
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Yuste, J. & Pastrana, S. (2021). Avaddon ransomware:
An in-depth analysis and decryption of infected
systems. Computers & Security, 109, 102388.

DOI: 10.1016/j.cose.2021.102388

© 2021 Elsevier Ltd. All rights reserved.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.cose.2021.102388

Avaddon ransomware: an in-depth analysis and decryption of infected systems

Javier Yustea,∗, Sergio Pastranab

aUniversidad Rey Juan Carlos, Madrid
bUniversidad Carlos III, Madrid

Abstract

Malware is an emerging and popular threat flourishing in the underground economy. The commoditization of Malware-
as-a-Service (MaaS) allows criminals to obtain financial benefits at a low risk and with little technical background.
One such popular product is ransomware, which is a popular type of malware traded in the underground economy. In
ransomware attacks, data from infected systems is held hostage (encrypted) until a ransom is paid to the criminals. In
addition, a recent blackmailing strategy adopted by criminals is to leak data online from the infected systems if the
ransom is not paid before a given time, producing further economic and reputational damage. In this work, we perform
an in-depth analysis of Avaddon, a ransomware offered in the underground economy as an affiliate program business.
This threat has been linked to various cyberattacks and has infected and leaked data from at least 62 organizations.
Additionally, it also runs Distributed Denial-of-Service (DDoS) attacks against victims that do not pay the ransom. We
first provide an analysis of the criminal business model in the underground economy. Then, we identify and describe its
technical capabilities, dissecting details of its inner structure. As a result, we provide tools to assist analysis, decrypting
and labeling obfuscated strings observed in the ransomware binary. Additionally, we provide empirical evidence of links
between this variant and a previous family, suggesting that the same group was behind the development and, possibly,
the operation of both campaigns. Finally, we develop a procedure to recover files encrypted by Avaddon. We successfully
tested the proposed procedure against different versions of Avaddon. The proposed method is released as an open-source
tool so it can be incorporated in existing Antivirus engines and extended to decrypt other ransomware families that
implement a similar encryption approach.

Keywords: Avaddon, Ransomware, Malware Analysis, Reverse Engineering, Cybersecurity

1. Introduction

In February, 2018, the USA government estimated that
cybercrime costs raised up to between 57 and 109 billions of
dollars in 2016 [1]. Cybercrime has been growing for the last
decades as it becomes more profitable. The most common
goal for cybercriminals is monetary gain and they frequently
organize themselves to form online criminal enterprises and
businesses [2]. The virtual battlefield where such criminal
activities operate allows miscreants to perpetrate crimes in
countries which do not have clear extradition laws with the
country where the criminals reside. This strategy frequently
makes cybercrime hard to prosecute, in addition to other
technical characteristics that difficult attribution [3, 4]. In
recent times, the underground economy has developed a
myriad of approaches that allow cybercriminals to acquire
high financial profits. With the cybercrime growth and
specialization, many cybercriminals offer their products in
an “as-a-service” model, where an attacker can purchase the
service through the internet with little technical knowledge.
These services reduce the entry level for new criminals and
motivate newcomers into the underground [5, 6].

∗Corresponding author
Email address: javier.yuste@urjc.es (Javier Yuste)

In 2017, Panda security analyzed around 15m poten-
tially malicious binaries [7]. The most noticeable thing
was that, upon reviewing the data collected, they realized
that 99.1% of the binaries were only seen once. Indeed, a
common digital commodity offered in underground markets
is malware [8]. One of the most popular variants of mal-
ware offered is ransomware [9], where the attacker denies
access to the data of its victims until a ransom is paid
(hence the name of the threat). When these attacks affect
organizations, they might provoke business interruptions,
thus causing further economic and social damage [10]. Ran-
somware operators often partner up with other criminal
groups, either in a customer-service relationship (i.e., offer-
ing the software for a fixed fee or via a subscription-based
access to constant updates) or in a profit sharing scheme
(i.e., involved parties are responsible for different tasks in
the campaigns and share an arranged percentage of the
revenues). Previous works show that criminals can run ran-
somware campaigns with little technical knowledge, making
use of the available services, with an estimated return of
investment of between 504% and 12,682% [5].

Due to the profitability and specialization of cyber-
crime, modern ransomware campaigns have improved their
sophistication. First, techniques from well-established cryp-

tography schemes, so-called hybrid cryptosystems, have
been recently adopted in ransomware operations, combining
symmetric and asymmetric cryptography. Second, modern
ransomware perpetrators have incorporated another mon-
etizing technique that further pushes the victims to pay
a ransom: data leakage extortion. Apart from encrypting
the files, ransomware operators now steal data from the
infected systems and threaten victims to leak it online if
the ransom is not paid. This extortion scheme was initi-
ated by a threat actor known as TWISTED SPIDER in
the last quarter of 2019 [11], and was quickly followed by
other ransomware groups [12, 13, 14]. In order to face the
ransomware threat, and to be able to recover the hijacked
files, it is important to understand the criminal ecosystem
and also how the malware evolves and operates.

In this work, we study a novel ransomware threat,
dubbed Avaddon, whose first campaign was launched on
June 2020 in underground forums following a Ransomware-
as-a-service (RaaS) model. Since then, Avaddon has been
linked to various cyberattacks. This ransomware incorpo-
rates a recent trend, which is to publicly ‘blame and shame’
victims that do not pay the ransom [15]. At the time of this
writing, more than 1,109 GB of data from 62 companies
have been leaked and exposed online.1 In addition, Avad-
don operators have recently started to blackmail victims by
running DDoS attacks until the ransom is paid. Existing
reports described different technical features of Avaddon
[17, 18, 19, 20]. However, as far as the authors know, no
public decryption procedure is available to recover files from
an infection. We aim at filling this gap by providing an
in-depth analysis of Avaddon and proposing a decryption
procedure to recover encrypted files from infected systems.
In particular, we analyze one of the first variants observed
in early June, although the proposed decryption method
is still functional for the latest samples of Avaddon at the
time of this writing. The main contributions of this work
are the following:

• We analyze the Avaddon business ecosystem and its
similarities with other ransomware families (Section
2). We then provide a detailed analysis of its techni-
cal capabilities, using advanced static and dynamic
procedures (Section 3). The results of these analyses
can be generalized to grasp an overview of how mod-
ern ransomware operates, since their modus operandi
is similar. This knowledge can be used to develop
further ransomware defense mechanisms.

• Due to the detailed analysis, we showcase a typo-
graphical error in the list of services that Avaddon
checks, which is also present in modern variants of
another ransomware family, i.e., MedusaLocker. Ad-
ditionally, we highlight that some similarities on the

1For ethical and legal reasons, we have not downloaded nor checked
the veracity of the exposed data since otherwise this would cause
additional harm to users, and such analysis is not of public interest
for the community [16].

code of both families hint that they are operated or
developed by the same group.

• We propose a method to recover the symmetric keys
used for the encryption and decrypt the affected files
from infected systems (Section 4). Accordingly, we
implement the described method in a tool that we
make publicly available to help victims. We provide
experimental results in Section 5 by infecting some
sandboxed environments and decrypting the file sys-
tems with the proposed approach. While this tool
was designed using the analysis of the first versions
of Avaddon, we have confirmed that it still works
with the most up-to-date versions of the ransomware,
released in mid-January 2021.

Similar to Avaddon, most modern ransomware strains
implement hybrid cryptosystems, mainly using AES and
RSA [21] (we analyze these in Section 2.1). Therefore, the
proposed decryption method can be adapted to thwart
infections by other ransomware families. Our research
addresses two important research challenges proposed in
the community [22], i.e., the need for deep analysis of
ransomware and the need for reactive responses for fighting
ransomware attacks. We expect that our contribution
will serve for the improvement and development of further
ransomware defense mechanisms.

2. Background and related work

In this Section, we first provide background information
about ransomware threats. Then, we describe some current
directions in ransomware research and existing defense
mechanisms. Finally, we present the criminal ecosystem
behind Avaddon, including its evolution in the underground
economy, and how it has lead to real-world cyberattacks.

2.1. The Ransomware threat
Ransomware is a type of malware that interrupts the

business of the victim or denies access to its data until a
ransom is paid. This type of malware has direct financial
implications for its victims and has promoted the growth
of cybercrime, where it is employed as a profitable busi-
ness model [23]. The first ransomware attack, dubbed
AIDS, occurred in 1989. It implemented a custom encryp-
tion algorithm and only modified the file names [24]. In
1996, Young and Yung warned for the first time about ran-
somware threats [25]. A decade later, ransomware attacks
were observed in the wild [26]. Since then, the methodology
of ransomware has evolved, in many cases as a result of the
countermeasures developed to thwart them. Some initial
variants of ransomware, like JigSaw, included a hard-coded
secret, used to encrypt all the files. This made decryption
trivial, provided that the key could be obtained from the
binary [27]. The next move for ransomware was to fetch
the keys from a Command and Control server [21], but
the reliance on external communications for the actual

2

encryption was problematic. Thus, modern ransomware
mostly uses hybrid approaches, as we detail later. The first
strains using hybrid approaches, in 2005, used low-length
(56 to 660 bits) RSA keys to encrypt the symmetric keys.
However, these symmetric keys could be decrypted by brute
force. Therefore, the cryptography used and the key size
have evolved [28]. Thus, new variants from 2015 such as
CrytoLocker or TeslaCrypt used 2048-bit RSA keys [26].

Before the popularization of cryptocurrencies, such as
Bitcoin, online payment methods were risky for malware
authors. SMS text messages, pre-paid cards or premium
rate telephone numbers could be traced back easier than
Bitcoin [29]. The use of Bitcoin or other cryptocurrencies
thwarts tracing the payments sent to criminals. Still, the
characteristics of some cryptocurrencies allow for tracking
transactions (although not connecting them to the attacker).
For instance, Huang et al. were able to track over $16
million in likely ransom payments made by 19,750 potential
victims during a two-year period [30]. Thus, criminals
have adopted privacy-preserving cryptocurrencies, such as
Monero, that hinder tracking [31]. These cryptocurrencies,
in combination with the cybercrime specialization, have
promoted the ransomware threats as a profitable business
for cybercriminals [32].

During the lifecycle of a ransomware attack, several
actions are conducted [33]. First, the ransomware is dis-
tributed. The distribution phase might be carried out
using standard methods such as email attachments or web-
site compromises. Then, when the ransomware lands in
a system, the infection phase begins. In this phase, the
ransomware might perform different actions to ensure its
success (e.g., elevating privileges, acquiring persistence,
stopping antivirus services, etc.). Once the system has
been successfully infected, the ransomware proceeds to
encrypt the files. Finally, after encrypting the system, a
ransom is demanded to the victim. This ransom demand
might be followed by additional extortion techniques. Re-
cently, it has become popular among ransomware authors
to publish personal data from their victims (acquired from
the infected systems) if they do not pay the demanded
ransom.

In Table 1, we report a summary of predominant ran-
somware strains as of March, 2021. The list includes fami-
lies that are classified in the top 10 of ransomware threats
in 2020 (Top 10 ’20), according to PaloAlto Unit42 [34].
It also contains strains classified as Tier 1 (Most Wanted)
and Tier 2 (Rising Powers) according to a classification
made by Intel471 [15]. Finally, we include other relevant
families that have been linked to recent attacks. For each
ransomware family, we report the number of victims (Num.
attacks) and the number of critical infrastructures (CI)
attacked. The number of victims was obtained on March,
2021, from a private investigation source, looking at the
different leak sites of the ransomware families on the Dark-
Web. The number of attacks against critical infrastructures
was obtained from the CIRWA dataset [35]. The number
of victims are a lower estimation, i.e., it only accounts

for publicly reported attacks. For instance, Ryuk is al-
legedly linked to thousands of attacks and got payments for
the amount of $61m between February 2018 and October
2019 [36]. However, it does not operates a leak site, so
the number of victims reported is 0. Still, it is suspected
that operators behind Conti (which does have a leak site)
are the same as Ryuk [13]. Finally, we report the cryp-
tography schemes used to encrypt files and keys. This
information was obtained by consulting different analysis
reports from various sources. As it can be observed, most
of the modern ransomware families use hybrid approaches
in the encryption process: files are encrypted using a sym-
metric algorithm (mostly AES), and the session keys used
to encrypt the files are in turn encrypted using asymmetric
cryptography (mostly RSA).

2.2. Key-management in ransomware
Understanding the key management procedures em-

ployed by ransomware developers is crucial for the develop-
ment of effective countermeasures. Some authors have pro-
posed a taxonomy of ransomware families based on their en-
cryption procedures or key management approaches [27, 21].
In previous works, four main key generation strategies have
been identified [37]:

1. Static asymmetric key. In this strategy, the ran-
somware file carries a public key, which is used to
encrypt the files in the infected system. Decryption
can only be performed by using the corresponding
private key, which is saved in the infrastructure of
the attacker. The main drawback is that the same
private key can be used to decrypt the files of all the
victims that were affected by that specific version of
the ransomware.

2. Dynamically generated asymmetric key. In this pro-
cedure, an asymmetric key pair is generated on the
infected system. Then, the public key is used to en-
crypt the files and the private key is sent back to the
attacker.

