
Empirical Analysis of Transaction Malleability within Blockchain-based e-Voting

Kashif Mehboob Khana, Junaid Arshadb, Muhammad Mubashir Khanc

aDepartment of Software Engineering, NED University of Engineering & Technology Karachi, Pakistan
bSchool of Computing and Digital Technology, Birmingham City University, Birmingham, UK

cDepartment of Computer Science & IT, NED University of Engineering & Technology Karachi, Pakistan

Abstract

Blockchain is a disruptive technology that has been used to address a wide range of challenges in diverse domains
including voting, logistics, healthcare and finance. Transaction malleability is one of the critical threats for blockchain,
which can facilitate double-spending attacks by tampering with the state of a blockchain. This paper investigates the
potential of transaction malleability attack within a blockchain-based application (e-voting) with the aim to identify
settings which can lead to a successful transaction malleability attack. Therein, we aim to highlight conditions which
can cause transaction malleability attack so as to help develop appropriate protection mechanisms. In particular, a
successful execution of transaction malleability attack is presented which was conducted on a blockchain testbed hosting
an e-voting application. The experiments identified significance of parameters such as network delay and block generation
rate to successfully execute transaction malleability attack and have highlighted directions for future research.

Keywords: Blockchain, Transaction Malleability, Blockchain Security, Security Evaluation, e-Voting

1. Introduction

Blockchain is one of the disruptive technologies of the
current era, which enables trustworthy transaction
processing through participation of distributed nodes.
The core data structure used within a blockchain
resembles a linked list shared among all nodes of a
network where each node keeps a local copy of all the
blocks starting from a genesis block [1]. Being the most
notable blockchain-based application, the success of
Bitcoin has introduced an innovative model of
application development across diverse domains such as
healthcare, e-voting [2] and e-document management [3].
Such applications leverage benefits of the blockchain
technology due to its cryptographic validation structure
among transactions as well as public availability of
distributed ledger of transaction-records in a peer-to-peer
network. Therefore, creating a chain of blocks connected
by cryptographic constructs makes it very difficult to
tamper records within a blockchain, as it will require
rework from the genesis block to the latest transaction in
blocks [4].

Public voting is a fundamental component of modern
democracies and has received significant attention to
improve its processes as well as use of technology
(electronic or e-voting)to enhance its accessibility and
acceptance for large-scale participation. A major concern
for e-voting systems is the trustworthiness of the voting
processes as well as the security of the e-voting
application and its resilience against emerging threats.
This raises several new technical concerns, such as the
security of governance processes within an e-voting

system, the security of the e-voting software against
application-level threats, the protection mechanisms
implemented to achieve secure, and tamper-proof
auditing. Chaum et al. [5] summarized such concerns by
prescribing fundamental requirements to achieve
end-to-end (E2E) verifiability for an e-voting system
aiming to facilitate rigorous evaluation of such systems.
Consequently, various efforts have been made by scientific
community to develop e-voting systems which can satisfy
the requirements to achieve E2E verifiable e-voting.

Blockchain technology can facilitate developing E2E
verifiable e-voting system by increasing the difficulty of
re-using the token (vote). This is because in order to be
part of a blockchain, all the nodes are required to be
initialized from the same genesis block to add
transactions into the blockchain ledger shared among
them. Therefore, as every proof of work for validating a
vote transaction will be computed based on all the
transactions from the genesis block to the latest block, it
can increase the cost of double utilization of a token
(vote) exponentially. Moreover, since blockchain
technology is decentralized, each node will be running
their local copy of the blockchain which may later be
used for consensus as elaborated in [2]. A number of
efforts have been made to explore the use of blockchain
technology to achieve trustworthy E2E e-voting with
[6, 7, 8] representing latest advancements in this respect.

However, several vulnerabilities have been highlighted
in the blockchain fabric, leading to a number of efforts to
review and identify security threats for blockchain. For
instance, Li et al. [9] carried out a thorough study on the

Preprint submitted to Computers and Security December 2019

major attacks on blockchain, highlighting loopholes in
the Proof of Work (PoW) based consensus system with
respect to > 50% attack. They illustrated how the
control over mining power by a single entity or group of
entities may cause significant damage to a major feature
of blockchain i.e. decentralization. Similarly, other attack
vectors such as encryption scheme used in the
transactions, methods for verifying transactions and the
design of the transaction have been identified as sources
of threats for blockchain-based applications.
Furthermore, Iuon-Chang [10] analyzed various security
challenges in blockchain which can be used to carry out
attacks, specifically highlighting the risk of > 50%
attack, forking problems and scalability of blockchain
with significant impact on blockchain security.

The focus of our research is to investigate challenges
in the adoption of blockchain to achieve decentralized
trustworthy applications with specific emphasis on
challenges impacting security of a blockchain. In this
paper, we are focused at the challenge of transaction
malleability for blockchain-based applications which can
lead to an inconsistent blockchain state potentially
resulting in further attacks, such as double-spending. In
particular, we aim to identify settings which may lead to
a successful transaction malleability attack, thereby
highlighting conditions causing such attack to facilitate
the development of protection mechanisms for them. In
order to conduct rigorous empirical analysis of
transaction, we have established a blockchain testbed
using Multichain [11] which makes use of multiple
participant nodes to simulate a typical real-world
blockchain system. Furthermore, we chose e-voting as an
example application to facilitate our experimentation,
making use of the blockchain-based e-voting system
proposed in [2]. Specifically, this paper makes the
following contributions:

1. An in-depth classification of security threats for
blockchain-based systems is presented. This
classification takes into account different sources of
attack as well as their target layer i.e. core,
network or mining.

2. In order to analyse the fundamental mechanism
and the underlying causes of a transaction
malleability attack, an attack model has been
executed on a real blockchain using a public voting
scenario. It facilitates assessing impact of
transaction malleability on a real-world blockchain
and in the context of e-voting, which is one of the
prominent applications of blockchain.

3. A testbed simulating real-world public e-voting
scenario has been implemented which enables
rigorous evaluation of the feasibility and impact of
transaction malleability attack for a
blockchain-based application.

4. The trade-off between security and performance
(scalability) for a blockchain-based application

(public e-voting) is highlighted through rigorous
experimentation on a real-world blockchain testbed.

Rest of the paper is organized as follows. Section 2
presents a summary of the leading threats for
blockchain-based applications focusing specifically on the
threats causing transaction malleability. Section 3
presents a critical review of the existing efforts made to
investigate security threats within blockchain in general
and transaction malleability in particular. It also
includes a summary of recent efforts to use blockchain
technology to achieve E2E verifiable e-voting
applications. Section 4 presents background knowledge in
two important aspects of the paper; i) Multichain
blockchain platform which has been used for the
implementation and experimentation in this paper, and
ii) a brief description of our e-voting model summarizing
our previous work [2]. In section 5, we present the
specific attack model designed to implement our
proposed public voting model and conduct transaction
malleability attack to aid our investigation. Section 6
presents the details of implementation of our proposed
e-voting model with blockchain, including step-by-step
function and interaction between different entities.
Section 7 includes details of the experimentation
performed as part of our investigation for transaction
malleability attack along with analysis of the behaviour
observed. Section 8 presents a brief summary of our
ongoing research into developing a protection mechanism
for transaction malleability attack followed by 9 which
concludes the paper.

2. Security Threats in Blockchain

Due to the increasing use of blockchain for diverse
application domains, the volume of attack attempts on
blockchain has also increased significantly, leading to a
number of efforts to identify, and mitigate against
specific attacks. For instance, Li et al. [9], Lin et al. [10],
and Lu et al. [12] are some of the efforts focused at
investigating the feasibility and significance of >50%
attack for a blockchain-based system. They have focused
at weaknesses within PoW consensus algorithm,
inconsistencies in data due to forking, and scalability
management as some of the causes of such attacks.
However, to the best of our knowledge, the impact of
transaction malleability attack for blockchain-based
systems in general and for blockchain-based e-voting in
particular has not been investigated at great depth. The
impact of such attack on an e-voting system is envisioned
to be significant especially due to potential disruption to
voting process in the event of a successful transaction
malleability attack.

A classification of security threats for
blockchain-based systems is presented in Fig 1 which
categorizes variety of commonly known attacks that can
affect blockchain networks. The three classes include

2

Blockchain Based
Attacks

Software Design Based
Attacks

Inconsistent
Software State and

Data Structure

Double
Spending

Transaction
Malleability

[18]

Double Spend
with Eclipse

[19]

Double Spend with
Zero Confirmation

[19]

Double Spend with
n Confirmations [19]

P2P Network
Attacks

Eclipse
[22]

Sybil
[20]

DDoS
[21]

Double
Spending

Tampering
[23]

Brute Force
[24]

Finney
[25]

> 50%
[26]

Bribery
[27]

Time
Jacking

[28]

Block
Withholding

[29]

Selfish
Mining

[30]

Mining
Attacks

Figure 1: Security threats for blockchain-based systems.

Software Design-based Attacks, P2P Network Attacks,
and Mining Attacks and have been discussed below.

2.1. Software Design-based Attacks:

Software design-based attacks refer to manipulation
of the blockchain state by exploiting software
vulnerabilities within the fundamental design of
blockchain such as its data structure, and manipulating
various transaction fields for malicious activities. In a
typical transaction malleability attack, the transaction
ID is changed before it gets mined in the blockchain
network. Typically, the aim is to make use of this
confirmed malleable transaction in repeating the original
transaction which could not be mined first [13, 14]. One
of the most significant challenges is the double spending
attack [15, 16, 17, 18], which enables an attacker to
create an illusion of presenting and reusing an asset (or
any token). Bitcoin is the first widely accepted
cryptocurrency which proposed a scheme to prevent
double spending [15, 16, 17, 18] by utilizing peer-to-peer
distributed network technology for maintaining the order
of the transactions.

