
Supervised Machine Learning with Plausible

Deniability

Stefan Rass∗† Sandra König‡ Jasmin Wachter§

Manuel Egger¶ Manuel Hobisch‖

June 9, 2021

Abstract

We study the question of how well machine learning (ML) models
trained on a certain data set provide privacy for the training data, or
equivalently, whether it is possible to reverse-engineer the training data
from a given ML model. While this is easy to answer negatively in the
most general case, it is interesting to note that the protection extends
over non-recoverability towards plausible deniability : Given an ML model
f , we show that one can take a set of purely random training data, and
from this define a suitable “learning rule” that will produce a ML model
that is exactly f . Thus, any speculation about which data has been used
to train f is deniable upon the claim that any other data could have led
to the same results. We corroborate our theoretical finding with practical
examples, and open source implementations of how to find the learning
rules for a chosen set of raining data.

1 Introduction

Imagine a situation in which training data has been used to fit a ML model,
which Alice gives away to Bob for his own use. Alice’s training data, however,
shall remain her own private property, and Bob should be unable to recover this

∗Universitaet Klagenfurt, Institut of Artificial Intelligence and Cybersecurity, Univer-
sitätsstrasse 65-67, 9020 Klagenfurt, Austria, stefan.rass@aau.at

†Johannes Kepler University, Secure and Correct Systems Lab, Altenberger Straße 69, 4040
Linz, Austria, stefan.rass@jku.at

‡AIT Austrian Institute of Technology, Center for Digital Safety and Security, Giefinggasse
4, 1210 Vienna, Austria, sandra.koenig@ait.ac.at

§Universitaet Klagenfurt, Doctoral School for Responsible Safe and Secure Robotic Systems
Engineering, Universitätsstrasse 65-67, 9020 Klagenfurt, Austria, jawachte@edu.aau.at

¶Universitaet Klagenfurt, Institut of Artificial Intelligence and Cybersecurity, Univer-
sitätsstrasse 65-67, 9020 Klagenfurt, Austria, m8egger@edu.aau.at

‖Universitaet Klagenfurt, Institut of Artificial Intelligence and Cybersecurity, Univer-
sitätsstrasse 65-67, 9020 Klagenfurt, Austria, mahobisch@edu.aau.at

1

ar
X

iv
:2

10
6.

04
26

7v
1

 [
cs

.L
G

]
 8

 J
un

 2
02

1

mailto:stefan.rass@aau.at
mailto:stefan.rass@jku.at
mailto:sandra.koenig@ait.ac.at
mailto:jawachte@edu.aau.at
mailto:m8egger@edu.aau.at
mailto:mahobisch@edu.aau.at

information from the ML model in his possession. For example, Alice could be
a provider of a critical infrastructure, having trained a digital twin to emulate
the behavior of her system, which Bob, as a risk analyst, shall assess on Alice’s
behalf. To this end, however, Alice must not disclose all the details of her
infrastructure, since this is highly sensitive information and Bob, as an external
party, may not be sufficiently trustworthy to open up to him. Still, Alice needs
Bob’s expertise on risk management and risk assessment to help her protect her
assets, and therefore needs to involve Bob to some extent.

We cannot prevent Bob from “guessing”, i.e., Bob can always try to reverse-
engineer the data that Alice used to create the model. This comes to a perhaps
high-dimensional, yet conceptually simple, optimization problem, which may
indeed be tractable with today’s computing power. Our goal here is the proof
of two statements about this possibility: First, if the training data set is “suf-
ficiently large” (where the term “sufficient” will be quantified more precisely),
Bob cannot unambiguously recover the training data. Second, and more im-
portantly, Alice can deny any proposal training data that Bob thinks to have
recovered, by exposing a set of random data along with a certificate that this
random decoy data has been used to train the model (although it was not).
Alice can do so by adapting her optimization problem accordingly to give a de-
sired result (the ML model that Bob has) from any a priori (randomly chosen)
training data set.

Note that Bob, since he can “use” the ML model, has no difficulties to evalu-
ate it on a given dataset to produce data upon which a re-training of the model
would reproduce what Bob received from Alice. This trivial possibility can-
not be eliminated. Our question, however, is whether Bob cannot just produce
“any” dataset, but find Alice’s original dataset that way used to produce the
model in his possession. In other words, does an ML model leak out private
information of Alice? The answer obtained in this work is “no”, by leveraging
a degree of freedom in how an artificial intelligence (AI) model is trained: Alice
can provide Bob with decoy data that she claims to underly what Bob has as
the ML model; however, Alice can plausibly claim the model to have come up as
the optimum under some optimization problem that she can craft to her wishes.

The key observation reported in this paper is the fact that we can “utilize”
non-explainability for the purpose of privacy of data embodied in an ML model.
More specifically, we will show how to define an error metric that makes the
learning algorithm converge to any target output that we like. We state this
intuition more rigorously in Section 4, after some necessary preliminary consid-
erations. In a way, such a designed error metric acts similar to a “secret key”
in encryption, only that it accomplishes plausible deniability in our context. A
numerical proof-of-concept is given in Section 5. Section 6 embeds ours in the
landscape of related work and links the results with issues of the General Data
Protection Regulation (GDPR). Section 7 is devoted to further uses, limita-
tions, ethical considerations and possible extensions (further expanded in the
Appendix).

2

1.1 Problem Setting

Throughout this work, scalars will appear in regular font, while bold printing will
indicate vectors (lower case letters) or matrices (uppercase letters); for example,
the symbols A ∈ Rn×m means an (n×m)-matrix over R. Uppercase letters in
normal font will denote sets, vector spaces, and random variables. Probability
distributions appear as calligraphic letters, like F . The symbol X ∼ F indicates
the random variable X to have the distribution F .

Let the ML model training be the problem to find a best function f to
approximate a given set of n points, called training data (xi, yi) ∈ Rm ×R by
“minimizing” the error vector e = (y1−f(x1), y2−f(x2), . . . , yn−f(xn)) ∈ Rn.
The resulting goodness of fit is later assessed by evaluating f on a (distinct) set
of validation data, often providing some error measure to quantify the approxi-
mation quality1.

The best function f is usually found by fixing its algebraic form, and tuning
some parameters therein by sophisticated optimization methods. Let us post-
pone the formal optimization problem until Section 4, to first state the problem:
assume that we are given a trained (fitted) model f , but not the training data.
Is there a way to reverse-engineer the training data from f alone? For example,
if we are given access and insight to a trained neural network (NN), can we use
the weights that we see therein to learn something about the data that the NN
has been trained with?

An obvious answer is “yes”, if we have the training samples at least partly,
since it is straightforward to evaluate f on given values xi to recover at least an
approximate version of the target value yi, if it is the only unknown quantity.
To avoid such triviality, let us assume that the training data is not available but
that we have white-box access to the machine learning model f . This means
that we can look into how f is constructed (i.e., see the weights if it is a NN,
regression model, etc.), but have no clue about the data or any parts of it,
on which the model has been trained. This is what we are after, and wish to
reverse-engineer. The case of partial knowledge of the attacker is revisited and
discussed in Section 7.

1.2 Some (selected) Applications

Making Community Knowledge Securely Available: Suppose that we
want to release data not directly, but “functionally useable” by fitting an ML
model so that everyone can produce artificial data from f , but we do not hereby
disclose the original data that f was trained from. This is to retain intellectual
property, while still making the knowledge publicly available.
Co-Simulation: simulations are in many cases domain-specific, e.g., water
networks are described using different (physical) mechanisms as traffic or energy
networks. Combining these in a co-simulation framework, such as brought up
in [14], raises compatibility issues between different simulation models. Fitting

1We will hereafter have no need for the distinction of training and validation data, since
our concern is exclusively on the training here.

3

ML models, say, NNs, to emulate the outputs of different simulations provides a
simple compatibility layer for co-simulation. Plausible deniability is here good
for privacy, say, if the physical structure of the simulated process is sensitive
information (e.g., a critical infrastructure, uses data related to persons, etc.)

2 Definitions

Our formalization of security distinguishes deniability from plausible deniability,
where the latter notion is stronger. Informally, deniability of a hypothesis about
training data can be understood as the possibility that there may be another
set of training records that have produced the same result. To formalize these
notions, we first introduce a generic representation of the machine learning
problem. The following section is not meant as an introduction to the general
field, but to settle the context and symbols in terms of which we state the main
results of this work.

