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Abstract

Malware currently presents a number of serious threats to computer users. Signature-based mal-
ware detection methods are limited in detecting new malware samples that are significantly different
from known ones. Therefore, machine learning-based methods have been proposed, but there are two
challenges these methods face. The first is to model the full semantics behind the assembly code of
malware. The second challenge is to provide interpretable results while keeping excellent detection
performance. In this paper, we propose an Interpretable MAlware Detector (I-MAD) that outperforms
state-of-the-art static malware detection models regarding accuracy with excellent interpretability. To
improve the detection performance, I-MAD incorporates a novel network component called the Galaxy
Transformer network that can understand assembly code at the basic block, function, and executable
levels. It also incorporates our proposed interpretable feed-forward neural network to provide in-
terpretations for its detection results by quantifying the impact of each feature with respect to the
prediction. Experiment results show that our model significantly outperforms existing state-of-the-art
static malware detection models and presents meaningful interpretations.

1. Introduction

Malware is software written in order to steal credentials
of computer users, damage computer systems, encrypt doc-
uments for ransom, and other nefarious goals. Recogniz-
ing malware samples downloaded by legitimate users in a
timely manner is of crucial importance for users’ protec-
tion. Signature-based malware detection methods are widely
used in antivirus products, but they are limited in recogniz-
ing significant variants of existing malware and new mal-
ware [57, 19]. There is thus a pressing need to create an in-
telligent malware detection system that has better generabil-
ity to capture new malware or nontrivial variants of known
malware.

Machine learning-based malware analysis methods [57,
37,17, 6, 48, 20] can automatically learn common patterns
of malware from the feature space that have better general-
ization ability than manually crafted signatures. However,
there are two major challenges for machine learning-based
malware detection models.

Interpretability is one of the dominant features for clas-
sification models in some domains, such as healthcare and
cybersecurity. In cybersecurity, the interpretations can help
malware analysts justify the classification results and cre-
ate a knowledge base of malware samples. Hidden Markov
model (HMM) [53, 55] and attention-based recurrent neural
network (RNN) [15] have been proposed to provide analyz-
able or interpretable classification results on sequential data.
Linear models such as logistic/softmax regression and Naive
Bayes produce interpretable results on vectorial data but usu-
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ally yield inferior classification performance than non-linear
models such as multi-layer feed-forward neural networks [11].
However, the hidden layers between the input and the lo-
gistic/softmax layer make multi-layer feed-forward neural
networks lose the interpretability of logistic/softmax regres-
sion to directly attribute the impact of each feature. It’s still
a challenge to keep interpretability as well as classification
performance for feed-forward neural networks.

As the workload of malware exists mainly in its assem-
bly code, modelling the assembly code could provide im-
portant information for malware detection. However, it is
challenging to model the whole assembly code of executa-
bles because they are very long sequences. An executable
of 1 MB could have hundreds of thousands of instructions.
No effective training approaches have been proposed to train
such long sequences, and the memory consumption cannot
be handled with standard hardware for such long sequences.

Deep learning models have achieved significant break-
throughs in understanding natural language when properly
trained on large corpora [41, 20, 42]. Transformer [52] based
models especially achieve state-of-the-art results in natural
language understanding and generation [20, 41, 22, 42, 45,
9]. However, their successful applications are mainly on
short text, i.e., sentence-level tasks such as paraphrase detec-
tion and sentiment analysis [41, 20], or on short-document
texts such as reading comprehension and automatic summa-
rization of news articles [22]. For example, the state-of-the-
art sequence model GPT-3 [9] can process sequences of a
maximum length of 2,048 tokens. That makes the transfer-
ence of the success of existing methods to understanding as-
sembly code a challenge. Apart from the fact that assembly
code is too long, the differences between natural language
and assembly code in the structure composition and basic
units stand as another problem to solve.
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Figure 1: The comparison of topology of the Transformer, Star/Star-Plus Transformer, and Galaxy Transformer.

Despite the fact that the assembly code of an executable
is usually very long, it has an innate hierarchical structure:
instructions form basic blocks, basic blocks form assembly
functions, and assembly functions form the ensemble of as-
sembly code (i.e., the full logic) of an executable. The lengths
of basic blocks, assembly functions, and the ensemble of the
assembly code of an executable in terms of their direct sub-
units are usually within thousands. Based on this character-
istic, we propose the Galaxy Transformer network. It con-
tains three components, namely the Satellite-Planet Trans-
former, the Planet-Star Transformer, and the Star-Galaxy
Transformer. They are three customized Star-Plus Trans-
former networks organized in a hierarchy in order to under-
stand the semantic meaning of the assembly code of an ex-
ecutable at different levels: basic block, assembly function,
and executable. The Star-Plus Transformer is our improved
version of the Star Transformer [27], which was proposed
for natural language understanding as a variant of the Trans-
Sformer [52]. The time complexity and space complexity of
Transformer is O(n?), where n is the length of the token.
The Star Transformer replaces the fully connected structure
of the Transformer with a star-shaped topology to reduce
the complexities to O(n), and it achieves better results on
modestly sized datasets. A comparison of the topology be-
tween the Transformer, the Star/Star-Plus Transformer, and
the Galaxy Transformer is shown in Figure 1. Our proposed
universe-like topology of the Galaxy Transformer makes it
possible to train very long sequences.

To provide interpretations for the classification results,
we propose a novel interpretable feed-forward neural net-
work (IFFNN) as the other key component of our full model,
the Interpretable MAlware Detector (I-MAD). It has the mod-
elling power of a multi-layer neural network and the inter-
pretability of a logistic regression model. An example of
the prediction and its interpretation is given in Table 1. It
shows the detection result of a target file, the confidence in
the result, the primary contributing features that lead to the
prediction, and the most related assembly functions.

The contributions of this paper are summarized below:

1. We propose the Galaxy Transformer as an early at-
tempt in the literature to model the full sequences of
assembly code for malware detection.

2. We propose two pre-training tasks to train the Satellite-
Planet Transformer and Planet-Star Transformer, which
are both components of the Galaxy Transformer, to
understand the semantic meaning of assembly code at
the basic block and assembly function levels.

3. We improve the way to use printable string features
and PE import features from previous works with our
insights on malware.

4. We propose a novel IFFNN as the classification mod-
ule of I-MAD. It has the same interpretability as lo-
gistic regression and the modelling power of multi-
layer feed-forward neural networks. It allows I-MAD
to quantify the impact of each feature for the classifi-
cation results. Itis also a general classification module
that can be applied to other classification tasks.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 defines the research prob-
lem. Section 4 provides the details of our proposed method.
Section 5 presents the experiment results and analyses. Sec-
tion 6 discusses the limitations and our future work. Sec-
tion 7 concludes the paper.

2. Related Work

2.1. Malware Detection

Malware detection methods fall into three categories: static,
dynamic, and hybrid [18]. We summarize the common static
and dynamic features in Table 2.

Static methods examine the static content of an executable,
while dynamic methods run an executable and analyze its be-
haviors. Features used in static methods include binary se-
quences [49, 31, 3,48, 43, 25], assembly code sequences [37,
17,2, 3,47, 25], numerical PE header features [3, 6, 48], PE
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Table 1

Sample result of our malware detection and its interpretation,
which includes the 5 factors that contribute most to the pre-
diction and the most related assembly functions.

