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Abstract—Domain-specific quantitative modeling and analysis
approaches are fundamental in scenarios in which qualitative
approaches are inappropriate or unfeasible. In this paper, we
present a tool-supported approach to quantitative graph-based
security risk modeling and analysis based on attack-defense trees.
Our approach is based on QFLan, a successful domain-specific
approach to support quantitative modeling and analysis of highly
configurable systems, whose domain-specific components have
been decoupled to facilitate the instantiation of the QFLan
approach in the domain of graph-based security risk modeling
and analysis. Our approach incorporates distinctive features from
three popular kinds of attack trees, namely enhanced attack trees,
capabilities-based attack trees and attack countermeasure trees,
into the domain-specific modeling language. The result is a new
framework, called RisQFLan, to support quantitative security
risk modeling and analysis based on attack-defense diagrams.
By offering either exact or statistical verification of probabilistic
attack scenarios, RisQFLan constitutes a significant novel con-
tribution to the existing toolsets in that domain. We validate
our approach by highlighting the additional features offered
by RisQFLan in three illustrative case studies from seminal
approaches to graph-based security risk modeling analysis based
on attack trees.

Index Terms—Graph-based security risk models, attack-
defense trees, probabilistic model checking, statistical model
checking, formal analysis tools.

I. INTRODUCTION

Quantitative modeling and analysis approaches are essential
to support software and system engineering in scenarios where
qualitative approaches are inappropriate or unfeasible, e.g. due
to complexity or uncertainty, or by the quantitative nature of
the properties of interest. Automated approaches to support
quantitative modeling and analysis have been developed ex-
tensively during the last decades, including generic as well as
domain-specific approaches (cf., e.g., [1]–[10]).

QFLan [8] is one example of a successful domain-specific
approach to support quantitative modeling and analysis of
highly configurable systems, such as software product lines.
QFLan combines several well-studied rigorous notions and
techniques in an Eclipse-based domain-specific tool frame-
work. It consists of a domain-specific language (DSL) tailored
for configurable systems, and an analysis engine based on
statistical model checking (SMC) [11], [12]. In [8], we showed
the robustness and scalability of QFLan by analyzing large
instances of case studies that could not be analyzed before.

In this paper, we generalize the QFLan approach by de-
coupling domain-specific components and instantiating the
QFLan approach in a new domain: risk modeling and analysis.

The result, called RisQFLan, is a new framework to support
graph-based quantitative security risk modeling and analysis.
It constitutes a significant novel contribution to existing tool-
sets in that domain. In particular, RisQFLan can be used to:

1) build rich models by combining distinctive features from
existing formalisms for risk modeling and analysis;

2) enhance the analysis of existing tools for risk modeling.
Regarding 1), the DSL of RisQFLan has been designed to
include the most significant features of existing formalisms
based on attack trees, such that they can be combined in the
same model. Subsets of the RisQFLan DSL, indeed, can thus
be used to capture classes of existing modeling formalisms. In
addition, RisQFLan allows one to focus on specific dynamic
threat profiles, a feature that is being supported only recently
by very few approaches ([4], [5], [13]–[16]) and in a limited
way (cf. the detailed discussion in Section VIII).

We validate feature 2) by showing in Section VII how three
influential classes of risk models based on attack trees can
be specified in RisQFLan, and how the RisQFLan analysis
capabilities can be used to complement and enrich those
provided by existing toolsets. This is an advantage offered with
respect to the existing tools. In particular, RisQFLan includes
an additional analysis engine based on exact probabilistic
model checking that is not inherited from QFLan, which
comes with a statistical model checking engine [17].

Synopsis: Section II introduces the domain of graph-
based security risk modeling with attack-defense trees. Sec-
tion III presents a first contribution of the paper: a generaliza-
tion of the QFLan approach to domain-specific quantitative
modeling and analysis. Sections IV-VI describe the main
contributions of the paper to support security risk modeling
and analysis: the RisQFLan DSL in Section IV, its formal
semantics in Section V and the analysis capabilities of the
RisQFLan tool in Section VI. Section VII validates the
flexibility of RisQFLan by illustrating in detail how features
from three influential classes of attack trees can be specified in
RisQFLan and how the RisQFLan analysis capabilities can
be successfully used to complement and enrich the analyses
provided by existing tools. Section VIII discusses related work.
Section IX draws conclusions and outlines future work.
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II. GRAPH-BASED RISK MODELING AND ANALYSIS

This section provides a brief introduction to the specific do-
main of risk modeling and analysis with graph-based security
models. For this purpose, we use as running example the risk
assessment of a “bank robbery” scenario, which will also be
used in Section IV to illustrate RisQFLan.

Graph-based security models offer an intuitive and effective
means to represent security scenarios in complex systems,
by combining intuitive visual features with formal semantics,
which can then be used for formal analysis. Attack trees and
their variants [18]–[20] constitute a popular family of graph-
based security models for which several approaches have been
developed over the last years (cf., e.g., the surveys [21]–[23]),
aiming at providing scalable and usable methods for specifying
vulnerabilities and countermeasures, their interplay and their
key attributes such as cost and effectiveness. Attack trees (and
attack-defense trees) thus serve as a basis for quantitative
risk assessment, which helps to determine, for instance, where
defensive resources are best spent to protect a system.

In their simplest form, attack-defense diagrams are and/or-
trees whose nodes represent either attack goals or defensive
measures, and with sub-trees representing refinements of such
goals and measures. Fig. 1 shows an attack-defense diagram
modeling our running example. The tree’s root represents the
main threat under analysis, i.e. robbing a bank (RobBank).
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Fig. 1. Attack-defense diagram

Attack nodes can be refined in several ways by identifying
necessary sub-goals and combining them in different ways,
e.g. with disjunction, (ordered) conjunction, etc. In our exam-
ple, the attacker has two options to achieve its main goal: either
open the vault (OpenVault) or blow it up (BlowUp). This
is specified in the tree with corresponding nodes as children of
node RobBank, combined in a disjunctive way. Another kind
of refinement illustrated in our example is the following: in
order to open the vault (OpenVault), the attacker needs to
first learn its combo (LearnCombo) and then get to the vault
(GetToVault). This is specified by combining Learn-
Combo and GetToVault through an ordered conjunction. A

last example of refinement is used to model that for security
reasons two out of three of the vault’s opening codes are
required (FindCode1–FindCode3). Instead, blowing it up
only requires to get to the vault.

Attack-defense diagrams can also include defensive mecha-
nisms to deal with or to prevent attack threats. In the example
scenario, there are two defensive mechanisms. First, a Lock-
Down countermeasure, triggered by (successful or not) blow
up attacks that, once active, mitigates bank robbery attacks.
The rationale is that the vault is sealed to prevent robbery
when an explosion is detected. The second defensive measure
in our running example is a defense Memo, permanently active
against attacks trying to find opening code 2 (FindCode2).
The interplay between such a defensive countermeasure and
the corresponding attack nodes is also typically depicted
visually, as in our example. Defensive mechanisms, in turn,
can also be affected (e.g. disabled or mitigated) by attacks.
For instance, in our example an attack with a LaserCutter
can break the LockDown.

Attack-defense diagrams, besides being a useful tool for
modeling and informally reasoning on security risk scenarios,
often also have a formal meaning that lies at the basis of formal
reasoning, typically supported by effective software tools like
SecurITree [24], ADTool [25], SPTool [26], and ATTop [16]
to mention a few (cf. surveys [21]–[23] for further examples).

Standard analyses conducted on attack-defense diagrams
typically regard the feasibility of attacks (e.g. can the attacker
activate some actions that will result in the achievement
of her/his main goal?), their likelihood (e.g. what is the
probability that the main goal is achieved?) or their cost
(e.g. what is the cheapest successful attack for the attacker?).
Analysis techniques are often based on constraint solving,
optimization and statistical techniques. Section VI will provide
some of these analyses applied to our running example.

III. GENERALIZING THE QFLAN APPROACH

This section describes how the QFLan architecture was
made amenable for instantiation in domains beyond the one
for which it was conceived (configurable systems like software
product lines), and how its analysis capabilities were enriched.