3. Static symmetric key. In this approach, a symmetric
key that comes embedded with the ransomware is
used to encrypt the files. This procedure is often
avoided by complex ransomware families, since the
decryption key could be recovered by reverse engi-
neering the ransomware.

4. Dynamically generated symmetric key. In this ap-
proach, a symmetric key is generated on the infected
system and used to encrypt the files. This symmetric
key is then encrypted using an embedded public key
and sent back to the attacker or saved in the infected
host, such that only the attacker can decrypt it with
their private key.

As we show in Table 1, hybrid cryptosystems are the
most common approach in modern ransomware, with AES
keys of 256 bits and RSA keys larger than 2048 bits. The
popularity of hybrid approaches in the encryption process

3

Ransomware Family Num. attacks (CI)∗ Top 10 ’20 Tier (Intel27) File Encryption Key Encryption

Conti 291 (14) 5 AES RSA
MAZE 266 (60) 3 ¬ ChaCha RSA
Egregor 206 (6) 5 ¬ ChaCha RSA
Sodinokibi (REvil) 178 (45) 3 ¬ Salsa20 AES + ECDH
DoppelPaymer 174 (21) 3 ¬ AES RSA
NetWalker 144 (26) 3 ¬ AES/Salsa20/ChaCha Curve25519
Pysa/Mespinoza 103 (3) 5 AES NaN
Avaddon 62 (2) 5 AES RSA
DarkSide 58 (5) 5 Salsa20 RSA
CL0P 43 (4) 5 RC4 RSA
Ryuk 0 (46) 3 ¬ AES RSA
Suncrypt 22 (2) 5 ChaCha Curve25519
Ragnar_Locker 22 (3) 5 Salsa20 RSA
AKO 9 (0) 5 - AES RSA
LockBit 9 (2) 5 - AES RSA
RansomEXX 14 (10) 3 - AES RSA
MedusaLocker 0 (0) 5 - AES RSA
Sekhmet 6 (2) 5 - ChaCha RSA
WastedLocker 0 (2) 3 - AES RSA
Dharma/Crysis 0 (2) 3 - AES RSA
Phobos 0 (0) 3 - AES RSA
Zeppelin 0 (0) 3 - RC4 RSA

Table 1: Analysis of predominant ransomware strains by March, 2021, together with their number of victims and the encryption algorithms
used. The number of victims is obtained from a private investigation source, looking at the different leak sites of the ransomware families on
the DarkWeb (data from March, 2021), and CI are the attacks targeting Critical Infrastructures obtained from the CIRWA dataset [35]. The
Top 10 in 2020 is based on a report from PaloAlto Unit42 [34]. ¬ and respectively refer to Tier 1 (Most Wanted) and Tier 2 (Rising Powers)
strains according to a classification made by Intel471 [15].

difficults the development of decryption procedures without
paying the ransom. However, the main drawback of these
hybrid procedures is that the symmetric key must be stored
in memory at least during the encryption process. There-
fore, there exists a time window to recover the symmetric
key from memory [38, 39].

2.3. Research in ransomware
As discussed by the community [22], ransomware studies

can be categorized into analysis and counteraction. Re-
search in ransomware analysis is devoted to study the
techniques and behavior of ransomware threats [40]. These
analyses are crucial to support further research in ran-
somware classification, detection and prevention [41]. On
the other hand, counteraction studies aim to prevent or
mitigate the threats posed by ransomware. These counter-
action studies can be further categorized into prevention,
detection and prediction.

Some authors indicate that more features of ransomware
threats need to be analyzed in order to increase the ef-
fectiveness of ransomware detection [42]. For instance,
ransomware analysis is a critical step to develop signature-
based detection approaches [43, 44]. In this direction,
Hampton et al. [45] analyzed different ransomware strains
and their interactions with the infected systems in order to
serve as a baseline for the development of further detection

strategies. Similarly, Kharraz et al. [46], analyzed 1,359
ransomware samples to help propose new detection strate-
gies. Subedi et al. [47], on the other hand, utilized a set of
features extracted from ransomware samples to develop a
detection method based on data-mining techniques. Other
studies have focused on specific ransomware families, often
proposing preventive measures based on the results of the
analyses [48, 49, 50, 51].

In counteraction studies, reactive ransomware preven-
tion researches are devoted to mitigate the effect of ran-
somware attacks by restoring the encrypted files. Most of
these studies focus on reverting back to security backups
(i.e., older versions of the systems) [52]. However, these
precautions (periodically saving backups) are not always
taken. In addition, modern ransomware threats might tar-
get security copies as part of their attacks, as in the case
of Avaddon. In contrast, Le Guernic et al. [53] proposed a
technique to decrypt files by exploiting a weakness in some
encryption algorithms. Similarly, Kolodenker et al. [38]
proposed a key escrow mechanism to capture symmetric
keys in ransomware attacks. The captured keys could then
be used to decrypt the affected files after analyzing the
internals of the encryption mechanism implemented by the
ransomware.

Finally, ransomware detection approaches often leverage
classical malware detection methods adopted for ransomware-

4

specific behaviors. In this way, ransomware activities can
be split in 8 stages [54]: fingerprint, propagate, communi-
cate, map, encrypt, lock, delete and threaten. For instance,
Kharaz et al. focused the detection on common tasks
performed by ransomware, such as changing the desktop
wallpaper [55]. Following recent trends in malware de-
tection, some Machine Learning-based approaches have
also been proposed specifically targeting ransomware de-
tection [56, 57, 58].

2.4. The ecosystem of Avaddon
Avaddon2 is a ransomware that was offered as an af-

filiate program on June, 2020 in a Russian underground
forum, only accessible by invitation or after the payment
of a registration fee. In that program, the operators were
looking for partners for their campaign. Additionally, Avad-
don was later promoted on other underground forums.3
Actors that become affiliates are equipped with both the
ransomware binary and an administration panel to control
their infections. Access to the program is free and con-
strained only for reputed (and Russian-speaking) actors.
In exchange, partners have to share part of the obtained
revenues with the ransomware owners. This share depends
on the amount of infections, ranging from 35% to 15% for
larger volumes. Therefore, affiliates, who are only responsi-
ble for distributing and installing the malware on infected
systems, obtain a minimum of 65% of the revenues gen-
erated by the ransomware, without the need of operating
the payment system [17]. Such distribution often relies
on botnets hired in a Pay-Per-Install scheme [59]. Addi-
tionally, partners can purchase installs on RDP servers,
which is another popular product traded in underground
economy [60]. Thus, the supply chain needed to enter in
this business does not require technical knowledge and it
opens the barrier to any criminal entrepreneur [61]. As a
restriction in the affiliates program of Avaddon, it is forbid-
den to target victims in the Commonwealth of Independent
States (CIS). We describe the mechanism used to achieve
this restriction in Section 3.5.

A few days after their publication on underground fo-
rums (on June 4rd, 2020) Avaddon was observed in the
wild [19]. In that first campaign, a malicious attachment
was distributed in low-quality phishing emails. These
emails hinted that a compromising photo of the victim
had been leaked, inciting the victim to open the file out
of fear. The attached file was a zip-compressed JavaScript
file. This file tried to masquerade as a JPG photo, hav-
ing the extension “.jpg” just before the “.js” extension
(e.g., “IMG123456.jpg.js”). Upon execution, the malicious
JavaScript file downloaded and executed Avaddon. Al-
legedly, the first wave of this campaign targeted mostly

2The name of the ransomware, Avaddon, may be derived from the
Hebrew term “Abaddon”, the name of an angel of the abyss in the
Bible, mainly associated with the meaning of “destruction” [18].

3Due to ethical reasons, and to avoid promoting the site, we do
not provide the name of the forums.

Canada, although their targets varied later. Indeed, as
mentioned before, Avaddon was launched as a RaaS, which
means that the targets are not chosen by the ransomware
developers (apart from the ban on CIS victims) but by
the affiliates. Upon infecting a system, Avaddon leaves a
ransom note to the victim with instructions on how to pay
the ransom. This note leads the victim to a Tor hidden
service, where further instructions are given to make the
payment in exchange for the decryptor. At the time of this
writing, the payment service is still operative, confirming
that the campaign is ongoing. Regarding the decryption
process provided by the ransomware operators after paying
the ransom, some stories from affected users state that it
is unreliable and that recovery is not ensured [62].

Two months after the initial release, in August, 2020,
Avaddon was updated to incorporate a new trending tech-
nique to their features: extortion to victims [63]. Following
the model from other ransomware campaigns, Avaddon
operators decided to publish data from their victims to the
internet if they do not pay the ransom [64, 65]. By the
22nd of April, 2021, Avaddon has allegedly infected and
leaked data from 62 companies (1,109.23 GB of data) and is
extorting 30 additional companies. Finally, in January 2021
(concurrent to the writing of this paper), Avaddon included
a new technique used for extortion: attacking their victims
with DDoS [66]. Therefore, the threat to victims is now
three-fold: i) their data is first encrypted in the infected
systems; ii) that data is then leaked publicly if the ransom
is not paid; and iii) DDoS attacks are performed to disrupt
their businesses until the ransom is paid.

At the time of writing, we are not aware of any public
decryption tool for Avaddon. Additionally, various reports
and recent complaints from Avaddon victims about their
decryption support show that the campaign is still oper-
ative [67, 68]. In this paper, we fill this gap and release
an open-source tool that automatically detects and de-
crypts files, which could be integrated in existing Antivirus
solutions.

3. Ransomware analysis

In this section, we provide an analysis of the Avaddon
ransomware. In particular, we analyze a version of Avaddon
released as part of their initial campaign in June, 2020. We
report a list of Indicators of Compromise (IOCs) of the
sample in Appendix A. The analyzed binary (MD5: c9ec0
d9ff44f445ce5614cc87398b38d) is a Portable Executable
(PE) file with a size of 1.1 MB. The PE format describes the
structure of executable programs in Windows Operating
Systems (OS) [69]. PE files are mainly divided in two
important parts: headers and sections. While headers
contain information about the program itself and data to
be read by the OS in order to correctly load and execute
the file, sections contain the actual code and data of the
program. Figure 1 shows the methodology used to analyze
the sample, partially based on previous works [70, 71].
We depict each step (gray, rounded rectangle) and the

5

tools used (inside each rectangles). We have divided the
steps in two vertical blocks, differentiating those activities
performed statically (i.e., without executing the binary)
from those performed dynamically (i.e., running the binary
in an isolated environment). Additionally, the activities are
grouped in three different stages: basic analysis, behavioral
analysis and code analysis. For the sake of simplicity, we
have made the following assumptions when designing the
methodology: i) the sample to be analyzed is a PE file and
ii) there are not packing protections in the file.4 First, we
analyze the headers of the PE file (step 1), which contain
useful information about the sample, with Pestudio.5 We
observe that the compilation time field in the headers is set
to June, 3, 2020, at 11:47:22 (UTC). Although this field is
prone to be modified by malware authors, the timestamp
is similar to the time of the first appearances of Avaddon
samples, which indicates that we are analyzing one of the
first versions of Avaddon. Next, we analyze the functions
present in the Import Address Table (step 2) and the
readable strings in the binary (step 3) to identify possible
capabilities. Once we finish the basic analysis stage, we
have some initial hypotheses about the capabilities of the
sample. Then, we proceed to run the file in an isolated
environment and analyze its behavior (behavioral analysis).
In order to widen the set of capabilities shown by the sample
at runtime (some functionalities might remain hidden if
anti-analysis measures are implemented in the ransomware),
we execute it in two different sandboxes. First, we execute
the sample in an online sandbox (step 4), Any.Run,6 in
a Windows 7 x32 system. Then, in order to corroborate
the results and identify further details, we execute the
sample in a local virtual machine (steps 5 and 6). The
OS installed in the virtual environment, which is built
on top of VirtualBox,7 is Windows 7 x64. The set of
capabilities (hypothesized or confirmed) identified in the
previous steps are then used as a baseline for the code
analysis phase, where we reverse engineer the sample using
static (step 7) and dynamic (step 8) techniques. For these
tasks, we utilize well-known reverse engineering tools (i.e.,
Binary Ninja 8 and x64dbg 9). In this stage, we utilize
both static and dynamic techniques interchangeably to
analyze the previously identified capabilities and find new
ones. Finally, we conclude the process when there are not
remaining capabilities that have not been analyzed (step
9).

In Figure 2, we represent a summary of the behavior
identified in the sample after applying the aforementioned
methodology. Upon executing the binary (step 0), it first
checks for debuggers attached to the process (step 1). Then,
the sample retrieves information about the victim machine

4This is the case of Avaddon samples, but for packed binaries an
initial step to unpack them could be easily included

5https://www.winitor.com/
6https://any.run/
7https://www.virtualbox.org/
8https://binary.ninja/
9https://x64dbg.com/

0

9

1. Identify
properties

from headers
pestudio

C
od

e
an

al
ys

is
B

as
ic

 a
na

ly
si

s

B
ehavioral analysis

Static Dynamic

2. Identify
capabilities

from imports
pestudio

3. Identify
capabilities
from strings

pestudio

4. Online
analysis
Any.Run

5. Host
analysis

Process Explorer
Process Monitor

6. Network
analysis
Wireshark
INetSim

7. Static code
analysis

Binary Ninja

8. Debugging
x64dbg

Figure 1: Malware analysis methodology.