File: 05¢199.exe
Prediction: malicious
Confidence: 100%

Primary factors leading to the prediction of malicious

Feature description Feature value | Impact
Assembly code N/A 14.56
Number of PE imports 8 5.12
Major operating system version 1 1.49
Frequency of the string "Sleep" 1 0.82
Frequency of the string ".data" 1 0.59
Most influential assembly functions
sub 401010
sub_4010AE

imports/API calls [49, 6, 48, 39, 25], printable strings [49,
29, 48], and malware images [38, 54, 51]. The most common
way to use binary sequences or assembly code sequences is
to cut them into n-gram pieces to form features [49, 31, 37,
17, 2, 3, 47, 48]. Some studies find that byte n-grams are
effective features [7], while others suggest that byte n-grams
are weak or deeply flawed [44] and assembly code is more
effective [37, 47]. As control flow graphs could be more
robust than assembly code against some obfuscation tech-
niques, there are also instance-based detection methods that
identify malware by checking whether an executable con-
tains assembly functions or control flow graphs of known
malware [12, 3, 13, 14]. Because they are instance-based
methods, they suffer from efficiency issues when the known
malware database is large.

Dynamic methods run a target executable in an isolated
environment, e.g., a virtual machine or an emulator, and ex-
tract features such as the memory image [33, 16, 28], the exe-
cuted instructions [46, 17, 2, 3], and the invoked system calls
or behaviors derived from them [8, 24, 3, 16, 29, 47, 28, 1].

Both static and dynamic methods have their advantages
and disadvantages. Compared with static methods, dynamic
methods provide more abundant and direct information. Even
though both static and dynamic methods extract system calls
as features, the parameters passed to those invoked system
calls can always be seen with dynamic methods, which is
not the case with static methods [8, 16, 29, 47]. Moreover,
when a malicious executable is packed or polymorphic, the
payload probably cannot be seen by static methods. Yet, to
perform its malicious actions it must reveal the payload dur-
ing execution [8]. This gives another advantage to dynamic
over static methods. Therefore, dynamic methods can of-
ten achieve better results in the most challenging cases [53].
However, it does not mean that static methods cannot capture
malware with those mechanisms, because their use is suspi-
cious and can be detected. Previous works on static malware
detection show that when analyzing an unknown executable
from multiple feature scopes, it is hard for the malware to

Table 2
Common static and dynamic features for malware detection.

Static

binary sequences

assembly code
PE header numerical fields
PE imports/API calls

printable strings
malware images

control flow graph

Dynamic
memory image
executed instructions
invoked system calls
behaviors

evade detection [3, 29]. On the other hand, one serious short-
coming of dynamic methods is that when malware finds that
its execution is being monitored, it may not perform its ma-
licious action to evade detection. Thus, dynamic methods
may fail to detect it [8, 57]. In addition, dynamically analyz-
ing an executable is very time consuming.

Hybrid methods extract both static and dynamic features
and integrate them into one malware detection model [3, 29,
47, 18]. These two kinds of features are expected to pro-
vide complementary information to the model so that it has
a more comprehensive view of a sample.

2.2. Transformers

As programming languages and natural languages share
some similar characteristics, the experience in modeling the
latter can be customized to model the former. Before Vaswani
et al. [52] proposed the deep learning model known as the
Transformer, most state-of-the-art neural machine transla-
tion models belonged to the class of attention-based recur-
rent neural network (RNN) models. In these models, an RNN
is used to encode the source text, and another RNN with at-
tention mechanism is used to generate the translation word
by word [5, 36]. The attention mechanism is used to de-
termine the importance of the words in the source text for
generating each translated word. One disadvantage of this
type of model is that the recurrence nature precludes par-
allelism. Another disadvantage is that the attention mech-
anism assigns only one importance weight to a word in the
source text so it can focus on just one aspect of the words.

The Transformer addresses both problems and achieves
new state-of-the-art performance on machine translation by
abandoning the RNN and relying only on an improved at-
tention mechanism [52]. The attention mechanism in the
Transformer is referred to as multi-head attention, which al-
lows multiple attention weights to be assigned to each item.
Each weight corresponds to one aspect of an item, thus their
attention mechanism is more powerful than the previously
proposed attention mechanism in its modeling ability [52].
As there is no RNN in it, the recurrence nature of the en-
coder does not exist anymore, which tremendously increases
the parallelism and computing efficiency. Since 2017, re-
searchers have seen the potential of the Transformer and pro-
posed their own ways to pre-train the Transformer on un-
labeled corpora that are abundant and then fine-tune it for
downstream NLP tasks. They constantly achieve significantly
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better results than previous methods on many NLP tasks [41,
20,22,42,56,45,9]. The problem of the Transformer is that
it computes the attention weights between any two items of a
sequence, which leads to O(n?) time and space complexity.
Therefore, the Star Transformer [27] is proposed to reduce
the complexities to O(n) by adding an additional node to col-
lect global information and connect only adjacent items of
the sequence. When the length of a sequence is very long,
such a sequential model is still hard to train. For this rea-
son, we propose the Galaxy Transformer with a hierarchical
topology, so that it has O(n) complexities and can be trained
at different levels.

2.3. Interpretable Networks

In most cases, deep learning models are proposed to achieve

the best performance for certain research problems without
considering their interpretability. However, interpretability
is very important in some fields. In healthcare, the ratio-
nale for decisions or predictions made by deep learning mod-
els and the contributions of different factors leading to them
need to be validated by doctors because they concern pa-
tients” health [23, 50, 11]. In cybersecurity, deep learning-
based malware detection is aimed at replacing signature-based
methods to be practical for antivirus products to recognize
and then quarantine/delete malware for computer users. How-
ever, a deep learning malware detector that cannot explain
why an executable is malicious is unlikely to be completely
practical. This is because there are false positives, and mal-
ware analysts often need to justify detection results. The
interpretations of a deep learning-based malware detector
alleviate malware analysts’ efforts of examining them from

scratch and creating a knowledge base of malware samples [11].

Shicke et al. [50] make the criticism that deep learn-
ing models are hard to interpret, and therefore linear mod-
els dominate applied clinical informatics. They also review
some attempts to make deep learning models interpretable.
For sequential data, Choi et al. [15] propose the interpretable
network RETAIN to compute the importance of each vari-
able in patients’ medical records to their diagnostic predic-
tions. RETAIN is composed of two attention-based RNNs
to form a softmax regression with dynamically computed
weights. For image classification, Zeiler et al. [58] propose
Deconvolutional Network (deconvnet) to provide interpretable
classification results by revealing which parts of an image
are important for its classification. For the classification of
vectorial data, logistic/softmax regression and Naive Bayes
can interpret how much each feature contributes to a classi-
fication result. However, they rely on the feature indepen-
dence assumption, and thus the interactions of different fea-
tures cannot be modelled to influence the classification. In-
spired by RETAIN [15], we propose a novel multi-layer feed-
forward neural network to simulate a logistic regression with
a dynamically computed weight of each feature to achieve
the same interpretability as logistic regression, while keep-
ing the performance of non-linear models.