2.2. P2P Network Attacks:

Through a P2P Network attack, an attacker can take
control of the blockchain network and perform
manipulation with its network scope potentially
disrupting its property of decentralization. For instance,
Eclipse attack [19] works by taking control of the

communication of victim’s computer thereby spoofing the
state of the network. The attacker nodes in such case
may write their addresses to the neighbour’s list of
benign nodes. In a successful eclipse attack, an attacker
takes control of the nodes and develops a spoofed image
of blockchain for those nodes by controlling their network
traffic’s incoming and outgoing communications. The
mining power is therefore wasted in computing a spoofed
blockchain.

In a typical blockchain, the consistency of blockchain
is maintained by keeping an updated local copy of all the
nodes to a state acknowledged by majority of the miners.
This process is vulnerable to Sybil attacks [20] where an
attacker creates several virtual nodes in the network to
sabotage the consensus process by agreeing on a malicious
transaction.

In DDoS attack [21], after gaining control of several
nodes of a network, an attacker starts redirecting these
control nodes to a victim resource they wish to attack. All
of this is done transparent to the nodes which are under
attack. In the context of blockchain, DDoS causes the
network potential to be drained resulting in the denial of
service to the honest miners.

2.3. Mining Attacks

Mining attacks involve miners to make use of the
mining process for their own interest by accepting or
rejecting transactions. These miners usually work in
collaboration with each other to achieve their common

3

objective and disturb the benign objective of the network
i.e. to add transactions.

For instance, tampering attack [22] causes some nodes
to receive late updates about transaction blocks to be
added to their local copy of data. This situation may
result in serious consequences including denial of service
and double spending attacks [16]. Brute force attack [23]
uses trial and error approach to decrypt or recover any
hidden or secret information to fulfil malicious objectives.
In the context of blockchain, the attacker keeps on
mining on blockchain forks to cause double spending by
gradually increasing the size of the chain. The aim is to
deprive the merchant of the assets they own. Finney
attack [24] is a type of mining attack where selfish miners
make use of pre-mined blocks by broadcasting them to
the network to negate the honest transaction of a miner.
> 50% attack [25] is aimed to disrupt the consensus rule
of the blockchain network which creates a scenario where
the attacker takes control of majority of the mining
power. In bribery attack [26], the attacker attempts to
bribe other miners for mining their own interest aiming
to conduct double spending [16]. Time jacking attack [27]
disturbs the miner’s clock which can ultimately result in
disturbing the difficulty level of mining process. In block
withholding attack [28] [29], the profit of the pool is
reduced by not broadcasting the blocks. Selfish mining
[30] aims to form an unfair strategy to win the rewards
for mining by selfish miner. In this case, a miner or its
pool stops issuing the solution to the network and
continues to mine to later on add their chain as a longer
chain than the existing one, so that this may be
acknowledged by the network, resulting in wasting the
working of the honest miners.

3. Related Works

Double spending attack is the possibility to spend a
transaction more than once and can be caused by
number of ways such as by; successfully committing
malleable transactions, controlling more than 50% of
mining power of network by an attacker or, attaining
enough computational power to be able to create a
blockchain longer than the benign blockchain accepted by
the majority of the blockchain nodes. Among these,
transaction malleability has received increased attention
primarily due to the Mt. Gox attack in 2014. Since then,
a number of efforts have been made by research
community to analyze the feasibility of such attack in
real-world blockchain scenario as well as approaches to
mitigate the double spending problem in blockchain. In
this section, we first summarise significant efforts with
respect to analysing and mitigating transaction
malleability in blockchain. Further, we present an
overview of the significant efforts to achieve E2E
verifiable e-voting systems using blockchain.

3.1. Transaction malleability in blockchain
In order to evaluate the impact of transaction

malleability in blockchain, a potential avenue is to
artificially inject multiple malleable transactions
immediately after an honest transaction by changing the
non-functional fields i.e. parameters that do not change
the semantics of the transaction, such as sender’s
address, receiver’s address, and amount. Although these
fields are cryptographically signed by the sender, a
modification in these can result in changing the hash of
the transaction ID (TxID). Such efforts exemplify
malicious attempts by attackers to identify and exploit
vulnerabilities to achieve transaction malleability and,
therefore, require efforts to develop appropriate
protection mechanisms. For instance, the vulnerability in
consensus regarding OpenSSL was fixed by BIP66 and
has been active from block 363,724 which was added to
the blockchain on July 4, 2015 [31]. Similarly, Bitcoin’s
use of Elliptic Curve Digital Signature Algorithm
(ECDSA) to generate transaction IDs has been attacked
to the effect that new hashes (transaction IDs) may be
formed against substantially similar transaction. If any of
the malleable transactions is mined before the original
transaction, the miners will add this transaction to the
block as the valid transaction because the critical fields
in the transaction were unchanged. However, if the
sender of the transaction looks for the confirmation of
the transaction by its transaction ID in the transaction
database (publicly shared blocks), they will not find it as
the original transaction would be rejected by the miner
as a double-spend [32].

Within this context, the solution proposed by
Andrychowicz and Dziembowski [1] for handling
transaction malleability requires elimination of script of
the transaction which may cause malleability. The script
is removed before the computation of hash and is
therefore considered a significant performance overhead.
Decker and Wattenhofer [14] investigated the suspected
transaction malleability attack of Mt. Gox to identify
how it caused double-spend in the Bitcoin. Although
they carried out an analytical study, the authors did not
provide any specific solution to the problem of
transaction malleability. Rajput et al. [33] presented a
solution to address the transaction malleability challenge
in Bitcoin through alterations in the process of
computing a final transaction hash to identify a
transaction. Specifically, they proposed calculating hash
value without using scriptSig field of a transaction as this
field gives an attacker the liberty to add or replace
keywords which do not change the semantics of the
transaction. Although the authors proposed a scheme to
address signature malleability for Bitcoin, the solution
has limitations concerning its integration with
blockchain-based applications in wider domains.

Segregated Witness (also known as SegWit) [34] was
initially proposed as a solution to address scalability
challenge in Bitcoin; however, it is also considered a

4

defence against transaction malleability attack caused by
signature malleability. This is because the organization
of data for signature of transaction is separated, and not
a part of the transaction called witness. Due to this, it is
also considered as a useful barrier to successful execution
of transaction malleability attack. One of the major
problems of using SegWit [34] is the compatibility i.e.
the transactions following this scheme remain separated
from the conventional transactions of blockchain and has
split the Bitcoin community into two groups; Bitcoin and
Bitcoin Cash (BCH). As BCH community does not use
SegWit, transaction malleability is still a challenge in
Bitcoin cash.

3.2. Blockchain-based e-voting

From the perspective of e-voting, a number of
attempts have been witnessed to disrupt electoral
processes. Consequently, researchers have investigated
use of technology to strengthen such democratic
processes leading to development of major projects, such
as My Vote [35] and BitCongress [36]. However, the
protocols used are ambiguous in keeping their essential
properties, and their scientific contribution is limited.
Another monetary-based system for e-voting was
introduced by Zhao and Chan [37] where reward is given
by enforcing smart contracts over the distributed network
but it affects the actual freedom of ballot. Recently, there
have been several approaches in blockchain-based online
voting which provide secrecy of the ballot including [38]
and [39] which work on the secrecy of ballot.

More recent efforts using blockchain to aid e-voting
have focused on leveraging blockchain properties to
achieve verifiable voting such as [40]. Furthermore,
confidentiality of the individual vote is a fundamental
component of a voting system however default settings
within blockchain do not fulfil this requirement.
Consequently, recent efforts such as [41] have focused at
achieving privacy-aware voting overlaying blockchain
technology to fulfil this requirement. With respect to
double utilization in e-voting, existing approaches rely on
the assumptions that majority of computing resources
are controlled by honest miners. Furthermore, our earlier
work [42] presented initial efforts to investigate
transaction malleability within a blockchain-based
e-voting application within a Python-based simulated
blockchain environment. This highlighted the feasibility
of such attack within a simulated blockchain environment
providing motivation to explore it further in a real-world
blockchain environment.

We believe that the processing sub-domain of
electronic voting is an area where further scientific
contributions are required to specifically target the
potential of double utilization of tokens in a
blockchain-based decentralized network. In this context,
transaction malleability attack can serve as a platform
for further malicious activities such as blockchain-forking
as well as misleading the voter that their vote has not

been caste. Therefore, our focus in this paper is to
investigate execution of transaction malleability attack to
highlight the need for further research concerning
protection mechanisms to mitigate against this threat.

4. Background: Blockchain Platform and e-Voting
System

In order to assess the feasibility of transaction
malleability attack, we have used Multichain as the
blockchain platform and the e-voting system developed
as part of our existing research presented in [2]. A brief
account of these is presented below to provide context for
the rest of the paper.

4.1. Multichain

Multichain is an open-source platform that helps
users to develop a wide range of blockchain-based
applications. Multichain provides a collection of simple
commands to configure and set up blockchain. One of the
major objectives of Multichain platform is to help
develop the controlled and private blockchain network.
Being a private blockchain by default, Multichain may be
customized to reduce the compute-intensive work of
mining process with a variety of options. This model of
blockchain transacts only against the approved accounts
of this chain. If the Multichain blockchain is set as
private, challenges involved in mining can be easily
addressed using various configuration options in this
platform. To recognize the agreements in Multichain,
public-key cryptography is used where each user is
assigned a public key in order to achieve the identity
information and safety of the user. Users create their
own private key which is not exposed to other members.
Each private key has a mathematically related public
address which contains information to receive funds as
part of the transactions.

Leveraging fundamental capabilities of public-key
cryptography, Multichain achieves authenticity (through
digital signatures), confidentiality of communication
(through use of SSL/TLS), and data integrity (through
use of cryptographic hashes). We have used these
capabilities of Multichain to achieve secure, verifiable
communication within our e-voting model.