2.1 Fitting ML Models

We will consider only supervised training in this work. Specifically, we will view
an algorithm to train an ML model as a function that returns a parameterized
function f(·; p) upon input of the training data set {(x1, y1), . . . , (xn, yn)}, to-
gether with a set Ω of parameters to configure the training (optimizer). We
assume this configuration to be arbitrary, but admit an unambigious string rep-
resentation, i.e., Ω ⊆ {0, 1}∗. The variable inputs to f herein take the same
structure as the training data. Viewing the training algorithm as a mapping,
it is natural to ask for invertibility of it, and deniability then turns out as non-
invertibility. This brings us to the first definition:

Definition 1 (Machine Learning Model and Training Algorithms). A machine
learning model is a set ML of functions f : Rm ×Rd → R, mapping an input
x ∈ Rm and parameter vector p ∈ Rd into R.

A training algorithm for a machine learning model ML is a function fit:
Rn×(m+1) × Ω→ ML. This function takes a training data matrix T composed
from n instances of input/output pairs (xi, yi) ∈ Rm+1 for i = 1, 2, . . . , n, and
auxiliary information ω ∈ Ω, to output a (concrete) element f ∈ML.

The temporary assumption of f outputting only scalars is here adopted only
for simplicity, and later dropped towards ML models with many outputs in
Section 4.2 as Corollary 2.

The set ML can contain functions of various shape, and is not constrained
to have all functions of the same algebraic structure, although in most practical
cases, the functions will have a homogeneous form. For example, ML could be
(among many more possibilities)

• the set of all linear regression models f(x,p) = p>x, where the vector p
is the coefficients in the linear model. We will use this example in Section
5.

4

• the set of (deep) neural networks with a fixed topology and number of
layers. The entirety of synaptic weights and node biases then defines the
vector p.

• the set of support vector machines, in which p is the normal vector and
bias for the classifying (separating) hyperplane,

• and many more.

In Definition 1, an implicit consistency between the set of machine learning
models ML and the training algorithm is implied by the (obvious) requirement
that (i) the training data needs to have the proper form and dimension to be
useful with the functions in f , and (ii) that the particular element f is specified
by an admissible parameterization p ∈ Rd for the functions in ML, since not
all settings for p may be meaningful to substitute in the general function f .

The inclusion of the auxiliary information ω in the training models the fact
that different models may require different techniques of training, essentially
meaning the application of different optimization techniques. In particular, ω
will in practical cases (among others) include a specification of the error metric
to be used with the training, which is the goal function to optimize. The core of
a training algorithm is a “learning rule”, being a prescription of how to update
the ML model parameterization (iteratively). We will hereafter simplify matters
by abstracting from the detailed optimization technique, and confining ourselves
to look only at the error metric to be used with the optimization, and going
into the training as part of the training algorithm configuration ω.

2.2 Supervised Training by Optimization

Generally, we will let the error metric measure the approximation error in a
supervised learning strategy. This learning is based on a set of n samples
(x1, y1), . . . , (xn, yn) ∈ Rm ×R. In general, the machine learning problem then
takes the generic form of a minimization problem

min ‖((xi, yi)− f(xi,p))ni=1‖ over p ∈ P, (1)

where the set P ⊆ Rd optionally constrains parameters to feasible ranges and
combinations. We let p∗ denote an (arbitrary) optimum to this problem, which
then pins down a specific f∗ ∈ML. In (1), ‖·‖ is a topological norm, specified
via the auxiliary information ω. Since all norms on Rn are equivalent (Theorem
4), choosing a different norm/error metric only amounts to a scaling of the
(absolute) error bound. Popular error metrics like root mean squared error
(RMSE), mean absolute error (MAE), etc., are all expressible by norms (see
Appendix A for details omitted here), so that their use here in place of RMSE,
MAE, or others, goes without loss of much generality. Appendix A defines
norms, induced metrics and pseudometrics rigorously, for convenience of the
reader.

5

2.3 Deniability and Plausible Deniability

Returning to our view of ML training as a mere function that, under a given
configuration ω maps training data to a concrete function f ∈ ML, we can
consider invertibility of this process as the problem of reverse-engineering the
training data from a given model f . If this is not possible, in the sense of
(normal) function inversion, then the recovery of training data from f will fail.
Since invertibility is equivalent of simultaneous injectivity and surjectivity of
the training function, the recovery can fail in two cases:

1. the given f ∈ ML simply does not correspond to any possible training
data under any (or a given) configuration ω. In that case, the training
algorithm “fit” was not surjective, as a function.

2. the given f ∈ ML may arise identically from several different sets of
training data, in which case the fitting, as a function, was apparently not
injective.

It is the latter incident that we will use to define deniability, understood as
the possibility of alternative training data sets, besides what we have recovered.
Formally:

Definition 2 (Deniability). Let a (fixed) f0 ∈ ML be given that has been
trained from some unknown data set under a configuration ω. We call a given
(proposed) training data set T = {(xi, yi)}ni=1 deniable, if another set T ′ 6=
T exists, upon which the training algorithm fit would have produced the same
function f0, possibly under a different configuration ω′ that can depend on T ′.

Intuitively: plausibility holds if there is another quantity of training data that
would have lead to the same f0.

Obviously, the non-invertibility of the training as a mapping implies deni-
ability, but the converse is not true, since if the training function/algorithm is
not surjective, no alternative training data T ′ would exist. To keep the data
recovery problem interesting, however, let us in the following assume that the
model has really been trained from existing yet unknown information, so that
the parameterization is guaranteed to be admissible.

Even if there is an alternate set of training data, one may question its validity
on perhaps semantic grounds. For example, if the training data is known to
obey certain numeric bounds, or coming from physical processes with a known
distribution, we could perhaps judge an alternative proposal as implausible,
since it may produce the same ML model, but the underlying data is arguably
not meaningful in the application context. The stronger notion of plausible
deniability demands that the alternative training data should also “statistically
agree” with the expectations, or more formally:

Definition 3 (Plausible Deniability). Let a (fixed) f0 ∈ML be given that has,
under a configuration ω, been trained from some unknown data set. Let, in
addition, be a distribution family F be given to describe the context/source of

6

the training data. We call a given (proposed) training data set T = {(xi, yi)}ni=1

plausibly deniable, if another set T ′ 6= T exists that has the same statistical
distribution F , and upon which the training algorithm would have produced the
same function f0, possibly under a different configuration ω′ that can depend on
T ′.

Intuitively: plausible deniability holds if it cannot be demonstrated that the
alternative proposal data is purely artificial.

Definition 3 differs from Definition 2 only in the fact that a proposal training
data should not look “too much different” from what we would expect about
the unknown training data, formalized by imposing a given distribution F . The
important point here is the order of quantifiers, demanding that the distribution
family F is given a priori, as a specification of what sort of training data can be
plausible in the given context. It is important to observe here that this does not
require the unknown data, upon which the given ML model f0 has been trained,
needs to have a distribution from F ; this can hold in practical instances, but
the denial may indeed be a claim that f0 has been trained from data coming
from an entirely different source, not having the distribution F . Let us briefly
expand on the intuition by giving an example:

Example 1. Suppose that in a social network, somebody uses the data from a
user to predict upcoming messages concerning a certain topic, or just trains a
model to predict a persons overall activity in posting news on the network. If the
model is, for simplicity, about the inter-arrival times of a posting on the media,
we can model the event of postings as a Poisson process, having an exponential
distribution for the time between two activities with a rate parameter λ > 0.
Letting λ vary over (0,∞) yields the family F in Definition 3.

Now, suppose that the provider aggregates some statistics about the commu-
nity’s activity (say, for advertising purposes), and releases the concrete distribu-
tion of inter-arrival times between postings to the public (e.g., underpinning the
empirical findings by releasing artificial data coming out of a Generative Adver-
sarial Networks (GAN) for others to confirm the data science independently).
This would come to the publication of a specific distribution Fλ ∈ F from the
aforementioned family of distributions.

Now, to have a need for deniability, one may suspect the provider to have
profiled a particular network user X, and suppose that the activity prediction
model f0 is about user X specifically. This would be yet another member FλX

∈
F .

The point behind plausible deniability is that the provider, facing accusal of
having released an activity model f0 for user X, can deny this upon admitting
that the model was trained from social network data, but not specifically the
data of user X, having had the distribution FλX

, but rather from the data for
the entire community, having the (different) distribution Fλ. The fact that the
underlying data is admitted to have an exponential distribution is for plausibility,
while the claim that it was not user X’s data is the denial.