3. Problem Definition

In this section, we define some important concepts, fol-
lowed by the definition of the research problem.
An executable is a sequence of bytes:

exe = (byte, byte,, ...) (1

The feature set of an executable is extracted by a set of
extractors:

()]

Except for assembly code, the other extracted features
can be represented as a vector. We represent the assembly
code as a series of nested sets and sequences.

The assembly code of an executable is a set of assembly
functions:

fea(exe) = {ext|(exe), ext,(exe), ...}

code(exe) = { f1, f2, ...} 3
An assembly function is a set of basic blocks:
f = {blsb2’~'-} (4)

A basic block is a sequence of assembly instructions:
®

An assembly instruction is a sequence of one opcode and
two operands:

b= (ins,ins,,...)

(6)

For the uncommon instructions with three operands, the third
is ignored. Empty operands are substituted by the special to-
ken EMPTY. All opcodes and operands form a set, and each of
them is assigned an index number. Thus, one instruction can
be abstracted as a sequence of three integers, where each in-
teger represents an index of an opcode or operand.

ins = (Opcode, Operand1, Operand?)

Definition 1 (Malware Detection). Consider a collection of
executables E and a collection of labels L that show the ex-
ecutables in E are benign or malicious. Let exe be an un-
known executable that exe & E. The malware detection
problem is to build a classification model M based on E
and L such that M can be used to determine whether the
executable exe is benign or malicious. ®

4. Methodology

Our malware detection model I-MAD includes the Galaxy
Transformer to learn a vector to represent the semantic mean-
ing of the assembly code of an executable and an interpretable
feed-forward neural network (IFFNN) that takes the vector
representing the assembly code of a target executable and
vectors representing other features as its inputs to produce an
interpretable detection result. Figure 2 depicts an overview
of our malware detection model. In this section, we intro-
duce the Star Transformer and describe how we improve it
to form the Star-Plus Transformer to build the Galaxy Trans-
former. Then, we propose two methods to pre-train different
components of the Galaxy Transformer. Next, we introduce
the other features we use, our novel IFFNN, and how we use
it to interpret the detection results.
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So, we have Ci’ € RO%model ,
At each layer, we have
hi = LayerNorm(ReLU(MultiAtt(hﬁ_l ,CN))
H'=[h;..;h)
s' = LayerNorm(ReLU(MultiAtt(s"™", H")))

Thus, the relay node s’ serves as a global information
collector. h; collects local information from its adjacency

nodes and global information from s*~!. The computational

Figure 2: An overview of our I-MAD model.

4.1. Galaxy Transformer
4.1.1. Star Transformer

The Star Transformer [27] adopts the multi-head atten-
tion from the standard Transformer:

MultiAtt(q, H) = Concat(head,, ..., head,)W°

where head; = Attention(qVViQ, HVI/iK, HI/I/iV)
quiT
Attention(q;, K;, V;) = softmax(———=)V;

model

where K; = HWX,V, = HWY , W2 € Rlmuede WK e
RdmodeIXdk’I/I/iV € Rimoder*dy WO  RMuXdposer gre learn-
able parameters, ¢ € R% is a query vector, and H € R"™
is a matrix that contains vector representations of » items
to attend to. To compute the self-attention of a sequence
X = {(x,%y, ..., X,,), in the Transformer, each x; is a query
g, and it attends to all items in the sequence, so H = X.
Thus, its computational complexity is O(n?).

To reduce the computational complexity, the Star Trans-
former only considers connections between adjacent items
and between a relay node and each item, as shown in Figure
1b. First, for each item x;, a vector e; is computed as the
summation of its non-contextual semantic embedding and
its positional encoding in the same way as the Transformer
does:

e; = Emb(x;) = SE(x;) + PE(i)
E=Je;..;e,]

Then, the embeddings are fed into a multi-layer neural
network to compute the hidden state for each x;. hf repre-

sents the hidden state of x; at layer . h? is initialized as

e;. The initial hidden state of the additional relay node is

$0=— >, €;- Tocompute hf , its context matrix Cl.’ is formed
n

by the hidden states of itself h§_1 and its adjacent nodes of
the previous layer h;:} : h;_l, its embedding e;, and the hid-
den state of the relay node s'~ !

t _ pt—=1. pt=1. pt=1. . -1
G =[h_ph 5 hess™ ]

complexity to compute all h: is O(n), and to compute s’ it is
also O(n). The overall computational complexity is therefore
O(n).

To put it all together, we represent a Star Transformer
Layer as follows:

Ht+1,st+1 — STLt(HZ" St,E)

The full computation of the Star Transformer is as fol-
lows:

E =[Emb(x,);...; Emb(x,)]
1
H'=E, "= - .
s - ; e;

HT,sT =sTLT(STLT'(.STL'(H®, s°, E), E), E)

4.1.2. Star-Plus Transformer

As previously shown, the Star Transformer can gener-
ate a contextual vector representation for each item in a se-
quence and a vector representation for the whole sequence
with O(n) computational complexity. We propose the fol-
lowing modifications for better performance.

1. There is no obvious reason why e; should be in the
context matrix Cl.’ , SO we remove e; from Ci’, resulting
inCl = [A” | R AL s

2. There was a pointwise feedforward neural network
(FNN = max(0; xW| + b))W, + b,) after the multi-
head attention computation in the Transformer, but it
is removed in the Star Transformer without an expla-
nation for the rationale. We add it back to compose
the information collected by all attention heads and to
generate higher-level features for the next layer.

3. A max-pooling on HT across the top layer mixed with
sT was used as the representation for the whole se-
quence in the Star Transformer. We use only s’ to
represent the whole sequence, since it has collected
global information of the sequence.

To put it together, we have a Star-Plus Transformer layer
H'* s+l = SPTLY(H', s") computed as follows:
h! = LayerNorm(ReLU (MultiAtt(h'™", C!)))
h! = LayerNorm(ReLU(FF N (h!")))
H' = [h’;...;h;]
sV = LayerNorm(ReLU(MultiAtt(st_1 ,HY)
s' = LayerNorm(ReLU(FFN(s")))
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4.2. Satellite-Planet Transformer to Understand
Basic Blocks

As we have stated before, a basic block is a sequence of
assembly instructions: b = (ins;,ins,,...). The objective
of the Satellite-Planet Transformer is to learn a vector rep-
resentation for b using its instructions. To build the Satellite-
Planet Transformer with the Star-Plus Transformer, we mod-
ify the input layer of the latter because each instruction is
not an atomic item, but a sequence of three items (i.e., an
opcode and two operands). Since both the embedding of
an instruction ins; and its positional encoding should have
d 0401 dimensions, we make the embeddings of the opcode
and operands d,,,;.;/3 dimensions and use the concatena-
tion of them as the embedding of the instruction. It is then
added with the positional encoding to form e;. The con-
catenation of the vector representation of the opcode and
operands to form the vector of an instruction was also previ-
ously adopted by Ding et al. [21]. For the output, we directly
use s, which is the representation of the relay node at the
top layer as the semantic meaning representation of the basic
block. To train the Satellite-Planet Transformer we propose
the Masked Assembly Model task.