(step 2). After performing some checks on the information
obtained, the sample elevates privileges in the system (step
3) and acquires persistence to survive reboots (step 4).
Finally, it proceeds to execute its main functionality by:
manipulating processes and services that might interfere
with its execution (step 5); deleting shadow copies and
security backups that could be used to restore the system
(step 6); and encrypting the file system (step 7).

The rest of this section presents details of the analysis.
First, we discuss the packing protections of the analyzed bi-
nary in Section 3.1. Next, we show the imported functions
in Section 3.2. In Section 3.3, we describe the protections
implemented in the binary to hide strings from static anal-
ysis. Then, the remaining of the section is organized based
on the outline depicted in Figure 2, focusing on specific
capabilities or mechanisms. In Section 3.4, we report the
anti-analysis techniques (step 1 in the figure) employed
by the sample. We show how the ransomware authors
implemented a protection to not infect Commonwealth of
Independent States (CIS) victims in Section 3.5 (step 2).
The privilege escalation techniques are analyzed, step by
step, in Section 3.6 (step 3). Then, we showcase the details
of the persistence mechanism in Section 3.7 (step 4). In-
teractions with other processes and services are presented
in Section 3.8 (step 5). Finally, we describe the key man-
agement procedure in Section 3.9 and the file encryption
mechanisms (steps 6 and 7) in Section 3.10.

3.1. Packing protections
In order to ease the analysis of malware samples, it is

recommendable to eliminate packing protections before-

6

https://www.winitor.com/

0

8

1. Check for debuggers
(anti-debugging)

2. Get information
about the system

3. Elevate privileges

4. Acquire persistence

5. Manipulate processes
and services

6. Eliminate shadow
copies

7. Encrypt files

Figure 2: Outline of the behavior of the ransomware sample analyzed.

hand. In this case, we suspect, due to some properties
of the PE file, that there are not packing protections in
the binary. First, we find that the PE file contains 4 sec-
tions which have almost no differences in size between disk
and memory. This in an indicator of the PE file not being
packed, since the presence of a virtual section (i.e., a section
that requests space in memory but does not occupy bytes in
disk) is a common indicator of packing protections. Then,
we find over 200 imported functions, which present some
useful information about the capabilities of the ransomware.
Finally, we are able to identify several meaningful strings,
in addition to some encrypted ones. Packing protections
often hide (i.e., encrypt or encode) imports and strings in
order to avoid detection from automated static analysis
tools. Therefore, we conclude that there are not packing
protections in this sample, although there might be some
obfuscation techniques for a subset of the observed strings.

3.2. Imported functions
The Windows OS offers an Application Programming

Interface (API) for applications to interact with many func-
tionalities of the OS, e.g. to interact with files, processes,
etc. This API also provides an abstraction layer for the un-
derlying hardware. In order to call functions from the API,
programs need to know their location in memory. This
need might be fulfilled in different ways, but the most com-
mon method consists of importing the required functions
prior to execution. This method is performed by the OS
loader before transferring control to the program. To do so,
the PE file contains an Import Address Table (IAT) in the
headers, which includes a list of functions to be imported
by the OS loader. When the file is executed, the OS loads
the file in memory and fills the IAT with the addresses of
each requested function. Then, the program is able to call
those functions because it now knows their addresses in
memory. Therefore, the IAT provides useful information
about the capabilities and intentions of the program, since
it offers hints about the interactions with the system that
the sample might want to perform. In addition, these im-
ported functions might guide us towards specific addresses
within the analyzed binary in the Code Analysis phase. For
instance, we might look for the encryption procedure by
identifying calls to an imported function like CryptEncrypt
within the code.

The functions imported by the analyzed sample show
capabilities that are frequently implemented in ransomware,
such as encryption (e.g., CryptGenKey or CryptEncrypt),
persistence (e.g., RegCreateKeyW, StartServiceW), anti-
analysis (e.g., IsDebuggerPresent) or activity control (e.g.,
DeleteService or TerminateProcess).

3.3. Strings
Looking for strings through a PE file allows analysts to

identify capabilities of the binary, as well as looking at the
IAT. Indeed, some imports will appear when searching for
strings if they are imported by name (external functions

7

may be imported by name or ordinal [69]). Therefore,
we proceed to extract all readable strings that have more
than 4 characters in the whole file. Then, we filter the
extracted strings and exclude those that are not meaningful
(bytes that are part of code might non-intentionally form
readable strings that are not meaningful). In this case, as
aforementioned, we find enough meaningful strings to think
that the PE file is not packed.

Many of the strings that are present in the PE file
are paths to folders or files (e.g., “C:\Temp”). While we
initially can not know the actual purpose of those files,
we hypothesize that some of them may be used to drop
additional payloads or to move the PE file upon infec-
tion to a different location (we confirm this hypothesis in
Section 3.7). Then, we observe two strings that refer to
cryptography providers (i.e., “Microsoft Enhanced Crypt
ographic Provider v1.0” and “Microsoft Enhanced RS
A and AES Cryptographic Provider”). These strings are
normally used to acquire cryptography contexts using the
Windows API, which are later needed to perform some
cryptography operations. Additionally, some strings indi-
cate that the ransomware was developed in C++, which
is an object-oriented programming language. Although
this characteristic does not provide any information about
the capabilities of the sample, the particularities of C++
programs must be taken into account in the Code Analy-
sis process. We will highlight some C++ properties that
allow us to extract conclusions in the reverse engineering
process, but discussing the differences between C++ and
other languages at assembly level is out of the scope of this
work. For more information, we refer the reader to other
works that focus on C++ reverse engineering [72].

Interestingly, we find many strings that are Base64 en-
coded. However, upon decoding them, no legible string
is recovered. Therefore, we suspect that these strings are
obfuscated by other means (i.e., encoding or encryption) in
order to hide their content. If that is the case, then those
strings might be important to identify additional capabili-
ties of the malware. We later confirm, after analyzing the
code of the binary, that these strings are indeed encrypted
and they are only decrypted at runtime on demand, i.e.,
when they are required by the program. First, global vari-
ables are created to hold the encrypted strings, making
them accessible from every function in the binary. In Al-
gorithm 1, we show one of the functions (0x4012a0 in this
case) that creates a global variable pointing to an encrypted
string. There, the encrypted string and its size are pushed
onto the stack (lines 1-2). Then, a global variable is created
at 0x4f8a28 with the content of the encrypted string (lines
3-4). Finally, a destruction function is registered (lines 5-6).
This function will be called when the process exits. The
global variable is then referenced wherever this particular
string is needed in the program. For each encrypted string,
there is an initialization function like the one we described.
We know that these variables were global variables in the
source code because:

1. There is a global variable per encrypted string.
2. There is a constructor function for each global vari-

able.
3. Each global variable has a predefined address. These

addresses are hard coded in each constructor function.
4. After initializing the global variable, a destructor

function is registered to be called upon terminating
the program.

Algorithm 1: One of the functions responsible
for initializing a global variable with the value of
an encrypted string.
1 0x4012a0: push 0x30;
// Size of the encrypted string

2 0x4012a2: push 0x49e180;
// Encrypted string

3 0x4012a7: mov ecx, 0x4f8a28;
// Global variable

4 0x4012ac: call 0x40a390;
// Creates a global variable at ecx

(0x4f8a28 in this case) with the string
stored at the value previously pushed
(0x49e180 in this case)

5 0x4012b1: push 0x4874a0;
// Destructor

6 0x4012b6: call _atexit;
// Register the destructor function to be

called when the process ends
7 0x4012bb: pop ecx;
8 0x4012bc: retn;

Once initialized, the strings are decrypted and used as
needed by referencing the global variables. In Algorithm
2, we show an example of this procedure. In particular,
we show an example of a string containing some command
line arguments that is decrypted and used to create a
process. In this case, the goal is to delete security backups.
First, the decryption function is called passing the global
variable as an argument (lines 1-3). This function returns a
new string with the decrypted value, which is immediately
used to create the aforementioned process (lines 4-5). The
sequence of instructions described can be summarized in
the following pseudo code:

CommandLine = DecryptString(GlobalVariable);

CreateProcess(CommandLine);

The decryption function is located at address 0x40c780.
First, the received string is decoded from Base64. Then,
as shown in Algorithm 3, each character is decrypted by
substracting 2 units from its value (line 3) and XOR-ing
the result with 67 (line 5). These instructions are executed
once for every character in the string.

Since we know the address in which global variables are
placed, we have automatically re-labeled them in order to

8

Algorithm 2: Decryption of the value of a global
variable into a temporary register.
1 0x40d110: mov edx, 0x4f8a28;
// Global variable that contains an

encrypted string
2 0x40d115: lea ecx, [esp+0x8];
// Local variable that will hold the

decrypted string
3 0x40d119: call decrypt_string;
// Decrypts the string at edx (the global

variable) and stores the result in ecx
(the local variable)

4 0x40d11e: push eax;
// eax now contains the decrypted string

(it is equal to [esp+0x8], the local
variable) which, in this case, contains
command line arguments

5 0x40d11f: call create_process;
// Creates a process with the command line

received as argument

Algorithm 3: Procedure to decrypt obfuscated
strings.
1 0x40c820: mov al, byte [esi];
// Move the current character to al (the

lower 8 bits of eax)
2 0x40c822: mov edx, dword [ebp-0x1c];
3 0x40c825: sub al, 0x2;
// Substract two units from the character

4 0x40c827: mov edi, dword [ebp-0x18];
5 0x40c82a: xor al, 0x43;
// XOR the result with 0x43

6 0x40c82c: mov byte [ebp-0x30], al;
7 0x40c82f: cmp edx, edi;
8 0x40c831: jae 0x40c84d;

improve the readability of the code for the analysts. To
allow for reproducibility and to assist other analyses on
this and similar malware samples, we have published a
script that automates these tasks using Binary Ninja in
our public repository.10

3.4. Anti-analysis techniques
Successfully infecting a system critically depends on not

being detected. Thus, malware authors often implement
different techniques to evade antivirus systems or sandboxes.
Additionally, mechanisms are frequently put in place in
order to delay analysts and, therefore, increment the time
needed for building detection tools for the sample (e.g.,
signatures). In the case of Avaddon, we observe some
anti-analysis techniques, which we describe next.

String obfuscation. As mentioned in prior sections,
some of the strings are encrypted, which hides important
capabilities of the ransomware. This technique is commonly
used to: i) evade detection, and ii) delay analysts. In
Section 3.3, we analyze this obfuscation technique and the
process used to decrypt the strings.

Anti-debugging. We found a call to IsDebuggerPre-
sent at offset 0x42e03d. Debuggers are programs designed
to analyze other programs at runtime (i.e., processes), and
they are frequently used by security analysts to dynam-
ically inspect malware. Hence, malware authors often
embed code in their programs that checks for debuggers
and terminates the malicious processes (or changes their
behavior) if a debugger is detected. In particular, IsDe-
buggerPresent is a function provided by the Windows API
that returns a true value if a debugger was attached to the
program. If IsDebuggerPresent returns true, the Avaddon
sample exits prematurely, without encrypting the system.
To circumvent this protection, we considered two strategies:

1. Hook the call to IsDebuggerPresent so it always re-
turns false. By doing this, we would be changing
the code on the fly, and the debugger would not be
detected by the sample.

2. Change a binary value in the Process Environment
Block (PEB), a data structure that holds information
about the process. That structure is built by the OS
when the program is executed and it is unique for
each process. Among other information, it contains
a bit that indicates if a debugger has been attached.
When a call to IsDebuggerPresent is made, it returns
the value of that bit. Therefore, changing that value
in the PEB would successfully hide the debugger
from that call and from any manual check (the PEB
can also be manually walked through by parsing its
structure).

In order to avoid further anti-debugging mechanisms
that might parse the PEB (i.e., not using IsDebuggerPre-
sent), we decided to implement the second strategy. That
is, we decided to modify the PEB of the process.

10https://github.com/JavierYuste/AvaddonDecryptor

9

https://github.com/JavierYuste/AvaddonDecryptor

3.5. Language checks
To ensure that citizens from some regions are not in-

fected, it is frequently observed that malware binaries
implement techniques to check the country where the in-
fected machine is located. It is common to see that CIS
victims are dodged in many malware samples, as is the
case of Avaddon. The most popular approach is to check
for the keyboard layouts and the OS language. In this
sample, we found both checks (addresses 0x42e0ec and
0x42e0b6, respectively) for different layouts and languages.
In particular, we discovered checks for language locales
(Russian and Ukrainian) and keyboard layouts (Russian,
Sakha, Tatar and Ukrainian). If any of these keyboard
layouts or OS locales is found, the binary exits without
harming the landed system. That is, this sample of Avad-
don ransomware is designed to avoid infecting Russian and
Ukrainian systems. This, together with the fact that the
malware was first advertised in a Russian underground
forum, provides strong (though not conclusive) evidence
that the origin of the malware is Russia.