While Example 1 used the same distribution shape as the underlying un-
known data may have had, a denial may be argued even stronger by claiming

7

that the distribution used to train f0 may have come from an entirely different
source, having a distinct distribution at all. Definition 3 allows this by not
constraining the distribution family to include only distributions of a particular
shape or algebraic structure (e.g., gamma distribution or more general expo-
nential family), but allowing it to be any shape that is “believable” in the given
context. Our experimental results shown later in Section 5 demonstrate that
this possibility also practically works.

Since this is a much stronger notion than the previous, it comes somewhat
unexpected that it is satisfiable under some conditions, in the sense that we
can even freely choose the alternative training data, if we (heavily) exploit the
freedom to change the configuration ω for the optimization. In particular, we
can modify the error metric, as part of ω, to let us attain the optimum at the
given function f (more specifically its parameterization p) for any a priori chosen
training data. This will be Theorem 2. Before proving this main result, let us
briefly return to the weaker notion of deniability first. Proving the possibility to
deny is in fact an easy matter of information-theoretic arguments, as we show
in Section 3

3 Deniability by Non-Unique Recovery

Suppose that we are given a model with a (fixed) number of d parameters. The
number d can be large, but still much smaller than the training sample size, so
that there is intuitively no unique recovery possible. In fact, we have a simple
result, whose proof appears in Appendix B.1:

Theorem 1. For a given ML model (according to Definition 1) with d pa-
rameters. Let the (unknown) training data come from a random source Z with
entropy H(Z) bits, and let the function f require (at least) k bits to encode, and
assume that f has been trained from n unknown records.

If the number n exceeds

n >
k

H(Z)
, (2)

then any candidate training data extracted from f is deniable (in the sense of
Definition 2).

A suitable number k as used in the above result is practically easy to find,
since it suffices to find any number k of bits that encodes f , and if this number
is not the minimum, the bound (2) only becomes coarser2. In the simplest
case, k can be found by saving the ML model to a file, and taking the file size
to approximate k from above. Expressed boldly, we cannot hope to extract a
“uniquely defined” Giga-byte of training data from a 100 kbit sized model f .

2finding a tight bound in (2) would require to replace k by the entropy of the parameter
vector p or the Kolmogorov complexity of the random f0 as emitted by the training algorithm.
Either quantity appears hardly possible to get in practice.

8

4 Plausible Deniability

To formalize and prove plausible deniability of the training, imagine an adver-
sary to have a given model f0 = f(·,p∗) in its possession, looking to recover the
unknown training data (xi, yi)

n
i=1 from it. For feasibility, let us even assume

that the model contains “enough” information to let the attacker expect a suc-
cessful such recovery. Specifically, the training has lead to the vector p∗, from
which the recovery of the data is attempted.

Generically, the recovery is the solution of an inverse (optimization) problem
with p∗ as fixed input, and using a norm ‖·‖ of the adversarial reverse-engineer’s
choice:

argmin ‖((xi, yi)− f(xi,p
∗))ni=1‖ (3)

over (xi, yi)
n
i=1 ∈ Rn×(m+1) (here being unconstrained for simplicity and to be

clear on the dimensions). Once confronted with the adversary’s proposal solu-
tion, the original trainer can deny the result’s correctness by plausibly claiming
that the training algorithm in (1) used a norm that is different from the ad-
versary’s choice in (1). Theorem 2 gives conditions under which this claim is
possible; more precisely, it lets the trainer construct a norm from a randomly
chosen training data set according to a desired distribution F , which recovers
the model f upon training with this hand-crafted norm.

Like in encryption, the norm herein takes the role of a “secret key” to train
the model, and the plausibility is by exposing a different “secret” (norm) to claim
that the training was done from entirely different data, and only coincidentally
produced the model in the adversary’s hands (Figure 4 in the Appendix graph-
ically shows the flow as an analogy to the secrecy of contemporary encryption;
the concept is comparable).

4.1 The Main Result

The bottom line of our previous considerations is that we are thus free to define
our error metric in any way we like, without changing the results of the training
in a substantial way, by crafting our own norm as we desire, and define a distance
metric as the norm of the absolute error vector. In a nutshell, our construction
will use the semi-norm ‖x‖A :=

√
x> ·A · x, induced by any positive semi-

definite matrix A. The trick will be choosing A so that the semi-norm becomes
zero at a desired error vector, i.e., point in Rn. Given any decoy training data
T ′, it is not difficult to find such a matrix A by computing the error vector
e = (f(xi,p

∗) − yi)ni=1 ∈ Rn, and picking A such that A · e = 0. Lemma 2 in
Appendix A.1 describes how to do this step-by-step.

This is almost one half of the construction, culminating in Lemma 1, which
adds conditions to ensure the local optimality of the desired error vector e. The
other half is the extension of this semi-norm into a norm, which is Theorem 2.

Lemma 1. Let f : Rm×Rd → R be parameterized by a vector p ∈ Rd and map
an input value vector x to a vector y = f(x,p). Let p∗ ∈ Rd be given as fixed,

9

and let us pick arbitrary training data (x1, y1), . . . , (xn, yn). Finally, define the
error vector e = (yi − f(xi,p

∗))ni=1 ∈ Rn.
Let for all xi the functions f(xi, ·) be totally differentiable w.r.t. p at p = p∗

with derivative di = Dp(f(xi,p))(p∗) ∈ Rd. Put all d>i for i = 1, 2, . . . , n as
rows into a matrix M ∈ Rn×d and assume that it satisfies the rank condition

rank(M|e) 6= rank(M). (4)

Then, there exists a semi-norm ‖·‖ on Rn such that p∗ locally minimizes
‖e(p∗)‖, i.e., there is an open neighborhood U of p∗ inside which ‖e(p∗)‖ ≤
‖e(p)‖ for all p ∈ U .

Remark 1. The perhaps more convenient condition to work with is assuming f
to be partially differentiable w.r.t. all parameters p1, . . . , pd, and to assume the
derivatives ∂f/∂pi to be continuous at all training data points xi. In that case,
di is just the gradient ∇pf(xi,p) and M is nothing else than the Jacobian of the
function g : Rd → Rn, sending p to the vector of values (f(x1,p), . . . , f(xn,p)),
where all xi are fixed, and the result depends only on p. The general condition
stated in Lemma 1 is just total differentiability of g, or, in a slightly stronger
version, g having all continuous partial derivatives.

The proof of Lemma 1, as well as the proof for the stronger Theorem 2 are
both given in the Appendix.

Theorem 2. Under the hypotheses of Lemma 1, there exists a norm ‖·‖ on RN

such that p∗ locally minimizes ‖e(p)‖ as a function of p.

Now, let us go back and remember the order of specification: given the
model by its parameters p∗, and – independently of that – given an arbitrary
probability distribution family F , we can sample decoy training data from F ,
and construct the norm from it. Thm. 2 thus makes Def. 3 of plausible
deniability straightforwardly satisfiable.

It is natural to ask whether the norm that Theorem 2 asserts can be replaced
by a “more common” choice of error metric, such as MSE or MAE. This is in
fact possible for MAE; see Appendix B.4 for the proof of this Corollary:

Corollary 1. Under the hypotheses of Theorem 2, there is a matrix C such that
p∗ locally minimizes the mean average error MAE(C · e) of the error vector e.

4.2 Multi-Output ML Models

Let us now drop the assumption of our ML model to output only numbers,
and look at vectors as output. This transforms the error vector into an error
matrix, and we have the following result, stated again in full detail, and proven
in Appendix B.5.

Corollary 2. Take k,m, d ≥ 1 and let f : Rm × Rd → Rk be parameter-
ized by a vector p ∈ Rd, and write fj for j = 1, . . . , k to denote the j-th
coordinate function. For a fixed parameter vector p∗ and arbitrary training

10

data (x1,y1), . . . , (xn,yn) ∈ Rm × Rk, define the error matrix E row-wise as
E = (y>i − f(xi,p

∗)>)ni=1 ∈ Rn×k. In this matrix, let ej ∈ Rn be the j-th
column.

For all j = 1, 2, . . . , k and all training points xi, assume that each fj(xi,p)
is totally differentiable w.r.t. p at (the same point) p = p∗, with derivative
di,j = Dp(fj(xi,p))(p∗) ∈ Rd. For each j, define the matrix Mj = (d>i,j)

n
i=1 ∈

Rn×d and let the rank condition rank(Mj |ej) 6= rank(Mj) hold.
Then, there exists a matrix-norm ‖·‖ on Rn×k such that p∗ locally minimizes

‖E(p∗)‖, i.e., there is an open neighborhood U of p∗ s.t. ‖E(p∗)‖ ≤ ‖E(p)‖ for
all p ∈ U .