4.2. Blockchain-based e-voting

As part of our previous research [2], we implemented
a blockchain-based e-voting system which enables secure
verifiable public voting in a tamper-proof manner. Fig 2
presents a graphical representation of this model.

Overall, the electoral process involves execution of
certain activities in a pre-defined chronological order.
This set of activities may be categorized into offline and
online processes. The offline tasks include the creation of
voters and candidates’ addresses, setting up their roles
and respective authorization in accordance with their

5

polling stations and other associated parameters. The
offline process also manages the data of voters from
blockchain and creates station wise lists to be later
transmitted to their respective electronic voting machines
in accordance with the location of polling stations. The
back-end data processing supports a conventional public
voting model through a permissioned blockchain to
regulate entities such as voters, candidates, and miners as
per the procedure of general public voting model while
executing real time online e-voting activities.

Voters

Registration Voter list
Generation

Voter list
Distribution

PS# PS$ ……………………
………..

*PS=Polling Stations

PS%

Client Voting
Machine

PS&

A
ud

it
s

V
ot

es

Result

1 2

3

5

6

4
7

5 5 5

Hashed into
blockchain

Mining node

V
ot

e
Ca

st
in

g

Tallying

casts votes to
candidates, sends
to blockchain node

Figure 2: A blockchain-based e-voting system.

5. Attack Model

A typical transaction malleability attack aims to
exploit vulnerabilities within blockchain fabric and
therefore its impact across different application domains
is consistent. Consequently, although cryptocurrency
applications overshadow blockchain-based applications,
transaction malleability can have adverse impact on
wider application domains including e-voting, supply
chain management, healthcare, and document
verification. In this section, we present the theoretical
and practical considerations for this attack.

5.1. Theoretical considerations

Within a typical transaction malleability attack
scenario, we assume two transactions i.e. an honest
transaction Th and a semantically equivalent malleable
or malicious transaction Tm. These transactions are
submitted to the blockchain network at times th and tm
respectively where th < tm. The goal of the malicious
attacker in this case is to tamper with normal working of
the blockchain network in a way so that the Tm is mined
ahead of Th. Leveraging constructs defined by
Narayanan et al. [43], we can use Poisson distribution to

determine the possible efforts or level of progress, the
attacker has made. In this case, the acknowledgement for
a vote is not sent unless the transaction becomes a part
of the block and even z more blocks are added to it with
the condition that honest blocks are being added at
average expected time per block [44]. The expected value
for the attacker’s progress in this case will be:

λ = z(p/q) (1)

Where p shows the probability of finding the next
block by an honest miner while q denotes the probability
and mining strength of attacker to find the next block.
This expected value λ can be calculated using Poisson
experiment [44] by taking into consideration the total
count of successful attacks in a sequence of time-bounded
activity. Since the expected value λ is being computed on
the basis of Poisson’s experiment, the occurrence of
successful events during an interval are completely
independent of each other. Also, the probability of a
single successful event in an interval varies according to
the length of the interval. The model also applies
uniform probability of success during the execution of
experiment i.e. miners cannot change their resources and
computing power [17].

Since λ is the rate of successful events occurring during
each interval and we are interested in the case where an
attacker is capable to add their blocks to the blockchain,
a success in this case will reflect the number of blocks an
attacker can discover. Similarly, an interval refers to the
amount of time, the election official waits for z blocks to be
added by the honest miner. Therefore λ will be measured
in number of blocks discovered per unit interval.

Applying the implications of Poisson’s experiment from
double spend attack in Bitcoin system (where the difficulty
level is adjusted continuously to maintain an average time
of 10 minutes per block) to double utilization of vote in
electronic voting, we can easily infer that an honest node
will add p blocks in every t minutes. Therefore z blocks
will be added at an interval of

interval = z(t/p)min (2)

Since it is a competition between an honest miner and an
attacker to get their transaction mined first, the attacker
produces ‘q blocks for every t minutes. Mathematically,
the rate at which blocks are addded by an attacker R can
be represented as:

R = ((qblocks)/(tminute)) (3)

Therefore, the average number of expected successes λ
during interval will be obtained by multiplying eq. 1 and
2 as below:

λ = (z(t/p) ∗ (q/t)) = (zq/p) (4)

Now, if we are aiming at a particular case to find out X
successes in a trial where X = k successes and k is a non-

6

negative real number; k ≥ 0 may be obtained as;

p(X = k;λ) =
(λke−λ)

k!
(5)

Consequently, the probability of the attacker in
accordance with our e-voting attack model may be
computed with the above equation when an attacker is
producing k block in an interval for which z blocks are
produced by honest nodes.

From above, eq. 4 can be used to determine the
overall behaviour of the system over a particular time
period under observation to analyze the number of cases
for successes and failures of attacks. Further, eq. 5 can
facilitate to focus on a specific favourable outcome
against a certain number of attacking attempts to the
blockchain. Eq. 4 and 5 can be very effective collectively
for detecting the instantaneous and long-term change in
the state of the blockchain as demonstrated by
Narayanan et. al. in [45].

Sender
Receiver

BLOCK n
Hash n+
version.
Previous block hash
Time stamp
Difficuilty +

Nonce n

BLOCK n+1Hash n+1+

+
Nonce n+1

BLOCK n+2Hash n+2+

+
Nonce n+2 B

lo
ck

 c
on

ta
in

in
g

Tr
an

sa
ct

io
n

Honest Transaction (Th)

Mutated Transaction (Tm)

T
im

e

T
im

e

t0

t1

Miners

Broadcast to

Network

Attacker

Added to Block

Pic
ke

d u
p b

y m
ine

r

Broadcast to

Network

could not be mined

Previous block hash
Time stamp
Difficuilty

version.

Difficulty

version.
Previous block hash

+

Blockchain

Time stamp

Figure 3: Simulation of attack model for transaction malleability.

5.2. Practical considerations

In order to design the attack model, we conducted a
thorough review of existing studies focused at addressing
the security of blockchain in general and with respect to
e-voting in particular such as [46] and [47]. Specifically,
Khader et al [46] addressed the issues associated with the
underlying voting model such as abnormal termination of
the system under a certain condition when a voter quits
the voting process and about not maintaining the secrecy
of the outcome of electoral process in the later stage.
Similarly, other approaches which are aimed at providing
secrecy of ballot in blockchain-based voting systems have
been presented in [47] and [48]. These approaches rely on
the assumptions that majority of the miners will be
honest and would not allow double utilization of vote to
be acknowledged through consensus.

Unconfirmed Bulk Transaction
Entering into Blockchain System

Sending Transactions
through API’s

Pool of Unconfirmed Transactions

Malleable Transaction

Client 1

Client 2

Client 3

Client N

JS
O

N
-R

P
C

 C
lie

nt
s

Transaction Formation

Random Network
Delays Original Transaction

P
ro

po
si

ng
 b

lo
ck

 w
ith

m
al

le
ab

le
 tr

an
sa

ct
io

n

M
al

le
ab

le

Tr
an

sa
ct

io
n

M
in

ed
 in

to
 b

lo
ck

- Version
- Previous block hash
- Time stamp
- Difficulty

Nonce

Accepted by the Peers

M
ai

n
Co

ns
en

su
s

Pe
rm

iss
io

ne
d

Vo
tin

g
Bl

oc
kc

ha
in

Block added to
Blockchain

1

2

3

4

5
6

Mining Pool

Peers /
Nodes

.

.

.

Figure 4: The process model diagram for potential transaction
malleability attack.

The attack model for carrying out transaction
malleability is illustrated in Fig 3 and explained as
follows: Two semantically same but syntactically
different transactions Th(honest transaction) and Tm
(malleable transaction) are broadcasted to the blockchain
network at time th and tm respectively. Due to delays in
the network or any other disruption caused by an
attacker, malleable transaction Tm which was sent after
honest transaction Th, is mined by one of the miners.
The addition of blocks (event) in a blockchain is
completely independent of each other and can be
evaluated using Poisson distribution. There is always a
chance for a mutated transaction to be mined even
earlier than the original honest transaction. This scenario
fulfils our requirement to carry out a successful
transaction malleability attack.

Fig 3 shows the scenario of our attack model which
causes a malleable transaction to get mined to a
blockchain block whereas Fig 4 explains the execution
details of the process employed to carry out a successful
transaction malleability attack. The process can be
expressed as follows:

• A network of multiple remote JSON-RPC clients is
established with the capability to send large
number of concurrent transactions to the
blockchain network. These bulk transactions are
envisaged to induce delays while arriving to the
blockchain network.

• In addition to the benign transactions, the
JSON-RPC clients also send malleable transactions
such that there is a consistent population of
malicious transactions in the pool.

7

• Upon entering into the pool of unconfirmed
transactions, it is left to the miners to pick up
either an honest transaction or its semantically
similar malleable transaction. As the malleable
transaction is cast from a comparatively stronger
node (with greater hashing power), this helped to
form a malleable transaction in a shorter amount of
time to reach at a time closer to the honest
transaction at the pool of unconfirmed
transactions. In this way, a malleable transaction is
a very healthy competitor for its equivalent honest
transaction especially in the case where the
malleable transaction arrives at the same time
when a miner picks transaction to be mined.

• As soon as a malleable transaction is picked up by
the miner and added to its proposed block, the
honest version of the transaction will be
automatically rejected by the miner.

• Upon acknowledging and accepting the proposed
block by the nodes (seed/connected nodes) of the
network, the malleable transaction is successful in
becoming a part of the consensus blockchain.

6. Implementation and Experimentation Setup

In order to aid experimentation to assess feasibility of
the transaction malleability attack on real-world
blockchain, we have implemented a blockchain-based
electronic voting system. A brief account of this system
is presented in section 4 whereas further details are
presented in [2] and [49]. We present discussion regarding
implementation of this model with blockchain technology
in this section. Fig 5 presents a graphical illustration of
the implementation of proposed e-voting model with
blockchain.