The original QFLan architecture: We first summarize
the original QFLan architecture as presented in [8], organized
in two layers: the Graphical User Interface (GUI), devoted
to modeling, and the CORE layer, devoted to analysis. Both
layers are wrapped in an Eclipse-based tool embedding the
third-party statistical analyzer MultiVeStA [27], [28]. QFLan
is an open-source tool. The components of the GUI layer are:
• a QFLAN Editor with editing support that is typi-

cal of a modern Integrated Development Environment
(IDE), developed in the XTEXT framework, and a
MultiQuaTEx Editor for property specification in
the MultiQuaTEx language [27];

• a set of Views, including a project explorer, a diagnosis
console and a plot viewer for displaying analysis results.

The components of the CORE layer are:



• a Probabilistic Simulator, which is an inter-
preter of the formal semantics as probabilistic processes.
This interacts with the external statistical analyzer Multi-
VeStA to obtain SMC capabilities;

• a Built-in Constraint Solver used by the sim-
ulator to check constraints during simulation.
The refactored QFLan architecture: The architecture

illustrated in Fig. 2 decouples domain-specific components
of the QFLan architecture from domain-generic ones. The
domain-specific components that need to be provided to in-
stantiate the architecture in a new domain are the following:
the XTEXT grammar for DSL, the Interpreter, the
Constraint Solver and the Model Visualizer (dif-
ferentiated from other components by their blank background).
The remaining components are either existing domain-generic
components (solid border) or domain-specific components,
automatically generated by XTEXT (dashed border).

Fig. 2. The refactored QFLan architecture

The GUI layer basically remains unchanged, except that
Fig. 2 makes explicit that the DSL Editor is generated auto-
matically from an XTEXT grammar for DSL. Moreover,
it was extended with a Model Visualizer component to
offer an automatic visual representation of the model at hand.
This is obtained by providing an encoding of the models’
features of interest in the DOT language 1.

The main changes in the refactored QFLan architecture
however concern the CORE layer, whose new components are:
• an Interpreter and a Constraint Solver, im-

plementing the formal semantics of the DSL based on
rated transition systems (transition systems with rate-
decorated transitions);

1http://www.graphviz.org/doc/info/lang.html

• a Rated Transition System Generator rely-
ing on the Interpreter to generate rated transition
systems on-the-fly;

• a DTMC Generator, which uses the Rated
Transition System Generator to normalize
rated transition systems into on-the-fly generated
Discrete-Time Markov Chains (DTMC);

• a Probabilistic Simulator, which is now sepa-
rated from the above components and which is able to
simulate a DTMC without fully generating it using the
on-the-fly DTMC Generator;

• a DTMC Exporter which generates an entire DTMC
by using the DTMC Generator and exports it in
the input format of the well-known probabilistic model
checkers PRISM [29] (www.prismmodelchecker.org) and
STORM [30] (www.stormchecker.org).

IV. RISQFLAN DSL

This section describes RisQFLan, a domain-specific instan-
tiation of QFLan in the security risk domain described in
Section II. A screenshot of RisQFLan is provided in Fig. 3,
depicting the implemented components from the GUI layer
in Fig. 2. We describe here the DSL of RisQFLan, while
its formal semantics is given in Section V and its analysis
capabilities are presented in Section VI. We illustrate the DSL
of RisQFLan through the running example, whose attack-
defense diagram is depicted in Fig. 1 (and in Fig. 3).

In the DSL, nodes are declared in specific blocks, cf. Code 1.
Note that countermeasure nodes require to indicate the attack
node(s) that may trigger them.

begin attack nodes
RobBank OpenVault BlowUp
LearnCombo GetToVault
FindCode1 FindCode2
FindCode3 LaserCutter
end attack nodes

begin defense nodes
Memo
end defense nodes

begin countermeasure nodes
LockDown = {BlowUp}
end countermeasure nodes

Code 1. Nodes

Our attack-defense diagrams
relate nodes by two types of re-
lations: (i) refinements shape of-
fensive (defensive, resp.) nodes
into a set of offensive (defen-
sive, resp.) sub-nodes; (ii) role-
changes state how to oppose of-
fensive (defensive, resp.) nodes
by defensive (offensive, resp.)
nodes. Each node has at most
one refinement and at most one
role-change. Typical for our ap-
proach is that nodes may have multiple parents, which is
convenient to specify an attack (defense) node that affects
multiple defenses (attacks) or an attack (defense) node that
refines many attacks (countermeasures).

We offer OR, AND, OAND (ordered AND), and k-out-
of-n refinements for attack and countermeasure nodes. De-
fense nodes model static, atomic defenses that cannot be
refined. Countermeasures are also atomic, but they can be re-
fined with defense nodes to permit reactive defense nodes that
become effective only upon (attack detection and) activation of
the refined countermeasure. AND and OR refinements originate
from the seminal works on attack trees [18]. OAND refinements
stem from enhanced and improved attack trees [31], [32] and
are used to model ordered attacks: sub-nodes can be activated

http://www.graphviz.org/doc/info/lang.html
www.prismmodelchecker.org
www.stormchecker.org


Fig. 3. A screenshot of RisQFLan

in any order but only the correct order activates the parent
node. The k-out-of-n refinements are inspired by attack
countermeascure trees [33].

Lines 2-5 of Code 2 show how to declare attack diagrams in
RisQFLan. The square brackets of OAND indicate that order
matters: OpenVault requires LearnCombo and GetTo-
Vault in that order. K2 expresses that at least two of the
three sub-attacks of LearnCombo are required. Inspired by
other formalisms supporting both attack and defense mecha-
nisms, like attack-defense trees [20], a role-changing relation
describes the attack a countermeasure or defense works against
(e.g. LockDown defends against RobBank) or vice versa
(e.g. LaserCutter neutralizes LockDown). Lines 6-8 of
Code 2 show that attack, defense and countermeasure nodes
can additionally have a role-changing relation with a child of
the opposite role, an opponent node affecting its activation.

1 begin attack diagram
2 RobBank -> {OpenVault, BlowUp}
3 OpenVault -OAND-> [LearnCombo, GetToVault]
4 BlowUp -> {GetToVault}
5 LearnCombo -K2-> {FindCode1, FindCode2, FindCode3}
6 RobBank -> {LockDown}
7 LockDown -> {LaserCutter}
8 FindCode2 -> {Memo}
9 end attack diagram

Code 2. Attack-defense diagram

As in other approaches [21], attack nodes may be decorated
with attributes, like cost or detection rates, for quantitative
analyses [5], [15], [34]. The cost of (attempting) an attack,

like the attribute Cost in Code 3, may be used to impose con-
straints. The default value is 0, e.g. Cost(GetToVault)=
0. The cumulative value for the entire scenario, often the cost
associated to a (sub-system rooted in a) node, is the sum of
the costs of its active descendants [18]. However, the total
cost of an attack should not reflect only the cost of successful
sub-attacks, as this would be a best-case scenario. Therefore,
in RisQFLan we consider both successful and failed attack
attempts to compute the value of an attribute of an attack node.
Furthermore, we allow attributes also for defensive nodes.

begin attributes
Cost = {LaserCutter = 10, BlowUp = 90,

FindCode1 = 5, FindCode2 = 5, FindCode3 = 5}
end attributes

Code 3. Attributes

In [24], [35], a noticeability attribute is a behavioral
metric used to indicate the likeliness of an attack attempt
to be noticed. Following attack countermeasure trees [33],
we make this notion a first-class citizen of RisQFLan,
called attack detection rate, which influences activation of
countermeasures. More precisely, such a rate determines the

begin attack detection rates
BlowUp = 1.0
end attack detection rates

Code 4. Attack detection rates

probability for an attack at-
tempt, whether successful or
not, to be detected, and it
triggers the activation of the
affected countermeasures, in
the sense that higher detection rates lead to more likely



activation of countermeasures. The default value is 0, i.e. an
attack is undetectable. Code 4 shows that an attempt to blow
up a vault is always noticed.

In [20], [25], an attack node is disabled if it is affected
by a defense. However, a common conception in security is
that nothing is 100% secure. Therefore, we include the notion
of defense effectiveness from [33] to specify the probability
for a defense node to be effective against a combination of
attack nodes and attack behavior. The rationale is that different
attackers might be affected differently, even when attempting
the same attack (e.g. a security guard is efficient against a thief,
but not against a military attack). The default value is 0, i.e.
the defense has no effect. Code 5 states that Memo scales the
probability of succeeding in FindCode2 attacks by 1− 0.5,
whereas LockDown scales that of RobBank by 1− 0.3.

begin defense effectiveness
Memo(ALL, FindCode2) = 0.5, LockDown(ALL, RobBank) = 0.3
end defense effectiveness

Code 5. Defense effectiveness (ALL denotes any attacker)

A. Attack Behavior

An important feature of our models is that defensive be-
havior is reactive, while attackers are proactive. RisQFLan
allows to fine tune security scenarios by defining explicit
attack behavior, implicitly constrained by an attack-defense
diagram. The combination of attack-defense diagrams and
explicit (probabilistic) attack behavior was motivated by work
on configurable systems [8], [36]. Explicit attack behavior
enables the analyses of specific attacker types, like script
kiddies, insiders, and hackers, which has the advantage of
being able to evaluate system vulnerabilities for those attacker
types that make more sense for the security scenario at hand.
Moreover, it enables novel types of analysis to complement
the classical best- and worst-case evaluations of attack graphs
(like the bottom-up evaluation in ADTool [25]).

