
Blindfold:

Keeping Private Keys in PKIs and CDNs out of Sight

Hisham Galala,b,∗, Mohammad Mannana, Amr Youssefa

aConcordia Institute for Information Systems Engineering, Concordia
University, Montreal, Quebec, Canada

bFaculty of Computers and Information, Assiut University, Egypt

Abstract

Public key infrastructure (PKI) is a certificate-based technology that helps in
authenticating systems identities. HTTPS/TLS relies mainly on PKI to min-
imize fraud over the Internet. Nowadays, websites utilize CDNs to improve
user experience, performance, and resilience against cyber attacks. However,
combining HTTPS/TLS with CDNs has raised new security challenges. In
any PKI system, keeping private keys private is of utmost importance. How-
ever, it has become the norm for CDN-powered websites to violate that fun-
damental assumption. Several solutions have been proposed to make HTTPS
CDN-friendly. However, protection of private keys from the very instance of
generation; and how they can be made secure against exposure by malicious
(CDN) administrators and malware remain unexplored. We utilize trusted
execution environments to protect private keys by never exposing them to
human operators or untrusted software. We design Blindfold to protect pri-
vate keys in HTTPS/TLS infrastructures, including CAs, website on-premise
servers, and CDNs. We implemented a prototype to assess Blindfold’s per-
formance and performed several experiments on both the micro and macro
levels. We found that Blindfold slightly outperforms SoftHSM in key gener-
ation by 1% while lagging by 0.01% for certificate issuance operations.

Keywords: Key management, Trusted Execution Environment, PKCS#11

∗Corresponding author
Email addresses: hisham_sg@aun.edu.eg (Hisham Galal), m.mannan@concordia.ca

(Mohammad Mannan), youssef@ciise.concordia.ca (Amr Youssef)

Preprint submitted to Computers and Security July 20, 2022

ar
X

iv
:2

20
7.

09
33

5v
1

 [
cs

.C
R

]
 1

9
Ju

l 2
02

2

1. Introduction

Many public-key cryptography protocols can be proven secure under rea-
sonable assumptions. However, in the majority of these protocols, security
guarantees hold only as long as private keys remain private. In practice,
fulfilling that simple assumption is more complicated than one might ex-
pect, given the many incidents where private keys are exposed accidentally
or deliberately via an attack. The consequences of exposed private keys are
highly severe, especially in protocols utilizing digital signatures, as attackers
can launch impersonation attacks and generate fraudulent signatures.

The impact of exposed private keys can be clearly seen across different
domains [1, 2, 3, 4, 5, 6, 7]. In the context of web PKI, an attacker man-
aged to steal private keys from Certification Authority (CA) DigiNotar [3]
and issued over 500 fraudulent certificates for top Internet companies like
Google, Mozilla, and Skype. Similarly, in code signing, Stuxnet [1] abused
exposed private keys for hardware driver certificates from Realtek and JMi-
cron [8], and succeeded in code signing its malicious drivers. Operating
systems and browsers revoked all exposed private keys; however, too late
after causing devastating consequences to the extent that some companies
declared bankruptcy [4]. These incidents are consequences of direct attack,
and they can be mitigated to some extent by following better security prac-
tices and policies. Unfortunately, in some domains, such as cryptocurrency,
the damage of exposed private keys is final and cannot be mitigated.

Interestingly, as one might not expect, there are other circumstances
where private keys owners voluntarily share their keys with third parties,
which can be essentially considered as exposure of private keys from the
PKI stand-point. This problem has been first noted by Liang et al. [9]
has been studied at a large scale by Cangialosi et al. [10], highlighting the
widespread sharing of website private keys with CDNs and cloud/hosting
service providers. In some cases, third parties play an active role in man-
aging their customers’ keys, and even several providers afford to apply for
certification on behalf of their customers.

Many solutions [11, 12, 13, 14] have been proposed over the years to make
HTTPS CDN-friendly without exposing private keys. However, they do not
address how such keys are protected from the very beginning of them being
generated, provisioned, and copied for backup. In this work, we take a fun-
damentally different approach to protecting private keys by never exposing
them to human owners, administrators, or unauthorized software — trusting

2

only hardware security features offered by contemporary CPUs to safeguard
these keys. Different PKI-based systems can utilize our generic approach for
protecting private keys against exposure over their entire life-cycle.

As a concrete realization of this approach, we design Blindfold1 that keeps
private keys out of sight by maintaining them within a particular CPU pro-
tected environment. We show how Blindfold can protect HTTPS certificates’
private keys on-premises web servers, remotely on CDN nodes, and even safe-
guard CAs’ private keys for root and intermediate certificates. In Blindfold,
all parties attest each other, i.e., check for the presence of expected software
and hardware Trusted Execution Environments (TEEs), e.g., before issuing a
certificate, provisioning a private key at an owner/CDN-controlled machine,
and securely backing up private keys. A key objective of Blindfold’s design
is to introduce minimal configuration changes to existing systems. Fortu-
nately, modern web servers and CA systems such as Apache, NGINX, and
Boulder [15], which is an ACME server, and even OpenSSL library support
integration with the Public Key Cryptography Standard (PKCS#11 [16])
interface. Hence, we design Blindfold to adhere to the PKCS#11 interface.

The contributions of this paper include:

1. We design Blindfold as a generic approach that prevents private keys
exposure even against significant threats, including system operators
and malware, by leveraging TEE capabilities in modern CPUs.

2. We build a concrete instance of Blindfold to address the problem of cer-
tificates’ private keys sharing by websites with CDNs and other hosting
providers.