6.1. Blockchain parameters

The blockchain implementation consists of a seed node
and at least one connected node which together form the
mining pool. The rest of the machines in the network are
JAVA-based remote clients using JSON-based RPC API
for sending bulk transactions to the blockchain.

The seed node is a master node which is responsible
for initiating blockchain through the genesis block.
Therefore, it controls the overall behaviour of the
blockchain using certain configuration parameters such as
handling consensus mechanisms among nodes, setting up
for permissioned/non-permissioned blockchain, rights
management and other settings upon which the other
peer nodes (also known as connected nodes in Multichain
platform) connect and agree to be part of this blockchain
with conditions as imposed by Seed node. The
connected nodes periodically synchronize themselves
with seed node to maintain the decentralization of the
blockchain network. These connected nodes act as full

running nodes and keep a full copy of blockchain locally.
The seed and connected nodes also have the shared
responsibility of forming a mining pool in the
experiments as shown in Fig 5.

In view of the practical considerations of a public
voting scenario, the proposed scheme has been
implemented using a permissioned blockchain.
Consequently, consensus algorithm such as Proof of Work
(PoW) are not required for miners to add their proposed
blocks to the blockchain. Furthermore, PoW incurs
computational overhead with limited benefits to
permissioned blockchain which led us to decide against
its use. Instead, we have used two parameters i.e. mining
diversity and mining turnover which are recommended
by Multichain platform to control mining and develop
consensus among the nodes. Blockchain setup in this
paper uses a value of 0.3 for mining diversity. This
implies that the minimum count of miners necessary to
run the blockchain smoothly will be attained by
multiplying mining diversity (which is set to 0.3 here as
mentioned in Table 1) to the number of total miners
available. This turns out to be 3 which means in these
experiments, three miners should be available to actively
participate for adding a transaction to the blockchain.
Moreover, mining turnover responsible for managing
scheduling of miners for their turns in a round robin
fashion. Its value ranges from 0 to 1 with 1 refers to a
condition in which each miner will attempt to add its
proposed block to the blockchain (and may be
responsible for generating forks and wastage of
computational power), while a value of 0 sets up a
default round robin scheduling algorithm. In these
experiments, it has been set to 0.5 to maintain a stability
between these two boundary value conditions.

6.2. Voting process implementation

The proposed e-voting system simulates the public
voting model whereby a set of activities, such as voter
and candidate registration are performed before the
election/poll day. We explain the steps involved below.

1. The offline process starts by generating voter and
candidate addresses at seed node which contain
identification of individual voters in the form of
unique hashes representing each voter and
candidate respectively. The system maintains a
voter list for each polling station which contains list
of voters for a particular station. For our
experiments, we created ninety thousand voters
which are divided among thirty stations. The
process of address generation was carried out using
JSON-RPC-API.

2. The voter lists are requested by voting clients
envisaged to be installed on designated voting
machines deployed at polling stations.

3. The voter lists are distributed to machines where
java-enabled voting clients are running for sending

8

M
ai

n
Co

ns
en

su
s

Pe
rm

iss
io

ne
d

Vo
tin

g
Bl

oc
kc

ha
in

Voter List (Hashes)

Voting Asset

Voting Transactions

Candidates
List

Transaction Metadata

Permission Management

Node’s Wallet
Blockchain (Local Address Space)

Voter,
Candidate,
Miner rights
management

Connected
Node’s rights
management

Mining Pool
Containing

Miners from

Seed Node and
Connected Node

Voter List (Hashes)

Voting Asset

Voting Transactions

Candidates
List

Transactions Metadata (Hexadecimal)

Permission Management

Node’s Wallet
Blockchain (Local Address Space)

Synchronizing
and managing
rights locally /
with seed node

Sync. using
Seed node
credentials

Bl
oc

kc
ha

in
 Lo

gi
ca

l L
ay

er
s S

yn
ci

ng

Da
ta

 S
yn

ch
ro

ni
za

tio
n Bl

oc
kc

ha
in

 Lo
gi

ca
l L

ay
er

s S
yn

ci
ng

B
lo

ck
ch

ai
n

Se
ed

 N
od

e M
ac

hi
ne

B

lo
ck

ch
ai

n
C

on
ne

ct
ed

 N
od

e
M

ac
hi

ne

Voter list Generation

Response
Tx ID

Request For Voter’s list

Client Voting App 1
Retrieve candidate’s data

Voter list (CSV)

Metadata
formation

(JSON)

Metadata
Transformation

Voting Transactions

Secure Connection to Seed Node

Voting Asset / Candidate Information

Lo
gi

ca
l L

ay
er

s

Voter list (CSV)

Metadata
formation

(JSON)

Metadata
Transformation

Voting Transactions

Secure Connection to Seed Node

Voting Asset / Candidate Information

Lo
gi

ca
l L

ay
er

s

Client Voting App N

1

2

3

4
Retrieve Voting Asset

4 5

5

6

7

8

8

9

10

11

Ix

Iy

. . .
. . .

SSL/TLS over internet (HTTPS)

SSL/TLS over internet (HTTPS)

SSL/TLS over internet (HTTPS)

SS
L/

TL
S

ov
er

 in
te

rn
et

 (H
TT

PS
)

Concurrent voting
Tx via JSON-RPC

Figure 5: Test-bed to evaluate transaction malleability.

concurrent requests in bulk to the main voting
blockchain powered by seed node (master node)
and its connected node.

4. Generate addresses for candidates at seed node

5. Creation of voting asset at seed node

6. Grant appropriate rights for voters/candidates/vote
issuing authority. This process makes up the offline
activity part of voting process which can only be
followed after its connected previous processes(step
no 1, 4, and 5 in Figure 2)

7. Generating miners at both seed and connected
nodes to be selected randomly and actively
participate from the mining pool(containing only
allowed miners).

8. Transaction formation including the process of
creating metadata.

9. Voting clients sending requests to the voting
blockchain from different concurrent client
applications across different participating machines.

Additionally, Since this is a permissioned blockchain,
only the addresses in the voter list will be allowed to
participate in the process. Furthermore, data
synchronization of voting transaction will take place at
regular intervals to maintain the decentralization of the

architecture. The connected node as a result of this
synchronization will also update its local copy of
blockchain which is located at its own address space.

From Metadata

Voter’s Address Honest Tx for No.
‘N’ at (PC N)

1K4FBp…

To Ballot Paper

Candidate’s
Address
1CCvcF…

VotingAsset
Serial2

1 (fixed here)

Vote Count

Tx’=New Transaction Hash (Computed from above transaction data)

A Blockchain Transaction (in a simplified form)

(a) Honest Transaction. Structure

From Metadata

Voter’s Address Malleable Tx for
No. ‘N’ at (PC N)

1K4FBp…

To Ballot Paper

Candidate’s
Address
1CCvcF…

VotingAsset
Serial2

1 (fixed here)

Vote Count

Tx’=New Transaction Hash (Computed from above transaction data)

(b) Malleable Transaction. Structure

Figure 6: Structure for honest and malleable transactions.

9

Platform
Blockchain Parameters

Mining
Diversity

No. of miners
Block

generation
Rate(secs)

Max. Allowable
Size (MB)

Minig Turnover

Windows 0.3 10 15 8.3 0.5

Table 1: Blockchain configuration.

Node Type Platform
Hardware Specification

Processor Memory Page File

Seed Node Windows 10 Pro 64-bit
(10.0, Build 10586)

Intel Core i3-4005u CPU
@ 1.70GHz (4CPUs)

4096MB RAM
5586MB Used

1887MB
available

Connected
Node-I

Windows 10 Home
Single Lang. 64-bit
(10.0, Build 17134)

Intel Core i7-7500U
CPU @ 2.70GHz (4
CPUs) 2.9GHz

8076MB RAM
14346MB used
2836 available

Connected
Node-II

Windows 10 Enterprise
64 bit

Intel(R) Core(TM) i7-
7500U CPU @ 3.4GHz (4
CPUs), 3.4GHz

16384MB RAM
3809MB used

14901MB
available

Table 2: Hardware and software specifications.

6.3. Experimentation test-bed

In order to investigate the challenge of transaction
malleability, we used the e-voting model described in
section 4. There are a total of three nodes (one seed node
and two connected nodes) involved in the test-bed and
their significant specifications are presented in Table 2.

All of the nodes involved are live and keep a local
copy of the blockchain with frequent synchronization
with the main blockchain. Here, connected node-I is the
weakest among the three nodes and this node will be
used for sending out honest transactions followed by a
simultaneous attempt of multiple malleable transactions
from two relatively faster client voting machines. This
will enable malleable transactions a chance to be
processed and picked up by the miners of seed node
before an honest transaction. This arrangement is
consistent with the real-world scenarios where an
attacker can establish comparatively stronger resources
than an honest machine.

The experiment was divided into different trial runs.
In each run, 200 honest transactions were sent from a
relatively weaker node and just after the start of these
honest transactions burst, an equal amount of malleable
transactions against each of these honest
transactions(and in the same sequence) were sent from
the two relatively faster machines. For example, if there
is an honest transaction Th there there will exist two
different malleable transactions Tm1 and Tm2 for it
from two different JAVA-based client applications on
different machines.

In this way, a favourable environment is established
for the malleable transaction to get mined into the block
before its honest version. The malleable transaction is
favoured not only in the form of the strength of the
attacker machines but also the probability for the
transaction malleability attack is increased with the ratio
of 1:3 as one honest machine has to compete with two
dishonest client machines. In this case, if even a single
malleable transaction gets mined, the attack would be

considered as successful. Therefore, as all the
transactions are able to target the seed node directly, this
provides both attacker and the honest machine equal
opportunity to get their respective transaction mined. In
the second set of experiment, the honest transaction will
be forcefully delayed but this time from the client which
is running on weaker node to observe the impact of
software-level vulnerabilities (timing delay in this case).