Equipped with Theorem 2 and its corollaries, we can now finally state a
result about plausible deniability, similar to Theorem 1. The proof is by a
direct application of the respective results as stated above.

Theorem 3. For a given ML model f , let the (unknown) training data come
from a random source with known distribution F . Then, for every choice of
alternative training data T ′, randomly sampled from the same distribution F ,
we can find an error metric induced by a (properly crafted) norm ‖·‖ so that
the training algorithm, upon receiving the training data T ′ and error metric
(through the configuration ω), reproduces the given model f exactly. Thus, any
data recovered from f is plausibly deniable in the sense of Def. 3.

The case where the distribution F is unknown is even simpler, since plausi-
bility can only be argued if there is a ground truth known as the distribution
F . If this ground truth is not available, there is nothing to argue regarding
plausibility.

5 Numerical Evaluation and Validation

We demonstrate a proof-of-concept for our plausible deniability concept in ma-
chine learning in the context of a fictional scenario of fitting a regression model,
delegating the (lengthier) details to Appendix C. The experiment was conducted
as follows: we picked a random vector p and defined the ML model f(x) = pT ·x
from it. Next, this model was evaluated on randomly chosen vectors x1, . . . ,xn,
computing the responses yi = f(xi) + εi with a random error term on it. This
mimics the model f to have been fitted from the so-constructed training data
T = (xi, yi)

n
i=1.

Then, towards a denial of the (correct!) training data set, we randomly
sampled a fresh set T ′ = (x′i, y

′
i)
n
i=1, in which the values y′i were also drawn

stochastically independent (of their x′i’s). From this set T ′, we constructed the
norm as Theorem 2 prescribes (see Figure 3 in Appendix B.5 for the algorithmic
details), and re-fitted the regression model. Plausible deniability is then the
expectation of finding approximately the vector p again, and indeed, an example
execution of this program delivered the following results for a six-dimensional
regression model (small enough for a visual inspection):

11

original vector p p as trained from decoy data T ′

-0.57104 -0.56936
-1.53456 -1.53402
-2.45770 -2.45657
-2.12341 -2.12261
-1.26093 -1.25992
-1.91170 -1.91082

This experiment is repeatable (with comparably good results) using our
implementation3 of the construction behind Theorem 2 in GNU Octave (version
5.2.0) [7], with the optim package (version 1.6.0) [16], and for the particular
application to a regression model. We stress that the algorithms used to fit
the ML model were hereby taken “off the shelf” that optim provides, with no
modification to the inner code (or its default configuration).

6 Related Work

The conflicting interests of available data and data privacy have long been un-
derstood. It has been shown that the problem of minimizing information loss
under given privacy constraints is NP-hard [17]. An overview on threats and
solutions of privacy preserving machine learning is provided in [1] to close the
gap between the communities of ML and privacy.

Legal requirements such as the GDPR put limitations on any kind of method
that uses personal data, including ML applications. The regulation aims at pre-
venting any discrimination, so critical data such as health data now require
protection [2]. Approaches such as the privacy-aware machine learning model
provisioning platform AMNESIA [15] make sure that ML models only remem-
ber data they are supposed to remember. A new method to preserve privacy for
classification methods in distributed systems prevents that data or the learned
models are directly revealed [10] and can even be extended to hierarchical dis-
tributed systems [9]. The vulnerabilities ML methods induce in software systems
can also be analysed based on known attacks [13]. A recent survey on privacy-
preserving ML is given in [11], showing that the majority of new approaches
focus on specific domains. In social networks, systems are develop that decide
(semi-)automatically whether to share information with others [3]. Frameworks
for privacy-preserving methods in healthcare are also in development [8]. Clas-
sification protocols that ensure confidentiality of both data and classifier are
described in [5] and implemented by modification of existing protocols. In 2017,
Google presented a protocol that enables deep learning from user data with-
out learning about the individual user [4]. An algorithm for privacy-preserving
logistic regression was designed to address the trade-off between privacy and
learnability and to learn from private databases [6].

3code will be released if this paper receives positive reviews

12

7 Conclusions

7.1 Suspicion by “non-standard” error metrics

Obviously, it may be suspicious if the norm used for the training is not released a
priori as part of the description of the ML model, and our proposed mechanism
of deniability works only if the norm used for the training is kept secret initially.
Furthermore, the honest creator of the model cannot later come out with a
strangely crafted norm to claim having done the training with this, if the more
natural choice would have been MAE, RMSE or others. So, to make the denial
“work”, the process would require the model creator to initially state that the
training will be done with a norm that has a “certain algebraic structure”,
namely that which Theorem 2 prescribes. This lets the honest owner of the
norm later change the appearance of the norm for a denial, without creating
suspicion by coming out with something completely different. Since all vector
norms, and hence also all matrix norms are topologically equivalent, such an
a priori vote for a certain class of norms is not precluded by theory, and a
legitimate design choice up to the model trainer.

7.2 Accounting for Partial Knowledge

If the attacker has partial knowledge of the training data, say, a few columns /
variables are known, but not all of them, the situation with plausible deniability
is unchanged: the denying party can simply include this knowledge in the decoy
training data (as this can be chosen freely anyway), and construct the norm
from the remaining variables. This even works when the attacker knows all
variables in the training records xi, in which case the resulting responses yi are
uniquely recoverable by a mere evaluation of the function f . This is the trivial
case of recovery, against which no countermeasure can be given. However, if
there is at least some uncertainty about a variable in the training data, and
the model is “sufficiently dependent” on this unknown inputs, then plausible
deniability becomes applicable again.

Overall, the finding in this work is that privacy by non-recoverability essen-
tially holds without much ado, provided that there is lot more data used for the
training than the model can embody via its parameters. Additional precautions
for plausible deniability are only required by announcing the error metric prior
to any training, or as part of the description of the model upon its release.

The important point here is not that the training on a suitably crafted norm
is algorithmically feasible, but instead that it is possible. While we do not claim
the norm from Theorem 2 to lend itself to an efficient optimization in high-
dimensional cases (such as neural networks), but the existence assertion made
by the theorem may already be enough, since it is arguable that one has taken
the decoy data and went through very lengthy and time-consuming training to
have produced the model in discussion.

The lesson learned here to escape the plausible deniability issue is to go for
maximum transparency of the learning process, which includes in particular an

13

a priori and publicly documented specification of the error metric and training
algorithm before deniability arguments are made. In this way, one cannot later
silently change the error metric towards consistency with faked training data.

Acknowledgments

This work was supported by the research Project ODYSSEUS (”Simulation
und Analyse kritischer Netzwerk Infrastrukturen in Städten”) funded by the
Austrian Research Promotion Agency under Grant No. 873539.

References

[1] Mohammad Al-Rubaie and J. Morris Chang. Privacy-preserving machine
learning: Threats and solutions. 17(2):49–58, 2019.

[2] C.-A. Azencott. Machine learning and genomics: precision medicine versus
patient privacy. 376(2128):20170350, 2018.

[3] Igor Bilogrevic, Kévin Huguenin, Berker Agir, Murtuza Jadliwala, Maria
Gazaki, and Jean-Pierre Hubaux. A machine-learning based approach to
privacy-aware information-sharing in mobile social networks. 25:125–142,
2016.

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1175–1191. ACM, 2017.

[5] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Ma-
chine learning classification over encrypted data. In Proceedings 2015 Net-
work and Distributed System Security Symposium. Internet Society, 2015.

[6] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic
regression. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Advances in Neural Information Processing Systems, volume 21, pages 289–
296. Curran Associates, Inc., 2009.

[7] John W. Eaton, David Bateman, Søren Hauberg, and Rik Wehbring. GNU
Octave version 5.2.0 manual: a high-level interactive language for numer-
ical computations, 2020.

[8] Kyle Fritchman, Keerthanaa Saminathan, Rafael Dowsley, Tyler Hughes,
Martine De Cock, Anderson Nascimento, and Ankur Teredesai. Privacy-
preserving scoring of tree ensembles : a novel framework for {AI} in health-
care. pages 2413–2422. IEEE, 2018.

14

[9] Qi Jia, Linke Guo, Yuguang Fang, and Guirong Wang. Efficient privacy-
preserving machine learning in hierarchical distributed system. 6(4):599–
612, 2019.

