J(FAIR-BN,

FAIR-MC)

Variance 99th J(FAIR,

FAIR-MC)

min mid max FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC

1 Include 0 0 200 500 237.7 232.6 233.3 10219.0 10780.0 10788.0 466.0 464.6 468.0 0.0106 0.0024

2 Long tail 100 200 1000 441.1 434.5 433.2 39325.0 41563.0 41027.0 921.0 464.6 920.0 0.0162 0.0027

3 Left skew 20 80 200 101.2 99.8 100.0 1437.6 1487.6 1501.9 191.5 464.6 192.0 0.0163 0.0067

4 Right skew 20 160 200 128.5 126.5 126.6 1520.3 1624.4 1616.4 197.5 202.4 202.0 0.0272 0.0130

5 0 and long tail 0 200 1000 408.6 400.3 400.0 44983.0 47421.0 47035.0 916.0 908.5 915.0 0.0148 0.0046

Average: 0.0170 0.0059

Test Description 
MPLEF Mean Variance 99th J(FAIR,

FAIR-MC)

J(FAIR-BN,

FAIR-MC)

min mid max FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC FAIR FAIR-BN FAIR-MC

1 Include 0 0 200 500 95.3 93.6 93.4 2401.3 2562.1 2543.0 231.5 238.2 240.0 0.0127 0.0041

2 Long tail 100 200 1000 176.7 173.6 173.4 8796.3 9451.9 9330.9 452.0 469.1 466.0 0.0231 0.0029

3 Left skew 20 80 200 40.6 40.2 40.0 381.9 405.3 397.5 97.5 99.5 99.0 0.0127 0.0058

4 Right skew 20 160 200 51.7 50.7 50.7 479.3 497.2 493.7 109.0 108.4 110.0 0.0355 0.0066

5 0 and long tail 0 200 1000 163.6 160.5 159.9 9445.9 10249.0 10017.0 447.0 463.4 461.0 0.0223 0.0069

Average: 0.0213 0.0053

99th J(FAIR,

FAIR-MC)

J(FAIR-BN,

FAIR-MC)

VarianceMeanMPLEF
Test Description 

min mid max FAIR FAIR-BN FAIR-MC

1 Include 0 0.00 0.20 0.50 0.17 0.14 0.14

2 Long tail 0.10 0.20 1.00 0.51 0.52 0.52

3 left skew 0.20 0.40 0.80 0.62 0.65 0.65

4 right skew 0.20 0.60 0.80 0.75 0.78 0.79

5 0 and long tail 0.00 0.20 1.00 0.46 0.47 0.46

Test description 
PVPTC
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Appendix E: Experimental Results with Euclidean Distance 

Measurement 

Table 12 Results comparison of 𝐿𝑃 distributions 

with inputs following triangular distributions-the Euclidean distance measurement  

 

Table 13 Results comparison of 𝐿𝑇 distributions 

-the Euclidean distance measurement  

 

Table 14 Results comparison of 𝐿𝑃 distributions 

with 𝐹𝑃 following long-tail distributions-the Euclidean distance measurement  

 

  

min mid max

1 0 20 90 0.0232 0.0202

2 0 230 300 0.0387 0.0224

3 20 80 180 0.0306 0.0213

4 60 250 400 0.0339 0.0355

5 20 250 630 0.0241 0.0211

6 15 30 250 0.0216 0.0203

7 15 30 540 0.0263 0.0218

Average: 0.0283 0.0232

Test 
Eu(FAIR,

FAIR-MC)

MPLEF Eu(FAIR-BN,

FAIR-MC)

min mid max

1 0 200 500 0.0361 0.0128

2 50 200 1000 0.0448 0.0160

3 20 80 200 0.0331 0.0304

4 20 160 200 0.0415 0.0149

5 0 200 1000 0.0337 0.0151

Average: 0.0378 0.0178

Test
Eu(FAIR,

FAIR-MC)

Eu(FAIR-BN,

FAIR-MC)

MPLEF

PLEF PLM

1 Weibul l LogNormal 0.1822 0.0166

2 Log Normal LogNormal 0.2745 0.0147

3 Gamma LogNormal 0.1799 0.0177

Average: 0.2122 0.0163

Eu(FAIR,

FAIR-MC)

Eu(FAIR-BN,

FAIR-MC)

Input Distributions
Test 
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