The metadata contains the information about each
machine and the nature of the transaction whether
honest or malleable. Also, since it is a voting scenario
and only one vote is possible for each attempt, therefore
if any of the syntactically similar transaction (malleable
transaction) is successful, the other transaction will
automatically be discarded due to insufficient asset value
(which is a vote here).

The voting transaction in the experiment consists of
the following major fields: voter’s address, candidate’s
address, voting asset serial, vote, metadata containing
information about whether the sending transaction is an
honest or a malleable, the transaction number(from the
voter list) and the node number. This metadata is saved
to the blockchain along with the transaction and can be
very useful in determining which transaction (honest or
malleable) was successfully mined. Fig 6 shows the
structure of the transaction and its semantically
equivalent malleable transaction for the experiment.

Here, it is evident that a new hash value Tx
(transaction id) is being created to generate a malleable
transaction by modifying the metadata of the original
transaction. Further, metadata is not only being used to
create a malleable transaction, but also to confirm the
transaction that hijacks its place in the blockchain.
Depending upon which transaction is mined into the
block, the metadata of the respective transaction(after
decoding from hexadecimal to plain text) may be used as
an evidence. As presented in Fig 6, this metadata
contains information about whether the transaction is
honest or malleable, the order of voter’s address from the

10

voter list and the name of the connected node that has
sent this transaction. Consequently, the experiment was
able to get the malleable transaction mined into the
block before the honest transaction.

7. Experimentation for Transaction Malleability

This section explains the experimentation setup
followed by different scenarios implemented to conduct
experimentation to investigate introducing transaction
malleability within blockchain.

7.1. Experimentation Setup

For our experimentation, we setup a testbed based on
the technical details provided in section 6 and consisting
of three nodes (one seed node and two connected nodes).
The setup also included multiple JAVA-based JSON
RPC remote clients which are connected through local
intranet with the seed and connected nodes. In view of
the sensitivity of the communication within an e-voting
application, these clients use Multichain’s built-in SSL
libraries to achieve secure connections with other nodes
in the network. Furthermore, Multichain Blockchain
enables digital signature to be embedded within the
metadata of a coinbase transaction. We leverage these
capabilities of Multichain to ensure security and privacy
of communication among nodes within our network.

The blockchain used in the experiments is private
(permissioned) and only the voters from the voter list are
allowed to participate. Table 1 includes the blockchain
configuration which was used to carry out transaction
malleability attack on the actual blockchain.

Since the honest and its associated malleable
transaction was being sent almost immediately after one
another, therefore this block generation rate suits the
need to give the respective malleable transaction almost
same chance to compete for the same block number as of
its honest transaction. Similarly this configuration
requires at least 30 percent of the miners to actively
participate in the mining process to get their processed
transaction to mine into their proposed block due to its
mining diversity. This section is focused at investigating
feasibility of mining a malleable transaction into a
private blockchain within the context of electronic voting
domain. For this purpose, a blockchain seed node was
created followed by creation of the asset with the lowest
value as “1”, representing a single vote. This asset value
will be later assigned to the address of the individual
voter on the blockchain with one voting asset per voter.
Figure 7 demonstrates a typical voting asset implemented
within our blockchain setup and shows the asset name,
its reference number, and its unit as major parameters.

Fig 8 presents important parameters for the nodes
involved in the experimentation setup. Through
thepingtime parameters of the Fig 8, it can be observed
that the seed node has a lower ping time with connected

Figure 7: Voting asset details.

node 1 as compared to the ping time of connected node
2. It is very interesting to note that the ping time from
connected node 1 and 2 to the seed node varies and is
recorded as 0.062sec and 0.078sec respectively while from
seed node it is 0.02sec and 0.11sec for connected node 1
and 2 respectively. The above data has been queried
when no transaction was being carried out among the
nodes. This data may change depending upon flux of
transactions and upon contribution from each node.
However, pingtime is an important parameter and
indicates possibility of a successful transaction
malleability attack by exploiting the difference in
network latency encountered by different nodes.

Furthermore, in order to establish the
experimentation scenario, a population of one thousand
voters was created on the blockchain using the blockchain
API. As our setup is a permissioned blockchain, voters’
addresses were granted permissions to receive a single
voting token as an asset and then later on utilizing the
same voting asset by transferring it to the candidate’s
account. The process of granting permission for sending
and receiving voting tokens is presented in Algorithm 1.

Algorithm 1 Granting Voting Rights

1: procedure VotingRightsAssignment(V otingChain, V oterList)
2: BufferedReader ←VotingChain
3: while BufferedReader 6= EOF do
4: V oterAddress← BufferedReader[Counter]
5: TransactionID ← AssgnV otingRights(V oterAddr, V otChain)
6: Counter ← Counter + 1
7: end while
8: return TransactionID
9: end procedure

After assigning permission to voting tokens, these
tokens are allocated to respective voters by the seed node
which represents a voting regulatory body in the real
world. The process adopted to achieve this is presented
in Algorithm 2 whereas Fig 9 shows the output for the
address and permission of this account as visible at the
seed node. Furthermore, Fig 10 shows a sample status of
the candidates for their rights.

11

(a) Connected nodes at seed node. (b) Peer info. at connected node 1. (c) Peer info. at connected node 2.

Figure 8: Node information for seed and connected nodes.

Figure 9: Vote assigning address as a miner.

Algorithm 2 Voting Asset Assignment

1: procedure VotingTokenAssignment(V otingChain, V oterList)
2: V oteAssetObj ←OnChainVotingAsset
3: BufferedReader ←VotingChain
4: while BufferedReader 6= EOF do
5: V oterAddress← BufferedReader[Counter]
6: TransactionID ←

SendV otingToken(AuthorizedWalletAddress, V oterAddress,
V oteAssetObj[Token])

7: Counter ← Counter + 1
8: end while
9: return TransactionID

10: end procedure

7.2. Experimentation

The experimentation performed to execute the
transaction malleability attack has been divided into two
cases as explained below:

• Case 1: Experimentation setup with no explicit
efforts to introduce delays to facilitate malleable
transaction and works on taking chance to get the
malleable transaction mined into the block.
Therefore, transaction malleability is successful due
to computation power of attacker’s machine,
network delay and due to miner’s choice of
transaction to be mined.

• Case 2: In contrast to case 1, this setup induces
delays to observe the impact of software-level delays.

7.2.1. Case 1:

In this case, an honest transaction was sent from
connected node 1 where a voter moves their voting token
to the candidate’s address. Two other parallel running

Figure 10: Sample candidate rights status.

voting client applications were used to compete with this
honest transaction. As mentioned above, the connected
node 1(which is sending honest transactions) is slightly
weaker in terms of computational power than the
attacker nodes to increase the probability of having a
successful transaction malleability attack. The success of
this attack depends upon the computational strength of
machine, propagation time of the network, and the node
connectivity with the seed node which may vary in
accordance with the load on the network.

At the start of experiments, a series of honest
transactions are issued from an honest node. As soon as
the first transaction attempts to move the vote from the
voter’s address to the candidate’s address, the attacker
nodes attempt to get the malleable transaction added
into the block. Table 3 below shows the important fields
and values of the honest and its malleable transaction in
this experiment.

12

S. No. Voter Address Candidate Address Asset Name Metadata
01 1K4FBpduhmwZKNTvHV3j

4sDPKWGLQh4DiMyvFH
1CCvcFES4H7HfHktbU9
Fn59szHbN2UoCwpF6sf

VotingAsset
Serial2

Honest Tx for
No. “N” at
(PC2)

02 1K4FBpduhmwZKNTvHV3j4s
DPKWGLQh4DiMyvFH

1CCvcFES4H7HfHktbU9
Fn59szHbN2UoCwpF6sf

VotingAsset
Serial2

Malleable Tx for
No. “N” at
(PC3)

Table 3: Honest / malleable version of transaction with successful attack.

It is evident from Table 3 that the malleable version
of the transaction was created by manipulating the
contents of the metadata field of the transaction. Using
the honest and malleable transaction specifications
above, the malleable transaction was able to successfully
challenge and win race against its honest transaction.

Fig 11.a and Fig 11.b shows the acceptance and
rejection of transaction from connected nodes 1 and 2
respectively.

(a) Malleable transaction acceptance from connected node 2.

(b) Honest transaction rejection from connected node 1.

Figure 11: Structure for honest and malleable transactions.

Fig 11 presents the output of voting client program
when the malleable and honest transaction was
attempted from the honest and attacker node. It is
evident that although the honest transaction from
connected node 1 was sent before the malleable
transaction, the malleable transaction was mined mainly
due to network delay, block propagation speed to the
consensus node, computational power of these two
different nodes and by being chosen by the miner before
its honest counterpart. Fig 11 also shows the time
elapsed of acceptance and rejection of malleable and
honest transaction respectively with respect to when it
was released from the client and when it responded to
the client in case of a successful or unsuccessful
transaction. It is also evident from Fig 11, the honest
transaction was picked up by the miner well after its
malleable transaction was mined as the client software
received the confirmation response i.e. almost after 10
seconds from the time when it was sent.

Since the blockchain network used in this experiment
is private, the timing of the malleable transaction plays a

key role here. Essentially, the greater the difference
between the sending of honest and malleable transaction,
the lesser are the chances of successfully carrying out the
transaction malleability attack. Fig 11.b shows that the
honest transaction was sent at 18:28:05.333 from
connected node 1 and immediately after that, its
malleable transaction was sent from connected node at
18:28:05.816 (Fig 11.a) which was added to the block.
The difference in the issuance time of honest and
malleable transaction was kept low in order to carry out
a successful transaction malleability attack. This
difference may vary depending upon the number of
unconfirmed transactions in the pool, number of miners
in the blockchain, size and bandwidth of the network.