[10] Qi Jia, Linke Guo, Zhanpeng Jin, and Yuguang Fang. Preserving model
privacy for machine learning in distributed systems. 29(8):1808–1822, 2018.

[11] Liu Junxu and Meng Xiaofeng. Survey on privacy-preserving machine
learning. 57(2):346, 2020. Publisher: Journal of Computer Research and
Development.

[12] Keras Team. Keras documentation: Losses, 2020.
https://keras.io/api/losses/.

[13] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P. Well-
man. SoK: Security and privacy in machine learning. In 2018 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P), pages 399–414.
IEEE, 2018.

[14] Stefan Schauer, Sandra König, Thomas Schaberreiter, Stefan Rass, Klaus
Steinnocher, and Gerald Quirchmayr. Cross-Domain Risk Analysis to
Strengthen City Resilience: the ODYSSEUS Approach. In A.L. Hughes,
F. McNeill and C. Zobel (eds.): ISCRAM 2020 Conference Proceedings -
17th International Conference on Information Systems for Crisis Response
and Management, pages 652–662. ISCRAM Association, 2020.

[15] Christoph Stach, Corinna Giebler, Manuela Wagner, Christian Weber,
and Bernhard Mitschang. {AMNESIA}: A technical solution towards
{GDPR}-compliant machine learning. volume Proceedings of the 6th In-
ternational Conference on Information Systems Security and Privacy, pages
21–32, 2020.

[16] Olaf Till. The ’optim’ package, 2019.

[17] S.A. Vinterbo. Privacy: a machine learning view. 16(8):939–948, 2004.

[18] Wolfgang Walter. Analysis 2. Grundwissen Mathematik. Springer, Berlin,
4., durchges. und erg. aufl edition, 1995. OCLC: 263611766.

15

A Error Measures from Topological Norms

A norm on Rn is a mapping ‖·‖ : Rn → R with the following properties:

1. positive definiteness: ‖x‖ ≥ 0 for all x, with ‖x‖ = 0 if and only if x = 0.

2. homogeneity: ‖λ · x‖ = |λ| · ‖x‖ for all λ ∈ R.

3. triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y.

If one allows ‖x‖ = 0 for some x 6= 0, then we call ‖·‖ a semi-norm. Every norm
induces a metric d(x,y) = ‖x− y‖, or a pseudometric if we use a semi-norm.

At least the following popular choices for error measures are directly express-
ible via norms. For the description, let us put ŷi := f(xi, p) be the ML model’s
estimate on the training data (xi, yi) for a total of i = 1, 2, . . . , n training sam-
ples. For abbreviation, put y = (y1, . . . , yn), ŷ = (ŷ1, . . . , ŷn) ∈ Rn, and recall
that a general p-norm for p ≥ 1 on Rn is defined by

‖y‖p =

[
n∑
i=1

|yi|p
] 1

p

,

with the practically most important special cases of the 1-norm ‖y‖1 =
∑n
i=1 |yi|,

Euclidian norm ‖y‖2 =
√
y21 + y22 + . . .+ y2n, and maximum-norm ‖y‖∞ =

maxi |yi|.

1. Mean squared error

MSE =
1

n

n∑
i=1

(yi − ŷi)2 =
1

n
‖y − ŷ‖22 (5)

2. Root mean squared error

RMSE =
√
MSE =

1√
n
‖y − ŷ‖2 (6)

3. Mean absolute error

MAE =
1

n

n∑
i=1

|yi − ŷi| =
1

n
· ‖y − ŷ‖1 (7)

We will not go into discussions about pros and cons of these choices (or
alternatives thereto), beyond remarking that the squared errors can be easier to
handle for their differentiability properties. The MAE is on the contrary more
robust against outliers, which the (R)MSE penalize more, so that the fitting is
more sensitive to training data that has not been cleaned from outliers before.

Defining an error metric from a norm as yet another appeal, since (topolog-
ically) all norms over finite-dimensional real vector-spaces are equivalent. Since
we will make implicit use of that in the following, we state this well known result
for vector-norms, whose canonical version for matrix-norms holds likewise:

16

Theorem 4 (see, e.g., [18, p.17]). Let any two norms ‖·‖′ and ‖·‖′′ on Rn be
given. Then there are constants α, β > 0 such that

α · ‖x‖′ ≤ ‖x‖′′ ≤ β · ‖x‖′ .

By symmetry, this is an equivalence relation on the set of norms on Rn, and
topologically speaking, they all induce the same topology. For optimization, it
means that once the distance ‖xi − y‖ → 0 as i → ∞ for a point sequence xi
towards approximating a (fixed) target vector y, this convergence would occur
in the same way (though not necessarily at the same speed) in every other norm
on Rn.

Practically, this means that fitting a ML model to a training data set by
optimizing the norm of the error vector as in (1), will eventually lead to results
within a spherical neighborhood (ball) whose radius changes only by a constant
factor upon switching from ‖·‖′ to ‖·‖′′. Moreover, if an approximation with
zero error is possible, both norms will admit finding this optimum point.

A.1 Pseudometrics for the Training

Picking up on the outline started in Section 4.1, a flexible construction for a
norm is ‖x‖A :=

√
x> ·A · x with any positive definite matrix A. If A is not

positive definite, we can still get a semi-norm as x 7→ ‖A · x‖, with only the
property ‖x‖ = 0 ⇐⇒ x = 0 being violated in case that A has a nontrivial
nullspace N(A) = {x : A · x = 0}, where by nontrivial we mean N(A) 6= {0}.

We will proceed by constructing a semi-norm that vanishes only for the given
error vector e(p∗) or scalar multiples thereof, under the chosen parameter p∗.
Let us call this particular matrix B, whose existence and construction is not
difficult to describe:

Lemma 2. Let e ∈ Rn be a vector, then there exists a matrix B having the
nullspace N(B) = span {e}. Geometrically, this matrix is a projection on a
(n−1)-dimensional subspace of Rn, corresponding to the orthogonal complement
of span {e} within Rn.

Proof. Compute a Singular Value Decomposition (SVD) e = U · Σ · V for
the error vector e, and construct B with the same rows taken from U> that
correspond to all-zero rows (i.e., zero diagonal elements) in Σ. The nullspace
and geometric properties then directly follow from this construction.

Using the matrix B, we can define the semi-norm

b(x) := ‖B · x‖ (8)

in which ‖·‖ is an arbitrary (full) norm on Rn. This is a well-defined semi-norm,
with the properties that

• b(e(p∗)) = 0,

• and b(x) > 0 whenever x /∈ span {e(p∗)}.

17

The function b induces a pseudometric on Rn, as lacking only the identity of
indiscernible elements d(x,y) = 0 ⇐⇒ x = y, but still satisfying b(x) ≥ 0 for
all x, so that x = p∗ is already an optimum. For later reference, let us capture
the matrix B more explicitly:

The vector e in Lemma 2 will be our error vector e(p) for the parameteri-
zation p, and the subspace that B projects on will be called V throughout all
other proofs appearing hereafter.

Note that, in principle, we could directly use this pseudometric to train our
function f towards taking a minimum error for the parameter p∗. The necessary
assumption is that upon a change from p∗ to another p 6= p∗, we would leave
the nullspace of B, thus making the function b take on strictly positive values.

B Proofs

B.1 Proof of Theorem 1

This is a simple information-theoretic argument: call X the random variable
representing the (entirety) of the training data that went into the ML model.
Suppose this is a set of n records containing values that are sampled from a
random vector Z in a stochastically independent manner. Then, X is a matrix
of n rows, and has the entropy H(X) = n ·H(Z), where H(Z) is the entropy of
the joint distribution over the attributes in the training data record. From here
on, let all logarithms have base 2.

The trained model is, from the adversary’s perspective, a sample of another
random variable Y , representing the collection of parameters that define the
model. The recovery problem is the unique reconstruction of X, given Y , and,
information-theoretically speaking, solvable if and only if H(X|Y) = 0. First,
note that H(X|Y) = H(X,Y) − H(Y), and that H(X,Y) ≥ H(X), giving
H(X|Y) ≥ H(X) − H(Y). Similarly, the information extractable from the
trained model cannot be more than the shortest encoding of the model itself. So,
suppose that the model f , as a realization of the random variable Y , comes with
a string description of length at least K(Y) = min{` ∈ N : f ∼ Y has an ` bit
string representation} bits. Then, the uncertainty reduction by −H(Y) cannot
exceed the bit count to represent f , hence H(X)−H(Y) ≥ H(X)−K(Y). The
maximum additional knowledge of K(Y) bits, contributed by Y , is increasing
in d, since the parameters at some point must be encoded within the string
representation of f . Using this and the fact that H(X) = n ·H(Z), with H(Z)
being constant (and determined by the uncertainty in the attributes of the data
that were used for training), we find

(9)H(X|Y) = H(X,Y)−H(Y) ≥ H(X)−H(Y) ≥ n ·H(Z)−K(Y) > 0,

if the number n of training records grows sufficiently large over the number d
of parameters in the model. Once H(X|Y) > 0, we have no hope for a unique
recovery of the training data from a model. To be precise, it means that the
distribution is non-degenerate, meaning that there is at least another possibility

18

(i.e., element in the support) to appear with nonzero probability. This completes
the proof of Theorem 1.