Definition 2 (Masked Assembly Model). Let (b,ins) be a
basic block and assembly instruction pair. Consider a set of
basic block and assembly instruction pairs B. For each pair
(b,ins) € B, there is one mask instruction m in b that should
originally be ins. Let t be a target basic block that is not in
any pair of B, and one of its instructions is replaced by m.
The Masked Assembly Model task is to build a classification
model M based on B to predict the original instruction t
replaced by m. m

This task is inspired by the Masked Language Model task
proposed by Devlin et al. [20]. In that task, the authors mask
random words from sentences and use the Transformer to
predict the masked words based on the contextual words in
the sentences. Their method is to feed the output vector of
the Transformer corresponding to a masked word to an out-
put softmax over the vocabulary. The prediction requires
both global context and local context. The global context
means the semantic meaning of the whole sentence except
the masked word. The local context means the position of
the masked word and its surrounding words that could indi-
cate what ingredient the missing word should be. As the out-
put vector corresponding to the masked word is the only in-
formation source for the output layer to make the prediction,
it has to capture both global and local context. This does not
fit our objective, since the output vector should only contain
the semantic meaning of a basic block (i.e., global contex-
tual information). Therefore, we separate the two kinds of
information in two vectors: s’ containing the global contex-
tual information and the output vector of the masked instruc-
tionm=[MASK_OPC,EMPTY, EM PTY]containing
the local contextual information. We concatenate these two
vectors to form one vector and feed it to three feed-forward
neural networks with softmax over the whole set of opcodes
and operands to predict the opcode and two operands of the

original masked instruction. It should be noted that after
this training step, we only need to keep the Satellite-Planet
Transformer, which generates sT, the semantic representa-
tion of the entire basic block, because the three feed-forward
neural networks to predict the original masked instruction
are not needed after the training for the Masked Assembly
Model task.

4.3. Planet-Star Transformer to Understand
Assembly Function

The Planet-Star Transformer is another customized Star-
Plus Transformer built on top of the Satellite-Planet Trans-
former to learn the vector representation of the semantic mean-
ing of an assembly function f from the set of vectors repre-
senting its basic block {b(, b,,...}. As the input is already
vectors rather than integers, we abandon the input embed-
ding layer of the Star-Plus Transformer that maps integers
to embeddings. We directly feed the vectors representing
the basic blocks in positional order to form a sequence to the
Planet-Star Transformer, which is a Star-Plus Transformer
without an input layer. We use s” as the vector represen-
tation of the assembly function. To train the Planet-Star
Transformer, we propose the Assembly Function Clone De-
tection task.

Definition 3 (Assembly Function Clone Detection). Let
(f1, f>) be an assembly function pair. Let (f|, f>,1) be a la-
beled assembly function pair in which the label | indicates
whether the two assembly functions f| and f, are clones
(i.e., semantically equivalent) of each other. Consider a col-
lection of labeled assembly function pairs F. Letp = (fy, f5)
be a new function pair that p is not any function pair in F.
The assembly function clone detection task is to build a clas-
sification model M based on F to determine whether the two
functions in p are clones of each other. m

The intuition is that if the vector representations of as-
sembly functions can be used to determine whether two func-
tions are clones of each other, then they contain the semantic
meaning of the assembly functions. We train the network to
generate similar vectors in cosine measure (i.e., cos(sjg1 , 5;2))
for real assembly function clone pairs and dissimilar vec-
tors for non-clone pairs. The way we form the function pair

dataset is described in Section 5.

4.4. Star-Galaxy Transformer to Understand Full
Logic of Executable

Next, we use the Star-Galaxy Transformer to learn one
vector representing the full logic of an executable based on
the representations of all its assembly functions: { fi, f5,...}.
Technically, this is similar to learning the representation of
an assembly function from the representations of its basic
blocks, since both are intended to learn one vector repre-
sentation from a set of vectors. Therefore, the Star-Galaxy
Transformer is a duplicate of the Planet-Star Transformer.
Their difference is that they work at different levels of the
hierarchy. The representation of the assembly code of an ex-
ecutable generated by the Star-Galaxy Transformer is fed to
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the IFFNN for malware detection without other pre-training
tasks proposed for it.

With this, we have completely described how we build
the Galaxy Transformer with three customized Star-Plus Trans-
formers in a hierarchy to compute the vector representation
of the assembly code of an executable.

4.5. Other Features

When malware is packed, or is polymorphic or meta-
morphic, the assembly code of its payload is encrypted and
not statically accessible. Hence, using only assembly code
would fail to identify its malicious purpose. According to
the experience of previous works [3, 29], static analysis can
still be effective, because the use of the stealthy mechanisms
can be captured when analyzed from multiple static feature
scopes. Next, we describe the three kinds of features we use
and how we improve the way to use them.

4.5.1. Printable Strings

According to the literature [49, 29, 16, 28], printable
strings are important features, because they include, among
others, runtime-linked libraries, functions, and registry keys
that are commonly used by malware, system paths, and some-
times the names of user-defined functions. Hence, we ex-
tract printable strings from the whole byte sequence of an
executable. In our algorithm, a continuous subsequence is
a printable string if it satisfies three conditions: 1) all of its
bytes are ASCII characters, 2) it is terminated with a null
symbol, and 3) its length is at least 5 bytes. We count the
number of instances of each printable string in the training
set and put the strings that appear more than a certain thresh-
old, 1,000 in our case, in the frequent string set. Their fre-
quencies in an executable are used as features. This is not
new compared to previous works. The improvement is that
we also use the number of printable strings that are not in
the frequent string set, i.e., uncommon strings, as a feature,
and we use the total number of common printable strings in
the executable as another feature. This is based on the intu-
ition that encrypted malware has more uncommon printable
strings and benign software has more common strings.

4.5.2. PE Imports

PE Imports are dynamically linked libraries and func-
tions shown in the import address table of PE headers. The
imports of an executable often illustrate its behaviors, e.g.,
modify the registry or hook a procedure [49, 48]. The total
number of imports show whether the executable is hiding its
potential behaviors, because abnormally few imports indi-
cate that runtime linking is largely used or most of its im-
ports are hidden in encrypted data. Therefore, we compute
these features in the same way as we compute the printable
string features.

4.5.3. PE Header Numerical Features

There are many numerical fields in PE headers that con-
tain information that could form different patterns among
malware and benign software (benignware) [6, 48]. Hence,
we also use these values as features.
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Figure 3: Our proposed IFFNN.

We concatenate the vector representing the full logic of
an executable v,,,,, printable string feature vector v, PE
header numerical feature vector v,,,,,, and PE import feature
vector v;,,, to form a vector representation of the executable
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4.6. Interpretable Feed-Forward Neural Network

Interpretability is an important quality of a machine learn-
ing model for malware detection. Inspired by the work of
Choi et al. [15], which uses two attention-based RNN net-
works to form a softmax regression model with dynamic
weights, we propose a novel interpretable feed-forward neu-
ral network (IFFNN) to form a "dynamic logistic regression”
model. Figure 3 illustrates its architecture.