Analysis of Transaction Execution: Fig 14
confirms the transaction hash of the malleable
transaction in the blockchain which was observed by
querying from the seed node. Here, the addresses of voter
and candidate can be seen along with the transaction ID
which was generated when the malleable transaction was
accepted into the blockchain. Similarly there are some
other interesting statistics in Fig 14. For instance, the
time when the node received the malleable transaction
and the time when that malleable transaction was added
to the local wallet of the node by the parameters
timereceived and time respectively. This time may vary
across nodes as it shows the local time of the node but
this is not the case in this experiment as all the nodes
were synchronized through the Internet time
synchronization. Another important parameter here is
the blocktime which requires every node to be agreed
upon which helps develop the consensus blockchain. The
values for all these time specific parameters are shown as
UNIX timestamps. Table 4 shows these timestamps in
human readable format.

Table 4 shows that the malleable transaction almost
took 5 seconds to be mined into the block. A very
interesting parameter data is also shown in Fig 14 in the
hexademical format which is computed from the contents
of metadata used not only for creating the malleable
transaction but also a confirmation for which transaction
(honest or malleable) was mined into the block. When
the data is converted into text then the output of the
text, Malleable Tx for No. 1 at (PC2) also confirmed
that the malleable transaction was mined into the block
demonstrating successful execution of transaction
malleability attack.

Discussion and Analysis of Results: Through the

13

Figure 12: Malleable transaction in the wallet of seed node.

Malleable Tx ID Time Received
Time Added to

Wallet
Block Time

1561bf202aafe4edb37d9bd832eeebf45de74a89cf3f139f37cd
48e9cfc2ae28

6:28:07 PM 6:28:07 PM 6:28:12 PM

Table 4: Time-wise status of malleable transaction

experimentation, it is evident that the probability of
getting malleable transaction mined into the block is
lower as compared to getting an honest transaction into
the block. In this experiment, various attempts were
made to carry out a successful attack with different
delays between an honest and a malleable transaction
and it was identified that the chances for carrying out a
successful transaction malleability attack were prominent
when the time difference between sending an honest and
its malleable transaction was very low.

Figure 13: Successful vs failed transaction malleability attack.

It is evident from Fig 13, within the experiments
performed, the likelihood of a successful transaction
malleability attack is high for a time window from 0.483
to 0.995 seconds whereas a delay of 1.5 seconds or more
has very low likelihood of a successful transaction

Voter Blockchain Attacker Miner

Honest Vote Th at th

Starts Mining

MineMalleable Tx

Adding Proposed block

Malleable Vote Tm at tm

containing Malleable Tx

Figure 14: Sequence of events for a successful transaction
malleability attack.

malleability. However, there are other factors such as
connectivity strength (presented in Fig 15 which play an
important role in the success of this attack.

Fig 15 describe the responsiveness in terms of ping
time between seed/root and connected nodes. It
specifically shows the state of the network at the moment
when the blockchain network was under transaction
malleability attack. In this case, the connectivity time
between the seed node and connected node 2 is shorter as
compared to the same for connected node 1. Further, the
process of transaction formation is quicker in the attacker

14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

CN 1 CN 2

Pi
ng

 ti
m

e
fo

r c
on

ne
ct

ed
 n

od
es

 (s
)

Connected Nodes

Responsiveness of connected nodes

(a) Connectivity strength from connected

to seed node.

0.013

0.014

0.015

0.016

0.017

0.018

0.019

CN 1 CN 2Pi
ng

 ti
m

e
fr

om
 s

ee
d

 n
od

e
(s

ec
)

Connected Nodes

Responsiveness of seed node towards
connected nodes

(b) Connectivity strength from seed to

connected node.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

CN 1 CN 2

A
vg

pi
ng

 t
im

e
fr

om
 c

on
ne

ct
ed

no

de
 (

se
c)

Connected Nodes

Responsiveness of connected nodes

(c) Average connectivity strength from

connected to seed node.

0

0.01

0.02

0.03

0.04

0.05

0.06

CN 1 CN 2A
vg

pi
ng

 t
im

e
fr

om
 s

ee
d

no
de

 (
se

c)

Connected Nodes

Responsiveness of seed node towards
connected nodes

(d) Connectivity strength from seed to

connected node (just before attack).

Figure 15: Connectivity strength for seed and connected nodes across different settings.

node due to its computational strength. Another
interesting fact is that since the ping time from root node
to attacker node (connected node 2) is lesser than the
honest node, the building up of the consensus blockchain
and its synchronization process is expected to occur in
quicker time for connected node 2 (attacker node) than
in connected node 1 (honest node). Although these are
some of the factors which can influence the success of
transaction malleability attack, the malleable transaction
was received and picked up by the miner earlier than its
respective honest transaction. The ping time in the
network is a variable parameter which keeps changing its
value at different time instances. Fig 15.b shows the state
of the network with respect to its ping time just after the
attack was successful. At this instance, it can be
observed that the connection between seed node and
connected node 2 (attacker’s node) was slightly better
than that between seed node and connected node 1
(honest node).

In order to understand an overall consistent behavior
of the system, five readings were taken at different
occasions of time as presented in Table 5. As evident
from Fig 15.c and Fig 15.d, it can be concluded that the
responsiveness of the victim’s node was better than the
attacker’s node except the cases at row number 4 of
Table 5. The data was also recorded for the round trip
time from seed node to honest and attacker’s node and in
this record keeping activity row number 3 contained the
only captured data where the round trip from seed to
connected node 2 (attacker’s node) took lesser time than
the round trip from seed node to honest node. Therefore,
these factors have caused the attack to succeed as the
reading at 0.015 and 0.018 was observed to successfully
execute a transaction malleability attack causing the
malleable transaction to enter into the consensus
blockchain before the honest transaction.

Fig 16 show the individual readings recorded at five
different occurrences to show the state of network
communication through ping time between different
nodes. It specifically shows the overall state of the
network to determine and assess a general behaviour of
the network over a period of time while it was being used
for experimentation. These measurements reflect the

overall connectivity among the nodes of the network
irrespective of the success or failure of attack. Here,
connected node 2 (attacker’s node) was witnessed to be
more responsive to the root node which facilitated the
transaction malleability attack as such an attack can
only be successful when there is a delay in mining honest
transaction. Further, Fig 16.g presents the round trip
time to analyse the process of consensus and data
synchronization so as to understand its impact on
transaction receipt and update of local blockchain. This
is important as this activity requires a complete round of
communication from root node to the connected nodes.
Therefore, the sooner the synchronization occurs, the
sooner the nodes agree upon the consensus state of the
blockchain to maintain a consistent state of the
blockchain. Fig 16 displays the relationship of the round
trip time between seed node and its associated connected
nodes including honest and attacker nodes.

Algorithm 3 TM Attack

1: procedure TransactionMalleability(V otingChainWallet,
V oterList, V otingChain)

2: V oteAssetObj ←OnChainVotingAsset
3: BufferedReader ←VotingChain
4: while BufferedReader 6= EOF do
5: V oterAddress← BufferedReader[Counter]
6: HonestTransaction ←

TransactionFormation(HonestClientNode, V oterAddress,
CandidateAdress, V otingToken,HonestMetaData)

7: MalleableTransaction ←
TransactionFormation(AttackerClientNode, V oterAddress,

CandidateAdress, V otingToken,MalleableMetaData)
8: RandomDelay ← Random(Number) . At Honest Node
9: Sleep(RandomDelay) . At Honest Node

10: TransactionID ← SendV ote(HonestTransaction) . At
Honest Node

11: RandomDelay ← Random(Number) . At Attacker Node
12: Sleep(RandomDelay) . At Attacker Node
13: TransactionID ← SendV ote(MalleableTransaction) . At

Attacker Node
14: Counter ← Counter + 1
15: end while
16: return SuccessfullyExecutedTransaction
17: end procedure

7.2.2. Case 2:

This set of experiments was performed to analyze the
impact of delayed transaction at software level in
contrast to the network level delay in case 1. In this
scenario, an honest transaction was created and sent

15

S. No.
Ping Time from

CN1 to Seed
Node(s)

Ping Time from
CN2 to Seed

Node(s)

Ping Time from
Seed Node to

CN1 (s)

Ping Time from
Seed Node to

CN2 (s)

RTT from CN1
to Seed Node

(s)

RTT from CN2
to Seed Node

(s)
1 0.062 0.078 0.021 0.116 0.016 0.070
2 0.067 0.122 0.018 0.015 0.092 0.070
3 0.015 0.050 0.031 0.031 0.038 0.021
4 0.062 0.017 0.078 0.093 0.057 0.087
5 0.014 0.063 0.078 0.031 0.059 0.093

Table 5: Connectivity Strength among Nodes

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1 2 3 4 5

Pi
ng

 t
im

es
 fr

om
 c

on
ne

ct
ed

 t
o

se
ed

no

de
 (

se
c)

Number of measurements at various instances of time

CN 1

CN2

(a) Ping time at connected node for seed

node across different time instances.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5

Pi
ng

 t
im

es
 fr

om
 s

ee
d

no
de

 t
o

co
nn

ec
te

d
no

de
 (

se
c)

Number of measurements at various instances of time

CN 1

CN2

(b) Ping time at seed node for connected

node across different time instances.

0

0.01
0.02

0.03
0.04
0.05

0.06
0.07

0.08
0.09

0.1

1 2 3 4 5

R
ou

nd
 t

ri
p

ti
m

e
fr

om
 c

on
ne

ct
ed

no

de
se

ed
 n

od
e

 (s
ec

)

Number of Readings Taken at various instances of Time

CN 1

CN2

(c) Round trip time from connected node to

seed node across different time instances.