3. We solve the private keys exposure problem by enforcing attestation
to the whole generation of private keys by Blindfold running on an
authentic TEE platform.

4. We carry out several experiments on a prototype on the micro and
macro levels to measure the performance of Blindfold.

1Blindfold is an X-Men hero born without eyes.

3

2. Key Sharing, Exposure Incidents, and Related Work

2.1. Private Key Exposure and Sharing Practices

CA incidents. In the setting of certificate issuance, both parties (i.e., a
CA and a website) have private keys albeit for different purposes: (i) CA
private key (i.e., root and intermediate keys) for signing certificates, and (ii)
website private key for authenticating its web domain during TLS handshake
with browsers. Essentially, browsers must revoke millions of certificates if the
CA private key is exposed. Accordingly, this will create havoc as millions
of websites will suddenly find their certificates are no longer trusted, and
browsers will warn users when they try visiting these websites. To get a
rough idea about the severe consequences of such an event, Let’s Encrypt
has recently revoked over three million certificates [17] due to a software bug,
and gave the affected websites 24 hours to resolve their issues. Indeed, this
number could be much higher if the revocation was due to Let’s Encrypt
private key compromise.

Several CAs in the past have been found deviating from the guidelines and
requirements regarding certificate issuance and management of private keys
as set by the Certification Authority Browser (CAB) Forum [18]. A compre-
hensive study by Serrano et al. [19] revealed notable incidents of private key
exposure, which include: eight cases by Comodo, five by WoSign, four by
Symantec and VeriSign, two by DigiCert, and one by DigiNotar, India CCA,
Let’s Encrypt, StartCom and Thawte. In most cases, operating systems and
browsers distrusted CAs after publicly published incidents. Even more, sev-
eral companies declared bankruptcy. Besides, websites certificates issued by
those CAs had their business disrupted. Indeed, there is no guarantee that
CAs publish all internal incidents as such disclosure can negatively impact
their business. Hence, one cannot take for granted that all CAs protect their
private keys according to the CAB Forum guidelines. Therefore, one of the
main objectives for Blindfold is to protect private keys while also providing
attestation that can be publicly verified (e.g., by the websites at the time of
certificate issuance).

Key-leakage incidents. One more reason to motivate the need for enforc-
ing the protection of private keys against exposure is the shocking number of
key leakage incidents. A recent report [20] in 2019 shows that thousands of
cryptographic keys are leaked on GitHub every day. In many cases, the pri-
vate keys were included in the source code repositories [21], bundled within
the binary resources of the software [22], or even published on blog posts

4

by manufacturers [23]. For example, a user who downloaded the updated
firmware from the D-Link [22] found not only the private keys but also the
passphrase for the code signing certificate bundled in the firmware code.
This simple mistake of packaging the wrong files in the final binary leads to
potentially serious consequences. Typically, malware authors use leaked cer-
tificate keys to sign their malware, bypassing signature checks by operating
systems [1, 24].

Heartbleed vulnerability. The Heartbleed vulnerability [25, 26] is a bug
in the OpenSSL library that was publicly disclosed in 2014. It allows at-
tackers to scan servers’ memory, which in turn could potentially reveal the
servers’ plaintext private keys (even if the private keys remained encrypted,
e.g., by a passphrase on-disk following PKCS#8 [16]). Consequently, an es-
sential objective of Blindfold is to protect private keys in a secure memory
environment that is not vulnerable to attackers or malicious operators.

Key sharing practices with CDNs. Websites increasingly use third-
party providers such as CDNs and hosting providers to host HTTPS content,
sharing their certificates’ private keys. For example, Cangialosi et al. [10]
studied at a large scale the key sharing problem taking place in practice.
In particular, websites share their keys with hosting providers in two ways.
First, a website may explicitly turn over control of its private key by simply
uploading it to the hosting provider. Second, a hosting provider may access
the website’s private key via a web service. In both cases, the website is not
only trusting the CDN or hosting provider not to abuse the keys but also to
prevent both external and internal attackers from accessing the keys.

The severity of a private key exposure is ranked according to the role of
its owner as follows:

1. CA: This is the most devastating case where an adversary breaching a
CA will have access to the private keys for the CA certificate. Thus,
the adversary can issue rogue domain certificates that browsers trust.

2. CDN: The adversary can access the private keys shared by websites
hosting content on the CDN. Thus, the adversary can snoop users’
information and impersonate affected websites. Furthermore, the ad-
versary can also impersonate any website with its domain name listed
in cruise-liner [10] certificates controlled by the CDN.

3. Web server: This attack occurs if an adversary compromises an origin
web server that might be hosting a few websites. Thus, it has similar

5

consequences as a compromise on a CDN, yet with much fewer affected
websites.

The widely considered solution to mitigate these breaches is to revoke
the compromised certificates; however, the number can scale from a few
certificates to millions in the case of a breach on a web server or a CA,
respectively. Indeed, such a mitigation solution is expensive in terms of time
and resources besides financial loss due to business disruption. Therefore,
it is paramount to prevent private key exposure rather than relying only on
mitigation.

2.2. Related Work

In Table 1, we list the features provided by Blindfold and other construc-
tions used in production such as Fortanix [27], Cloud HSM [28, 29], and
Keyless SSL [30].

Table 1: Comparing features of Blindfold against other constructions. Solid, partial, and
empty circles denote full, partial, and lack of feature support, respectively.