3.6. Privilege escalation
After gaining initial access to a system, malware activ-

ities often require administrator privileges to accomplish
some critical tasks (e.g., acquire persistence, infect system
files or processes, etc.). However, asking the user to con-
cede those privileges might raise suspicions. In addition,
some users might not be able to concede those administra-
tor privileges (e.g., in restricted environments, some users
might not be administrators of the system in which they
are working). Therefore, reducing the number of clicks
needed from the victim to successfully infect the system is
critical. In this case, escalating privileges is critical because
the ransomware needs to i) acquire persistence through
registry keys (Section 3.7), ii) stop processes and services
(Section 3.8), and iii) delete backups (Section 3.10).

The process implemented in the analyzed sample to
elevate privileges is a well-known User Account Control
(UAC) bypass. Indeed, there exist public open-source
implementations [73] and it is not uncommon to find this
technique in different malware families [74, 75]. Next, we
briefly summarize this process and its implementation in
Avaddon. First, three registry keys are added or modified
(at offset 0x40ed20):

1. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windo
ws\CurrentVersion\Policies\System EnableLUA
=0 (disables the “administrator in Admin Approval
Mode” user type [76]).

2. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windo
ws\CurrentVersion\Policies\System ConsentPr
omptBehaviorAdmin=0 (this option allows the Con-
sent Admin to perform an operation that requires
elevation without consent or credentials [77]).

3. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Wind
ows\CurrentVersion\Policies\System EnableL
inkedConnections=1 (makes user mapped drives

available to the administrator versions of those users
[78]).

The first two registry key values allow the sample to
elevate privileges without alerting the user, while the third
one enables access to volumes of the current user when
administrator privileges are acquired.

Then, the sample checks its privileges (offset 0x41a5c0).
If it has administrator privileges, the execution is continued
without running the rest of the UAC bypass. Otherwise,
administrator privileges are obtained via the following pro-
cedure (implemented at 0x40ef90):

1. First, a Class Identifier (CLSID) is decrypted. This
CLSID is stored in the binary as an encrypted string,
as we described in Section 3.3. The decrypted value
is “{3E5FC7F9-9A51-4367-9063-A120244FBEC7}”,
which corresponds to CMSTPLUA. For the rest of
this section, we refer to that value as CLSID_CMSTPLUA.

2. Next, an Interface Identifier (IID) is decrypted in
the same way, obtaining the value “{6EDD6D74-C00
7-4E75-B76A-E5740995E24C}”. For the rest of this
section, we refer to it as IID_ICMLuaUtil.

3. Then, a third string is decrypted, which contains the
value “Elevation:Administrator!new:”.

4. Once the three strings have been decrypted, a new
string is built by concatenating “Elevation:Admini
strator!new:” and CLSID_CMSTPLUA.

5. Next, the function CoGetObject is called in order to
obtain a pointer to CMLuaUtil. The parameters of
the call are the following:

CoGetObject(“Elevation:Administrator!new:
{3E5FC7F9-9A51-4367-9063-A120244FBEC7}”, 0x2
4, &IID_ICMLuaUtil, &CMLuaUtil)

At this point, user interaction might be needed to
grant administrator privileges for the program in
some systems. In some cases, this might be accom-
panied by social engineering techniques, e.g. instruc-
tions accompanying the phishing email where the
malware is attached. In this case, we have not ob-
served any particular behavior.

6. If the call is successful, CMLuaUtil now points to a
structure (lpVtbl) that contains the address of a func-
tion named ShellExec (CMLuaUtil−→lpVtbl−→ShellExec).

7. Finally, the binary executes itself with administrator
privileges by calling ShellExec with the following pa-
rameters:

ShellExec(CMLuaUtil, “C:\[...]\sample.ex
e”, [...])

3.7. Persistence and infection tracking
In order to survive across reboots, malware samples

must be run automatically on infected systems after the
initial foothold has been obtained [79]. Otherwise, they

10

would need to infect the system again if further runs are
required. In order to achieve persistence in a system, there
exist many approaches. Usually, malware authors acquire
persistence by adding registry keys, creating services or
registering scheduled tasks. By doing so, the malware
sample is periodically executed by the OS (e.g., at scheduled
times or at every reboot). Additionally, malware samples
often implement mechanisms to prevent re-infection of
already-infected systems, in order to minimize the risks of
detection or to prevent disruption of previous runs.

In Section 3.2, we hypothesized that the ransomware ac-
quires persistence via registry keys, since we observed that
related functions were imported (e.g., RegCreateKeyW).
Then, we confirmed this behavior via dynamic analysis,
noticing that the following registry keys were added by the
ransomware at runtime:

• HKU\S-1-5-21-2724635997-1903860598-41043018
68-1000\Software\Microsoft\Windows\CurrentV
ersion\Run\update: "C:\Users\%UserProfile%\
AppData\Roaming\%sample%.exe"

• HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows
\CurrentVersion\Run\update: "C:\Users\%User
Profile%\AppData\Roaming\%sample%.exe"

Upon inspecting the code, we identified that this func-
tionality is implemented at address 0x40cf50. The function
located at that address is responsible for acquiring per-
sistence by adding the two aforementioned registry keys.
First, two encrypted strings (see Section 3.3), which contain
the names of the registry keys to be added, are decrypted.
Then, the decrypted strings are used to create the reg-
istry keys (address 0x40c45e) and set their values (address
0x40c487). With those registry keys present in the system,
the PE file is executed at each system reboot (notice that a
copy of the sample is dropped at runtime in "C:\Users\%
UserProfile%\AppData\Roaming\%sample%.exe", where
“%sample%” is the name of the PE file).

In addition, to avoid re-infecting the system, a mutex is
created with the value {2A0E9C7B-6BE8-4306-9F73-1057
003F605B}. If this mutex is already present in the system,
the binary exits and does not encrypt files. In addition, the
ransomware takes measures to avoid encrypting already
encrypted files, as we describe in Section 3.10. These
mechanisms are useful to avoid reinfecting victims that
have already paid a ransom or that are being currently
affected. Nevertheless, the fact that the presence of such
mutex is checked allows users to prevent Avaddon infections.
By creating such mutex in a healthy system, Avaddon
ransomware samples that check for the presence of that
mutex will not execute. However, not every sample of
Avaddon uses the same mutex, as it might change among
versions.

3.8. Processes and services manipulation
In order to avoid being detected or neutralized, some

malware samples try to stop anti-malware solutions. To

do so, administrator privileges must be acquired. However,
it is often easier to acquire administrator privileges with-
out being detected than to encrypt the whole file system
without rising awareness. In Section 3.2, we highlighted
that the PE file imported some functions that may indi-
cate an attempt to control some anti-malware solutions
by interacting with services and processes. Additionally,
before encrypting the infected system, it is important to
stop processes that might be locking files. For instance,
ransomware authors often try to stop database processes
that might be locking files.

In this case, we found two functions (located at offsets
0x41a8f0 and 0x40c990) that try to stop a list of services
and processes. As expected, we have found anti-malware
solutions (e.g., “DefWatch”) and database processes (e.g.,
“sqlservr”) in that list.

Additionally, we noticed that the name of one of the
targeted services is misspelled. In particular, “vmware-
usbarbitator64” is missing an ‘r’ (and should instead be
“vmware-usbarbitrator64”). Interestingly, this typographi-
cal error was found in another ransomware family, Medusa-
Locker. This indicates that developers reuse code from
other families [80, 81]. We are unaware of whether this
is due to the same actor developing both families, or due
to code reuse from one to another (though we have not
found evidence of the source code of MedusaLocker being
leaked). Indeed, we noticed that the Tactics, Techniques
and Procedures (TTPs) of Avaddon are very similar to
those of MedusaLocker if we compare our analysis with
the report on MedusaLocker from Carbon Black’s Threat
Analysis Unit [80]. This is an interesting fact regarding the
attribution of this campaign which might require further
investigation if future families share this peculiarity.

3.9. Key generation
One of the most critical parts of a ransomware cam-

paign is the encryption process. The keys used, how they
are imported or generated, how they are exported, the
encryption algorithm chosen, etc., are important decisions
for malware developers. An error in this process may allow
analysts to develop measures to recover encrypted files,
completely neutralizing the campaign revenues. In the case
of Avaddon, two keys are used in the encryption process
in a so-called hybrid scheme. One key (the session key) is
randomly generated in each execution and used to encrypt
the files in the system. This key is used in a symmetric
encryption scheme, AES256. Therefore, the same key must
be used to decrypt the affected files. The second key is a
public one, part of an asymmetric scheme, RSA. This key
is imported (it is present in the PE file) and used only to
encrypt the previously generated session key. Therefore,
the session key can only be decrypted by the malware au-
thors, since the private key of the asymmetric scheme is
only known by them.

The whole process that we described in the previous
paragraph is split in three functions in the PE file. These

11

functions, responsible for key management, are located at
offsets 0x413600, 0x413a60 and 0x413f50 respectively.

Public key import. The function at 0x413600 is re-
sponsible for importing the public key. The import is made
by calling the Windows API function CryptImportKey with
the following parameters:

CryptImportKey(hProv:CSP, pbData: Key to be imp
orted, dwDataLen: Length of the key, hPubKey: 0, d
wFlags: 0, phKey: Handle to the imported key after
the call)

The key (which is Base64 encoded) is part of a RSA
public/private pair. As per the documentation [82], the
parameter hPubKey must be equal to 0 when the key to be
imported is a public key (a PUBLICKEYBLOB object).
This detail indicates that the imported key is actually the
public one of the pair.

Session key generation. After importing the public
key, a random key is generated. This randomly generated
key (the session key) is then used to encrypt the system.
The function responsible of generating the session key is
the one located at 0x413f50. To generate the session key, a
function from the Windows API is called, CryptGenKey,
with the following parameters:

CryptGenKey(hProv: CSP, Algid: CALG_AES_256, d
wFlags: CRYPT_EXPORTABLE, phKey: Handle to the gen
erated key after the call)

The parameter Algid indicates that the generated key
is to be used in AES256. Additionally, notice that the
flags passed to the function indicate that the key must be
exportable. Once the key has been generated, it is exported
and encrypted using the previously imported RSA key. The
result is then included in the ransom note, in order to allow
the ransomware operators to recover the encryption key
and provide a decryption tool to those victims that decide
to pay the ransom fee.

Keys destruction. Finally, the function located at
0x413f50 is the one responsible for securely destroying the
keys. This function will destroy the public RSA key and
the randomly generated AES256 session key. The purpose
of this function is to ensure that they do not remain in
memory after being used. However, this function is only
called when the process exits, which only occurs when
the infected system is shutdown (the ransomware process
remains active to encrypt any new file that is created in
the system). Therefore, the session key is not destroyed
until the system is powered off. This is a mistake from the
Avaddon developers since, as long as the computer remains
active, the key is kept in memory and it can be retrieved
using basic forensics techniques. In Section 4, we will take
advantage of this detail to develop a method to recover the
symmetric key generated and decrypt all the affected files.

3.10. File encryption
In Section 3.9, we presented the mechanisms imple-

mented in the sample to manage the keys used to encrypt
the infected system. We showed that the algorithm used
to encrypt files is AES256, a symmetric encryption algo-
rithm. Additionally, we hinted that the session key can
be retrieved using basic forensic techniques. However, ran-
somware authors often apply standard encryption schemes
(e.g., AES) in custom procedures (e.g., encrypting only the
first part of the files). Therefore, in order to be able to
decrypt the affected files, we must first analyze in detail
the encryption process implemented in the binary. In this
Section, we will describe the process followed to encrypt
files in the infected system.

The first step performed by the ransomware is to delete
backups so the original files cannot be restored by locally
saved security copies. To achieve that goal, the function at
0x41a800 executes the following processes:

• wmic.exe SHADOWCOPY /nointeractive

• wbadmin DELETE SYSTEMSTATEBACKUP

• wbadmin DELETE SYSTEMSTATEBACKUP -deleteOlde
st

• bcdedit.exe /set {default} recoveryenabled No

• bcdedit.exe /set {default} bootstatuspolicy i
gnoreallfailures

• vssadmin.exe Delete Shadows /All /Quiet

In order to successfully execute those processes, admin-
istrator privileges are needed, which are obtained by using
the procedure that we described in Section 3.6. Finally,
the contents of the recycle bin are deleted by calling the
Windows API function SHEmptyRecycleBinW.

Next, files are encrypted following a depth-first search
approach. Microsoft SQL and Exchange folders are priori-
tized, being the first ones to be encrypted. Then, the root
path is encrypted (i.e., C:*). Finally, shared folders and
mapped volumes are enumerated and encrypted (e.g., D:
, Y:, or \\VBoxSvr\\shared_folder*). There-
fore, the order in which folders are encrypted, following a
depth-first approach, is the following:

1. C:\\Program Files\\Microsoft\\Exchange Serve
r*

2. C:\\Program Files (x86)\\Microsoft\\Exchange
Server*

3. C:\\ProgramFiles\\Microsoft SQL Server*
4. C:\\Program Files (x86)\\MicrosoftSQLServer\

*
5. C:*
6. Shared folders and mapped volumes

For each encountered file, the process performs three
checks before the actual encryption:

12

1. Strings from a whitelist. The path is checked
to not contain specific strings (see Appendix B for
the list of skipped strings). If the absolute path of
the file contains one of those strings, the file is left
untouched. This check is not applied to Microsoft
SQL and Exchange folders.