Attack behavior is modeled as rated transition systems,
whose transitions are labeled with the action being executed
and a rate (used to compute the probability of executing the
action), and possibly with effects (updates of variables) and
guards (conditions on the action’s executability), in this order
(e.g. Lines 12-13 in Code 7). Fig. 4 (and its corresponding
Code 7) sketches an attacker, named Thief, that starts
by choosing to attempt an open vault (tryOpenVault) or
blow up (tryBlowUp) attack. Independently of this choice,
s/he can try get-to-vault attacks (tryGetToVault), required
by both strategies. OpenVault requires to try to learn the
combo, which in turn requires to try to find at least two codes.

begin actions
choose tryGTV try
end actions

Code 6. Actions

Attacker actions can be user-defined
for scenario-specific behavior not di-
rectly related to node activation, such
as those in Code 6 (where try is part
of the attacks tryOpenVault, try-
LearnCombo and tryFindCode that are not further de-
tailed in Fig. 4 and Code 7). RisQFLan also provides a
set of predefined attacker actions, like succ and fail for

Fig. 4. Attack behavior

a successful or failed attack attempt, resp., modeled by a
probabilistic choice between succ and fail actions, whose
associated rates determine the success likelihood together with
(the effectiveness of) the involved defenses. In Section VII, we
will see how attackers can apply backtracking strategies via
the predefined action remove.

Attack behavior is executed by considering, at each step,
the outgoing transitions from the current state admitted by
the attack diagram and by further constraints discussed below.
Normalizing the sum of the rates of these transitions to 1 leads
to a DTMC, while probabilistic simulations are obtained by
selecting one transition probabilistically using the transition
rates (e.g., from start to complete with probability 1

1+2 ).
Transitions can contain guards, like allowed, used to

attempt RobBank in start only if all required sub-attacks
succeeded (cf. Lines 6-7 in Code 7), or !has, used to forbid
the transition to tryGetToVault if one already succeeded
to GetToVault (cf. Line 8 in Code 7).

RisQFLan also supports action constraints, acting as
guards on any transition executing a given action (while
transition guards constrain single transitions). They are given
as do(act) → b, where act is an action and b is a Boolean
expression over attributes. As defined in Code 8, any transition
with action choose is disabled as soon as one succeeds to
open or blow up the vault.
begin action constraints
do(choose) -> !(has(OpenVault) or has(BlowUp))
end action constraints

Code 8. Action constraints

Transitions can also be labeled with side-effects: real-valued
variables updated upon a transition’s execution. Variables
model context information, thus allowing for rich descriptions
of system states, of attackers and of defenses, greatly facil-
itating the expression of constraints and the analysis phase.



1 begin attacker behavior
2 begin attack
3 attacker = Thief
4 states = start, tryOpenVault, tryLearnCombo, tryFindCombo, tryGetToVault, tryBlowUp, complete
5 transitions =
6 start -(succ(RobBank), 2, allowed(RobBank)) -> complete, //If I open or blow up the vault, then I can rob the bank
7 start -(fail(RobBank), 1, allowed(RobBank)) -> complete,
8 start -(tryGTV, 4, !has(GetToVault)) -> tryGetToVault, //Whatever strategy was used, I must get to the vault
9 tryGetToVault -(succ(GetToVault), 2, {AttackAttempts=AttackAttempts+1}) -> start,

10 tryGetToVault -(fail(GetToVault), 1, {AttackAttempts=AttackAttempts+1}) -> start,
11 start -(choose, 4) -> tryOpenVault, //This is the strategy where I open the vault
12 tryOpenVault -(succ(OpenVault), 2, {AttackAttempts=AttackAttempts+1}, has(LearnCombo) and has(GetToVault)) -> start,
13 tryOpenVault -(fail(OpenVault), 2, {AttackAttempts=AttackAttempts+1}, has(LearnCombo) and has(GetToVault)) -> start,
14 tryOpenVault -(try, 2, has(LearnCombo) and !has(GetToVault)) -> start, //I know the combo but did not get to the vault
15 tryOpenVault -(try, 5, !has(LearnCombo)) -> tryLearnCombo,
16 ... //Similar for tryLearnCombo and then tryFindCode
17 start -(choose, 4) -> tryBlowUp, //This is the strategy where I blow up the vault
18 tryBlowUp -(succ(BlowUp), 2, {AttackAttempts=AttackAttempts+1}) -> start,
19 tryBlowUp -(fail(BlowUp), 1, {AttackAttempts=AttackAttempts+1}) -> start
20 end attack
21 end attacker behavior

Code 7. Attack behavior

Code 9 defines variable AttackAttempts (AA in Fig. 4),
which stores the number of attack attempts, updated each time
a succ or fail action occurs as attempt to rob the bank.
begin variables
AttackAttempts = 0
end variables

Code 9. Variables

begin quantitative constraints
{value(Cost) <= 100}

end quantitative constraints

Code 10. Quantitative constraints

In addition to constraints imposed by attack diagrams, tran-
sition guards and action constraints, attack behavior may be
constrained by quantitative constraints in the form of Boolean
expressions involving (arithmetic expressions or inequalities
over) reals, attributes and variables. In Code 10, we constrain
to 100 the maximum accumulated cost of an attack, of partic-
ular interest since attack behavior may model failed attacks.

Attack behavior is completed with an initial setup specifying
the attacker and any initially accomplished attack(s). The latter

begin init
Thief = {FindCode1}

end init

Code 11. Initial setup

enrich expressiveness, since one can
assign an initial advantage to attack-
ers: an attack-defense diagram models
all possible attacks, but some attackers
(e.g., insiders) may already have ac-
cess to critical components. This is convenient as a diagram’s
sub-trees may be ignored without their explicit removal. Due
to Code 11, the attacker Thief already has one code.

Note that RisQFLan provides a programming-like envi-
ronment that may be attractive to software developers, but it
integrates at the same time a graphical component shown in
Fig. 3, which may make it more attractive for security experts.
The DSL moreover has a formal semantics, defined next.

V. RISQFLAN OPERATIONAL SEMANTICS

A. RisQFLan Models and Configurations

In this section, we provide a formal definition of the
ingredients composing RisQFLan models. In order to improve
readability, we provide references to the corresponding code
blocks from Section IV when relevant, which show ho the
components of the model are actually specified in our DSL.

A RisQFLan model S is defined as a septuple S =
〈N ,D,V,A,B, C,P〉, where
• N = Na ] Nd ] Nc is a set of nodes divided into

attack nodes Na, defense nodes Nd and countermeasure
nodes Nc (Code 1);

• D is a set of attacker actions. The set D contains all
actions succ(na), fail(na), and remove(na), where
na ∈ Na, and additionally user-defined actions (Code 6);

• V is a set of variables (Code 9);
• A is a set of attackers names (Code 7);
• B is a set of attacker behaviors (Code 7);
• C is a set of constraints on the (presence/absence of)

nodes, their attributes, and on (user-defined) variables.
Such constraints are formed by the hierarchical con-
straints (built with -OR->, -AND->, -OAND->, and
-Kn->, Code 2), action constraints (of the form do
(act) → b, where act ∈ D and b is a Boolean expres-
sion over attributes, Code 8) and quantitative constraints
(Boolean expressions enriched with special attributes like
allowed(na) and has(na), with na ∈ Na, Code 10);

• P : N → R is a set of node properties, distinguishing
attributes decorating nodes (Code 3), attack detection
rates decorating attack nodes (functions Na → [0, 1],
Code 4) and defense effectiveness decorating defense
nodes (functions (Nd ∪Nc)×Na×A → [0, 1], Code 5).