Blindfold Fortnix Cloud HSM Keyless SSL

Remote Attestation # #
PKCS#11 compatible # #
Scalability H# H# #
No extra round-trip # H# #
Self-custody of keys H# #

Fortanix [27] claims their product Self-Defending Key Management Ser-
vice (SDKMS) to be the first cloud service secured with Intel SGX. SDKMS
enables clients to generate cryptographic keys and certificates securely. How-
ever, it is a centralized service hosted in the cloud with limited scalability.
Moreover, for an HTTPS/TLS request, there is an extra round-trip to access
the private keys.

Amazon AWS Cloud HSM [28] and IBM Cloud HSM [29] provide services
to protect cryptographic keys and securely perform operations. They enable
clients to generate cryptographic keys on the Cloud HSM via standard inter-
faces such as PKCS#11. In addition, cloud HSM provides the minimum level
of attestations to generating private keys. One can verify these attestations
by verifying the certificate chain on the generated key leading to the root

6

certificate to the HSM manufacturer. However, with Intel SGX attestation,
Blindfold can achieve finer control on what needs to be attested on arbitrary
state and functionality.

Furthermore, although HSMs support the generation of non-extractable
private keys, these keys cannot be copied individually to a destination HSM.
The only solution is to clone the entire HSM, which copies all cryptographic
keys from the source HSM. It becomes a problem when a website wants to
provide its non-extractable certificate private key to a CDN without cloning
all keys.

Additionally, the throughput of cryptographic requests is affected by the
resource utilization of Cloud HSM and its network status since there is a
limited number of HSM slots a cloud operator can offer. This problem is even
worse when a CDN containing thousands of nodes sends requests to Cloud
HSMs, introducing extra round-trips to serving HTTPS requests. Moreover,
using Cloud HSM is quite expensive, e.g., AWS Cloud HSM and IBM Cloud
HSM charge $1,168 and $1,250 per month, respectively (as of June 2021).
Conversely, in Blindfold the website controls what keys can be provisioned.
Additionally, each CDN node can have its own Blindfold instance; hence
there is no congestion or extra round-trips. Moreover, Intel SGX is cheaper
than a monthly subscription to Cloud HSM service on commodity hardware.

To ensure the protection and self-custody of a certificate’s private key,
CloudFlare offers Keyless SSL [30]. Essentially, the CDN decomposes the
TLS handshake protocol. Then, all operations related to the certificate’s
private key are forwarded to the customer’s key server, which replies to the
operations’ results to the CDN. Hence, the CDN can complete the TLS
handshake and establish session keys without controlling their customers’
private keys. The main problem with this approach is that for each TLS
handshake, the CDN must contact the client’s key server. Therefore, it adds
an extra round-trip latency which may degrade the overall performance. On
the contrary, Blindfold can be installed in CDN nodes, thereby eliminating
the need for extra round-trips.

3. Background and Threat Model

This section provides a brief overview of some necessary components of
the current PKI ecosystem and Intel SGX environment used as a TEE in our
design. We also discuss our threat model and assumptions about different
entities in our design.

7

3.1. X.509 Certificate

X.509 [31] is the standard format for defining a digital certificate that
binds a signature to a public key, a subject, an issuer, a validity period, and
a set of extensions. The extensions define extra attributes or constraints on
the use of the certificate. For a certificate to be valid, it has to meet the
following requirements:

1. The certificate chain ends with a self-signed certificate that the client
considers trusted (e.g., a browser or an operating system).

2. The attributes of the certificate chain have valid parameters (e.g., the
validity period of a certificate has not expired).

3. Neither the leaf certificate nor any chain certificate is revoked.

Web browsers are initially configured with a set of trusted CA certifi-
cates. When a user opens an HTTPS session to a website, the browser re-
ceives a domain certificate and an intermediate certificate chain from the web
server. Then, it validates the domain certificate as well as checks whether
the Subject field matches the web domain.

To obtain a certificate, an applicant creates a Certificate Signing Request
(CSR) as defined by PKCS#10 [16] and sends it to the CA. The CA will
validate whether the applicant truly owns the specified web domain. Upon
success, the CA will convert the CSR into X.509 certificate and returns it to
the applicant.

3.2. Intel Software Guard Extensions (SGX)

Intel SGX [32] is a TEE technology released by Intel in 2015. It provides
an isolated secure environment referred to as enclave for code and data that
need to be protected against violations of confidentiality and integrity. Note
that an enclave can be statically disassembled; hence, it must not contain any
hard-coded secrets. However, once it is loaded and running, the processor
enforces the confidentiality and integrity of the enclave state. Therefore,
an observer will have an opaque view of the enclave’s state, including any
generated secret.

Sealing. Intel SGX enclave can securely generate cryptographic keys at
the run-time. However, all the generated keys will be lost once the enclave
is torn down (e.g., on application exit or power event). Therefore, Intel
SGX provides the ability to cryptographically seal [32] secrets to untrusted

8

external storage in a secure way. Encryption is performed using a private Seal
key that is unique to that particular platform and enclave. The derivation
of that key depends on the enclave identity.

A developer can set the enclave’s identity either to MRENCLAVE or
MRSIGNER. The former is a cryptographic hash of the enclave’s code, data,
and other measurements as it goes through every step of the build and ini-
tialization process. Hence, MRENCLAVE uniquely identifies any particular
enclave. Thereby, only instances from the same enclave can decrypt the
sealed data. The latter is provided by an authority that signs the enclave
before its distribution. Thus, different enclaves signed by the same authority
can derive the exact seal key.