Figure 16: Round trip time from connected node to seed node across different time instances.

earlier than its corresponding malleable transaction but
with an explicit delay induced at application level
through the client software of the honest node. The delay
was varied to analyze its impact on the blockchain
mining process and its block generation rate. For
instance, if the delay lies within the window of issuing
the next block (15 seconds in this case), then both the
honest and malleable transactions may become the
contender for the same block. However, it also depends
upon the already elapsed time after the arrival of latest
block i.e. if the honest transaction comes at 5 seconds
after the addition of latest block and its malleable
transaction comes at 8 seconds after the creation of the
same block then in this case honest transaction will have
10 seconds and its malleable transaction will have 7
seconds to get itself into the next block. Similarly, there
may be another case when the malleable transaction
reaches with the same delay of two seconds, however, due
to this delay the honest transaction may be mined with
the previous block and this 2 seconds delay may have
caused one block to enter into the blockchain and the
malleable transaction just came 2 seconds after the
addition of previous block(after the average 15 seconds
windows of block). Fig 14 shows a typical sequence for
the occurrences of events for a successful transaction
malleability attack within this case.

As part of this experiment, a number of iterations
were run simultaneously from honest and attacker’s node
to enable multiple malleable transactions to get into the
blockchain disregarding if previous transactions are
successful in achieving transaction malleability. The
process used to achieve this is explained by the
pseudocode in Algorithm 3. As explained in Algorithm 3,
if an honest transaction is sent earlier than its
corresponding malleable transaction but failed to mine

due to the delay between the release of honest and
malleable transaction is less than the random delay that
honest transaction would face before being forwarded to
blockchain as compared to the delay which malleable
transaction would face before being forwarded to the
blockchain.

Although many iterations were run to analyze
feasibility of a successful transaction malleability attack,
Table 6 shows some of transaction’s arrival time and the
time when the transaction was mined along with the
delay in between the transactions. Table 6 also presents
the time when the malleable transaction became part of
the blockchain, its transaction ID along with the time of
confirmation from the e-voting blockchain.

Figure 17: Connectivity strength from connected to seed node.

Discussion and Analysis of Results: As
demonstrated by Fig 17, the ping time for honest client
position was slightly better than the attacker. In order to
understand the overall behavior of the system, Fig 18.a
illustrates the average response of ping time for the

16

S. No. Honest Tx
Release time
(hh:mm:ss.SSS)

Malleable Tx
Release time
(hh:mm:ss.SSS)

Random
Delay for
Honest Node
(s)

Random Delay
for Attacker
Node (s)

Successful
Transaction

Successful Transaction ID

1 03:53:43.741 03:53:51.927 7 3 Honest 6d22978274d0917c43eacd9215303a06c
ecd18e6a0d57962268843b536217db6

2 03:53:45.085 03:53:53.131 0 2 Honest 831d5f58da8a0d76dcbeff57ff761c5f
3797c2e5cc478328fc31baf79e900a09

3 03:53:53.163 03:53:57.162 8 3 Malleable 5bda0788da20534051d945ec45a860ab
b18a04d36da2151c07fe0ea93b3e6f83

4 03:54:01.226 03:54:02.214 8 5 Malleable 3414e0631ea1c498a57931af32e5f169
e3a343b533e36499fb84bae80980a738

5 03:54:03.304 03:54:03.272 2 2 Malleable 9e017987469853566cd1dcc8575a261a
2addfbede92e82667e7e92237a3d49a4

Table 6: Sample transactions for successful/failed transaction malleability.

S. No. Successful TxID VoterID Mining
Time (s)

Voter
Number

Encoded Hexadecimal Meta data

1 6d22978274d0917c43eacd921
5303a06cecd18e6a0d57
962268843b536217db6

1K4FBpduhmwZKNTvHV3j
4sDPKWGLQh4DiMyvFH

7 1 486f6e65737420547820666f72204e6f
2e2031206174202850433129

2 831d5f58da8a0d76dcbeff57
ff761c5f3797c2e5cc4783
28fc31baf79e900a09

1JoxBh4ime2EcnarYmX
wLgpvwMpNFhRDrJJXXZ

7 2 486f6e65737420547820666f722
04e6f2e2032206174202850433129

3 5bda0788da20534051d945
ec45a860abb18a04d36da21
51c07fe0ea93b3e6f83

13aw1Y6hA2pmyyG3sNx
k2EBgessvEuaLTECwAv

9 3 4d616c6c6561626c6520547820666f72204e6
f2e20332061742028526f6f74204e6f646529

4 3414e0631ea1c498a57931
af32e5f169e3a343b533e
36499fb84bae80980a738

1J3jHejHQtavKV7u3Q
wSKg3TKFcCGDbJd1TtqK

4 4 4d616c6c6561626c6520547820666f72204e
6f2e20342061742028526f6f74204e6f646529

5 9e017987469853566cd1dcc
8575a261a2addfbede92e8266
7e7e92237a3d49a4

1RkifPykMCHY4ZMnq8
SU3eSJhsCnyhdrFpb5eB

2 5 4d616c6c6561626c6520547820666f72204e
6f2e20352061742028526f6f74204e6f646529

Table 7: Metadata for successful/failed transaction malleability.

honest and attacking client of this experiment. It can be
concluded through analysis of Fig 17 and Fig 18.a that
the honest client performed better in terms of
connectivity. The other factor which was considered is
that the honest client exhibits comparatively weaker
computational node than the malicious client.
Consequently, the malicious node can potentially
generate higher number of malleable transactions so as to
increase the likelihood of getting mined into the
blockchain. There may be a possibility in a real world
scenario where one miner picks up the honest transaction
and the other picks up its equivalent malleable
transaction. In this case, the transaction that gets mined
into the block first is likely to be added to the consensus
blockchain upon agreeing by all the nodes of the network.

Fig 18.b and c explain the difference of responses
between honest and malleable transaction against
varying delay. These figures show the state of the
blockchain of a single activity when both the honest and
attacking clients send concurrent bulk transactions with
a randomly generated delay to give their transactions a
chance of getting mined earlier than their respective
semantically similar transaction. Further, as presented in
Table 6 and Fig 18.b and c, the transaction with
relatively lesser delay is usually the winner. For instance,
row number 5 of Table 6 presents a very interesting
scenario when both transactions (honest and malleable)
have equally same delay, but the succeeding transaction
is the malleable transaction due to a slight difference of

release time. This is due to the fact the attacker node
was able to process and send transaction quicker than the
honest node. Even an honest node forms the transaction
before the attacker‘s node, the attacker may still make an
impact by processing to release it earlier. Although the
difference is very small (32 milliseconds), however, it
caused the malleable transaction to be added to the
block leading to a successful attack.

8. Protection against transaction malleability
attack

In this paper, we have successfully demonstrated the
feasibility of transaction malleability attack within
blockchain-based systems. Therefore, we highlight a gap
in current literature to protect against such attacks.
Continuing from this work, our current and future
research is focused at developing innovate solutions to
enhance security of blockchain-based solutions. In
particular, we envisage investigating a novel
provenance-based architecture framework to develop a
solution for countering the transaction malleability
attack at the blockchain core.

Specifically, the provenance-based scheme will aim to
block the transaction malleability attack by creating an
additional layer of provenance at the top of blockchain.
This layer will keep the origin of actual transactions
which became the part of the blockchain network first by
utilizing the same unspent unit of asset (which is a single

17

Successful Malleable Tx ID Time
Received

Time
Added to
Wallet

Block
Time

Decoded Hex
Metadata

5bda0788da20534051d945ec45a860abb18a04d36da215
1c07fe0ea93b3e6f83

3:53:57 AM 3:53:57 AM 3:54:06
AM

Malleable Tx for No. 3
at root node

3414e0631ea1c498a57931af32e5f169e3a343b533e36
499fb84bae80980a738

3:54:02 AM 3:54:02 AM 3:54:06
AM

Malleable Tx for No. 4
at root node

9e017987469853566cd1dcc8575a261a2addfbede92e8
2667e7e92237a3d49a4

3:54:04 AM 3:54:04 AM 3:54:06
AM

Malleable Tx for No. 5
at root node

Table 8: Selected malleable transactions for successful attack.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Honest Client Attacking Client

Av
gp

in
g

tim
e f

ro
m

 co
nn

ec
te

d
no

de
s (

se
c)

Connected Nodes

Responsiveness: honest client vs. attacking
client

(a) Responsiveness of honest vs malicious

client.

03:53:49.632 AM

03:53:51.360 AM

03:53:53.088 AM

03:53:54.816 AM

03:53:56.544 AM

03:53:58.272 AM

03:54:00.000 AM

03:54:01.728 AM

03:54:03.456 AM

03:54:05.184 AM

0 1 2 3 4 5 6

Tr
an

sa
ct

io
n

Re
le

as
e T

im
e

Randomly generated delay (seconds)

Malleable transaction release time vs delay

(b) Impact of delay on malleable transaction.

03:53:42.720 AM

03:53:47.040 AM

03:53:51.360 AM

03:53:55.680 AM

03:54:00.000 AM

03:54:04.320 AM

0 2 4 6 8 10

Tr
an

sa
ct

io
n

re
le

as
e

tim
e

Randomly generated delay (seconds)

Honest transaction release time vs delay

(c) Impact of delay on honest transaction.

Figure 18: Impact of delay on malleable and honest transactions.

vote cast according to the voting model in Figure 2). By
doing so, this layer will not only reject the next incoming
semantically similar transactions to be a part of the
consensus blockchain but it will also not require to go
through the compute-hungry process of traditional
verification which requires tracing the origin of the
particular unspent unit of asset (a vote in the context of
the e-voting application presented here) from its genesis
transaction.

Furthermore, we envisage evaluating the
provenance-based scheme to counter transaction
malleability attack in the proposed voting model against
varying conditions. These include scenarios when the
voting process is running normally and when the voters
are issuing bulk voting transactions concurrently (with
different block generate rates, mining diversity). Such
rigorous evaluation will also help research community to
analyse the effectiveness of the provenance-based solution
with respect to the impact of transaction malleability
attack when the blockchain is subjected to an attack
using a attack strategy similar to that used in Mt. Gox
exchange attack.