We introduce the notion of configuration for a RisQFLan
model and equip it with an operational semantics based on
rated transition systems. A configuration of a RisQFLan
model S is a tuple 〈C, s〉, where s is a state of attack behavior
of S and C is a set of constraints consisting of:
• all constraints of the model S;
• a predicate has(n) for each currently active node n ∈ N ;
• constraints of form t(na) < t(n′a), for na, n′a ∈ Na,

denoting that na was activated before n′a, necessary to
support OAND refinements;

• an assignment of form att(n) = x for each attribute att
and node n ∈ N to denote the value of the attribute for
the node n, with x ∈ R;



• assignments of form valuea(att) = x and valuedef(att) =
x for each attribute att to denote its cumulative attacker
and defender value, with x ∈ R;

• an assignment of form v = x for each variable v ∈ V ,
with x ∈ R;

• an assignment of form dr(na) = x for each attack node
na to denote detection rate of na, with x ∈ R;

• a set detect(nc) ⊆ Na for each countermeasure node nc
to denote the attack nodes that can be detected by nc.

LetM denote the set of all configurations for a RisQFLan
model S. We restrict to configurations 〈C, s〉 such that C is
consistent, i.e. all constraints are satisfied, denoted by con(C).
As we will see in Proposition 1, this property is preserved by
the operational semantics: no inconsistent configuration can be
reached from a consistent one. We will use ⊕ to denote union
of constraint sets, 	 for subtraction and ` for entailment.

B. RisQFLan Dynamics

The dynamics of RisQFLan configurations is given as rated
transition systems that specify how a configuration 〈C, s〉 can
evolve into a configuration 〈C ′, s′〉 with a certain rate r. Such
evolution occurs as the consequence of the attacker trying
to perform an action and the defender eventually reacting to
mitigate it. We denote such an evolution with a transition of
the form 〈C, s〉 r−→ 〈C ′, s′〉. In general, the dynamics is defined
by a multi-relation →⊆ NM×R+×M induced by the rules of
Fig. 5. We use a multi-relation since we have to account for
multiple copies of the same transition with the same rate, as
the probabilistic interpretation requires to ‘sum’ such rates.
Indeed, as we shall see, the dynamics of a configuration
is ultimately defined as a discrete-time Markov chain, upon
which the analysis of RisQFLan is based.

The rules share some premises and effects. First, all rules
need an attack behavior transition of the form s

α,r,u,g−−−−→ s′,
with current state of the attacker s, action α, rate r and
memory update u, such that the executability conditions of
the transition guard g hold. This is imposed by exe(C,α, g),
defined as:

exe(C,α, g)=


false if C 0 g
false if C = C′ ⊕ (do(α)→ C′′) and C′ 0 C′′

false if α=add(na) and has(na)∈C, with na∈Na

false if α= fail(na) and has(na)∈C, with na∈Na

false if α= remove(na) and has(na) 6∈C, with na∈Na

true otherwise

Second, all rules require the resulting store to be consistent.
Further conditions vary from rule to rule, as we will explain.
By applying a rule on a configuration 〈C, s〉 due to a local
transition s

α,r,u,g−−−−→ s′, we obtain a configuration 〈C ′, s′〉,
where C ′ is obtained by applying the effects u on the variables
in C (denoted u(C,α)) and by possibly (de)activating nodes.
In addition, u(C,α) updates cumulative attack and defense
attribute values, as explained in Section IV. The semantics of
u(C,α) is as expected, and not presented for conciseness.

We now describe each rule in detail.
Rule ACT executes user-defined actions: node activations

are not altered by this rule so its effects are limited to variables.

Rule ADD is triggered by actions add(na): with probability
dr(na), it may activate the set c(na, C) of countermeasure
nodes able to detect na that are not already active or inhibited
by an active attack node n′a. The set c(na, C) is defined
as follows, where -RC-> denotes a role-changing relation:

{nc | na ∈ detect(nc) ∧ has(nc) 6∈ C ∧ ¬∃n′a.
(has(n′a) ∈ C ∧ (nc -RC-> n

′
a) ∈ C) }

Upon the execution of the rule, the constraint store is up-
dated with the new attack node na, which is recorded to
be the last active attack node of the store (t(n) < t(na)).
Furthermore, the constraint store is also updated with each
countermeasure node in c(na, C). Another effect is that all
defenses that have na as opponent are deactivated. The rate
of the obtained transition is not necessarily the original rate r
of the attack behavior transition. In fact, r might be scaled by
the defense effectiveness of the active defenses against na in
the newly obtained store, denoted by de(C ′, na, s) ∈ [0, 1].
We distinguish three cases: (i) if na has no role-changing
relation, it is 1; (ii) if na has a defense opponent nd, it is
the effectiveness of nd for na and the current attacker; (iii) if
na has a countermeasure opponent nc, it is the product of the
effectiveness of nc and that of any defense node that refines it,
for na and the attacker A. Finally, we have to multiply the rate
by the probability of activating the countermeasures, dr(na).
Rule ADDNOC is similar, but it covers the case in which the
countermeasures c(na, C) do not get activated.

Rules FAIL and FAILNOC are similar to ADD and
ADDNOC, but the attack node is not activated because they
regard the fail action which model failed attack attempts.
Finally, rule REM models the deactivation of an attack node.

It is easy to see that the semantic rules ensure consistency is
preserved along sequences of configurations, since consistency
is a premise in every rule, and hence in every transition.

Proposition 1: Let S be a RisQFLan model and 〈C, s〉
be a configuration such that C is consistent. Then for any
configuration 〈C ′, s′〉 such that 〈C, s〉 →∗ 〈C ′, s′〉 it holds
that C ′ is consistent.

The probabilistic interpretation of rated transition systems
yields DMTCs. A DTMC is a tuple 〈Γ,Π〉 where Γ is a set of
states and Π : Γ → [0, 1] is a probability transition function,
i.e. such that for all s ∈ Γ,

∑
s′∈Γ Π(s, s′) = 1. The DTMC

semantics of a rated transition system is obtained by normal-
ising the rates into [0..1] such that in each state/configuration,
the sum of the rates of its outgoing transitions equals one. So,
for a rated transition system → on a set of configurations M
we obtain the DTMC 〈M,Π〉 where, for each pair of states
s, s′ ∈M, the probability transition function Π is defined by

Π(s, s′) =


∑

(s,r,s′)∈→ r

out(s) if out(s) > 0

1 if out(s) = 0 and s = s′

0 otherwise

where out denotes the outdegree of a configuration. Note that
self-loops with probability 1 are added to configurations with-



[ACT]
s

act,r,u,g−−−−−→ s′ exe(C, act, g) C′ = u(C, act) con(C′)

〈C, s〉 r−→ 〈C′, s′〉

[ADD]

s
add(na),r,u,g−−−−−−−−→ s′ exe(C, add(na), g)

C′ = u(C, add(na))⊕ has(na)⊕
⊕

nc ∈ c(na,C)

has(nc)⊕
⊕

{n∈Na | has(n)∈C }
t(n) < t(na)	

( ⊕
{n |n -RC-> na }

has(n)

)
con(C′)

〈C, s〉 r·de(C′,na,s)·dr(na)−−−−−−−−−−−−−→ 〈C′, s′〉

[ADDNOC]

s
add(na),r,u,g−−−−−−−−→ s′ exe(C, add(na), g)

C′ = u(C, add(na))⊕ has(na)⊕
⊕

{n∈Na | has(n)∈C }
t(n) < t(na)	

( ⊕
{n |n -RC-> na }

has(n)

)
con(C′)

〈C, s〉 r·de(C′,na,s)·(1−dr(na))−−−−−−−−−−−−−−−−→ 〈C′, s′〉

[FAIL]

s
fail(na),r,u,g−−−−−−−−→ s′ exe(C, fail(na), g) C′ = u(C, fail(na))⊕

⊕
nc∈c(na,C)

has(nc) con(C′)

〈C, s〉 r·de(C′,na,s)·dr(na)−−−−−−−−−−−−−→ 〈C′, s′〉

[FAILNOC]
s

fail(na),r,u,g−−−−−−−−→ s′ exe(C, fail(na), g) C′ = u(C, fail(na)) con(C′)

〈C, s〉 r·de(C′,na,s)·(1−dr(na))−−−−−−−−−−−−−−−−→ 〈C′, s′〉

[REM]

s
remove(na),r,u,g−−−−−−−−−−→ s′ exe(C, remove(na), g)

C′ = u(C, remove(na))	

(
has(na)⊕

⊕
{n | has(n)∈C }

t(n) < t(na)

)
con(C′)

〈C, s〉 r−→ 〈C′, s′〉

Fig. 5. Operational semantics

out outgoing transitions. The DTMC semantics of RisQFLan
models is used in our analyses, described in the next section.