Remote attestation. Intel SGX provides the ability to cryptographically
attest that a particular enclave is running on an authentic Intel SGX plat-
form. The attestation process starts with an application requesting its en-
clave to generate a report. The enclave generates the report and authen-
ticates it by a platform-specific hardware key. The report contains enclave-
specific information, notably, the measurement MRENCLAVE and an auxil-
iary data report data field. The main purpose of the report data field is to
bind a piece of data (e.g., a public key of a private key generated exclusively
by the enclave) to the report.

Next, the application transmits the report to an architectural enclave
known as Quote Enclave (QE) running on the same platform. After verifying
the authenticity of the report using the same platform-specific hardware
key, QE signs the report by the attestation key and returns a quote (i.e.,
a signed report) to the calling application, which is eventually transmitted
to the remote party. Note that, besides attesting to authentic Intel SGX
platforms, a valid quote also implies the authenticity of report data. For
instance, this allows two enclaves to establish a secure channel after quotes
verification by setting their ephemeral ECDH public keys in report data in
their corresponding quotes.

Currently, Intel SGX supports two models of remote attestations: EPID [33]
and ECDSA [34]. In EPID attestation, the main focus is to preserve the at-
testor’s privacy by utilizing an EPID group signature scheme. Hence, an
entity with the group’s public key can verify a quote without learning which
group member (i.e., processor) has signed it. Intel exclusively maintains the
group public key in its Attestation Service (IAS). Thereby, one must consult
IAS to verify a quote, which replies with an attestation verification report

9

that confirms or denies the quote’s authenticity.
Conversely, the ECDSA attestation sacrifices the attestor’s privacy since

it is mainly used to attest to platforms within the same organization. More
importantly, it does not require communication with IAS. Therefore, ECDSA
attestation is more convenient when (i) attestors’ identities are already known
in advance or (ii) when external communication with IAS is restricted. The

Main Interface

PKCS#11 Enclave

Quote Provider
Library

Quote Generation
Library

Quote Verification
Library PCK Cache Service

Intel Provision
Certification Service

Quote Enclave

Intel Attestation
Service

EPID Attestation ECDSA Attestation

Figure 1: Architecture of Blindfold supporting EPID and ECDSA attestations. The com-
ponents in blue are trusted and built by Intel. The component in green is the trusted
enclave implementing PKCS#11. The component in orange is the main interface to inte-
grate and control Blindfold; it is untrusted (i.e., it does not hold any secret).

foundation of ECDSA attestation infrastructure relies on the Provisioning
Certification Enclave (PCE), which serves as a local CA for the QE running
on the same platform. To generate an ECDSA quote:

1. QE generates an ECDSA key pair as attestation keys.

2. QE locally attests itself to the PCE.

3. Upon successful local attestation, the PCE issues a certificate for the
QE’s attestation public key. The certificate is signed by a platform-
specific Provision Certification Key (PCK). Furthermore, Intel issues
certificates for all PCKs in genuine platforms and signs them with the
private key of Intel’s root certificate.

4. The ECDSA signature of the resulting quote can then be verified given
the complete certificate chain to Intel’s root certificate.

An organization can set up a cache server containing the PCK certificates for
all its machines after initially obtaining them from Intel’s PCK web service.
Hence, nodes can verify quotes without sending external requests over the
Internet.

In both models of the remote attestation, the challenger checks the quote’s
fields before its verification. Most importantly, the quote’s MRENCLAVE

10

field must match the expected enclave’s measurement. Otherwise, a malicious
enclave could have generated the quote that deliberately leaks its secrets.
Additionally, the challenger inspects the report data field for data-bound
to the attesting enclave (e.g., an ECDH public key or a public key of a
certificate’s private key)

Side-channel attacks on Intel SGX. Recently, several side-channel at-
tacks on Intel SGX have been published, including the devastating Fore-
shadow attack [35]. Foreshadow allows the attacker to extract all secrets and
the attestation and sealing keys within an enclave. This attack breaks the en-
tire TEE security assumptions in Intel SGX. Accordingly, Intel has released
microcode patches and mitigation libraries to counter Foreshadow and other
related attacks. However, we consider protection against side-channel attacks
to be outside of the scope of this work. Furthermore, Blindfold can be built
using other TEE technologies as long as they provide remote attestation and
sealing capabilities.

3.3. Threat Model and Assumptions

1. We assume that operators/malware can acquire the highest software
privileges on a system (e.g., root privileges or even ring-0 on x86)
through any traditional mechanisms (often via rootkits), including:
known but unpatched vulnerabilities, zero-day vulnerabilities, and so-
cial engineering. Root-level access allows operators/malware to control
devices and access the kernel.

2. We assume systems utilize Blindfold to protect private keys against ex-
posure rather than misuse. In other words, Blindfold acts as a secure
vault of private keys. The adversary’s sole objective is to expose pri-
vate keys. Nonetheless, Blindfold does not prevent misuse by malicious
operators (e.g., signing a maliciously crafted message). However, Blind-
fold keeps track and logs requested operations in a rollback-resilient [36]
manner, which helps in detecting misuse.

3. We assume all CPUs have the latest microcode update and are im-
plemented correctly by their manufacturers. Typically, users are mo-
tivated to choose CPUs that have no flaws. Unfortunately, Blindfold
does not guarantee its security when using poorly implemented CPUs
vulnerable to side-channel attacks.

11

4. In ECDSA attestation, we assume the involved organization (e.g., CA,
CDN, or hosting provider) to have deployed its internal infrastructure
securely and obtained PCK certificates for all nodes within its oper-
ation perimeter. Furthermore, each node has its corresponding PCK
certificate authenticated by an internal CA within the organization.
Therefore, it is a mandatory task to prevent a rogue/malicious node
from authenticating itself as a benign node and request the provision
of private keys from other nodes within the organization.