Let x € R™ be a feature vector representing a sample.
We first feed it to [ fully-connected hidden layers:

v(x) = FC!(...FC'(x)...)
where FC'(v;_(x)) = tanh(W/v;_; (x) + b))

)
®)

i dixdi=! 4 d! d!
where Wl € R%™% | b1 € R, and v;(x) € R%:. Then,
we apply another normal fully-connected layer of which the
output vector has the same dimension as x:

w(x) = Whu,(x) + b, ®

where W, € Rdeiz, b, € R™, and w(x) € R™. w(x) serves
as a weight vector for each feature in x. The final confidence
that the input sample is positive (in malware detection, pos-
itive means malicious) is calculated as follows:

y=IFFNN(x)=oc(w(x)" x + b)
1
1+e2

10)

where 6(z) = (1
where b € R is a bias term. This is similar to a logistic
regression (i.e., y = o(wa + b), where w is a parameter
vector), and the difference is that our weight vector w(x) is
dynamically computed based on x rather than static param-
eters.
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As can be seen, the IFFNN has the same interpretability
(a.k.a., intelligibility [35]) as logistic regression because of
its decomposability and algorithmic transparency [34] when
the features have certain meanings. Since the weight of each
feature is dynamically computed by a multi-layer neural net-
work, the feature interactions are still modelled and the weight
of each feature to the prediction is contextualized. Thus, it
has the modelling power of a non-linear model.

The IFFNN can be used for any binomial classification
task and can be plainly generalized to a "dynamic softmax
regression” model for multinomial classification, as long as
the sample can be represented as a vector with fixed dimen-
sion.

We feed v, the feature vector from multiple scopes of an
executable, to the proposed IFFNN to get the confidence y
thatitis malicious: y = I F F N N (v) and interpret the result.
Thus, we complete the full network of the top-level model.

4.7. Attribution

For logistic regression: y = o(w’ x + b) = o(w;x; +
WyXy + ... + WX, + b), where x = (x, x5, ..., x,,) and w =
(wy, w,y, ...,w,,), the attribution is simple. Whether feature
x; makes the sample positive depends on the sign of w; x;;. If
w;x; > 0, x ; makes it positive, and vice versa. The degree
of the impact of x; on y depends on |w;x;|: alarge |w;x;|
implies a large impact of x;. If the model predicts a sample
to be positive, the most influential factor that leads to the
result is max;w;x;. If the model predicts a sample to be
negative, the most influential factor that leads to the result is
min;w;x;.

The same idea is applicable to our IFFNN for malware
detection. Its top layer is logistic regression with dynam-
ically computed weight: y = o(w)l'v) = o(w(v),v; +
W()y0y+...+wW(V),,0). If [w(v);v;| is large and w(v);v; >
0, feature v; has a large impact on the prediction of mali-
cious. If [w(v);v;| is large and w(v);v; < 0, feature v; has a
large impact on the prediction of benign. For printable string
features, PE imports, and PE header numerical features, each
dimension of their vector representations corresponds to a
specific feature. The features can be the frequency of a cer-
tain string, whether a certain DLL is imported, the value
of a certain numerical field, etc. By checking its w(v) iUjs
we know whether it makes the executable more likely ma-
licious or benign. For the vector representing the full logic
of an executable: v,,,,, each of its dimensions has no spe-
cific meaning, but we can see the impact of the full logic of
the executable by computing the summation of the impact
of each dimension of its vector: Y. 1€0uge Weode,jVcode.j- If
it is positive, from the perspective of the assembly code, the
executable is more likely malicious, and vice versa.

As vy, is computed by our Star-Galaxy Transformer
network, the attention weights of the assembly functions to
the relay node at the top layer indicate the importance of
each assembly function. We compute the summed attention
weights of each assembly function over all heads to the relay
node to determine which assembly functions are the main
factors that influence the classification results.

4.8. Model Training

To train the Satellite-Planet Transformer, the objective
function is the cross entropy loss of the prediction on the
masked opcode and operands against the real opcode and
operands. To train the Planet-Star Transformer and simul-
taneously fine-tune the Satellite-Planet Transformer, the ob-
jective function is the mean squared error between the com-
puted cosine similarity between two assembly functions and
the gold standard (i.e., 1 for clone function pairs, and -1 for
non-clone function pairs). To train the full top-level network
including the IFFNN and the Star-Galaxy Transformer, the
objective function is the cross entropy loss of the prediction
against the real label. To ensure that the Star-Galaxy Trans-
former gets sufficient training, we first train it without con-
catenating any other feature, i.e., feed v,,,, instead of v to
the IFFNN (y = IFFN N(v,,,,)), and train it for malware
detection. This is in fact the pre-training of the Star-Galaxy
Transformer. Then, we concatenate v,.,,4, With other features
to feed it to the IFFNN (y = I FF N N (v)), and train it the
same way for malware detection. The Satellite-Planet Trans-
former and Planet-Star Transformer networks are not fine-
tuned when we train the top-level network. For all the train-
ing objectives, we use Adam [30] with the initial learning
rate le — 4. We use early stopping with the validation set to
avoid overfitting [10].

5. Experiments

The objectives of our experiments are to 1) evaluate the
performance of I-MAD for malware detection, 2) compare
I-MAD to other state-of-the-art static malware detection so-
lutions, and 3) demonstrate the interpretability of I-MAD.

We train and evaluate the models on a server with two
Xeon E5-2697 CPUs, 384 GB of memory, and four Nvidia
Titan XP graphics cards. We use PyTorch [40] to implement
our model. We use the "pefile"! library to extract numerical
features from PE headers.

5.1. Datasets and Pre-training

For the two pre-training tasks, we compile several open
source projects that are compatible with GCC and/or LLVM.
We choose these two compilers because they are the most ap-
propriate options to provide different compilation options to
generate semantically equal but literally different assembly
functions. GCC compiler provides four different optimiza-
tion levels (i.e., 00, O1, O2, and O3) to compile projects.
We compile busybox, coreutils, libcurl, libgmp, libtomcrypt,
libz, magick, openssl, puttygen, and sqlite3 with GCC at all
four optimization levels. Thus, for every assembly function
in those projects we have four semantically equivalent ver-
sions. O-LLVM? is an obfuscator of the LLVM compiler
that provides control flow flattening, instruction substitution,
and bogus control flow obfuscation mechanisms. We use
O-LLVM to compile libcrypto, libgmp, libMagickCore, and
libtomcrypt with five different settings: no obfuscation, each

Uhttps://github.com/erocarrera/pefile
Zhttps://github.com/obfuscator-llvm/obfuscator/wiki
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Table 3
Top 10 majority malware families of the dataset.

Malware Family | Number | Percentage
Fareit 9,436 8.2%
Zbot 6,433 5.6%

Emotet 6,343 5.5%
Gandcrab 4,120 3.6%
Mepaow 4,055 3.5%
CobaltStrike 3,151 2.7%
Allaple 2,081 1.8%
Ursnif 1,552 1.3%
Autoit 1,017 1.0%
NaKocTb 794 0.7%
Total 38,982 33.9%

of the three obfuscation mechanisms, and all three mecha-
nisms. Thus, we have five versions of their every function.
We use IDA Pro®, a commercial disassembler, to disassem-
ble our compiled executables and acquire the assembly func-
tions.