2. File extensions. Files that have one of the following
extensions are not encrypted: bin, ini, sys, dll, ln
k, dat, exe, drv, rdp, prf, swp, mdf, mds and sql.

3. Already encrypted files. The third test checks
if the file has already been encrypted by Avaddon.
To do so, a signature (24 bytes in length) at the
end of the file (that is left by the ransomware after
encrypting the file) is read. If the file contains the
hexadecimal values 0x200 and 0x1030307 at offsets 8
and 16 within the last 24 bytes, it is not encrypteds.

If none of these checks is positive, the file is encrypted.
The encryption process is performed by the function lo-
cated at 0x413bb0. This function receives a copy of the
session key (see Section 3.9) and the name of the file to be
encrypted. We present a high-level pseudo code (some func-
tion signatures have been simplified to improve readability)
that summarizes the analyzed function in Algorithm 4.
First, the size needed for the buffer to hold the bytes after
encryption is calculated (line 1). Then, the contents of
the file are read in chunks of 0x100000 bytes (line 5) and
encrypted in blocks of 0x2000 bytes (lines 6-11). However,
although there exists a loop to read and encrypt the whole
file, only the first 0x100000 bytes are encrypted. This is
due to the last call to SetFilePointerEx, which sets the file
pointer to the end of the file (line 18). When there are
only 0x2000 or less bytes left to be encrypted (line 13), the
last chunk of bytes is encrypted (lines 13-15) and written
to the file (line 16). Notice that the parameter Final (line
15) in the call to the encryption routine is always set to
False. This parameter should be True if the block to be
encrypted is the last block of the file. We will need to take
this detail into account in Section 4. Finally, 512 unused
bytes and the signature are written at the end of the file
to mark it as encrypted (lines 20-22).

Therefore, the process can be summarized as follows:

1. Calculate the size of the buffer needed to hold an
encrypted block of 0x2000 (8192) bytes.

2. Obtain the size of the file.
3. Encrypt the first 0x100000 bytes of the file in blocks

of 0x2000 (8192) bytes.
4. Write the victim ID (512 bytes) and the signature

(24 bytes) at the end of the file.

Here, we show an example of a signature written at the
end of an encrypted file:

4E 4D 00 00 00 00 00 00 00 02 00 00 01 00 00 00
07 03 03 01 01 01 E2 02

Algorithm 4: Procedure for the encryption of a
given file.
Input: File, file to be encrypted

Key, a duplicate of the AES256 key

1 buffer_size ← CryptEncrypt(hKey: Key, Final:
False, pbData: 0, pdwDataLen: 0x2000);

2 file_size ← GetFileSizeEx(hFile: File);
3 file_pointer ← 0;
4 do
5 bytes_read, number_of_bytes_read ←

ReadFile(hFile: File, offset: file_pointer,
nNumberOfBytesToRead: 0x100000);

6 i ← 0;
7 do
8 bytes_to_encrypt ←

bytes_read[i:i+0x2000] ;
// The file is encrypted in blocks

of 0x2000 bytes
9 encrypted_bytes ← CryptEncrypt(hKey:

Key, Final: False, pbData:
bytes_to_encrypt);

10 WriteFile(hFile: File, lpBuffer:
encrypted_bytes);

11 i = i + 0x2000;
12 while i ≤ number_of_bytes_read - 0x2000 ;
13 if number_of_bytes_read - i < 0x2000 then
14 bytes_to_encrypt ← bytes_read[i:] ;
15 encrypted_bytes ← CryptEncrypt(hKey:

Key, Final: False, pbData:
bytes_to_encrypt);

16 WriteFile(hFile: File, lpBuffer:
encrypted_bytes);

17 end
18 file_pointer ← SetFilePointerEx(hFile: File,

liDistanceToMove: 0, dwMoveMethod:
FILE_END) ;
// This call sets the file pointer to

the end of the file. This is done
to stop processing more bytes from
the file

19 while number_of_bytes_read ≥ 0x100000 &&
file_pointer < file_size;

20 WriteFile(hFile: File, lpBuffer: VictimID);
// The Victim ID is written to the end of

the file
21 signature ← GetSignature();
22 WriteFile(hFile: File, lpBuffer: signature);

// The signature is also written at the
end

13

First, in orange, the original length of the file is written
(0x4e4d or 20045 bytes in this case). Then, in blue, a
hard-coded magic number (0x01030307) is written at offset
16. This value is checked prior to encrypting a file, as we
discussed earlier in this section.

4. Decryption of infected systems

In Section 3.9, we described the functions responsible
for importing, generating and destroying the encryption
keys needed by the ransomware. As we pointed out, the
session key used for encrypting the system was randomly
generated. Additionally, it was encrypted using a public,
asymmetric key before being exported. Therefore, we are
not able to know the session key in advance (before it
is generated) or to decrypt it after it has been exported,
since we do not have the associated private key. However,
we hinted that the function responsible for destroying the
keys was in fact never called until the system was powered
off, since the ransomware process remains active in the
background to encrypt new files or drives as they are created
or connected. Since the keys are not destroyed and the
ransomware process does not exit, we are able to recover
the generated session key. The only requirement is the
memory of the ransomware process (i.e., a full dump).
If such dump of the process (or the whole system) has
been obtained, we are able to recover the key. This is of
paramount importance, since users, upon seeing a ransom
note, might be tempted to power off or reboot their systems,
therefore loosing the opportunity of obtaining the key and
decrypting the files.

In order to recover the key, we leverage the knowledge
acquired during the analysis of the ransomware sample
(see Section 3) to identify the structure that points to the
desired key. When a key is generated by using the Windows
cryptography API (i.e., cryptsp.dll and rsaenh.dll) the key
is an object of type HCRYPTKEY, which has the following
structure [83]:

struct HCRYPTKEY
{

void* CPGenKey;
void* CPDeriveKey;
void* CPDestroyKey;
void* CPSetKeyParam;
void* CPGetKeyParam;
void* CPExportKey;
void* CPImportKey;
void* CPEncrypt;
void* CPDecrypt;
void* CPDuplicateKey;
HCRYPTPROV hCryptProv;
magic_s *magic;

};

The first 10 fields of the structure point to functions of
the Windows API. The eleventh field, hCryptProv, points

to the provider of the key and the aforementioned func-
tions (this provider must be first acquired before the key is
generated via CryptAcquireContext or a similar function).
Finally, the last field points to another structure. This
pointer is XOR-ed with a constant value, 0xE35A172C.
After XOR-ing that pointer with the aforementioned con-
stant, it points to the following structure:

struct magic_s
{

key_data_s *key_data;
};

which contains a pointer to the following structure:

struct key_data_s
{

void *unknown;
uint32_t alg;
uint32_t flags;
uint32_t key_size;
void* key_bytes;

};

The key_data_s structure contains three fields whose
values are known:

• alg : contains the ID of the algorithm for which the
key has been generated. In this case, its value is
0x00006610, which corresponds to the ID of AES256
[84].

• flags : contains the value of the flags parameter passed
in the call to CryptGenKey at 0x48f024. Therefore,
its value is 0x00000001.

• key_size: contains the size of the key. In this case,
the key has 32 bytes (0x00000020).

Finally, the fifth field contains a pointer to the actual
key. Since we know the value of 24 of the last 28 bytes that
form the structure (skipping the first field) we can search
for this 28-byte pattern in the memory of the process. We
thus are able to obtain a pointer to the session key that
was used to encrypt the system. We recall that the only
requisite is that the system has not been powered off since
it was infected, in order to maintain the key in memory.

Now that we have recovered the symmetric key gener-
ated by the ransomware, we are able to decrypt the infected
files. To do so, we have to reverse the operations performed
by the ransomware (which we detailed in Algorithm 4).
To decrypt any given file, we first parse the signature at
the end of the file. There, we obtain the original size of
the encrypted file. Then, we truncate the file to eliminate
both the signature and the block of 512 bytes appended at
the end of the file by the ransomware (536 bytes in total,
since the signature is 24 bytes in length). Once we have
truncated the file, we proceed to decrypt the first 0x100000

14

bytes in blocks of 8192 (0x2000) bytes. Notice that, as we
showed in Algorithm 4, the Final parameter in the calls
to CryptEncrypt was never set to True. According to the
documentation, this parameter should be True when the
last block is encrypted. Although we do not know if this
nonstandard behavior is intentional or not, we are forced
to do the same in the decryption routine. Therefore, we
always set the Final parameter to be False in the calls to
CryptDecrypt. After decrypting the first 0x100000 bytes,
we copy the rest of the file as is. Finally, if the file was
smaller than 0x100000 bytes, we truncate it once again,
now to the original size recovered earlier from the signature
appended at the end, to remove the padding bytes.

Obtaining a memory dump of a process can be done by
standard forensic tools. In our public repository, we open
source a tool that implements the developed procedure
to recover the session key from memory and decrypt the
infected files:
https://github.com/JavierYuste/AvaddonDecryptor.

5. Experimentation

We tested our proposal in two virtual systems. In the
first system, we installed a Windows 7 Professional Service
Pack 1 x64 OS. In the second one, we installed a Windows
10 Enterprise Evaluation 10.0.19042 x64 OS. We built those
systems on top of VirtualBox, in a computer with a 1.60
GHz Intel Core i5-8250U CPU and 16 GB RAM. From
the available hardware, we assigned 2 cores and 4 GB of
RAM to the first system (Windows 7) and 4 cores and
8 GB of RAM to the second system (Windows 10). In
each machine, we installed different software packages (e.g.,
Python, Visual Studio Code, Teams, etc.) in order to
make them appear as legitimate machines and increase the
number of files that would be encrypted by the ransomware.
Then, we executed different versions of Avaddon in the
virtual machines and let them encrypt the whole system.
When Avaddon had not utilized more than 0.5% of the
CPU time in the last 60 seconds, we stopped the execution
and confirmed the infection due to the presence of ransom
notes and encrypted files through the whole file system. For
our experiments, we decided to test 5 versions of Avaddon
that had been released as different times, spanning from
June, 2020 to January, 2021.

After infecting the virtual machines, we proceeded to
decrypt all the affected files. First, we suspended the
ransomware process using Process Explorer, a tool from
the SysInternals suite.11 Note that we can freely drop
executable files in the system before stopping Avaddon,
since files with an exe extension are not encrypted (see
Section 3.10). Once the process has been suspended, we can
safely operate in the infected system. Next, we dumped the
memory of the ransomware process with ProcDump, which
is also part of the SysInternals suite. Finally, we executed

11https://docs.microsoft.com/en-us/sysinternals/

the developed decryption tool. This tool i) confirms the
infection by extracting the signature appended at the end
of encrypted files, ii) obtains the AES256 session key from
the dumped memory of the ransomware process and iii)
decrypts the whole file system.

We show the results of our experiments in Table 2. For
each experiment, we report: the MD5 hash of the tested
Avaddon sample (MD5); the month when each sample was
first seen in VirusTotal (First seen); whether the decryption
was successful (Yes) or not (No) for the whole file system
(Decryption); the number of files that were present in
the system (Total files); the number of files that were
decrypted (Decrypted files); and the CPU time (in seconds)
needed by our tool to decrypt all the affected files (Time).
As we can observe, the decryption was successful in all
the experiments (i.e., all infected files were successfully
decrypted). In the Windows 7 system, our tool decrypted
the whole system in 390.91 seconds in average. In the
Windows 10 machine, decryption of the whole system was
achieved in 65.90 seconds in average. Notice that there is
a difference in the number of files of both systems, which
is partially explained by a difference in the set of software
packages installed in each system. Additionally, notice
that we tested our tool with the most recent version of
Avaddon, which was observed from a wild URL on mid-
January 2021, when this paper was written. We confirm
that the decryptor still works, since we were able to decrypt
all the infected files.

We must note some considerations. First, it is important
to not turn off the computer after infection, since the
proposed approach needs the encryption key to be present
in memory. Otherwise, the session key would be destroyed
and could only be recovered by means of the official channel
proposed by the criminals, i.e. paying the ransom. Second,
the proposed tool needs the original version of at least
one encrypted file to find the correct symmetric key. This,
however, can be easily achieved, e.g. by obtaining known
files present by default in the Windows OS version installed
in the affected system. Alternatively, a dummy file might
be dropped to the infected system while the ransomware
process is running (recall that the ransomware process
remains active to encrypt new files that are created in the
system).