4. Blindfold Design

This section presents the architecture of Blindfoldand shows how it works
across websites, CAs and CDNs. Then, it illustrates the private key provision
protocol that can securely transmit keys between nodes within the same
organization.

4.1. Notation and APIs

We utilize the following algorithms and APIs in the design of Blindfold:

• q ← Quote(x, t) generates a quote q, where x denotes the value of
report data, and t is either EPID or ECDSA.

• VerifyQuote(q, x, t) verifies a quote q and checks that the field report data

is equal to x for attestation type t.

• CSR ← GenCSR() generates a key pair, fills and signs a CSR by the
generated private key, and returns the CSR along with its public key
CSR.pk.

• Certb ← IssueCert(CSR,Certa.sk) signs CSR by the private key of
Certa.sk, and returns a certificate Certb.

• VerifyCert(Certb, Certa) verifies whether Certb is issued by Certa.

• (pk, sk)← ECDH.KeyGen() generates an ephemeral key pair.

• k ← DeriveSharedKey(pka, skb) derives a shared symmetric key based
on ECDH public key pka and private key skb.

• c ← Encrypt(m, k) and m ← Decrypt(c, k) are symmetric key algo-
rithms.

12

Request certificate

Website Blindfold CA Blindfold

Figure 2: Interactions between a website and CA for certificate issuance during operational
phase

• σ ← Sign(m, sk) and Verify(σ, pk) are digital signature algorithms.

All verification APIs abort the running protocol in the event of a failure.
Furthermore, in order to support auditability such that an admin can check
the history of API calls and their parameters, Blindfold utilizes a rollback-
resilient protocol [36] to log each invoked API.

4.2. Overview

Ensuring the protection of private keys is a crucial objective, especially
in the web context. We show how to achieve that objective besides having
the ability to provision private keys between two Blindfold instances securely.
To this end, we utilize TEE technology with remote attestation and sealing
features. In particular, we design Blindfold by leveraging Intel SGX enclave.
Furthermore, the enclave implements PKCS#11 interface, thereby, compat-
ible software can easily integrate Blindfold.

The design of Blindfold allows it to support both attestation models EPID
and ECDSA as shown in Fig. 1. Blindfold can generate and verify ECDSA
quotes, EPID quotes, and IAS verification reports on EPID quotes. Fur-
thermore, Blindfold instances can perform mutual attestation for building a
secure channel. Typically, Blindfold utilizes ECDSA attestation when the
attester and challenger nodes belong to the same organization (e.g., nodes of
CA or CDN); otherwise, Blindfold employs EPID attestation.

4.3. Certificate Issuance

We consider both the CA and website utilizing Blindfoldin the certificate
issuance. Practically, certificate issuance consists of two main tasks, domain
validation; and CSR generation and signing. Validating domain ownership

13

Website Blindfold CDN Blindfold

Figure 3: Transferring a website certificate’s private key to a CDN

is beyond the scope of our paper, and the CA may use ACME protocol [37]
to process this task. The main focus of Blindfold is to secure the generation
and signing of a CSR. The workflow between the CA and website starts with
a setup phase followed by an operation phase.

Setup phase. In the setup phase, the CA requests its Blindfold to generate
a key pair that matches its certificate key policy (e.g., 4096 bits RSA). Then,
it creates a certificate Certc binding the generated public key Certc.pk to the
Subject identity. Subsequently, Blindfold self-signs Certc using the generated
private key Certc.sk. It is worth mentioning that Blindfold seals the private
key to untrusted storage during key generation. Next, Blindfold creates an
EPID quote qc to attest to the key generation by the enclave by setting
Certc.pk in the report data. Finally, the CA publishes Cert.c and the qc,
which assures the utilization of Blindfold to protect the private key Certc.sk
on an authentic Intel SGX platform.

Ideally, Blindfold generates the quote once for the lifetime of the CA
certificate. Nonetheless, in the event of upgrading Blindfold (e.g., to add
new features, bug fixes) or updating the underlying SGX firmware (e.g.,
software/microcode updates to enhance security or fixing newly discovered
vulnerabilities), the CA needs to regenerate qc. In particular, the report

structure underlying qc contains a field that shows the Software Version Num-
ber (SVN) and the Trusted Computing Base (TCB) version. Hence, one can
verify whether the CA has generated qc on an up-to-date platform.

Operation phase. Once the CA is operational, websites can send certifica-
tion requests to obtain domain certificates. Figure 2 depicts the interactions

14

between a CA and a website for certificate issuance. First, the website obtains
the CA certificate certc, which contains the quote qc as a certificate exten-
sion. Typically certc should be already installed as part of the operating
system’s trusted certificates store. Next, the website requests its Blindfold
to check certc and qc for inconsistencies as follows:

1. The MRENCLAVE value must match the correct measurement of Blind-
fold’s enclave. Otherwise, the CA could be using a modified version
that may include unwanted features (e.g., deliberately exposing the
enclave’s secrets).

2. The report data field must contain the exact public key defined in
the Subject Public Key field of certc. Otherwise, the CA could have
generated certc by tools other than Blindfold, implying that the pri-
vate key for certc has not been exclusively generated and managed by
Blindfold.