VI. RISQFLAN SUPPORTED QUANTITATIVE ANALYSES

RisQFLan supports the quantitative analysis of probabilis-
tic attack scenarios by means of statistical model checking
(SMC) [11], [12] as well as probabilistic model checking
(PMC) [37], thus providing additional analysis capabilities to
what other risk analysis tools typically offer.

SMC is concerned with running a sufficient number of
(probabilistic) simulations of a system model to obtain statisti-
cal evidence (with a predefined level of statistical confidence)
for the quantitative properties to be checked. Compared to
obtaining exact results (with 100% confidence) with exact
analysis techniques like (probabilistic) model checking, SMC
offers unique advantages over exhaustive (probabilistic) model
checking. Most importantly, SMC scales better. First, there
is no need to generate entire state spaces, thus avoiding the
combinatorial state-space explosion problem typical of model
checking [17]. Second, the set of simulations to be carried out
can be trivially distributed and run in parallel, thus scaling
better with hardware resources. MultiVeStA, indeed, can be

run on multi-core machines, clusters or distributed computers
with a nearly linear speedup. Another advantage concerns its
uptake in industry. Compared to model checking, SMC is
simple to implement, understand and use, and it requires no
specific modeling effort other than a system model that can be
simulated and checked against quantitative properties. In fact,
SMC is more and more being applied in industry [38]–[50].

In RisQFLan, the SMC analysis is obtained thanks to the
internal DTMC simulator with MultiVeStA [27], [28], a frame-
work for enriching simulators with SMC capabilities, while
the PMC analysis is obtained thanks to RisQFLan’s DTMC
exporting capabilities in a format supported by PRISM [29]
and STORM [30]. SMC is necessary because the RisQFLan
DSL has high expressivity, allowing for potentially unbounded
variables and high variability in the models, thus often giving
rise to large or infinite state spaces. PMC can instead be used
for models with finite state spaces for exact analyses.

Next we showcase two SMC analysis capabilities of RisQ-
FLan on our running example. PMC cannot be used in this
case as the model has an infinite state space. We will showcase
PMC analyses using PRISM in Section VII.



Fig. 6. Analysis result of the properties in Code 12

A. Analysis while Varying Simulation Steps

We start by studying the probabilities of activating attacks
and countermeasures while varying the simulation step. This is
expressed in Code 12: The pattern from-to-by specifies that
we are interested in the first 100 steps. We list 8 properties of
interest (1 per attack node, considering FindCode1 active,
plus countermeasure LockDown). Each property can be an
arithmetic expression of nodes (evaluating to 1 or 0 if the node
is active or not, respectively), variables or attributes. The prop-
erties are considered in all 100 steps, totaling 800 properties.
begin analysis
query = eval from 1 to 100 by 1 :
{RobBank, OpenVault, BlowUp, LearnCombo, GetToVault,
FindCode2, FindCode3, LockDown}

default delta = 0.1 alpha = 0.1 parallelism = 1
end analysis

Code 12. Analysis of the scenario

Each such actual property pi denotes a random variable Xi

which gets a real value assigned in each simulation. Multi-
VeStA estimates the expected value E[Xi] of each of the
800 properties (reusing the same simulations) as the mean
xi of n independent simulations, with n large enough to
guarantee an (α, δ) confidence interval (CI): E[xi] belongs to
[xi−δ/2, xi+δ/2] with statistical confidence (1−α)·100%. The
CI is given by alpha and default delta (but a property-
specific δ could be used instead). Finally, parallelism
states how many local processes should be launched to dis-
tribute the simulations. Overall the analysis required 400 simu-
lations, performed in 16 seconds on a standard laptop machine.

Fig. 6 shows the results. Recall (Fig. 1, Code 2) that
RobBank requires OpenVault or BlowUp. The probability
to activate RobBank starts growing after step 4, stabilizing
at 0.17, while those of OpenVault and BlowUp reach 0.15
and 0.11, resp. We know from Code 8 that they cannot both
be activated, so one should be able to activate RobBank
with probability almost 0.26. Instead, the actual probability is
scaled down by 2

3 due to the probabilistic choice from start
to complete in Fig. 4: RobBank can either succeed or fail.

Note that LockDown has a high probability to be activated,
reaching about 0.85 after 60 steps. This is coherent with
Code 5, stating that any BlowUp attempt is detected. One
might expect the probability to activate BlowUp to be higher

than that of LockDown, as the former triggers the latter.
However, this is not true. This is explained by the fact that
both succeeded and failed BlowUp attempts are detected (cf.
success succ(BlowUp) and failure fail(BlowUp) actions
in Fig. 4). Interestingly, if we added LaserCutter to the
initial configuration, then the probability of activating Lock-
Down would remain 0, as it is inhibited by LaserCutter.

B. Analysis at the Verification of a Condition

We can also compute properties evaluated as soon as a given
condition verifies. Here we compute the probability for each
attack node to be the first attempted and succeeded, as well
as the average number of steps needed to perform the first
attempt. Code 13 expresses these 9 properties (1 probability
per attack node plus the average number of steps). Note that
the from-to-by pattern is replaced by when to specify that
the properties should be evaluated in the first state satisfying
AttackAttempts == 1. Moreover, the list of properties of
interest now includes steps, for which we give a specific
delta, evaluated as the average number of steps computed to
reach the first state satisfying the required condition.
begin analysis
query = eval when {AttackAttempts == 1} :
{RobBank, OpenVault, BlowUp, LearnCombo, GetToVault,
FindCode2, FindCode3, LockDown, steps[delta = 0.5]}

default delta = 0.1 alpha = 0.1 parallelism = 1
end analysis

Code 13. Analysis of the scenario

Rob Open Blow Learn GetTo Find Find Lock
steps

Bank Vault Up Combo Vault Code2 Code3 Down

0 0 0 0 0.27 0 0.01 0.32 2.51

TABLE I
ANALYSIS RESULT OF THE PROPERTIES IN CODE 13

Overall, the analysis required 400 simulations, performed
in a few seconds on a standard laptop machine. The analysis
results are provided in Table I. The first four attack nodes have
probability 0 of being the first attempted and succeeded attack.
This is coherent with the diagram in Fig. 1, as such attacks
are not leaves of the diagram and thus require other attacks
to succeed first. Consistently with Fig. 6, GetToVault
has higher probability than FindCode2 and FindCode3.
Intuitively, this depends on the way the attacker’s behavior
is defined. As sketched in Fig. 4 and specified in Code 7,
starting from state start we only have to perform one step
to try GetToVault attacks, while to try finding a code
requires traversing two more states, in each of which other
competing actions are enabled. In turn, FindCode2 has
lower probability (belonging to the interval [0, 0.05] due to
the imposed CI) than FindCode3 due to the defense Memo.
Interestingly, we note a probability of 0.32 of activating the
countermeasure LockDown. This means that failed BlowUp
attempts were detected. Finally, Table I also shows that, on
average, 2.51 steps are needed to perform one attack attempt.
Indeed, in state start no attack attempt is allowed, so two



steps are needed to attempt GetToVault or BlowUp attacks,
while three are needed for FindCode attempts.

C. Simulating and Exporting

RisQFLan models can be debugged by performing prob-
abilistic simulations. Code 14 prints (in file sim.log) all
chosen states and other useful information of the simulation
suitable for debugging. RisQFLan’s DTMC Exporter can
generate entire DTMCs and export them in the input format ac-
cepted by the probabilistic model checkers PRISM or STORM.

Code 15 shows how to export the DTMC of our running
example for external analysis, labeling with "hasRB" all
states in which a RobBank attack succeeded.
begin simulate
seed = 1 steps = 1
file = "sim.log"
end simulate

Code 14. Log generation

begin exportDTMC
file = "RobBank.pm"
label with "hasRB" when has(RobBank)
end exportDTMC

Code 15. DTMC export

VII. VALIDATION OF RISQFLAN

A variety of extensions of attack-tree models exist and
no single approach has so far emerged as the ultimate so-
lution [21]–[23], [35]. This section shows the flexibility of
RisQFLan by illustrating how features from three seminal and
influential kinds of attack trees can be specified in RisQFLan,
and how the latter’s analysis capabilities can be used to
complement and enrich the analyses provided by existing
tools. All MultiVeStA analyses in this section used 0.1 for both
α and δ. The tool, its source code and the models and analyses
are available at https://github.com/risqflan/RisQFLan/wiki.