We use basic blocks of lengths between 5 to 250 instruc-
tions to form our Masked Assembly Model dataset; these
blocks are within the typical length range of blocks that pro-
vide enough context and are not too long to harm training ef-
ficiency. As a result, this dataset contains 38,427,440 basic
blocks. We use all of them for training and none for testing
as the purpose of the dataset is to train the Satellite-Planet
Transformer to understand assembly code, and the accuracy
of this task is uninformative.

We use the semantically equivalent but literally different
functions we compiled to form real function clone pairs. We
randomly pair the same number of functions to be non-clone
function pairs to create the dataset for the Assembly Function
Clone Detection task. We limit the maximum number of in-
structions per basic block to be 50 and the maximum num-
ber of blocks per function to be 50 in this dataset, so that the
memory of our graphics cards can hold the data flowing in
the bottom two-level networks. There are 213,656 function
pairs in the training set, 26,898 functions in the validation
set, and 26,746 functions in the test set. Our bottom two-
level networks get a classification accuracy of 91.5% on the
test set. This means that the assembly function representa-
tions it computes and the representations of basic blocks that
are fed to it indeed capture the semantic meanings of assem-
bly code. We do not elaborate on the experiments for this
task since it is not the objective task, but rather a task to pre-
train the Planet-Star Transformer and fine-tune the Satellite-
Planet Transformer. For malware detection we collected a
dataset containing 115,000 benign and 115,000 malicious
executables. There is no redundancy in the dataset. Follow-
ing the literature [49, 31, 43], the benign executables are the
.exe and .dll files from the installation paths of software pro-
grams. The malicious executables are collected from Mal-
Share and VirusShare. The top 10 major malware families
of the dataset are presented in Table 3. They are obtained

3https://www.hex-rays.com/products/ida/

Table 4
Top 10 packers used in the malware dataset.

Packer Number | Percentage
UPX 7,776 6.7%
BobSoft Mini Delphi 5,262 4.5%
ASProtect 1,826 1.59%
ASPack 1,780 1.55%
PECompact 586 0.51%
Armadillo 369 0.32%
D1S1G 155 0.14%
WinrarSFX 124 0.11%
MoleBox 69 0.06%
WinZipSFX 38 0.03%
Total 17,985 15.6%

with ClamAV “. The top 10 known packers that are applied
on the malware samples are shown in Table 4. The usage of
packers is acquired with Yara Rules °. The way we split the
dataset into training set, validation set, and test set is intro-
duced in Subsection 5.3.

5.2. Models for Comparison
We compare our I-MAD model to several state-of-the-art
static malware detection models.

e Mosk20080B Moskovitch et al. [37] propose to use
TF or TF-IDF of opcode bi-grams as features and use
document frequency (DF), information gain ratio, or
Fisher score as the criteria for feature selection. They
apply Artificial Neural Networks, Decision Trees, Naive
Bayes, Boosted Decision Trees, and Boosted Naive
Bayes as their malware detection models.

e Bald2013Meta Baldangombo et al. [6] propose to ex-
tract multiple raw features from PE headers and use in-
formation gain and calling frequencies for feature se-
lection and PCA for dimension reduction. They apply
SVM, J48, and Naive Bayes as their malware detec-
tion models.

e Saxe2015Deep Saxe et al. [48] propose a sophisticated
deep learning model that works on four different fea-
tures: byte/entropy histogram features, PE import fea-
tures, string 2D histogram features, and PE metadata
numerical features. We tried to follow the exact fea-
tures they extract when we implement it, but they do
not provide the exact metadata numerical fields they
use, so we just use the same numerical fields of PE
headers used in our model as part of their input.

o Raff2017MalC Raff et al. [43] treat an executable as
a sequence of bytes and apply a gated 1D convolu-
tional neural network (CNN) to classify an executable.
The network includes an embedding layer, two convo-
lutional layers with large filters and strides, a global
max-pooling layer, and two fully-connected layers. The

“https://www.clamav.net/
Shttps://github.com/Yara-Rules/rules
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Table 5

Results of k-fold cross-validation experiment. It includes the p-values (pv) of t-test for F1
and accuracy between I-MAD (ST+) and other models.

Model P R F1 | pv(F1) | Acc | pv (Acc)
Mosk20080B 96.1 | 95.8 | 959 | 3.3e-13 | 959 | 1.6e-20
Bald2013Meta 96.5 | 959 | 96.2 | 1.1e-13 | 96.2 | 6.7e-20
Saxe2015Deep 95.2 | 96.1 | 95.7 | 4.0e-14 | 95.6 | 4.5e-21
Raff2017MalC 95.9 | 96.3 | 96.1 | 5.6e-15 | 96.1 4.0e-20
Krcal2018Conv 93.2 | 93.2 | 93.2 | 1.7e-15 | 93.2 | 1.0e-23
Mour2019CNN 726 | 715 | 72.0 | 2.3e-26 | 71.8 | 1.5e-30

SVM (same features) | 96.1 | 96.4 | 96.2 | 3.7e-13 | 96.2 | 5.6e-20

I-MAD (no code) 96.5 | 96.6 | 96.5 | 9.8e-13 | 96.5 | 4.0e-19
I-MAD (ST) 97.0 | 979 | 97.3 | 5.0e-3 | 97.2 4.7e-6
I-MAD (ST+) 975 | 979 | 97.7 N/A 97.7 N/A

output of one convolutional layer serves as the gate of
the other.

e Krcal2018Conv Following Raff et al. [43], Krcal et
al. [32] treat an executable as a sequence of bytes and
apply a CNN for malware detection, but their CNN is
deeper and has smaller filters. There are four convolu-
tional layers and four fully connected layers. Instead
of a global max-pooling layer, they use a global mean-
pooling layer after the convolutional layers.

o Mour2019CNN Mourtaji et al. [38] convert malware
binaries to grayscale images and apply a 2D CNN on
malware images for malware classification.

For the papers in which the authors describe multiple
ways to select features and/or apply multiple machine learn-
ing models ([37, 6]), we try with all possible settings and
report the best results that their methods can achieve to com-
pare with our model.

As the ablation study, we also compare our full model "I-
MAD (ST+)" with "I-MAD (no code)" and "I-MAD (ST)".
"I-MAD (no code)" is our model without using assembly
code. These comparisons can show the effectiveness of mod-
eling assembly code with Galaxy Transformer. "I-MAD (ST)"
is to build the Galaxy Transformer with the original Star
Transformer, rather than the Star-Plus Transformer, to show
the effectiveness of our modifications.

We also compare our model with an SVM model that
uses the same features as I-MAD except for assembly code,
since it is not a vectorial feature. We consider linear, polyno-
mial, and RBF kernels and use grid search for tuning hyper-
parameters. Comparing this baseline with I-MAD (no code),
we can separately show the effectiveness of the feature set
and our model.

5.3. Experiment Settings

We evaluate the models under two different experiment
settings. The main evaluation metric is accuracy (Acc), but
we also evaluate the models with precision (P), recall (R),
and F1.

e K-Fold Cross-Validation We first evaluate our model
and others with k-fold cross-validation where k = 5.