Theorem 1 does not imply any claim about the possibility or impossibility
to single out a most plausible among the possible solutions. This would be
more likely or easy, the smaller the conditional or residual entropy comes out,
so making n large over d is practically desirable. Quantifying the chances of
guessing is another story, calling for conditional min-entropies here, and left as
a direction of future research.

While this already positively answers the question of privacy of the data
embodied in a ML model, this does not rule out a “lucky guess” of the cor-
rect training data. This guess becomes more likely, the smaller the residual
uncertainty H(X|Y) is.

Irrespectively of the residual uncertainty, the stronger possibility of denying
a lucky guess even if it is correct is what plausible deniability is about.

B.2 Proof of Lemma 1

Let e(p∗) be a vector spanning the nullspace of a matrix B, and let b be defined
by (8). Since f is differentiable, we can locally write the error term as

e(p) = e(p∗) + (Jp(f))(p∗) · (p− p∗) + o(‖p− p∗‖)

for all p in some neighborhood of p∗. Abbreviating our notation by writing
M := (Jp(f))(p∗), i.e., calling M the Jacobian of f evaluated at p∗, and rear-
ranging terms, we get

e(p)− e(p∗) = M · (p− p∗) + o(‖p− p∗‖). (10)

Towards a contradiction, assume e(p) ∈ N(B). By construction, we have
e(p∗) ∈ N(B), so the difference e(p)−e(p∗) of the two is also in N(B). Likewise
must thus be the right hand of (10) in N(B), and we can find a sequence (pi)i∈N
inside N(B) that satisfies (10). Because N(B) = span {e(p∗)}, we can write
this sequence as pi := p∗ + hi · v, using another null-sequence (hi)i∈N of values
in R and the unit vector v := e(p∗)/‖e(p∗)‖ (the norm is herein the one from
(10), and has nothing to do with the one asserted by Theorem 2). Since the
sequence hi → 0 is arbitrary (as is the sequence pi), let us just write h→ 0 to
define the sequence of points in N(B).

This lets us rewrite (10) as

e(p∗ + h · v)− e(p∗) = M · h · v + o(h),

which we can divide by h > 0 to get the quotient

e(p∗ + h · v)− e(p∗)
h

= M · v +
o(h)

h
.

Therein, we have o(h)
h → 0 as h→ 0 by the definition of the small-o, and on the

left hand side, we get the directional derivative along v by taking h→ 0, since
f was assumed to be totally differentiable.

19

Before, we noted the left side of (10) to be in N(B), and since subspaces
are topologically closed, the limit, i.e., the directional derivative must also be in
N(B). Accordingly, this puts the right side M · v ∈ N(B), implying that there
is some number λ ∈ R so that M · v = λ · e(p∗). But this means that e(p∗)
must be in the column space of M, which contradicts our hypothesis (4) on the
rank and refutes the assumption that e(p) can be in N(B).

We thus have e(p) /∈ N(B) in a neighborhood of p∗, but e(p∗) ∈ N(B).
Now, using the semi-norm b(x) = ‖B · x‖, we see that ‖e(p∗)‖ = 0, while
‖e(p)‖ > 0, so p∗ is locally optimal under this semi-norm.

B.3 Proof of Theorem 2

The norm as claimed to exist above will be

‖x‖ := ‖x‖e + b(x), (11)

with b as we had so far, and another norm ‖·‖e, to be designed later (the
subscript e to the norm is hereafter a reminder that this norm will depend
on the error vector e). Intuitively, one may think of b as a “penalty term”
to increase the norm upon any deviation from the desired error vector (hence
making this point a minimum).

At p∗, we have

‖e(p∗)‖ = ‖e(p∗)‖e + b(e(p∗))︸ ︷︷ ︸
=0

= ‖e(p∗)‖e ,

by our choice of the semi-norm b. Our goal is showing that

‖e(p∗)‖ ≤ ‖e(p)‖ . (12)

From the triangle inequality that ‖·‖e must satisfy, we get for any p 6= p∗,
‖e(p∗)‖e = ‖e(p∗)− e(p) + e(p)‖e ≤ ‖e(p)‖e + ‖e(p∗)− e(p)‖e, and by rear-
ranging terms, we find ‖e(p)‖e ≥ ‖e(p∗)‖e−‖e(p∗)− e(p)‖e. Substituting this
into (11), we get

(13)‖e(p)‖ = ‖e(p)‖e + b(e(p))

≥ ‖e(p∗)‖e − ‖e(p
∗)− e(p)‖e + b(e(p)).

To prove (12), it suffices to construct a norm ‖·‖e that satisfies

‖e(p∗)− e(p)‖e ≤ b(e(p)), (14)

for all p for which e(p) is outside of N(B) (otherwise, for e(p) ∈ N(B) distinct
from p∗ we would have ‖e(p∗)− e(p)‖ > 0 but b(e(p)) = 0, invalidating (14)).
The assurance that e(p) /∈ N(B) is hereby implied by the hypothesis and argu-
ments of Lemma 1, which we included in the theorem’s hypothesis and hence
not repeat here.

20

span(e(p∗))

e(p∗)

orthogonal complement V of span(e(p∗))

point x

projection B · x of x

on a subspace of V

vector x−B · x lies inside span(e(p∗))

Figure 1: Illustration of the projection norm ‖·‖V

So we can continue (13) as

‖e(p)‖ ≥ ‖e(p∗)‖e−‖e(p
∗)− e(p)‖e + b(e(p))︸ ︷︷ ︸

≥0

≥ ‖e(p∗)‖e .

With that accomplished, and recalling that b was constructed towards b(e(p∗)) =
0, we would find ‖e(p)‖ ≥ ‖e(p∗)‖e = ‖e(p∗)‖e + b(e(p∗)) = ‖e(p∗)‖, which is
exactly our goal (12).

Thus, we are left with the task of finding a norm ‖·‖e that satisfies (14).
To this end, recall that the semi-norm b becomes a (full) norm on the factor
space Rn/∼, modulo the equivalence relation x ∼ y ⇐⇒ (x − y) ∈ N(B).
By the dimension formula, we have dim(Rn) = dim(Rn/∼) + dim(N(B)), and
since dim(N(B)) = 1, we find dim(Rn/∼) = n − 1. Since the factor space is a
vector space over the reals, it is isomorphic to the (n−1)-dimensional orthogonal
complement V := N(B)⊥ ⊂ Rn of N(B) ' R1. On V , we can define a norm,
e.g. ‖·‖2. By Lemma 2, projV = B is the projection of a vector onto V , then
(taking the same norm as in (8)),

‖x‖V :=
1

2
‖projV (x)‖ =

1

2
· b(x)

is a semi-norm on Rn. This semi-norm trivially satisfies ‖x‖V ≤
1
2b(x) for all

x ∈ Rn. Figure 1 provides an illustration.
Now, for an intermediate wrap-up, ‖·‖V is a semi-norm obeying the desired

bounds for all vectors, especially those in the orthogonal complement of N(B),
as desired. We now need to extend it to a full norm on the entire space Rn

using the following idea: the sum of two semi-norms over the same vector space
is again a semi-norm and it is a full norm, if and only if the intersection of kernels
of the two semi-norms is exactly {0}. So we can construct a full norm by adding
another semi-norm, that is a full norm on a 1-dimensional space (isomorphic to
N(B)), which retains (14) on Rn \N(B).