A. Case Study 1: Ordered Attacks

This section shows that the RisQFLan DSL can be used
to model features from enhanced attack trees, an extension of
basic attack trees proposed in [31], and that RisQFLan hence
complements the analysis capabilities of [31] with (exact)
PMC and SMC on specific attacker profiles. We do so by
illustrating how ordered attacks, a key differentiating feature
of such enhanced attack trees, can be specified in RisQFLan.

1) Ordered Attacks to “Bypassing 802.1x”: As illustra-
tive example, we use one case study from [31], namely an
enhanced attack tree modeling complex (ordered) attacks on
wireless LANs using protocol IEEE 802.11. Fig. 7, reproduced
from [31], illustrates the enhanced attack tree. The main
idea is that the authentication mechanism of the protocol can
be compromised through hijacking authenticated sessions (B)
or man-in-the-middle attacks (E). The sub-trees of B and E
further refine both attacks into specific sub-goals.

Fig. 7. Enhanced attack tree for
“Bypassing 802.1x” [31]

1 begin attack diagram
2 A -OR-> {B, E}
3 B -OAND-> [C, d]
4 C -OAND-> [D, b, c]
5 D -AND-> {a}
6 E -OAND-> [F, fg]
7 fg -AND-> {f, g}
8 F -> {e}
9 end attack diagram

Code 16. Attack tree of
Fig. 7 in RisQFLan

2) Specifying Ordered Attacks in RisQFLan: Code 16
shows a model of the enhanced attack tree of Fig. 7 in
RisQFLan. It is worth observing how the ordering relation
is modeled. The original model in Fig. 7 prescribes that: (i) to
achieve attack B, sub-goal C must be achieved before d (cf.
Line 3 in Code 16); (ii) to achieve attack C, sub-goal D must be
achieved before b, which itself must be achieved before c (cf.
Line 4 in Code 16); and (iii) to achieve attack E, sub-goal F
must be achieved before f and g (cf. Lines 6-7 in Code 16).
Note that in the RisQFLan specification, auxiliary node fg
is used to group the unordered conjunction of f and g.

3) Complementing the Analysis of [31] with RisQFLan:
The main analysis feature of the approach in [31] consists of
inspecting activity logs to recognise potential attacks as per the
specified enhanced attack trees. With RisQFLan this can be
augmented with exact or statistical probabilistic verification on
the average behaviour of specific attacker profiles. To illustrate
this we modeled four attacker profiles:
Best: an attacker that knows one of the optimal order of

attacks to perform to achieve the main attack goal;
AverageA: an attacker randomly trying attacks until achiev-

ing the main attack goal or a wrong order led to failure;
AverageB: likeAverageA but can undo attacks (backtrack);
Worst: like AverageA but chooses attacks with a proba-

bility inversely proportional to the order used by Best.

Fig. 8. Statistical analysis on “Bypassing 802.1x”

Fig. 8 presents the results of SMC analysis of each such
attacker profile, showing that they converge to different attack

https://github.com/risqflan/RisQFLan/wiki


success probabilities. We have also exported the correspond-
ing DTMCs and analysed them with PMC using PRISM.
PRISM computed the same results for all attackers except for
AverageB, whose DTMC is too large (due to backtracking
in the attacker’s strategy) for PRISM or STORM to be able to
handle it. Attackers Best and AverageB obviously achieve
the attack with probability 1, although the latter needs more
time. The AverageA attacker is next, achieving a success
probability slightly above 0.6, while the Worst attacker
achieves an attack with probability about 0.4.

B. Case Study 2: Noticeability
This section shows that the RisQFLan DSL can be used

to model features from capabilities-based attack trees [35],
an extension of basic attack trees offered in the commercial
attack tree-based risk assessment tool SecurITree [24]. This
means RisQFLan complements the models of SecurITree with
explicit dynamic attack behavior 2 and its analysis capabilities
with analysis of attacker profiles. We illustrate how the notion
of noticeability, one of the capability features of capabilities-
based attack trees, can be specified in RisQFLan.

1) Noticeability Capabilities of BurgleHouse: As illustra-
tive example, we use two attack scenarios studied in [24],
namely the Cat Burglar and Juvenile Delinquent scenar-
ios from the BurgleHouse case study. Fig. 9, reproduced
from [24], depicts two capabilities-based attack trees which
can be easily encoded in the RisQFlan DSL using OR and
AND refinements. The idea is that a house can be burglar-
ized by entering the house by carrying out two sub-goals:
WalkUpToHouse and PenetrateHouse. The latter is
further refined into sub-goals. In the Cat Burglar scenario
the house can only be penetrated via a GarageAttack,
whereas in the Juvenile Delinquent scenario there are two
further alternatives: opening the passage door by breaking
it down or entering via the window by breaking the glass.
We consider one of the three so-called behavioral indicators
associated to attacker actions in [24], namely noticeability. The
values were kindly provided by Terry Ingoldsby of Amenaza
Technologies Ltd. together with a license for SecurITree v5.0.

2) Noticeability in RisQFLan: Codes 17 and 18 show how
the noticeability values of the Cat Burglar and Juvenile Delin-
quent scenarios, resp., are modeled as a Noticeability
attribute in RisQFLan: walking up to the house is almost un-
noticeable, while breaking a door or glass is more noticeable.

1 begin attributes
2 Noticeability = {WalkUpToHouse = 0.01,
3 EavesdropAndReplayOpenerCode = 0.05, PickLock = 0.02}
4 end attributes

Code 17. Noticeability of “Cat Burglar” specified in RisQFLan

1 begin attributes
2 Noticeability = {WalkUpToHouse = 0.01,
3 BreakDownDoor = 0.3, BreakGlass = 0.3,
4 StealOpenerFromCar = 0.2, BreakDownPassageDoor = 0.1}
5 end attributes

Code 18. Noticeability of “Juvenile Delinquent” in RisQFLan

2Amenaza has similar plans for SecurITree v5.1 (T. Ingoldsby, personal
communication, April 1, 2020).
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Advanced Analytic Functionality

The analysis shown above has allowed us to quickly understand what attacks are available to an
adversary and to get some idea on the impact on a victim.  However, SecurITree is capable of
much more sophisticated analysis.

As alluded to earlier, whether an attack occurs depends on whether an adversary believes the
rewards they will achieve are worth the resources they will expended on the attack (or if they
even have them).  As with most economic decisions, the value of resources usually depends on
their scarcity.  SecurITree allows an analyst to build a sophisticated model of an adversary’s
affinity to their resources and to describe in detail the value they place on prospective rewards. 
This allows a numeric assessment of the likelihood of given attacks to be calculated.  SecurITree
also models the perception of pain that a victim feels given a certain set of consequences. 

Figure 30
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in the previous case, it is entirely the analyst’s
responsibility to ensure that the right kind of comments
are typed into each Note type.

Please read the notes relating to the BurgleHouse node
(in both Node and Subtree categories) to acquaint
yourself with the tree model used in this exercise.  Click
Cancel to close the Edit Node window when you are
ready to proceed.

Back at the main window (Figure 3) we redirect your
attention to the rightmost panel.  It is labeled, Tree
Information.  This panel, not surprisingly, provides
information that applies to the entire tree. Click on the
Legend button to display an information panel (Figure 5)
showing the meaning of the various types of nodes. 
(Click Close to dismiss the Legend panel).

Nodes (boxes of various shapes) in an attack tree represent goals or states that an attacker wishes
to achieve.  A major premise in an attack tree model is that insight can be achieved by
decomposing the high level parent goals into the smaller
subtasks needed to achieve them.

Nodes below a particular node represent subtasks and are
referred to as children.  Conversely, the node above a
given node is referred to as a parent.  The nodes two
levels above is called grandparent and so on.  In Figure 6
the grey, rectangular boxes (labeled as subtasks #1 - #4)
are children of the cyan, round topped parent node.

If all of the child subtasks beneath a parent must be achieved in order to realize the goal,
then the parent is called an AND node.  SecurITree displays this as a cyan round topped box
shape (Figure 6).

In other cases, successfully performing any of the
subtasks will cause the parent goal (known as an OR
node) to be achieved.  SecurITree uses a green peaked
shape with a concave bottom (Figure 7) to represent OR
nodes.