Upon successful quote inspection, the website’s Blindfold communicates with
IAS for verification since it is the only entity that can verify EPID quotes.
If the verification passes successfully, Blindfold generates a CSR CSRw with
new key pair. Subsequently, Blindfold generates an EPID quote qw where the
report data field is set to the CSR’s public key CSRw.pk, thereby attesting
to the generation of the key pair in the CSR. Next, the website forwards
the CSRw and qw to the CA. Afterward, the CA’s Blindfold inspects and
verifies qw. Upon success, the CA creates a certificate Certw and requests its
Blindfold to sign it by Certc.sk. Then, the CA returns the signed certificate
Certw to the website. Finally, the website verifies that Certc is the issuer
of Certw before accepting it. The web server must integrate with Blindfold
via PKCS#11 interface to perform TLS handshakes and establish HTTPS
sessions with its clients.

In general, CAs are not responsible for ensuring the protection of CSRs’
private keys; however, we argue that doing so will enhance the security of
the web PKI. Otherwise, one might question the point of issuing a certifi-
cate while not ensuring the protection of its private key. Hence, there is an
incentive for CAs to do this task as it will reduce the number of possible
revocations due to exposed keys. Moreover, CAs are central entities in that
ecosystem; thereby, a healthy web PKI will positively impact their business
model. It is an optional task in our design, and CAs might choose not to
perform it.

15

4.4. Integrating Blindfold with a CDN

The numbers of third parties, including CDNs and hosting providers that
support requesting X.509 certificates on behalf of their customers, are in-
creasingly growing [38]. A CDN can utilize Blindfold to interact with the
CA on behalf of the website as depicted in Figure 2. Once the CDN retrieves
the certificate, it forwards both quotes (i.e., CA quote and CSR quote) to
the website to attest to the protection of all involved private keys. On the
other hand, the website may maintain total control over the certificate is-
suance process. Then, it can transfer the certificate’s private key to the
CDN’s Blindfold. Figure 3 shows the activity sequence for a website to move
its certificate key securely to a CDN. The website and CDN utilize a modi-
fied SIGMA (SIGn-and-MAc) protocol to provide perfect forward secrecy via
an authenticated Diffie-Hellman key exchange, where quotes serve as digital
signatures.

We consider the website and CDN with certificates Certw and Certc to
be utilizing Blindfold to protect their private keys Certw.sk and Certc.sk,
respectively. This process starts with the website declaring its intention to
send its certificate key to the CDN. Then, each entity individually utilizes its
Blindfold to generate ephemeral ECDH key pairs (pkw, skw) and (pkc, skc),
respectively. Blindfold instances must mutually authenticate before estab-
lishing a secure channel to prevent MitM attacks. Accordingly, each instance
signs its ephemeral public key pkw, and pkc by the certificate’s private key
Certw.sk and Certc.sk, respectively. Afterward, they exchange the certifi-
cates Certw and Certc, the quotes qw and qc, the signatures σw and σc, and
the ECDH public keys pkw and pkc. Subsequently, each instance verifies the
received certificate’s quote and verifies the signature on the ECDH public
key generated by the certificate’s private key. Upon success, both instances
are now mutually authenticated and can establish a secure end-to-end chan-
nel. Accordingly, each instance derives a symmetric shared key k based on
its ECDH private key and the other instance’s ECDH public key. Finally,
the website’s Blindfold instance encrypts the Certw.sk by k and sends the
ciphertext Certw.sk

? to the CDN. Finally, the CDN’s Blindfold instance
decrypts Certw.sk

? using the same derived key k and seal Certw.sk to its
storage. Certainly, the CDN server must integrate with its Blindfold instance
via PKCS#11 to perform a TLS handshake and serve HTTPS content for
that website.

16

4.5. Provisioning of Private Keys
Large organizations such as CDNs and CAs, to some extent, often have

a cluster of servers across the globe. Mainly to improve web performance
and user experience by reducing round trip latency. A typical CDN will have
thousands of Blindfold instances running across its nodes. Therefore, the
domain certificate’s private key must also exist in their Blindfold instances
to serve the web content for a given domain from these nodes. Hence, it is a
mandatory requirement that Blindfold supports the provision of private keys
to other instances.

The provision protocol simply involves two instances of Blindfold run-
ning within the same organization. Hence, utilizing ECDSA attestation is
far more convenient compared to EPID attestation. Initially, the organi-
zation establishes the internal infrastructure: a PCK cache server and an
internal CA. The PCK cache server contains a list of PCK certificates for
each Intel SGX platform in the organization. Furthermore, this list needs
to be authenticated by the organization to guard against the injection of
malicious nodes (see Section 5.1-(d)). Hence, the organization generates a
master key-pair (mpk,msk) by a Blindfold instance explicitly maintained by
the admin. Then, the admin signs each PCK certificate in the cache server
using msk, and install the mpk on every node. Now that the infrastructure
is ready, nodes can provision private keys.

Recall that in Fig.1, Blindfold has access to the PCK cache service; hence,
it can obtain the PCK certificates for any node within the organization.
More importantly, Blindfold verifies whether the obtained PCK certificates
are signed by the organization’s private key msk before beginning this proto-
col. Besides generating ECDSA quotes, using PCK certificates allows both
Blindfold instances to perform mutual authentication.

Within an organization such as a CDN and a CA, nodes run Algorithm 1
to provision certificates’ private keys. A node can be either a sender or
a recipient based on whether it has private keys to the certificates. The
algorithm starts with generating an ECDH key-pair (pka, ska). Afterward,
it generates an ECDSA quote qa where the report data field is set to the
ECDH public key pka. Subsequently, after exchanging the quotes and public
keys, it verifies the received quote qb and checks whether the quote binds the
exact received public key pkb. Upon success, both nodes are now mutually
authenticated and can build a secure end-to-end channel by deriving a shared
symmetric key k. Finally, the certificates Certs private keys are encrypted
by k and sent to the recipient over the secure channel.