21

e(p∗)

span(e(p∗)) (not orthogonal on W)

w1

W1 = span(w1)

x ∈ N(B)

(N − 1)-dimensional space W

projection of x on W

projection on W1 gives the sought norm

Figure 2: Illustration of the construction of ‖·‖W

The idea is to project a vector in N(B) to the exterior of N(B) and take
the norm of the projection there. To materialize this plan, let {v1, . . . ,vn−1}
be an orthonormal basis of V . Furthermore, pick any vector w1 ∈ Rn with two
properties: (1) it is not a scalar multiple of e(p∗), and (2) it is linearly inde-
pendent of all {v1, . . . ,vn−1}. In other words, we want both sets {w1, e(p

∗)}
and {w1,v1, . . . ,vn−1} to be linearly independent4. An easy choice for w1 is
to rotate the vector e(p∗) enough to become linearly independent of it, but not
far enough to become lying in the orthogonal complement. Figure 2 graphically
sketches the idea formalized now.

Call W1 := span {w1} the linear hull of w1, and pick another n − 2 pair-
wise orthogonal vectors w2, . . . ,wn−1, whose entirety spans the space W⊥n−2 =
span {w2, . . . ,wn−1} (the subscript and superscript are here serving as reminders
about the dimensionality and the orthogonality of this space relative to W1).
Clearly, we have

Rn 'W1 ⊕W⊥n−2 ⊕ span {e(p∗)}︸ ︷︷ ︸
=N(B)

.

Now, let any x ∈ N(B) be given. We can project x on the spaces W1 and W⊥n−2.
Since the space W := W1 ⊕W⊥n−2 is also over R and has dimension n − 1, we
have the isomorphy

W1 ⊕W⊥n−2 ' Rn/∼,

so that the function b is again a norm on W . Now, let us take the 1-norm (an
arbitrary choice here) to define another norm on W as

‖x‖W :=
∥∥projW1

(x)
∥∥
1

+
∥∥∥projW⊥n−2

(x)
∥∥∥
1
.

Since all norms over Rd are equivalent by Theorem 4 (for all d, especially d = n
or d = n−1), there is a constant α > 0 such that α ·‖x‖W < b(x). By definition

4note that w1 is in any case non-orthogonal to e(p∗), which assures that the projection of
any element in span(e(p∗)) onto the subspace spanned by w1 is nontrivial; if w1 were orthog-
onal to e(p∗), it would necessarily be a scalar multiple of some vector among v1, . . . ,vn−1,
in which case it cannot be linearly independent of them, as we required too.

22

of ‖x‖W , we also have α · ‖x‖1 ≤ α · ‖x‖W ≤ b(x). This lets us define a norm
on the subspace W1 ⊂W as

‖x‖W1
:=

α

2
·
∥∥projW1

(x)
∥∥
1
,

which satisfies the desired inequality ‖x‖W1
≤ 1

2b(x).
Now, let us put together the pieces: define the sought norm ‖·‖e as

‖x‖e := ‖x‖V + ‖x‖W1
≤ 1

2
b(x) +

1

2
b(x) = b(x),

where the inequality is only demanded to hold for x /∈ N(B). Observe that this
is indeed a (full) norm on Rn, since:

• if x = 0, then ‖x‖V = ‖x‖W1
= 0

• if x 6= 0 and x /∈ N(B), then there is a nonzero projection xV on the
orthogonal complement of N(B), on which ‖xV ‖V > 0, and hence ‖x‖e >
0. Likewise, if x 6= 0 and x ∈ N(B) (⇐⇒ x /∈ N(B)⊥), then there is a
nonzero projection on W1, making the other part of the norm > 0.

• Homogeneity and the triangle inequality hold by construction and are
obvious to check.

Substituting this into (11), we finally get

‖e(p)− e(p∗)‖e ≤ ‖e(p)‖e + ‖e(p∗)‖e
≤ b(e(p)) + b(e(p∗))

= b(e(p)),

thus satisfying (14), and yielding the final norm from (11) as

‖x‖ =
3

2
b(x) + ‖x‖W1

.

This completes the proof of Theorem 2. So far, this argument is not entirely
constructive, but can be made so by reconsidering the construction in a little
more detail, to which we devote the next paragraph.

B.3.1 Computing the Projections and the Value α

As stated, the proof of Theorem 2 is not constructive at the point where it claims
the existence of the constant α to make α ·‖x‖W ≤ b(x). Working out a suitable
constant α explicitly is not difficult: every x ∈ W1 = span(w1) takes the form
x = λ ·w1 for some λ ∈ R, and we can, w.l.o.g., assume w1 to have unit length
w.r.t. ‖·‖1 on Rn. Then,

∥∥projW1
(x)
∥∥
1

= |λ|, and b(x) = b(λ ·w1) = |λ| · b(w1).

So, it suffices to choose any α ∈ (0, b(w1)) to accomplish α·
∥∥projW1

(x)
∥∥
1
< b(x)

for x ∈W1, as desired. If x ∈ Rn is arbitrary, its projection is directly obtained

23

Input: Let e = f(x,p∗) − y ∈ Rn be the error vector of the ML model f
using the parameters p∗, on the training/validation data (x,y).
Output: The norm that Theorem 2 speaks about.

1. Compute B as shown in the proof of Lemma 2.

2. Pick a random vector w1 ∈ Rn with ‖w1‖1 = 1. With probability
1, this will deliver a vector that is linearly independent of all rows in
B, and also not a scalar multiple of e (but this should nonetheless
be checked by checking if the w1 6= B · w1 is fulfilled. Otherwise
sample another vector w1 and repeat). The probability assurance
follows from the fact that any lower-dimensional subspace of Rn has
zero Lebesgue measure in Rn.

3. Put α := 1
2 · b(w1), with the function b defined from the matrix B

via (8).

4. Given any vector x ∈ Rn, compute the norm ‖x‖e = ‖x‖V + ‖x‖W1
,

utilizing that ‖x‖V = ‖projV (x)‖ := 1
2 ·b(x), and ‖x‖W1

= α
2 ·
∣∣x>w1

∣∣,
to obtain ‖x‖ from (11) as

‖x‖ =
3

2
b(x) +

α

2
·
∣∣x> ·w1

∣∣ (15)

Figure 3: Computation of the norm asserted by Theorem 2

from the standard scalar product projW1
(x) = 〈x,w1〉 ·w1 = (x> ·w1) ·w1 with

λ = 〈x,w1〉.
Computing the projection of a vector x ∈ Rn on the subspace V is simply

the mapping x 7→ B · x, if B is constructed as Lemma 2 prescribes.
Putting together the pieces, given the parameter set p∗ and the resulting

residual error vector e, the norm as told by Theorem 2 is explicitly computable
along the steps summarized in Figure 3.

B.4 Proof of Corollary 1

A re-inspection of the proof of Theorem 2 in Section B.3 quickly shows that it
nowhere depends on the algebraic structure of the function b as given by (8),
and we only used the fact that b is a semi-norm. With that in mind, we can
investigate special cases:

Define b as
b(x) := ‖B · x‖1 , (16)

which has the kernel N(B), and is also a semi-norm. However, it lets us express
the final norm that Theorem 2 concludes with by a more elegant algebraic
expression. Upon re-arriving at (15) (see Figure 3) using the function b as

24

defined by (16), we can expand towards

‖x‖ =
3

2
‖Bx‖1 +

α

2

∣∣x>w1

∣∣ ,
and, recalling that adding the right term to the 1-norm on the left is the same
as taking the 1-norm on a vector with merely one additional coordinate, we see

with a block matrix C =
((3/2)·B
(α/2)·w>1

)

(17)

‖C · x‖1 =

∥∥∥∥(3
2B · x
α
2 w>1 · x

)∥∥∥∥
1

=
3

2
‖Bx‖1 +

α

2

∣∣x>w1

∣∣
= ‖x‖ ,

so that ‖e‖ = ‖C · e‖1 = n ·MAE(C · e) on the error e.
This means that the error measured by the norm from Theorem 2 is “just”

the mean absolute error, except for a linear transformation of the error vector.
Contemporary machine learning libraries often provide the possibility to define
custom loss functions, such as, e.g., keras [12].

B.5 Proof of Corollary 2

If f is vector-valued with k coordinates, we can apply Theorem 2 to each co-
ordinate function fj for j = 1, . . . , k to obtain a vector norm ‖·‖ej on RN that

depends on ej(p
∗) and satisfies

‖ej(p∗)‖ej ≤ ‖ej(p)‖ej (18)

for the parameterization p∗ that is the same for all k, and all p in a neighborhood
of p∗. From these vector norms, we can define

‖A‖ =
k∑
j=1

‖aj‖ej , (19)

with aj being the j-th column in the matrix A. This is readily checked to be a
matrix-norm, but now works on the multivariate error E = (e1(p), . . . , ek(p)).
The optimality of p∗ under this norm then directly follows by summing up (18)
over j = 1, 2, . . . , k. This completes the proof.