The decomposition of tasks and goals into smaller
components can continue to any desired level (each goal
being represented by a separate node).  At some point,
however, the analyst decides that the level of detail in a

Figure 5

Figure 6

Figure 7
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less typing is required to repeat the pruning operation after each improvement to the system is
modeled. The ability to save threat agent characteristics makes it easy to explore the effect
of design changes to the system being
modeled. 

To save the Cat Burglar Agent Profile to

a file, click on the  button located on
the Cat Burglar pruning window toolbar.
When the dialog window appears, save
the profile using the default name
(probably Cat Burglar.agt) in the
folder or directory of your choosing. 
You may now close the Cat Burglar
pruning window by clicking on the  in
the upper right corner.

Bring the main SecurITree window
(labeled SecurITree - BurgleHouse.rit) to
the foreground by clicking on it.  (You
may have to move or resize the Cat
Burglar pruning window in order to
expose the main window.)   Now, using
the same technique as before, create
another pruning window called Juvenile
Delinquent.  Following the same general
procedure as with the Cat Burglar
(described on page 12), set the
Noticeability #0.3, Cost of Attack #$50,
Technical Ability#20 as shown in the
table earlier.

The resulting tree (Figure 22) shows the
attacks possible by the Juvenile
Delinquent.  Note the preponderance of
the word “break” in these attacks.  Once
you realize that stealing the garage door
opener probably involves breaking a car
window and grabbing the remote, then
the pattern of attack is unmistakable.

Protecting against this sort of adversary will generally involve making the physical access points
stronger.  Burglar bars over the windows.  Steel doors with steel reinforced door jams are the
techniques of choice.  Not leaving the garage door opener in the car would help too.

Figure 22 – Attacks Avail. to Juvenile Del.

Fig. 9. Capabilities-based attack trees: “Cat Burglar” (left) and “Juvenile
Delinquent” (right) [24]

3) Complementing the Analysis of [24] with RisQFLan:
One of the analysis features of SecurITree consists of the
possibility to identify attack scenarios according to one or
more behavioral indicators. For instance, by pruning the com-
plete attack tree of the BurgleHouse case study with 29 nodes,
SecurITree identified the above scenarios as corresponding to
the specific capabilities of threat agents of the Cat Burglar
and Juvenile Delinquent type (which avoid attacks that in-
volve a risk of getting caught greater than 10% and 30%,
resp., expressed through the noticeability criterion). Similarly,
RisQFLan can limit its analysis to such type of scenarios by
imposing quantitative constraints (cf. Code 10 in Section IV).
However, RisQFLan can also augment such analyses with
quantitative verification on the average behavior of specific
attacker profiles as well as with estimation of the average
noticeability of specific (successful) attacks. To illustrate this,
we modeled four attacker profiles:
Best: an attacker that knows an optimal, most unnoticeable

order of attacks to perform to achieve the main attack goal;
AverageA: an attacker that randomly tries attacks until the

main attack goal is achieved;
AverageB: likeAverageA but can undo attacks (backtrack);
Worst: like AverageA but chooses attacks with a proba-

bility inversely proportional to Best.
We analysed these 4 attackers in the two scenarios using the

SMC analysis capabilities of RisQFLan. Fig. 10 and Fig. 11
show how the attacker profiles converge to different average
noticeability values of the attacks 3. Note that, contrary to the
case study presented in the previous section, none of the orders
of attacks can result in failure. In fact, while not shown, in both
scenarios all attackers succeed with probability 1, although in
both cases attacker AverageB needs considerably more time.

3To make the differences visible, the noticeability values of the Cat Burglar
and Juvenile Delinquent scenarios were multiplied by 10 and 100, resp.



Moreover, in the Cat Burglar scenario, all successful attackers
that cannot backtrack use the same set of actions. In fact,
the average noticeability value of the Best, AverageA, and
Worst attackers is 8, whereas the repeated attack attempts of
the AverageB attacker guarantee that (s)he will be noticed.

However, in the Juvenile Delinquent scenario, even suc-
cessful attackers may have made use of different sets of
actions, due to the three different ways to penetrate the
house (PenetrateHouse -OR-> {OpenPassageDoor,
EnterViaWindow, GarageAttack}). In fact, the aver-
age noticeability value of the Best attacker is just over 3, that
of the AverageA and Worst attackers is just over 9, while
also in this case the repeated attack attempts of the AverageB
attacker guarantee that (s)he will be noticed.

RisQFLan thus allows to analyze the risk of getting caught
for different types of behavior of a concrete Cat Burglar
or Juvenile Delinquent and to estimate who runs less risk.
SecurITree considers such explicit dynamic attack behavior in
a slightly different way. It offers advanced analysis functional-
ities to estimate the risk of scenarios by combining the impact
of attacks and the so-called capabilistic attack propensity,
which is expressed by considering feasibility (e.g. cost or
resources) vs. benefits (rewards) and detriments incurred in
attacks.

Fig. 10. Statistical analysis on “Cat Burglar”

Fig. 11. Statistical analysis on “Juvenile Delinquent”

C. Case Study 3: Countermeasures

As in the previous sections, we focus on an influential
approach to attack trees, attack countermeasure trees [33],
which has inspired some of RisQFLan’s modeling features.
We show how RisQFLan DSL can specify the novel reactive
defense mechanisms that were introduced in attack counter-
measure trees, namely detection events that model defensive
mechanisms to detect that an attack is being attempted and
measure events that model defensive mechanisms to mitigate
the effect of an attack.

Fig. 12. Countermeasure tree for “Resetting BGP” [33]

1) Countermeasures Against “Resetting BGP”: As illus-
trative example, we use a case study from [33], namely an
attack countermeasure tree modeling defensive mechanisms
against resetting attacks on the so-called Border Gateway
Protocol (BGP). Fig. 12, reproduced from [33], depicts the
attack countermeasure tree for this scenario. The idea is to
model a known denial-of-service attack on the BGP: the
attacker tries to reset a BGP session again and again to prevent
communication. Such attacks consist of several steps, some
of which can be detected and mitigated with well-known
techniques (e.g. TCP sequence number attacks (A12)
can be detected with TCP sequence number checks
(D12), and a mitigation mechanism for such attacks is using
MD5 authentication (M12)).

2) Countermeasures in RisQFLan: Code 19 shows how to
model the attack countermeasure tree of Fig. 12 in RisQFLan.

In particular, we remark the following:
• detection events D12, D1 and D2 are modeled as counter-

measure nodes; the attacks A12, A1 and A2 they intend
to detect, resp., are specified accordingly (cf. Line 9 in
Code 19);

• measure events M12, M1 and DM2 are modeled as defense
nodes (cf. Line 5 in Code 19); the attacks A12, A1 and A2
they mitigate, resp., are specified as attack effectiveness
block (cf. Line 27 in Code 19);

• the relation between a detection event D and its triggered
mitigation event M is modeled in RisQFLan by speci-



1 begin attack nodes
2 G A1 A111 A112 A1121 A1122 A1123 A12 A2 OR1
3 end attack nodes
4
5 begin defense nodes
6 M12 M1 M2
7 end defense nodes
8
9 begin countermeasure nodes

10 D12 = {A12}, D1 = {A1}, D2 = {A2}
11 end countermeasure nodes
12
13 begin attack diagram
14 G -OR-> {A1, A2}
15 A1 -AND-> {OR1, A12}
16 OR1 -OR-> {A111, A112}
17 A112 -OR->{A1121,A1122,A1123}
18 D12 -AND-> {M12}
19 D1 -AND-> {M1}
20 D2 -AND-> {M2}
21 end attack diagram
22
23 begin attack detection rates
24 A1 = 0.5, A12 = 0.5, A2 = 0.5
25 end attack detection rates
26
27 begin defense effectiveness
28 M12(ALL, A12) = 0.5, M1(ALL, A1) = 0.5, M2(ALL, A2) = 0.5
29 end defense effectiveness

Code 19. Fig. 12 in RisQFLan

fying defense node D as a refinement of countermeasure
node M (cf. Lines 18-20 in Code 19).

3) Complementing the Analysis of [33] with RisQFLan:
The approach in [33] includes rich analyses for attack coun-
termeasure trees, including success probabilities, costs and
impact of attacks and defensive mechanisms. RisQFLan can
augment such analyses with quantitative verification of specific
attacker profiles. To illustrate this, we modeled three profiles:

Random: an attacker that randomly tries attacks until the
main attack goal is achieved;

Noisy: like Random but tries attacks for which countermea-
sures exist with higher probability with respect to those
for which no countermeasure exists;

Sneaky: like Random but tries attacks for which coun-
termeasures exist with lower probability with respect to
those for which no countermeasure exists.