17

Algorithm 1: ProvisionKeys

Input: NodeType
1 (pka, ska)← ECDH.KeyGen()
2 qa ← Quote(pka, ECDSA)
3 Send(pka, qa)
4 (pkb, qb)←Receive()
5 Assert VerifyQuote(qb, pkb, ECDSA)
6 k ← DeriveSharedKey(pkb, ska)
7 if NodeType = SENDER then
8 c← Encrypt(Certs, k)
9 Send(c)

10 else
11 c← Receive()
12 Certs← Decrypt(c, k)
13 Store(Certs)

In practice, there is always a chance for a server hardware failure. With-
out an adequate backup and recovery procedure, the failure of the Intel SGX
platform will result in a loss of certificates’ private keys. One of the best secu-
rity practices is to keep a backup of Blindfold’s state (i.e., sealed private keys)
on a backup machine. The private keys within Blindfold are non-extractable.
Thereby, we cannot just utilize external backup destinations such as HSM.

Additionally, recall that the derived sealing key on Intel SGX is CPU-
specific. Therefore, it is impossible to copy the sealed private keys to an-
other platform simply. Instead, Blindfold utilizes the provisioning protocol
to transfer private keys to other Blindfold instances for backup purposes.
These instances can then be taken offline or operate in air-gap mode. Fur-
thermore, the provisioning protocol allows Blindfold to be portable as it can
transfer its entire state (i.e., private keys) to other platforms within the same
organization.

5. Evaluation

In this section, we analyze the security of Blindfold then we evaluate the
performance for a prototype and report the results.

18

5.1. Security Analysis

We analyze various possible attacks on Blindfold and show how to counter
them.

(a) Extracting private keys from Blindfold. Assuming an adversary has
access to the platform of a target Blindfold instance, the adversary’s goal is
to extract the private key. Note that the adversary can also be a rogue
operator. The severity of a successful attack depends on the type of target
platform, whether it belongs to a CA, a CDN, or a website. In Blindfold,
the private key is generated exclusively during run-time within the enclave.
Then, it is sealed by the platform-specific sealing key, which is accessible
only by Blindfold’s enclave. In other words, as long as the adversary neither
has access to the enclave’s protected memory nor the sealing key, then the
adversary cannot extract the private key.

One of the Blindfold’s assumptions is the correct implementation of CPUs
TEE features; however, Intel SGX technology is susceptible to side-channel
attacks in practice. Hence, we propose a solution to complicate the attack
against external adversaries. Blindfold can utilize threshold digital signature
schemes for RSA and ECDSA [39, 40] to perform the private key generation
and signing operations. In particular, rather than having a single Blindfold
enclave that generates and protects the private key, Blindfold can employ n
enclaves running on different nodes within the same organization like a CA or
a CDN to perform a distributed key generation. Then, each enclave will have
a private key share such that at least t instances can cooperate to perform the
signing operation. In this case, the adversary must compromise and subvert
at least t different platforms, which should be more difficult to achieve than
a single target platform. However, it is worth noting that threshold signing
will add significant overhead, at minimum t times the cost of a single sign
operation, and the network delay associated with communicating shares of
signature between participating enclaves.

(b) Malicious access to Blindfold. System software can communicate
with Blindfold instance via PKCS#11 interface. Hence if the adversary has
access to the target platform, it can interact with Blindfold and send a Sign

request to issue a bogus certificate or impersonate a web server, in the case
of a CA or CDN platform, respectively. Fortunately, the PKCS#11 standard
requires authentication via PIN codes before performing the requested oper-
ation. However, this countermeasure is insufficient to deter a rogue operator
or an adversary who knows a valid authentication code. Note that there is no

19

solution to prevent misuse by malicious operators completely. For example,
a rogue admin in a CA can misuse the private key to issue fraudulent certifi-
cates. Therefore, only auditing access logs such as Certificate Transparency
Logs can detect such misbehavior. Blindfold follows the same approach to
detect misuse by operators. More specifically, Blindfold maintains a log of
all requested APIs which can be scanned frequently by the origin website to
detect inconsistencies between TLS sessions logged at the CDN compared
to logs at the web server. Moreover, to protect against a rollback attack of
log state, Blindfold utilizes rollback countermeasures [41, 36] to detect old
states. Hence, the adversary’s attack will not go undetected.

(c) Intercepting private keys during provisioning to a remote node.
The ability to provision private keys to remote nodes is crucial to make Blind-
fold practical to use within organizations. Furthermore, it allows Blindfold
to securely transfer private keys to remote nodes for backup and load bal-
ance. An adversary monitoring the traffic between the two nodes can launch
a MitM attack to intercept the private keys during transit. However, in
the Blindfold design, both nodes perform the provisioning only via Blind-
fold instances, only after successfully attesting their enclaves using ECDSA
attestation quotes. Each quote contains an ECDH public key where the at-
testing enclave controls the corresponding ECDH private key. Hence, the
adversary cannot replace the ECDH public key of one instance with another
one she generated without invalidating the ECDSA signature. Consequently,
upon successful ECDSA quote verification, both enclaves are now mutually
authenticated and build a secure channel by deriving a shared secret key to
encrypt the private keys for certificates in transit.

(d) Installing a rogue Blindfold instance within organization. The
adversary may try to run a Blindfold instance on its platform and request pro-
visioning of the private keys. The provisioning in Blindfold utilizes ECDSA
attestation, which relies on an internal infrastructure built by the target
organization. The infrastructure includes the PCK certificate cache server,
which contains the PCK certificates for eligible nodes within the organiza-
tion. Thus, the organization’s nodes cannot authenticate the adversary’s
Blindfold quote, thereby aborting the provisioning process.