The practical evaluation of the norm in the multivariate case thus boils
down to an k-fold evaluation of norms from Theorem 2 using the algorithm
from Figure 3, and summing up the results. Since all matrix norms are likewise
to Theorem 4 equivalent, the previous remarks on the freedom to choose any
matrix norm for fitting the ML model remains valid.

25

C Example: Regression Model

Let us first illustrate the application of Theorem 2 on a simple linear regression
model. This choice is convenient for both, a closed-form expressibility of objects
like the Jacobian, as well as it can be designed with only a few number of
parameters for a manual check that the resulting model really comes up almost
identical, whether it has been trained with real or decoy data.

The overall experiment went as follows, where we let the data hereafter be
purely artificial for the mere sake of easy visual inspection during the compu-
tations and in particular regarding the results:

1. The overall regression model is given by a function with parameter p =
(β0, β1, . . . , βd−1)

f(x,p) = β0 + β1 · x1 + β2 · x2 + . . .+ βd−1 · xd−1 + ε, (20)

in which ε is a random error term with assumed zero mean. From the
model, it is evident that d = m + 1, so that the input vector x ∈ Rm
has one dimension less than p. For the experiment, we took a uniformly
random vector p ∈ [−6,+6]d of reals, to define an incoming model f0 “at
random”. The magnitude ±6 is herein an arbitrary choice, to keep the
numbers feasibly small for a manual visual inspection later.

2. Equation (20) was then evaluated on a total of n = 10 uniformly random
samples Xi ∼ U({1, 2, . . . , 8}m), adding stochastically independent error
terms ε, each with an exponential distribution with rate parameter λ = 5
(to, say, let the data be inter-arrival times, with an eye back on Example
1). Again, the choice of x-values in the integer range 1, . . . , 8 is arbitrary,
and only to keep the numbers small for a visual checkup. This computation
delivers the values yi ← f(xi)+ε for i = 1, 2, . . . , 10, which, together with
the xi form the training data.

3. Next, we “forget” about the underlying model (that we know here) and
fit a regression model of the same structure, given only the training data.
Since this data originally came out of a regression model, this lets us expect
a quite good fit, and an approximate re-discovery of the same parameter
vector p̂ as we had for producing the training data. Deviations are equally
natural (yet at small scale), since the training data is not overly extensive.

The resulting model f0 is obtained by invoking a nonlinear optimization
via a call to nonlin_min, to minimize the functional

∥∥(f(xi,p)− yi)10i=1

∥∥
2

using vectorization in GNU Octave. The minimization using the 2-norm
has, in our case, the appeal of making the resulting model a best linear
unbiased estimator by the Gauss-Markov theorem, whose hypotheses are
here satisfied by construction. Thus, the trained model f0 is indeed a
“good” ML model, as could be expected in real-life applications.

4. Now, for a plausible denial, we took a fresh set of (stochastically indepen-
dent) samples of decoy training data X′i ∼ U({1, . . . , 8}m), and another

26

set of random, and hence unrelated, response values Y′i ∼ U({1, . . . , 8}m).
Two things are important to note here:

• The decoy data is picked stochastically independent and at random,
so the experiment was repeatable with different instances of all in-
gredients (only retaining fixed numeric ranges for the values),

• and, more importantly, the response values yi are independent of the
inputs xi, so any underlying functional relation between xi and the
corresponding yi is most likely not a linear regression model. Thus,
the decoy data is completely different from the true training data.

5. Given the set of decoy samples (xi, yi)
10
i=1, we proceed by implementing

the steps as shown in Figure 3, producing the GNU Octave local variables
B, w1 corresponding to B and w1 from the text, and implementing the
norm that Theorem 2 constructs as a function crafted_norm. All these
computations take less than 10 lines of code5.

For checking the hypothesis of Lemma 1, i.e., the rank condition (4), the
regression model comes in handy once more: it allows for a closed form ex-
pression of the Jacobian at p, given directly by the data matrix, augmented
with a mere column of all 1es, i.e., for our model f(x, (β0, . . . , βd−1)) =
β0 + (β1, . . . , βd−1) ·x, we find the Jacobian to be constant6, and given as

J =

1 x1

1 x2

...
...

1 xn

 ,

in which each row xi is the i-th data sample used to train the model.
This is the matrix against we check the rank to change when attaching
the vector e.

6. With these items, we then go back into the nonlinear optimization, again
using the same function nonlin_min, but this time minimizing our de-
signed norm implemented in the function crafted_norm, and formally
found as Figure 3 tells.

The results, quite satisfyingly, demonstrated that the model fitted to the decoy
data but using the specially constructed norm comes up approximately equal to
the original model. Notably, it does so with the decoy data having no relation

5In Octave only, but a port to Python or other languages is not expected to become
considerably more complex.

6More complex models would require a manual approximation of the Jacobian (unless
analytic expressions are obtainable), but this amounts to nested for loop over i = 1 . . . n and
over j = 1 . . . d to approximate the derivative ∂fi/∂pj ≈ 1

h
· (f(xi,p + h · uj) − f(xi,p), in

which uj is the j-th unit vector, and h > 0 is some (very) small constant. This requires the
ML model, as a programming object, has access routines to get and set the model parameters
as we wish (the regression model is again convenient here, since it is easy to implement).

27

to the training data whatsoever, not even necessarily sharing its original dis-
tribution (the original data was a linear combination of uniform distributions,
which is no longer uniform for two or more terms, while the decoy data had
an overall uniform distribution). The numeric discrepancies between the newly
fitted model and the original model can partly be attributed to our lack of
fine-tuning in the optimization process; indeed, we invoked nonlin_min with all
default settings, except for the starting point to be inside a neighborhood of the
given parameter vector p, known from the given model f0. Indeed, even in the
default configuration, the model fitted under the true and the decoy data came
up quite “close” to each other, indicating potentially higher accuracy upon care-
ful fine-tuning of the optimization. In addition, the choice of w1 may also have
an impact on the numeric behavior of the optimizer, as does any randomness
that the optimization algorithm may employ internally. We leave both possibil-
ities for numeric accuracy gains aside here, leaving the demonstration with the
pointer towards the observation that higher dimensionality of the model (and we
conducted further experiments with larger values for d) made the approximation
worse. Again, this is not unexpected in light of higher-dimensional optimization
problems generally behaving less nice than lower-dimensional ones. Our choice
of d = 6, however, makes a manual check of equality among 6 pairs of model
parameters quick and simple to show in Section 5.

D A “Cryptographic” View

The flow in Figure 4 resembles an analogous situation as for probabilistic en-
cryption, where the norm is playing the role of a random auxiliary input to
the encryption function: let Epk(m0, ω) denote the probabilistic encryption of
a message m0 under a public key pk and a random string (random coins) ω.
Given a ciphertext c, one could deny the validity of any proposed plaintext m1

if ∀c ∃m,ω : Epk(m,ω) = c. This is indeed the case for ElGamal encryption (for
example). This is the common way of defining security of encryption (see any of
the standard cryptography textbooks), and our notion of plausible deniability
is completely analogue to this.

28

honest party adversary

training data (xi, yi)
N

i=1

machine learning

f(·,p∗) f(·,p∗)

training data recovery

guess

(x′

i
, y′

i
)N
i=1

xi = x′

i
,

yi = y′
i

∀i?

no
(plausibly denied)

yes

Figure 4: Plausible Deniability Experiment

29

	1 Introduction
	1.1 Problem Setting
	1.2 Some (selected) Applications

	2 Definitions
	2.1 Fitting ML Models
	2.2 Supervised Training by Optimization
	2.3 Deniability and Plausible Deniability

	3 Deniability by Non-Unique Recovery
	4 Plausible Deniability
	4.1 The Main Result
	4.2 Multi-Output ML Models

	5 Numerical Evaluation and Validation
	6 Related Work
	7 Conclusions
	7.1 Suspicion by ``non-standard'' error metrics
	7.2 Accounting for Partial Knowledge

	A Error Measures from Topological Norms
	A.1 Pseudometrics for the Training

	B Proofs
	B.1 Proof of Theorem 1
	B.2 Proof of Lemma 1
	B.3 Proof of Theorem 2
	B.3.1 Computing the Projections and the Value

	B.4 Proof of Corollary 1
	B.5 Proof of Corollary 2

	C Example: Regression Model
	D A ``Cryptographic'' View