We analysed this scenario using the PMC functionali-
ties of PRISM. Indeed, the DMTCs for the attackers could
be generated by RisQFLan, and handled by PRISM. We
labeled with hasG all states when has(G) was satisfied.
The property we studied is the probability of success at each
step, suitably formulated in the property specification language
of PRISM. Fig. 13, generated by PRISM, shows the results
of the analyses: since all attackers are given the chance to
try again and again, they are all eventually successful, but
they differ with respect to the amount of time needed to
succeed. Paradoxically, the Noisy attacker converges faster,
which means that the detection and measure events are not as
effective as they should be.

Fig. 13. Exact PMC analysis on “Resetting BGP”

VIII. RELATED WORK

There is a large body of related work. Throughout the
paper, we indicated some sources of inspiration, like attack
profiles specified as automata to describe possible attack steps
and their costs [13], [51] and the attack detection rates [24],
ordered attacks [31] and countermeasures [33] treated in
Sections VII-A, VII-B and VII-C, resp. A recent study by
Wideł et al. [23] classified existing approaches integrating
attack tree-based modeling and formal methods along three
dimensions. We believe that RisQFLan can act as a unification
of those dimensions. In this section, we detail the dimensions
and relate RisQFLan to existing approaches.

The first dimension (a major focus of the large-scale EU
project TRESPASS [52]) is the generation of attack trees from
scenarios. The main difficulty is to find a compact and effective
representation, knowing that structurally different trees can
capture the same information. A representative contribution
in this area is the ATSyRa toolset [53]. An original and
crucial feature of ATSyRa is the support for high-level actions
(which can be seen as a sub-goal of the attacker) to specify
how sequences of actions can be abstracted and structured.
Those high-level actions can later be used in a refactorization
and hence better representation of the tree. The contribution
is packed up in an elegant Eclipse plugin which makes
it easily accessible to the uninitiated. Another contribution
is the process-algebraic generation approach from Vigo and
the Nielsons [54], where attacks are generated from flow
constraints using a SAT solver, and a value-passing quality
calculus is used to represent how an attacker can reach a given
location. Our approach is not concerned with the synthesis of
attack trees, but those techniques and tools could be combined
in RisQFLan, to complement them with analysis capabilities.

The second dimension in [23] is that of giving a rigorous
mathematical meaning to (extended) attack trees. The objective
is to address a wide range of static problems, like compar-
ing trees or enumerating the attacks. Well-known represen-
tations include Boolean function-based semantics, multisets,
and linear logics (cf. [23], [55] and their references). This
research trend is very similar to the one applied to feature
diagrams [56], and it is likely that many results from the
software engineering community concerning product lines



or configurable systems can be transferred to the security
domain [57]. It is worth noticing that the above mentioned
approaches do not permit reasoning on the order of steps of the
attack, a distinguishing feature that our approach has adopted,
together with the ability to undo attack action.

More recently, several researchers have suggested to extend
attack tree representations with their environment, i.e. the
attacker and the system under attack. For example, the authors
of [14], [15] not only consider the attack tree itself, but also a
transition system representation of an attacker model. The sep-
aration of the attack tree from the attacker model as we do in
RisQFLan is fundamental to avoid confusion as explained by
Mantel et al. [58]. This addition allows one to reason not only
on static problems, but also on dynamic ones. For instance, one
can make hypotheses on attack step sequences or extract cor-
relations between step orders. In addition, the use of transition
system-based representations allows one to encompass a model
of the system under attack, and by consequences of (the order
of) its defenses [59]. In this context, contributions like [14]
consider that defenses are fixed a priori, while the game-
based approach of Aslanyan et al. [5] allows one to propose
them dynamically to react to specific orders of attack steps.
Observe that the latter proposal generalizes the sequential
conjunction approach of Jhawar et al. [60]. RisQFLan follows
the approach of Aslanyan et al., but uses SMC [12] (in addition
to exact PMC), a simulation-based approach that is less precise
but more effective than the exhaustive state-space exploration
of the game-based approach. Moreover, RisQFLan offers a
richer language to express constraints between attack steps
and the behavior of the system under attack.

The third dimension proposed in [23] is that of adding quan-
titative algorithms to reason on (extensions of) attack trees.
This is achieved by enriching attack trees with quantitative
information, like the cost or probability of an attack step.
In this context, static techniques can still be used to answer
extended membership queries such as computing the cost of
an attack, the Pareto optimal attack for two or more quanti-
tative parameters, or the optimal countermeasures [61]–[63].
However, as observed by Kordy et al., minimal representations
no longer exist [34], [64], which drastically complicates both
the comparison and the synthesis of trees. Quantitative analysis
extends to the dynamic case, meaning one can benefit from all
the recent work on quantitative formal verification, where the
attacker model can remain non-deterministic or even become
stochastic. One can then synthesize strategies of the attacker
that belongs to the tree and for which the cost is at most a
certain value. Over the last five years, a wide range of such
techniques has been proposed. Some of those techniques were
developed by Legay et al. [14], [15]. These approaches rely
on a quantitative representation of the attacker together with
a timed automata-based model for the system. Defenses are
provided a priori. The approaches were implemented in the
UPPAAL framework, which allows one to use extensions like
UPPAAL SMC [65] to compute the probability or cost of an
attack. In case non-determinism is added to the attacker model,
UPPAAL Stratego [66] can be used to synthesize strategies.

RisQFLan goes further than [14], [15] by (i) proposing
a DSL and (ii) allowing to not only quantify the number of
attack steps, but also offering a rich process-algebraic language
to impose conditions between steps as well as between de-
fenses that can moreover be added at runtime. However, RisQ-
FLan does not offer non-determinism for attackers. This may
be needed to reason on the use of several strategies. A solution
could be to add non-deterministic aspects to the DSL, and
extend our DTMC exporter to an exporter for Markov decision
processes, or in the input language of UPPAAL if also time
aspects were to be considered, or to combine RisQFLan’s
SMC engine with the Plasma Plugin for non-deterministic
systems [67]. The approach by Aslanyan et al. [5] allows
reasoning on causality between steps and non-deterministic
attackers, but restricted to Boolean causalities called waves,
and without DSL. Stoelinga et al. also proposed dynamic
approaches to analyze attack trees via SMC. Those approaches
are covered and extended by RisQFLan, especially concerning
(i) the causality part and (ii) the DSL, which is restricted to
the query part with LOCKS [68]. Finally, compared to the
three approaches mentioned above, only RisQFLan proposes
a fully dedicated and maintained open-source toolset.

IX. CONCLUSION AND FUTURE WORK

We instantiated QFLan in the quantitative security risk
modeling and analysis domain, and applied the outcome,
RisQFLan, to 3 case studies from well-known tools from the
graph-based risk modeling and analysis domain. By enhancing
the analysis features of these tools with either exact or statis-
tical verification of probabilistic attack scenarios, RisQFLan
constitutes a significant contribution to the domain’s toolsets.

The generalization and subsequent instantiation of QFLan
was feasible since it is open source, a distinguishing feature
of RisQFLan among the toolsets available in the domain.
RisQFLan’s DTMC exporting facilities moreover permit tool-
chaining with probabilistic model checkers for models of sizes
that do not require SMC.

RisQFLan could be further enriched in several directions.
First, we propagate the value of an attribute of a node as the
sum of the attribute’s values of its descendants. This could
be generalized to attribute-specific formulae as in SecurITree,
in which, e.g., the noticeability value of a node with n
descendants d1, d2, . . . , dn is computed as 1− ((1− d1)(1−
d2) · · · (1− dn)). Most properties analysed so far with RisQ-
FLan concern logical requirements. Recently, SMC has also
been used to compare system behavior via simulation [69]. We
could compare the behavior of two attackers via simulation or
their effect on two different attack-defense diagrams.

We also plan to consider non-deterministic and game aspects
along the lines of [5], [14], [15], as discussed in detail in
Section VIII, as well as synthesis of attack profiles and coun-
termeasures (cf., e.g., [63]) for underspecified attack profiles.
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[20] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer, “Foundations of
Attack-Defense Trees,” in Proceedings of the 7th International Workshop
on Formal Aspects in Security and Trust (FAST’10), ser. Lecture Notes
in Computer Science, P. Degano, S. Etalle, and J. Guttman, Eds., vol.
6561. Springer, 2011, pp. 80–95.
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