6. Conclusions

Current approaches of cybercrime specialization, includ-
ing new malware techniques, increase the threat of modern
ransomware campaigns. In this work, we have analyzed a
new ransomware, Avaddon, operated as a RaaS in a shared
profit scheme, first seen in June, 2020. Avaddon incor-
porates two extortion techniques, which are growing in
popularity, aimed at increasing their financial revenues: i)
leaking the personal data of their victims if they do not pay
the ransom fee, and ii) conducting DDoS attacks against
their victims until the ransom fee is paid. Following this
procedure, personal data from 62 infected organizations

15

https://github.com/JavierYuste/AvaddonDecryptor
https://docs.microsoft.com/en-us/sysinternals/

MD5 First seen OS Decryption Total files Decrypted files Time (s)

c9ec0d9ff44f445ce5614
cc87398b38d

June 2020 Windows 7 Yes 209768 9131 349.92

6ff1ca648505fe8bea6b4
a26616b9722

July 2020 Windows 7 Yes 207305 9130 542.32

275e4a63fc63c995b3e0d
464919f211b

August 2020 Windows 7 Yes 209756 9130 348.79

a2c57182efe72c6ce43f0
2a8f709e857

November 2020 Windows 7 Yes 209022 9132 317.85

4d6ef550cecc0bd988383
3608dd16a00

January 2021 Windows 7 Yes 209305 9132 395.66

c9ec0d9ff44f445ce5614
cc87398b38d

June 2020 Windows 10 Yes 264972 285 77.10

6ff1ca648505fe8bea6b4
a26616b9722

July 2020 Windows 10 Yes 264895 285 81.10

275e4a63fc63c995b3e0d
464919f211b

August 2020 Windows 10 Yes 264952 285 70.38

a2c57182efe72c6ce43f0
2a8f709e857

November 2020 Windows 10 Yes 346368 287 55.78

4d6ef550cecc0bd988383
3608dd16a00

January 2021 Windows 10 Yes 346658 285 45.13

Table 2: Results of the decryption experiments for different Avaddon samples and Windows OS.

has already been published online. While having proper
attribution is difficult, our analysis suggests that the threat
actor behind Avaddon is from a CIS country. Indeed, the
initial announcement of the ransomware was made in a
Russian underground forum, and it implements a policy to
prevent infection of CIS-based victims. Moreover, a typo-
graphical error found in the name of one of the processes
targeted by Avaddon suggests that this family is related
to a previous ransomware, i.e. MedusaLocker, where the
same error is present. Furthermore, the modus operandi of
Avaddon, that we detailed in this work, is similar to that
of MedusaLocker and the list of services to stop is almost
identical in both cases.

By examining a sample obtained from the first campaign
of Avaddon, we took a grasp on the general “Cyber Kill
Chain” of ransomware threats (land, escalate privileges,
deactivate defenses, acquire persistence, delete backups
and encrypt files) and obtained a detailed analysis of this
ransomware in particular. Using an hybrid key scheme,
Avaddon attempts to hide the session key from defenders.
However, thanks to the aforementioned analysis of this
ransomware family, we have developed a method to recover
the session key from the memory of infected systems and
decrypt all the affected files. We confirm that, at the
time of writing, the decryption tool works with the newest
variants of the ransomware. The only requirement for this
method to work is that the victim’s computer has not been
powered off after the infection.

Due to the novelty of this ransomware, the business
model following a shared profits scheme and the ability
to extort and blackmail victims, it is likely to expect new

variants of Avaddon and similar ransomware families im-
proving their mechanisms and growing in popularity in the
future. Thus, we believe that the analysis and tools pro-
vided in this paper can contribute to guide future analyses
of ransomware threats and improve existing mitigation and
detection mechanisms.

Acknowledgements

We thank the anonymous reviewers for their valuable
comments. This work was supported by the Spanish grants
ODIO (PID2019-111429RB-C21 and PID2019-111429RB),
the Ministerio de Ciencia, Innovación y Universidades (Ref.
PGC2018-095322-B-C22) and by the Region of Madrid
grants CYNAMON-CM (P2018/TCS-4566), co-financed
by European Structural Funds ESF and FEDER, and Ex-
cellence Program EPUC3M17. The opinions, findings, and
conclusions or recommendations expressed are those of the
authors and do not necessarily reflect those of any of the
funders.

References

[1] T. C. of Economic Advisers, The Cost of Malicious Cyber Ac-
tivity to the U.S. Economy, https://www.whitehouse.gov/wp-
content/uploads/2018/02/The-Cost-of-Malicious-Cyber-
Activity-to-the-U.S.-Economy.pdf, [Online; accessed
28-September-2020] (2 2018).

[2] B. Collier, R. Clayton, A. Hutchings, D. Thomas, Cybercrime
is (often) boring: maintaining the infrastructure of cybercrime
economies, 2020, workshop on the Economics of Information

16

https://www.whitehouse.gov/wp-content/uploads/2018/02/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/02/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/02/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf

Security, WEIS ; Conference date: 14-12-2020 Through 15-12-
2020.

[3] National Intelligence Officer, A Guide to Cyber Attri-
bution, https://www.dni.gov/files/CTIIC/documents/ODNI_
A_Guide_to_Cyber_Attribution.pdf, [Online; accessed 09-
October-2020] (9 2018).

[4] Infosec, The Attribution Problem in Cyber Attacks,
https://resources.infosecinstitute.com/attribution-
problem-in-cyber-attacks/, [Online; accessed 09-October-
2020] (2 2013).

[5] K. Huang, M. Siegel, S. Madnick, Systematically understanding
the cyber attack business: A survey, ACM Computing Surveys
51 (2018) 1–36. doi:10.1145/3199674.

[6] S. Pastrana, A. Hutchings, A. Caines, P. Buttery, Characterizing
eve: Analysing cybercrime actors in a large underground forum,
in: International symposium on research in attacks, intrusions,
and defenses, Springer, 2018, pp. 207–227.

[7] PandaLabs, PandaLabs Reveals its Predictions for Cy-
bersecurity Trends in 2018, https://www.pandasecurity.
com/mediacenter/pandalabs/annual-report-cybersecurity-
predictions-2018/, [Online; accessed 28-September-2020] (11
2017).

[8] R. Van Wegberg, S. Tajalizadehkhoob, K. Soska, U. Akyazi,
C. H. Ganan, B. Klievink, N. Christin, M. Van Eeten, Plug and
prey? measuring the commoditization of cybercrime via online
anonymous markets, in: 27th {USENIX} security symposium
({USENIX} security 18), 2018, pp. 1009–1026.

[9] Auld, Andy, What’s behind the increase in ransomware attacks
this year?, https://www.pwc.co.uk/issues/cyber-security-
services/insights/what-is-behind-ransomware-attacks-
increase.html, [Online; accessed 03-October-2020] (2020).

[10] S. Ghafur, S. Kristensen, K. Honeyford, G. Martin, A. Darzi,
P. Aylin, A retrospective impact analysis of the wannacry cyber-
attack on the nhs, NPJ digital medicine 2 (1) (2019) 1–7.

[11] The CrowdStrike Intel Team, Double Trouble: Ran-
somware with Data Leak Extortion, Part 1, https:
//www.crowdstrike.com/blog/double-trouble-ransomware-
data-leak-extortion-part-1/, [Online; accessed 28-
September-2020] (9 2020).

[12] Panda security, Ransomware has a new trick: pay up or suffer
a data breach, https://www.pandasecurity.com/mediacenter/
security/ransomware-data-breach-blackmail/, [Online; ac-
cessed 28-September-2020] (3 2020).

[13] C. Cimpanu, Conti (Ryuk) joins the ranks of ran-
somware gangs operating data leak sites, https:
//www.zdnet.com/article/conti-ryuk-joins-the-ranks-
of-ransomware-gangs-operating-data-leak-sites/, [Online;
accessed 28-September-2020] (8 2020).

[14] M. J. Schwartz, Ransomware + Exfiltration + Leaks
= Data Breach, https://www.bankinfosecurity.com/blogs/
ransomware-exfiltration-leaks-data-breach-p-2913, [On-
line; accessed 28-September-2020] (7 2020).

[15] Intel471, Ransomware-as-a-service: The pandemic within
a pandemic, https://intel471.com/blog/ransomware-as-
a-service-2020-ryuk-maze-revil-egregor-doppelpaymer/,
[Online; accessed 18-December-2020] (2020).

[16] D. R. Thomas, S. Pastrana, A. Hutchings, R. Clayton, A. R.
Beresford, Ethical issues in research using datasets of illicit origin,
in: Proceedings of the 2017 Internet Measurement Conference,
IMC ’17, Association for Computing Machinery, New York, NY,
USA, 2017, p. 445–462. doi:10.1145/3131365.3131389.
URL https://doi.org/10.1145/3131365.3131389

[17] S. Tripathi, Avaddon Ransomware, https://www.subexsecure.
com/pdf/malware-reports/June-2020/Avaddon_Ransomware.
pdf, [Online; accessed 22-September-2020] (6 2020).

[18] A. Ivanov, Avaddon Ransomware, https://id-ransomware.
blogspot.com/2020/06/avaddon-ransomware.html, [Online; ac-
cessed 14-October-2020] (6 2020).

[19] H. Security, Avaddon: From seeking affiliates to in-the-wild
in 2 days, https://www.hornetsecurity.com/en/security-
information/avaddon-from-seeking-affiliates-to-in-the-

wild-in-2-days/, [Online; accessed 23-August-2020] (6 2020).
[20] M. Malubay, Ransom.Win32.AVADDON.YJAF-A, https:

//www.trendmicro.com/vinfo/us/threat-encyclopedia/
malware/Ransom.Win32.AVADDON.YJAF-A, [Online; accessed
22-September-2020] (6 2020).

[21] A. Zimba, M. Chishimba, Understanding the evolution of ran-
somware: paradigm shifts in attack structures, International
Journal of computer network and information security 11 (1)
(2019) 26.

[22] B. A. S. Al-rimy, M. A. Maarof, S. Z. M. Shaid, Ransomware
threat success factors, taxonomy, and countermeasures: A survey
and research directions, Computers & Security 74 (2018) 144–
166.

[23] R. Brewer, Ransomware attacks: detection, prevention and cure,
Network Security 2016.

[24] J. Bates, Trojan horse: Aids information introductory diskette
version 2.0 (January 1990). doi:https://www.virusbulletin.
com/uploads/pdf/magazine/1990/199001.pdf.

[25] A. Young, M. Yung, Cryptovirology: Extortion-based security
threats and countermeasures, in: Proceedings 1996 IEEE Sym-
posium on Security and Privacy, IEEE, 1996, pp. 129–140.

[26] CORE Security, Understanding the evolution of ransomware,
https://www.coresecurity.com/core-labs/articles/
understanding-evolution-ransomware, [Online; accessed
02-Jun-2021] (2021).

[27] P. Bajpai, A. K. Sood, R. Enbody, A key-management-based
taxonomy for ransomware, in: 2018 APWG Symposium on
Electronic Crime Research (eCrime), IEEE, 2018, pp. 1–12.

[28] M. Humayun, N. Jhanjhi, A. Alsayat, V. Ponnusamy, Internet
of things and ransomware: Evolution, mitigation and prevention,
Egyptian Informatics Journal 22 (1) (2021) 105–117. doi:https:
//doi.org/10.1016/j.eij.2020.05.003.
URL https://www.sciencedirect.com/science/article/pii/
S1110866520301304

[29] K. Zetter, What Is Ransomware? A Guide to the Global Cyberat-
tack’s Scary Method, https://www.wired.com/2017/05/hacker-
lexicon-guide-ransomware-scary-hack-thats-rise/, [On-
line; accessed 16-October-2020] (5 2017).

[30] D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. Invernizzi,
E. Bursztein, K. McRoberts, J. Levin, K. Levchenko, A. C.
Snoeren, D. McCoy, Tracking ransomware end-to-end, in: 2018
IEEE Symposium on Security and Privacy (SP), 2018, pp. 618–
631.

[31] S. Pastrana, G. Suarez-Tangil, A first look at the crypto-mining
malware ecosystem: A decade of unrestricted wealth, in: Pro-
ceedings of the Internet Measurement Conference, IMC ’19,
Association for Computing Machinery, New York, NY, USA,
2019, p. 73–86.

[32] R. Richardson, M. North, Ransomware: Evolution, mitigation
and prevention, International Management Review 13 (2017) 10.

[33] McAfee Labs, Understanding ransomware and strate-
gies to defeat it, https://www.mcafee.com/enterprise/en-
us/assets/white-papers/wp-understanding-ransomware-
strategies-defeat.pdf, [Online; accessed 24-May-2020]
(2016).

[34] Unit 42. Palo Alto Networks, Ransomware Threat Report,
https://www.paloaltonetworks.com/content/dam/pan/en_
US/assets/pdf/reports/Unit_42/unit42-ransomware-threat-
report-2021.pdf, [Online; accessed 15-April-2021] (2020).

[35] A. Rege, Critical infrastructure ransomware incident dataset,
https://sites.temple.edu/care/downloads/, version 10.9.
Funded by National Science Foundation CAREER Award
#1453040 (2021).

[36] S. Ranger, Ransomware victims are paying out millions
a month. one particular version has cost them the most,
https://www.zdnet.com/article/fbi-ransomware-victims-
have-paid-out-140-million-one-version-has-cost-them-
the-most/, [Online; accessed 19-April-2021] (3 2020).