The original dataset is randomly split into 5 even sub-
sets. Each subset takes a turn to be chosen as the test
set. Another subset takes a turn to be chosen as the
validation set. The other 3 subsets form the training
set. Thus, we have S P, = 20 different experiment
groups. Each group contains 138,000 samples in the
training set, 46,000 in the validation set, and 46,000 in
the test set. We acquire the experiment results of the
20 groups and report the averages.

e Time Split Evaluation In addition to cross-validation
evaluation, we also evaluate the models in a more chal-
lenging and realistic scenario. In real life, a malware
detection system is expected to detect new malware
with its knowledge of known malware. To evaluate
this ability of the models, we follow Saxe et al. [48]
to perform a time split experiment. We use the ex-
ecutables compiled before 2015 to form the training
and validation set, and those compiled after 2017 to
form the test set. We exclude samples with a compi-
lation time before 2000 or after 2020, either because
the compilation dates are fake or the samples are out-
dated. There are 106,000 samples in the training set,
20,000 in the validation set, and 40,000 in the test set.
We run each model with different initialization and
random seeds 5 times and report the averages of the
results.

5.4. Results

The results of the k-fold cross-validation and the time
split experiments are shown in Table 5 and Table 6, respec-
tively.

The full version of I-MAD achieves statistically signif-
icantly better accuracy and F1 than the other models in all
experiments, as the p-values in t-test are much smaller than
0.01. The improvements of our model on accuracy and F1
are larger in the time split experiments than in the cross-
validation experiment. Even though we make sure there is
no redundancy in the dataset, some pieces of malware could
be extensively similar to each other if they are from the same
family and compiled with slightly different modifications.
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Table 6

Results of time split experiment. It includes the p-values of t-test for F1 and accuracy

between I-MAD (ST+) and other models.

Model P R F1 | pv(F1) | Acc | pv (Acc)
Mosk20080B 88.6 | 88.6 | 88.6 | 1.2e-15 | 88.6 | 3.4e-22
Bald2013Meta 88.3 | 88.1 | 88.2 | 1.6e-17 | 88.2 | 1.2e-22
Saxe2015Deep 87.4 | 87.7 | 87.5 | 1.4e-17 | 875 2.6e-23
Raff2017MalC 88.5 | 89.0 | 88.7 | 1.2e-16 | 88.7 | 4.5e-22
Krcal2018Conv 84.2 | 83.2 | 83.7 | 3.1e-18 | 83.8 | 1.2e-27
Mour2019CNN 57.0 | 56.6 | 56.8 | 4.3e-31 | 56.9 | 7.le-34

SVM (same features) | 89.2 | 88.8 | 89.0 | 7.3e-15 | 89.0 | 6.1e-22

I-MAD (no code) 89.4 | 89.6 | 89.5 | 3.2¢-15 | 89.5 | 6.7e-21

I-MAD (ST) 91.1 | 91.1 | 91.1 | 8.6e-11 | 91.1 | 2.6e-15
-MAD (ST+) 914 [ 916 | 91.5 | N/A | 915 | N/A

Also, their compilation time is usually close to each other.
In the time split experiment, the executables in the test set
are compiled at least 2 years later than any executable in
the training and validation sets. This is a more difficult set-
ting that can be reflected in the pervasively lower accuracy
in the time split setting than in the cross-validation setting.
Thus, the significantly larger improvement of our detection
model over other models in the time split experiment indi-
cates that it has better abilities to learn robust and consistent
patterns from old samples that can be generalized to classify
new samples.

It is clear that with modelling assembly code with the
Galaxy Transformer, I-MAD achieves much better results
than it does without modelling the assembly code. This shows
that modelling assembly code with our Galaxy Transformer
helps in differentiating malicious and benign executables.
We can also see that the Galaxy Transformer built with Star-
Plus Transformer (I-MAD (ST+)) is more effective than the
one built with the original Star Transformer (I-MAD (ST)).
This confirms that our modifications are useful.

SVM with the same features as I-MAD except for assem-
bly code, achieves accuracy similar to other best baseline
models in the cross-validation experiment, and it achieves
better accuracy than other baseline methods in the time split
experiment, while worse than I-MAD (no code). This shows
that the feature set we propose is effective, and our IFFNN
has advantages in classification performance on the same
feature set.

That being said, other models, except Mour2019CNN,
also achieve reasonably good results in all experiments. How-
ever, none of the models consistently achieves the second-
best performance in both experiment settings. Even though
Saxe2015Deep uses features from multiple scopes, they do
not show better results than Bald2013Meta and Mosk20080B.
The lack of any mechanism to understand assembly code is
an obvious reason, as modelling assembly code in our model
improves the performance. Our improved way of represent-
ing printable string and PE import features, combined with
our /IFFNN, is the other reason. This is validated in the next
subsection.

Mour2019CNN performs much worse than other mod-

els, even though we tried alternative hyper-parameter values
in addition to the values the authors provided. One reason
is that the way it represents an executable as an image is not
sophisticated; even a small offset change in an executable
would result in totally different textures in its image. In addi-
tion, we also observe overfitting, as its accuracy on the train-
ing set achieves 89.2%, while on the test set itis 71.8%. Even
though our model is also a deep learning model, it does not
suffer from the overfitting problem because we use two pre-
training tasks to adequately train the Satellite-Planet Trans-
former and Planet-Star Transformer with the rich informa-
tion embedded in assembly code. In contrast, Mour2019CNN
can only be trained with the labels of executables, which is
insufficient.

5.5. Interpretability
5.5.1. Case Study

Table 1 shows how our model interprets the detection
result of a sample. The primary factors that lead to the pre-
diction of 05¢199.exe to be malicious and the main assembly
functions related to the prediction are given. It can be seen
that the assembly code of the target executable is the primary
reason. The two assembly functions that contribute the most
to the prediction set the program to sleep for a certain time
and then download and run an embedded executable from a
remote address.

5.5.2. Qualitative Analysis

To better understand the impacts of the features we use,
Table 7 shows the ten most frequent main factors leading to
the prediction of a sample to be malware or benign.

Main factors for both classes The assembly code of an
executable is one of the most frequent factors influencing
the prediction of an executable to be malicious or benign.
This means that the vector representing the semantic mean-
ing of assembly code computed by our Galaxy Transformer
is very effective for malware detection. We randomly ex-
amine the assembly functions of some malware that acquire
the largest attention by the relay node at the top layer of the
Star-Galaxy Transformer. Many of them concern malicious
behaviors, such as installing itself into some registry, hijack-
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Table 7
Most frequent main factors leading to the predictions of the
malicious or benign class.