9. Conclusion and future work

Blockchain has inspired a diverse range of
applications, which seek to leverage its benefits such as
tamper-proof ledger and transparent access to
information. However, transaction malleability is one of
potential threats to blockchain which can lead to
double-spending attacks. This paper has presented an
empirical analysis of the transaction malleability threat
to blockchain identifying the role of parameters such as

network delay, block generation rate and
software-induced delays to achieve a successful
transaction malleability attack. The paper has used a
real-world blockchain test-bed for its experiments hosting
an e-voting application, however, as the transaction
malleability attack targets blockchain fabric, the
outcomes of this research also impacts blockchain-based
applications in other domains such as logistics and
healthcare. Our current and future work focuses on
developing mechanisms and methods which can mitigate
against transaction malleability attack demonstrated
here.

References

[1] M. Andrychowicz, S. Dziembowski, D. Malinowski, and
 L. Mazurek, “On the malleability of bitcoin transactions,”
in Financial Cryptography and Data Security, M. Brenner,
N. Christin, B. Johnson, and K. Rohloff, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 1–18.

[2] K. M. Khan, J. Arshad, and M. M. Khan, “Secure digital voting
system based on blockchain technology,” Int. J. Electron. Gov.
Res., vol. 14, no. 1, pp. 53–62, Jan. 2018. [Online]. Available:
https://doi.org/10.4018/IJEGR.2018010103

[3] N. Nizamuddin, K. Salah, M. A. Azad, J. Arshad,
and M. Rehman, “Decentralized document version control
using ethereum blockchain and ipfs,” Computers Electrical
Engineering, vol. 76, pp. 183 – 197, 2019. [Online]. Available:
https://bit.ly/2NMvKHN

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Cryptography Mailing list at https://metzdowd.com, 03 2009.

[5] D. Chaum, “Secret-ballot receipts: True voter-verifiable
elections,” IEEE Security Privacy, vol. 2, no. 1, pp. 38–47, 2004.

[6] A. Barnes, C. Brake, and T. Perry, “Digital voting with
the use of blockchain technology,” 2016, the Economist
Competition on Blockchain based e-voting. [Online]. Available:
https://www.economist.com/sites/default/files/plymouth.pdf

18

[7] H. Baldersheim and J. Saglie, “Internet voting in norway
2011: Democratic and organisational experiences,” in The 4th
International Conference on Democracy as Idea and Practice,
2013.

[8] E. M. of Foreign Affairs, “Estonian internet voting system,”
2019.

[9] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the
security of blockchain systems,” Future Generation Computer
Systems, 2017. [Online]. Available: https://bit.ly/2q14WLW

[10] I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues
and challenges,” I. J. Network Security, vol. 19, pp. 653–659,
2017.

[11] Multichain. Open platform for blockchain applications. [Online].
Available: www.multichain.com

[12] Y. Lu, “Blockchain: A survey on functions, applications
and open issues,” Journal of Industrial Integration and
Management, vol. 03, 08 2018.

[13] B. Asolo. Txid (transaction identifier) explained. [Online].
Available: https://www.mycryptopedia.com/txid-transaction-
identifier-explained

[14] C. Decker and R. Wattenhofer, “Bitcoin transaction
malleability and mtgox,” in European Symposium on Research
in Computer Security. Springer, 2014, pp. 313–326.

[15] J. P. J. S. Kadam, M., “Double spending prevention in bitcoins
network,” International Journal of Computer Engineering and
Applications, 2015.

[16] G. Karame, “On the security and scalability of bitcoin’s
blockchain,” in The 2016 ACM SIGSAC Conference, 10 2016,
pp. 1861–1862.

[17] A. P. Ozisik and B. N. Levine, “An explanation of nakamoto’s
analysis of double-spend attacks,” CoRR, vol. abs/1701.03977,
2017. [Online]. Available: http://arxiv.org/abs/1701.03977

[18] C. Pérez-Solà, S. Delgado-Segura, G. Navarro-Arribas, and
J. Herrera-Joancomart́ı, “Double-spending prevention for
bitcoin zero-confirmation transactions,” International Journal
of Information Security, vol. 18, no. 4, pp. 451–463, Aug 2019.
[Online]. Available: https://doi.org/10.1007/s10207-018-0422-4

[19] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse
attacks on bitcoin’s peer-to-peer network,” in 24th {USENIX}
Security Symposium ({USENIX} Security 15), 2015, pp. 129–
144.

[20] J. R. Douceur, “The sybil attack,” in International workshop
on peer-to-peer systems. Springer, 2002, pp. 251–260.

[21] M. Vasek, M. Thornton, and T. Moore, “Empirical analysis
of denial-of-service attacks in the bitcoin ecosystem,” in
International conference on financial cryptography and data
security. Springer, 2014, pp. 57–71.

[22] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun,
“Tampering with the delivery of blocks and transactions in
bitcoin,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2015, pp.
692–705.

[23] J. Heusser, “Sat solving-an alternative to brute force bitcoin
mining,” 2013.

[24] H. Finney, “Best practice for fast transaction acceptance-how
high is the risk,” 2011.

[25] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of
bitcoin mining, or bitcoin in the presence of adversaries,” in
Proceedings of WEIS, vol. 2013, 2013, p. 11.

[26] J. Bonneau, “Why buy when you can rent?” in International
Conference on Financial Cryptography and Data Security.
Springer, 2016, pp. 19–26.

[27] Corbixgwelt. Timejacking and bitcoin. [Online]. Available:
http://culubas. blogspot.de/ 2011/ 05/timejacking-bitcoin
802.html/

[28] N. T. Courtois and L. Bahack, “On subversive miner strategies
and block withholding attack in bitcoin digital currency,” arXiv
preprint arXiv:1402.1718, 2014.

[29] M. Rosenfeld, “Analysis of bitcoin pooled mining reward
systems,” arXiv preprint arXiv:1112.4980, 2011.

[30] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish

mining strategies in bitcoin,” in International Conference on
Financial Cryptography and Data Security. Springer, 2016,
pp. 515–532.

[31] P. Wuille, “Disclosure: consensus bug
indirectly solved by bip66,” 2015. [Online].
Available: https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2015-July/009697.html

[32] M. Rosenfeld, “Analysis of hashrate-based double spending,”
CoRR, vol. abs/1402.2009, 2014. [Online]. Available:
http://arxiv.org/abs/1402.2009

[33] U. Rajput, F. Abbas, and H. Oh, “A solution towards
eliminating transaction malleability in bitcoin,” JIPS, vol. 14,
pp. 837–850, 2018.

[34] H. Schoenfeld. Malleability attack and why it matters. [Online].
Available: https://bit.ly/348Rbti

[35] N. Hourt, “Blockchain technology in online voting,” 2017.
[Online]. Available: https://followmyvote.com/online-voting-
technology/blockchain-technology/

[36] M. Rockwell, “Bitcongress—process for blockchain voting &
law,” 2017.

[37] Z. Zhao and T.-H. H. Chan, “How to vote privately using
bitcoin,” in International Conference on Information and
Communications Security. Springer, 2015, pp. 82–96.

[38] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin:
Anonymous distributed e-cash from bitcoin,” in 2013 IEEE
Symposium on Security and Privacy. IEEE, 2013, pp. 397–
411.

[39] M. H. Ibrahim, “Securecoin: A robust secure and efficient
protocol for anonymous bitcoin ecosystem.” IJ Network
Security, vol. 19, no. 2, pp. 295–312, 2017.

[40] M. Chaieb, S. Yousfi, P. Lafourcade, and R. Robbana,
“Verify-your-vote: A verifiable blockchain-based online voting
protocol,” in European, Mediterranean, and Middle Eastern
Conference on Information Systems. Springer, 2018, pp. 16–
30.

[41] M. Chaieb, M. Koscina, S. Yousfi, P. Lafourcade, and
R. Robbana, “Dabsters: A privacy preserving e-voting protocol
for permissioned blockchain,” in International Colloquium on
Theoretical Aspects of Computing. Springer, 2019, pp. 292–
312.

[42] K. M. Khan, J. Arshad, and M. M. Khan, “Simulation of
transaction malleability attack for blockchain-based e-voting,”
Computers and Electrical Engineering, 2020.

[43] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and
S. Goldfeder, Bitcoin and cryptocurrency technologies: A
comprehensive introduction. Princeton University Press, 2016.

[44] M. Rosenfeld, “Analysis of hashrate-based double spending,” 02
2014.

[45] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and
S. Goldfeder, Bitcoin and cryptocurrency technologies: a
comprehensive introduction. Princeton University Press, 2016.

[46] D. Khader, B. Smyth, P. Ryan, and F. Hao, “A fair and robust
voting system by broadcast,” Lecture Notes in Informatics
(LNI), Proceedings - Series of the Gesellschaft fur Informatik
(GI), vol. 205, 01 2012.

[47] F. Hao, M. N. Kreeger, B. Randell, D. Clarke, S. F.
Shahandashti, and P. H. J. Lee, “Every vote counts:
Ensuring integrity in large-scale electronic voting,” in
2014 Electronic Voting Technology Workshop/Workshop
on Trustworthy Elections (EVT/WOTE 14). USENIX
Association, 2014.

[48] A. Kiayias and M. Yung, “Self-tallying elections and perfect
ballot secrecy,” in Public Key Cryptography, D. Naccache and
P. Paillier, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 141–158.

[49] K. M. Khan, J. Arshad, and M. M. Khan, “Investigating
performance constraints for blockchain based secure
e-voting system,” Future Generation Computer Systems,
vol. 105, pp. 13 – 26, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X19310805

19