[37] P. Bajpai, R. Enbody, An Empirical Study of Key Generation
in Cryptographic Ransomware, in: International Conference
on Cyber Security and Protection of Digital Services, Cyber

17

https://www.dni.gov/files/CTIIC/documents/ODNI_A_Guide_to_Cyber_Attribution.pdf
https://www.dni.gov/files/CTIIC/documents/ODNI_A_Guide_to_Cyber_Attribution.pdf
https://resources.infosecinstitute.com/attribution-problem-in-cyber-attacks/
https://resources.infosecinstitute.com/attribution-problem-in-cyber-attacks/
http://dx.doi.org/10.1145/3199674
https://www.pandasecurity.com/mediacenter/pandalabs/annual-report-cybersecurity-predictions-2018/
https://www.pandasecurity.com/mediacenter/pandalabs/annual-report-cybersecurity-predictions-2018/
https://www.pandasecurity.com/mediacenter/pandalabs/annual-report-cybersecurity-predictions-2018/
https://www.pwc.co.uk/issues/cyber-security-services/insights/what-is-behind-ransomware-attacks-increase.html
https://www.pwc.co.uk/issues/cyber-security-services/insights/what-is-behind-ransomware-attacks-increase.html
https://www.pwc.co.uk/issues/cyber-security-services/insights/what-is-behind-ransomware-attacks-increase.html
https://www.crowdstrike.com/blog/double-trouble-ransomware-data-leak-extortion-part-1/
https://www.crowdstrike.com/blog/double-trouble-ransomware-data-leak-extortion-part-1/
https://www.crowdstrike.com/blog/double-trouble-ransomware-data-leak-extortion-part-1/
https://www.pandasecurity.com/mediacenter/security/ransomware-data-breach-blackmail/
https://www.pandasecurity.com/mediacenter/security/ransomware-data-breach-blackmail/
https://www.zdnet.com/article/conti-ryuk-joins-the-ranks-of-ransomware-gangs-operating-data-leak-sites/
https://www.zdnet.com/article/conti-ryuk-joins-the-ranks-of-ransomware-gangs-operating-data-leak-sites/
https://www.zdnet.com/article/conti-ryuk-joins-the-ranks-of-ransomware-gangs-operating-data-leak-sites/
https://www.bankinfosecurity.com/blogs/ransomware-exfiltration-leaks-data-breach-p-2913
https://www.bankinfosecurity.com/blogs/ransomware-exfiltration-leaks-data-breach-p-2913
https://intel471.com/blog/ransomware-as-a-service-2020-ryuk-maze-revil-egregor-doppelpaymer/
https://intel471.com/blog/ransomware-as-a-service-2020-ryuk-maze-revil-egregor-doppelpaymer/
https://doi.org/10.1145/3131365.3131389
http://dx.doi.org/10.1145/3131365.3131389
https://doi.org/10.1145/3131365.3131389
https://www.subexsecure.com/pdf/malware-reports/June-2020/Avaddon_Ransomware.pdf
https://www.subexsecure.com/pdf/malware-reports/June-2020/Avaddon_Ransomware.pdf
https://www.subexsecure.com/pdf/malware-reports/June-2020/Avaddon_Ransomware.pdf
https://id-ransomware.blogspot.com/2020/06/avaddon-ransomware.html
https://id-ransomware.blogspot.com/2020/06/avaddon-ransomware.html
https://www.hornetsecurity.com/en/security-information/avaddon-from-seeking-affiliates-to-in-the-wild-in-2-days/
https://www.hornetsecurity.com/en/security-information/avaddon-from-seeking-affiliates-to-in-the-wild-in-2-days/
https://www.hornetsecurity.com/en/security-information/avaddon-from-seeking-affiliates-to-in-the-wild-in-2-days/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/Ransom.Win32.AVADDON.YJAF-A
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/Ransom.Win32.AVADDON.YJAF-A
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/Ransom.Win32.AVADDON.YJAF-A
http://dx.doi.org/https://www.virusbulletin.com/uploads/pdf/magazine/1990/199001.pdf
http://dx.doi.org/https://www.virusbulletin.com/uploads/pdf/magazine/1990/199001.pdf
https://www.coresecurity.com/core-labs/articles/understanding-evolution-ransomware
https://www.coresecurity.com/core-labs/articles/understanding-evolution-ransomware
https://www.sciencedirect.com/science/article/pii/S1110866520301304
https://www.sciencedirect.com/science/article/pii/S1110866520301304
http://dx.doi.org/https://doi.org/10.1016/j.eij.2020.05.003
http://dx.doi.org/https://doi.org/10.1016/j.eij.2020.05.003
https://www.sciencedirect.com/science/article/pii/S1110866520301304
https://www.sciencedirect.com/science/article/pii/S1110866520301304
https://www.wired.com/2017/05/hacker-lexicon-guide-ransomware-scary-hack-thats-rise/
https://www.wired.com/2017/05/hacker-lexicon-guide-ransomware-scary-hack-thats-rise/
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-understanding-ransomware-strategies-defeat.pdf
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-understanding-ransomware-strategies-defeat.pdf
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-understanding-ransomware-strategies-defeat.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit42-ransomware-threat-report-2021.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit42-ransomware-threat-report-2021.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit42-ransomware-threat-report-2021.pdf
https://sites.temple.edu/care/downloads/
https://www.zdnet.com/article/fbi-ransomware-victims-have-paid-out-140-million-one-version-has-cost-them-the-most/
https://www.zdnet.com/article/fbi-ransomware-victims-have-paid-out-140-million-one-version-has-cost-them-the-most/
https://www.zdnet.com/article/fbi-ransomware-victims-have-paid-out-140-million-one-version-has-cost-them-the-most/

Security 2020, Institute of Electrical and Electronics Engineers
Inc., 2020.

[38] E. Kolodenker, W. Koch, G. Stringhini, M. Egele, Paybreak:
Defense against cryptographic ransomware, in: Proceedings of
the 2017 ACM on Asia Conference on Computer and Communi-
cations Security, 2017, pp. 599–611.

[39] P. Bajpai, R. Enbody, Attacking key management in ransomware,
IT Professional 22 (2) (2020) 21–27.

[40] M. Nauman, N. Azam, J. Yao, A three-way decision making
approach to malware analysis using probabilistic rough sets,
Information Sciences 374 (2016) 193–209.

[41] M. Egele, T. Scholte, E. Kirda, C. Kruegel, A survey on auto-
mated dynamic malware-analysis techniques and tools, ACM
computing surveys (CSUR) 44 (2) (2008) 1–42.

[42] A. M. Maigida, M. Olalere, J. K. Alhassan, H. Chiroma, E. G.
Dada, et al., Systematic literature review and metadata analysis
of ransomware attacks and detection mechanisms, Journal of
Reliable Intelligent Environments 5 (2) (2019) 67–89.

[43] M. M. Ahmadian, H. R. Shahriari, S. M. Ghaffarian, Connection-
monitor & connection-breaker: A novel approach for prevention
and detection of high survivable ransomwares, in: 2015 12th
International Iranian Society of Cryptology Conference on In-
formation Security and Cryptology (ISCISC), IEEE, 2015, pp.
79–84.

[44] N. Andronio, S. Zanero, F. Maggi, Heldroid: Dissecting and
detecting mobile ransomware, in: international symposium on
recent advances in intrusion detection, Springer, 2015, pp. 382–
404.

[45] N. Hampton, Z. Baig, S. Zeadally, Ransomware behavioural
analysis on windows platforms, Journal of information security
and applications 40 (2018) 44–51.

[46] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, E. Kirda,
Cutting the gordian knot: A look under the hood of ransomware
attacks, in: M. Almgren, V. Gulisano, F. Maggi (Eds.), Detec-
tion of Intrusions and Malware, and Vulnerability Assessment,
Springer International Publishing, Cham, 2015, pp. 3–24.

[47] K. P. Subedi, D. R. Budhathoki, D. Dasgupta, Forensic analysis
of ransomware families using static and dynamic analysis, in:
2018 IEEE Security and Privacy Workshops (SPW), IEEE, 2018,
pp. 180–185.

[48] K. P. Prakash, T. Nafis, S. Biswas, Preventive measures and
incident response for locky ransomware, International Journal
of Advanced Research in Computer Science 8 (2017) 392–395.

[49] A. Gazet, Comparative analysis of various ransomware virii,
Journal in computer virology 6 (1) (2010) 77–90.

[50] M. Akbanov, V. Vassilakis, Wannacry ransomware: Analysis
of infection, persistence, recovery prevention and propagation
mechanisms, Journal of Telecommunications and Information
Technology 1 (2019) 113–124.

[51] D.-Y. Kao, S.-C. Hsiao, The dynamic analysis of wannacry
ransomware, in: 2018 20th International Conference on Advanced
Communication Technology (ICACT), IEEE, 2018, pp. 159–166.

[52] P. Pathak, Y. M. Nanded, A dangerous trend of cybercrime: ran-
somware growing challenge, International Journal of Advanced
Research in Computer Engineering & Technology (IJARCET)
5 (2) (2016) 371–373.

[53] C. Le Guernic, A. Legay, Ransomware and the legacy crypto
api, in: Risks and Security of Internet and Systems: 11th Inter-
national Conference, CRiSIS 2016, Roscoff, France, September
5-7, 2016, Revised Selected Papers, Vol. 10158, Springer, 2017,
p. 11.

[54] G. Hull, H. John, B. Arief, Ransomware deployment methods and
analysis: views from a predictive model and human responses,
Crime Science 8 (2019) 1–22.

[55] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, E. Kirda,
UNVEIL: A large-scale, automated approach to detecting
ransomware, in: 25th USENIX Security Symposium (USENIX
Security 16), USENIX Association, 2016, pp. 757–772.
URL https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/
kharaz

[56] D. Sgandurra, L. Muñoz-González, R. Mohsen, E. C. Lupu, Au-
tomated dynamic analysis of ransomware: Benefits, limitations
and use for detection (2016). arXiv:1609.03020.

[57] R. Vinayakumar, K. P. Soman, K. K. Senthil Velan, S. Ganorkar,
Evaluating shallow and deep networks for ransomware detection
and classification, in: 2017 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), 2017,
pp. 259–265.

[58] K. Lee, S. Lee, K. Yim, Machine learning based file entropy
analysis for ransomware detection in backup systems, IEEE
Access 7 (2019) 110205–110215.

[59] J. Caballero, C. Grier, C. Kreibich, V. Paxson, Measuring pay-
per-install: the commoditization of malware distribution., in:
Usenix security symposium, Vol. 13, 2011.

[60] Kaspersky, xDedic – the shady world of hacked servers
for sale, https://securelist.com/xdedic-the-shady-world-
of-hacked-servers-for-sale/75027/, [Online; accessed 04-
February-2021] (6 2016).

[61] R. Bhalerao, M. Aliapoulios, I. Shumailov, S. Afroz, D. McCoy,
Mapping the underground: supervised discovery of cybercrime
supply chains, in: 2019 APWG Symposium on Electronic Crime
Research (eCrime), IEEE, 2019, pp. 1–16.

[62] PintSizeNore, AVADDON Ransomware (.avdn; [id]-readme.html)
Support Topic, https://www.bleepingcomputer.com/forums/t/
724607/avaddon-ransomware-avdn;-id-readmehtml-support-
topic/page-2#entry5061940, [Online; accessed 14-October-
2020] (09 2020).

[63] M. De Jesus, M. Malubay, A. Christelle Ramos, Ransomware
Report: Avaddon and New Techniques Emerge, Industrial Sector
Targeted, https://www.trendmicro.com/vinfo/us/security/
news/cybercrime-and-digital-threats/ransomware-report-
avaddon-and-new-techniques-emerge-industrial-sector-
targeted, [Online; accessed 22-September-2020] (7 2020).

[64] M. J. Schwartz, Avaddon Ransomware Joins Data-Leaking Club,
https://www.bankinfosecurity.com/avaddon-ransomware-
joins-data-leaking-club-a-14809, [Online; accessed 22-
September-2020] (8 2020).

[65] L. Abrams, Avaddon ransomware launches data leak site to
extort victims, https://www.bleepingcomputer.com/news/
security/avaddon-ransomware-launches-data-leak-site-
to-extort-victims/, [Online; accessed 22-September-2020] (8
2020).

[66] L. Abrams, Avaddon ransomware launches data leak site to
extort victims, https://www.bleepingcomputer.com/news/
security/another-ransomware-now-uses-ddos-attacks-to-
force-victims-to-pay/, [Online; accessed 03-February-2021]
(1 2021).

[67] Emsisoft, Urgently Needed! Avaddon ransomware (.avdn),
https://support.emsisoft.com/topic/33623-urgently-
needed-avaddon-ransomware-avdn/, [Online; accessed 21-
October-2020] (2020).

[68] B. Computer, AVADDON Ransomware (.avdn; [id]-readme.html)
Support Topic, https://www.bleepingcomputer.com/forums/t/
724607/avaddon-ransomware-avdn;-id-readmehtml-support-
topic/page-2, [Online; accessed 21-October-2020] (2020).

[69] Microsoft, PE Format, https://docs.microsoft.com/en-us/
windows/win32/debug/pe-format, [Online; accessed 01-October-
2020] (2020).

[70] C. Q. Nguyen, J. E. Goldman, Malware analysis reverse engineer-
ing (mare) methodology & malware defense (md) timeline, in:
2010 Information Security Curriculum Development Conference,
2010, pp. 8–14.

[71] J. Bermejo Higuera, C. Abad Aramburu, J.-R. Bermejo Higuera,
M. A. Sicilia Urban, J. A. Sicilia Montalvo, Systematic approach
to malware analysis (sama), Applied Sciences 10 (4) (2020) 1360.

[72] P. V. Sabanal, M. V. Yason, Reversing C++, in: Black Hat DC,
2007.