Main factors leading to the prediction of the malicious class

Assembly code
Total number of PE imports
Number of uncommon strings
The frequency of the string "Password"
The import of KERNEL32.dlI
Total number of strings
The import of WriteFile
The frequency of the string "\x02\x02GetLastError"
Subsystem
Maximum entropy of sections

Main factors leading to the prediction of the benign class

Total number of strings
Number of uncommon strings
The import of LCMapStringW
Total number of PE imports
Assembly code
Maximum entropy of sections
The frequency of the string " \r\x01\x01\x01\x05"
The frequency of the string " \r\x01\x01\x05\x05"
The import of initterm
Mean entropy of sections

ing some common legitimate DLLs, and injecting itself into
another process. We find that there are statistical differences
between the two classes in the mean values of total number
of strings, number of uncommon strings, total number of PE
imports, and maximum entropy of the sections. To be more
specific, on average there are less common strings, more un-
common strings, less PE imports, and higher entropy among
malware. The fact that these features could be main factors
for both classes also shows the superiority of our IFFNN
over logistic regression: as the number of uncommon strings
and the number of PE imports always have non-negative val-
ues, when each of them serves as a main factor leading to the
prediction of the malicious class, its weight is positive (i.e.,
w(v);v; > 0&v; > 0 = w(v); > 0), and when it serves as a
main factor leading to the prediction of the benign class, its
weight is negative (i.e., w(u)jvj < O&Uj >0=> w(v)j < 0).
This cannot be achieved by logistic regression because when
it is trained, the weight for each feature is determined and
stays static, irrelevant of the input samples. However, the
weight of each feature in /FFNN is dynamically computed
based on the whole context, i.e., the vector representing all
features.

The explanation from the perspective of statistics is as
follows. All supervised machine learning classification mod-
els work by identifying the correlation between a feature and
a class. Logistic regression can only learn the independent
correlation between a feature and a class, without consider-
ing the correlation between features; therefore, it is linear
and the weight for each feature is static. I[FFNN learns the
correlation between a feature and a class in a context consid-

ering the correlations between different features.

Main factors for malicious class The import of "KER-
NEL32.d1l" is a main factor for the prediction of malicious
class because malware relies heavily on a large number of
core APIs in it to manipulate memory and the file system.
The "WriteFile" function is also a main factor because mal-
ware such as ransomware and worms uses it to write con-
tent to the file system. The string of "Password" is another
main factor that more frequently appears in malware cre-
ated for credential theft purposes. Malware often uses mu-
tex for different reasons. For example, it can be used as a
locking mechanism to serialize access to a resource on the
system or to avoid more than one instance of itself running.
"GetLastError" is used to determine whether a mutex al-
ready exists. This is the reason why the frequency of string
"\x02\x02GetLastError" is a main factor leading to the pre-
diction of malware.

Main factors for benign class "LCMapStringW" is often
used by benign software to convert all characters of strings to
upper/lower case, which is a feature much less used in mal-
ware. "initterm" is used by core libraries to initialize a func-
tion pointer table and does not need to be imported by soft-
ware programs, and therefore it is an indicator of some be-
nign libraries. "\"\xOI\xOI\x01\x05" and "\\xO1\xO1\x05\x05"
are two strings that appear 1.8 and 3.6 times respectively
more frequently among benign executables than malicious
executables.

5.5.3. Quantitative Analysis

We also use a quantitative measure to analyze the inter-
pretation of I-MAD. We compute the Gini importance (GI)
and information gain (IG) of the features, and then rank them
based on those criteria. We then rank the features by the
frequencies that they serve as the main factors for the pre-
dictions. Features serving as main factors more frequently
should be relatively important features for malware detec-
tion. It should be noted that even though the importance
ranked this way is relevant to the rank by Gini importance
or information gain, they are not supposed to be equivalent.
Even if the attribution mechanism of I-MAD gives a per-
fect interpretation, the feature importance rank based on that
would still be different from the rank by Gini importance or
information gain.

Table 8 shows the Spearman’s Rank Correlation Coef-
ficient between the rank given by I-MAD, Gini importance,
and information gain. It can be seen that the Spearman’s
Rank Correlation Coefficient between the rank given by /-
MAD and those given by Gini importance and information
gain are 0.59 and 0.55, respectively. This shows a strong cor-
relation between them. The correlation coefficient between
the rank by information gain and by Gini importance is only
0.72, even though they are often used for the exact same pur-
pose: feature selection. The result means that the JFFNN in
I-MAD frequently uses features that have high information
gain or Gini importance as its main classification factors.
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Table 8

The Spearman’s Rank Correlation Coefficient between the fea-
ture importance rank given by I-MAD, Gini importance, and
information gain.

IG Gl I-MAD
IG| 1.0 | 0.72 0.59
Gl | 072 | 1.0 0.55

Table 9

Efficiency of each model in terms of number of samples classi-
fied per second. The time consumption for feature extraction
is not included.

Model n samples per second
Mosk20080B 32,152
Bald2013Meta 127,988
Saxe2015Deep 142,711
Raff2017MalC 86
Krcal2018Conv 142
Mour2019CNN 391

SVM (same features) 58
I-MAD (no code) 28,197
I-MAD (ST) 15,355
LMAD (ST+) 15,239

5.6. Efficiency Study

The efficiency of I-MAD and all models for comparison
measured by the number of samples classified per second is
presented in Table 9.

Among all models, the efficiency of I-MAD is moderate.
And I-MAD is the second most efficient deep learning model.
Saxe2015Deep is the most efficient because the dimension
of its feature vector is only 1024, and the network is very
small. Raff2017MalC and Krcal2018Conv are slow because
they rely on whole byte sequences, and they are very com-
putationally expensive. With our Titan Xp graphics cards
their batch sizes could be around 32 and 128 at most, re-
spectively. The batch size for Mour2019CNN depends on
the number of bytes in the samples; in extreme cases we
need to run the model on the CPU because the graphics card
memory cannot hold the computation for even one large ex-
ecutable. For I-MAD (ST)/(ST+), the batch size could be
at least 512 for most samples. As the representation of as-
sembly code is computed at three levels (i.e., basic block,
function, and executable), the memory for the lower level
computation is released and reused after the representation
is computed. For I-MAD (no code), the batch size could be
5,120. It is worth the extra computational cost to model as-
sembly code because the benefit of it in classification perfor-
mance is significant. SVM with the same features as I-MAD
also has very low efficiency because its computational com-
plexity is linear with the dimension of feature vector and the
number of support vectors, which are large when the dataset
is complex. In our experiments, there are always more than
43,000 support vectors, and the dimension of feature vectors
is more than 2,700.

6. Limitations and Future Work

Adversarial attack and defense are closely related topics
to classification problems such as image classification [26]
and malware detection [4]. Interpretability is a double-edged
sword considering adversarial attacks in white-box settings,
where adversaries have full access to the I-MAD model and
can use the interpretations to craft adversarial samples more
easily than by using an uninterpretable model.

Evasion techniques (e.g., adversarial attacks) are exten-
sively applied in wild malware, as is the case of our dataset.
Following previous experience [3, 29], we counter the eva-
sion techniques by detecting malware from the views of mul-
tiple disparate feature sets. Also, since adversarial samples
are already in our dataset, adversarial training is automati-
cally performed to defend against the attacks [26]. Usually,
adversarial attack and defense are discussed in a different
research paper than the one proposing a novel classification
model. One of our future work directions is to further inves-
tigate adversarial attack and defense on malware detection.

7. Conclusion

In this paper, we present I-MAD, a novel deep learning
model for static malware detection that is based on the under-
standing of assembly code. In addition to its excellent detec-
tion performance, it can also provide interpretation for its de-
tection results, which can be examined by malware analysts.
Therefore, in addition to malware detection, it can also help
malware analysts locate malicious payloads and find consis-
tent patterns in malware samples. The proposed IFFNN has
values that can be applied in interpretable classification for
other tasks as well.
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