[73] hfiref0x2017, UAC bypass using CMSTPLUA COM
interface, https://gist.github.com/api0cradle/
d4aaef39db0d845627d819b2b6b30512, [Online; accessed 31-
August-2020] (2017).

18

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
http://arxiv.org/abs/1609.03020
https://securelist.com/xdedic-the-shady-world-of-hacked-servers-for-sale/75027/
https://securelist.com/xdedic-the-shady-world-of-hacked-servers-for-sale/75027/
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2#entry5061940
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2#entry5061940
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2#entry5061940
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-report-avaddon-and-new-techniques-emerge-industrial-sector-targeted
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-report-avaddon-and-new-techniques-emerge-industrial-sector-targeted
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-report-avaddon-and-new-techniques-emerge-industrial-sector-targeted
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-report-avaddon-and-new-techniques-emerge-industrial-sector-targeted
https://www.bankinfosecurity.com/avaddon-ransomware-joins-data-leaking-club-a-14809
https://www.bankinfosecurity.com/avaddon-ransomware-joins-data-leaking-club-a-14809
https://www.bleepingcomputer.com/news/security/avaddon-ransomware-launches-data-leak-site-to-extort-victims/
https://www.bleepingcomputer.com/news/security/avaddon-ransomware-launches-data-leak-site-to-extort-victims/
https://www.bleepingcomputer.com/news/security/avaddon-ransomware-launches-data-leak-site-to-extort-victims/
https://www.bleepingcomputer.com/news/security/another-ransomware-now-uses-ddos-attacks-to-force-victims-to-pay/
https://www.bleepingcomputer.com/news/security/another-ransomware-now-uses-ddos-attacks-to-force-victims-to-pay/
https://www.bleepingcomputer.com/news/security/another-ransomware-now-uses-ddos-attacks-to-force-victims-to-pay/
https://support.emsisoft.com/topic/33623-urgently-needed-avaddon-ransomware-avdn/
https://support.emsisoft.com/topic/33623-urgently-needed-avaddon-ransomware-avdn/
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://gist.github.com/api0cradle/d4aaef39db0d845627d819b2b6b30512
https://gist.github.com/api0cradle/d4aaef39db0d845627d819b2b6b30512

[74] A. Osipov, Trickbot Trojan leveraging a new Windows 10 UAC
bypass, https://blog.morphisec.com/trickbot-uses-a-new-
windows-10-uac-bypass, [Online; accessed 31-August-2020]
(2020).

[75] S. in bits, UAC bypass analysis (Stage 1) Ataware Ransomware
– Part 0x2, https://www.securityinbits.com/malware-
analysis/uac-bypass-analysis-stage-1-ataware-
ransomware-part-2/, [Online; accessed 31-August-2020]
(2019).

[76] Microsoft, EnableLUA, https://docs.microsoft.com/en-
us/openspecs/windows_protocols/ms-gpsb/958053ae-5397-
4f96-977f-b7700ee461ec, [Online; accessed 21-July-2020]
(2019).

[77] Microsoft, ConsentPromptBehaviorAdmin, https://docs.
microsoft.com/en-us/openspecs/windows_protocols/ms-
gpsb/341747f5-6b5d-4d30-85fc-fa1cc04038d4, [Online;
accessed 21-July-2020] (2019).

[78] Microsoft, Mapped drives are not available from an elevated
prompt when UAC is configured to "Prompt for creden-
tials" in Windows, https://support.microsoft.com/en-
us/help/3035277/mapped-drives-are-not-available-from-
an-elevated-prompt-when-uac-is-co, [Online; accessed
21-July-2020] (2015).

[79] Lockheed Martin, The Cyber Kill Chain, https://www.
lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-
chain.html, [Online; accessed 08-October-2020].

[80] B. Baskin, TAU Threat Analysis: Medusa Locker Ran-
somware, https://www.carbonblack.com/blog/tau-threat-
analysis-medusa-locker-ransomware/, [Online; accessed
19-October-2020] (June 2020).

[81] A. Zsigovits, Ransomware-LockBit, https://github.com/
sophoslabs/IoCs/blob/master/Ransomware-LockBit, [Online;
accessed 19-October-2020] (2020).

[82] Microsoft, CryptImportKey function, https://docs.microsoft.
com/en-us/windows/win32/api/wincrypt/nf-wincrypt-
cryptimportkey, [Online; accessed 27-August-2020] (2018).

[83] Sasza, Structure of HCRYPTKEY Data, https:
//forums.codeguru.com/showthread.php?79163-Structure-
of-HCRYPTKEY-Data, [Online; accessed 26-September-2020]
(2020).

[84] Microsoft, ALG_ID, https://docs.microsoft.com/en-
us/windows/win32/seccrypto/alg-id, [Online; accessed
26-September-2020] (2018).

Appendices
A. List of IOCs

Sample 1 (June, 2020):

• MD5: c9ec0d9ff44f445ce5614cc87398b38d

• SHA-1: 591ffe54bac2c50af61737a28749ff843516
8182

• SHA-256: 05af0cf40590aef24b28fa04c6b4998b7a
b3b7f26e60c507adb84f3d837778f2

• Vhash: 016046655d156173z12z92z23z8065z23z21
z71z67z

• Authentihash: 18a501e209bca5ffd0c84763bb167b
1524f3db86d5d6d2e926051b135a5fceed

• Imphash: 1156e59d43883136ef73eee451e94e3d

• Rich PE header hash: 1f751e2aac4a31991712f656
456c5442

• SSDEEP: 24576:Cs6JmdFn5KLOCgHWcAvcrOcEsKfR
9uA7rmFbbbbpccf:Cs6JY5KLOCyWcDUfRAA3mFbbbbp
c4

• TLSH: T152358D3DB4E1C071C73000F05998B7B2996
EA9D2CB7204C77B8C9A9B1BB15D9A9375B3

• Domains contacted:

– api.myip.com

Sample 2 (July, 2020):

• MD5: 6ff1ca648505fe8bea6b4a26616b9722

• SHA-1: 7020b4d9e700b697d507a61bffea12c9475a
23d2

• SHA-256: 7b7c16367746efe7583ae46235b2f062ce
44602dda990c9a11a730d619b8d365

• Vhash: 056096655d15156d1c1f6013z13z11z13z10
15z13z11z11z17z

• Authentihash: 65543745fea1a4726410bc447c2bb0
c7d170fbd4dc442339f8112ada01ca7580

• Imphash: b1ea5fd53e7480d5e00ebc689ced94b3

• Rich PE header hash: 548892964409124441836e22
5a26693b

• SSDEEP: 98304:zDAjjvoF+Cp+/bbbbp7FO1gTL9M5
gmoZHOoOVsHalI:zuvAObbbbp78+VwzV0alI

• TLSH: T135365CE5B525A1CFD29E07B4E1DACE42982
E43F4C7210843B85C757E6FA2CC219D7E29

• Domains contacted:

– api.myip.com

Sample 3 (August, 2020):

• MD5: 275e4a63fc63c995b3e0d464919f211b

• SHA-1: 51d85210c2f621ca14d92a8375ee24d62f9d
7f44

• SHA-256: cc95a8d100f70d0fbf4af14e852aa108bd
b0e36db4054c3f60b3515818a71f46

• Vhash: 075056651d15156143z12z921z33z5065z2b
z87z

• Authentihash: 7a5cd88dd9f74d9c66714915008a68
57525b290de804949476af863a30209401

• Imphash: ebcba21b169b4d31880471f7ee399c34

• Rich PE header hash: ee5d076f12788d6b5adc6068
e849bd8c

19

https://blog.morphisec.com/trickbot-uses-a-new-windows-10-uac-bypass
https://blog.morphisec.com/trickbot-uses-a-new-windows-10-uac-bypass
https://www.securityinbits.com/malware-analysis/uac-bypass-analysis-stage-1-ataware-ransomware-part-2/
https://www.securityinbits.com/malware-analysis/uac-bypass-analysis-stage-1-ataware-ransomware-part-2/
https://www.securityinbits.com/malware-analysis/uac-bypass-analysis-stage-1-ataware-ransomware-part-2/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/958053ae-5397-4f96-977f-b7700ee461ec
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/958053ae-5397-4f96-977f-b7700ee461ec
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/958053ae-5397-4f96-977f-b7700ee461ec
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/341747f5-6b5d-4d30-85fc-fa1cc04038d4
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/341747f5-6b5d-4d30-85fc-fa1cc04038d4
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/341747f5-6b5d-4d30-85fc-fa1cc04038d4
https://support.microsoft.com/en-us/help/3035277/mapped-drives-are-not-available-from-an-elevated-prompt-when-uac-is-co
https://support.microsoft.com/en-us/help/3035277/mapped-drives-are-not-available-from-an-elevated-prompt-when-uac-is-co
https://support.microsoft.com/en-us/help/3035277/mapped-drives-are-not-available-from-an-elevated-prompt-when-uac-is-co
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.carbonblack.com/blog/tau-threat-analysis-medusa-locker-ransomware/
https://www.carbonblack.com/blog/tau-threat-analysis-medusa-locker-ransomware/
https://github.com/sophoslabs/IoCs/blob/master/Ransomware-LockBit
https://github.com/sophoslabs/IoCs/blob/master/Ransomware-LockBit
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://forums.codeguru.com/showthread.php?79163-Structure-of-HCRYPTKEY-Data
https://forums.codeguru.com/showthread.php?79163-Structure-of-HCRYPTKEY-Data
https://forums.codeguru.com/showthread.php?79163-Structure-of-HCRYPTKEY-Data
https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id
https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id

• SSDEEP: 12288:OR8hjUV679Aa4Auw3gveB17cOT1W
HWEQTe0udkuHgCNU7SY/qgjjmJ/:quK679Aa4Auw3gv
eB1TGWEQSzXY/tjq/

• TLSH: T15CF49E317D82C077E46A41304E98A7B594B
EF8724B320DDB67C86B1D5E706E26E31A73

• Domains contacted:

– api.myip.com

Sample 4 (November, 2020):

• MD5: a2c57182efe72c6ce43f02a8f709e857

• SHA-1: 3ee2fc7d9367e6e94d4ce859b8461cbbaf6e
c27f

• SHA-256: 721f36f4c79c813a7bc4410ac6052c5974
cba096d84294b5656b6c26d85e095b

• Vhash: 085066657d1d1d056018z55

• Authentihash: ce876506850b3fea3e7e0dce630ce0
dda041fbe6020b215c92e55f45fa6fa4ae

• Imphash: d99a658d2260a0adef1074cf8db5e8c0

• Rich PE header hash: 8b803b5e91419edf8059ccf1
69a08d0d

• SSDEEP: 12288:5XPbnVSHco8Tv8CjSmcK/R6lmYh2
DtRrKHlbYwc:xbnYI8Cj6K/slDi3E6Z

• TLSH: T1E30512123792D032C4672971AD60B1B25BF
AFEB116BBC05B37442B3D5F616E09B7231A

• Domains contacted:

– api.myip.com

Sample 5 (January, 2021):

• MD5: 4d6ef550cecc0bd9883833608dd16a00

• SHA-1: 85cbe22635f92114032d74a3c7c4b56e1492
e0c2

• SHA-256: 1e8df42c2e51f919886eaf955c8fc9630b
a9aca8bba47b1541ead131feb55a11

• Vhash: 075056651d15156163z12z921z33z5065z2b
z87z

• Authentihash: ca896eba710b4e10ed14bf9b640134
a60f8d6519ab2da0a8e10b7b9f5759547b

• Imphash: 8634a890637b58f527c95218636740c9

• Rich PE header hash: 561fead76887381034ebdaa8
086436be

• SSDEEP: 12288:w8fM15LL43eYsxN2VH/h51UtfiA+
fEJJrR4wPQAReV3foOBuue9vL+Fmk3:w8fMjE36N2VH
/h51UtfiAuyhdPQARsgi

• TLSH: T1F9F48C223A83C03FD97201368E98BAB541B
EE8754B7709D7A3D82F5D4E305D25E31A67

• Domains contacted:

– api.myip.com

20

B. List of skipped strings in the encryption process

“C:\Program Files\Microsoft\Exchange Server”
“C:\Program Files (x86)\Microsoft\Exchange Server”
“C:\Program Files\Microsoft SQL Server”
“C:\Program Files (x86)\Microsoft SQL Server”
“C:\Windows”
“C:\Program Files”
“C:\Users\All Users”
“C:\Users\Public”
“C:\Users\%User Profile%\AppData\Local\Temp”
“C:\Program Files (x86)”
“C:\Users\%User Profile%\AppData”
“C:\ProgramData”
“Tor Browser”
“AppData”
“ProgramData”
“Program Files”
“Windows”
Name of the ransom note (e.g., “363053-readme.html”)
“bckgrd.bmp”

Table 3: List of whitelisted strings in the encryption process.

21

	Introduction
	Background and related work
	The Ransomware threat
	Key-management in ransomware
	Research in ransomware
	The ecosystem of Avaddon

	Ransomware analysis
	Packing protections
	Imported functions
	Strings
	Anti-analysis techniques
	Language checks
	Privilege escalation
	Persistence and infection tracking
	Processes and services manipulation
	Key generation
	File encryption

	Decryption of infected systems
	Experimentation
	Conclusions
	Appendices
	List of IOCs
	List of skipped strings in the encryption process