The adversary must compromise the PCK certificate cache server for this
attack to succeed. Then, the adversary can inject her platform’s PCK cer-
tificate into the cache server. Although this attack should be easy to detect,
it is also preventable. First, the organization must deploy an internal CA,

20

which signs each eligible PCK certificate on the cache server. Additionally,
Blindfold must successfully verify the counterparty’s PCK certificate before
initiating the provisioning protocol. As long as the internal CA private key
is not compromised, the adversary cannot inject her PCK certificate success-
fully. Accordingly, Blindfold instances will reject the adversary’s request to
provision private keys.

5.2. Prototype Development

To evaluate Blindfold performance, we build a prototype based on a fork
of Intel’s repository for Crypto API Toolkit. The prototype implements
most of the API defined in the standard PKCS#11. In other words, it is a
rendition of HSM that is built on Intel SGX, using SGX SDK 2.13 for Linux
and SGX DCAP driver 1.10. The enclave exposes 71 ecalls and four ocalls.
In addition, it contains two main components: (i) an enclave that implements
the cryptographic operations and (ii) an untrusted shared library that acts
as the main proxy for loading the enclave and redirecting calls with external
processes. Essentially, the untrusted component is built as a shared library
similar to HSM software engines so that external processes can load it.

We adjust the code in the prototype to meet the objectives of Blind-
fold. In addition, we implement additional features that are not part of
the PKCS#11 interface. In particular, we add the ability to generate both
ECDSA and EPID remote attestations for two purposes. First, it allows
Blindfold to attest to the exclusive generation of private keys by the enclave
on an authentic Intel SGX platform. Second, remote attestation is a manda-
tory step to transfer private keys to remote Blindfold instances securely.

5.3. Interoperability Evaluation

One of the main advantages of Blindfold is that it adheres to the PKCS#11
standard interface. Therefore, existing CA systems such as Boulder and web
servers such as Apache and NGINX can integrate the prototype. We opted
for Boulder, an open-source ACME CA implementation, to evaluate the in-
teroperability between Blindfold and other systems. Since Boulder already
supports integration with HSM tokens via PKCS#11, we can easily integrate
Blindfold by simply changing three lines of configuration in Boulder.

Similarly, modern web servers such as NGINX and Apache utilize the
OpenSSL library to perform cryptographic operations. OpenSSL can dele-
gate cryptographic operations to PKCS#11 compliant cryptography engines.
By configuring OpenSSL to use Blindfold as an HSM engine, NGINX and

21

Apache can indirectly use Blindfold to generate certificate key pair, perform
TLS handshake, and establish HTTPS sessions. It is worth mentioning that
utilizing Blindfold alone by CDNs to establish TLS connection reduces the
effectiveness of their firewall service, mainly due to how the firewall scans
plaintext requests to filter out targeted attacks. Nonetheless, existing pro-
tocols that solve this problem [12] can easily be integrated with Blindfold.
In other words, Blindfold provides a secure key store in the context of a
CDN similar to the Keyless SSL approach without its limitations, such as
performing an extra round-trip to the origin key server before establishing
TLS sessions.

Minimum Median Maximum
0

20

40

60

80

100

74 75 7775 76 79

T
im

e
in

m
il
li
se

co
n
d
s

RSA-2048 Key Generation

Blindfold SoftHSM

Figure 4: Time measurements of RSA-2048 key generation by Blindfold and SoftHSM

5.4. Performance Evaluation

We carried out several experiments to measure the performance over-
head of utilizing Intel SGX enclave by Blindfold. In particular, we estimate
the elapsed time for running cryptographic operations by an Intel SGX en-
clave. Key generation and signing are the most frequent operations invoked

22

Minimum Median Maximum
0.00

0.20

0.40

0.60

0.80

1.00

0.86 0.87 0.88

0.66 0.67 0.68

T
im

e
in

m
il
li
se

co
n
d
s

RSA-2048 Sign Operation

Blindfold SoftHSM

Figure 5: Time measurements of RSA-2048 sign operation by Blindfold and SoftHSM

in Blindfold regardless of the integrating software (i.e., CA, CDN, or web
server). Then, we repeat the same experiments by running them natively on
the normal untrusted CPU mode. Essentially, Intel SGX adds performance
overhead, especially during the transition between the enclave and untrusted
modes. For instance, each enclave transition imposes a cost of 8,400 CPU
cycles, which is six times more costly than a typical system call [42].

Figures 4 and 5 show the time measurement for invoking the key gener-
ation and signing operations in two different modes (i.e., with and without
Intel SGX) for 1000 runs. The testing environment is a workstation with
Ubuntu 20.04 OS, Intel Core i7-10750H CPU, and 16GB RAM. To this end,
we run the experiments two times using Blindfold and SoftHSM, respectively.
Both offer a PKCS#11 interface; however, SoftHSM provides the native CPU
performance in the normal untrusted mode. One may argue that the compar-
ison should be against a typical HSM; however, comparing general-purpose
CPUs against HSMs from a performance perspective is unfair and cannot
correctly measure the performance overhead.

23

Minimum Median Maximum
0

1

2

3

4

5

4.21 4.27 4.38
4.12 4.24

4.52

T
im

e
in

se
co

n
d
s

Certificate Issuance

Blindfold SoftHSM

Figure 6: Time measurements of certificate issuance from Boulder integrated with Blind-
fold and SoftHSM

Interestingly, key generation time measurements are roughly close be-
tween the two modes even with the added enclave transition overhead. On
the other hand, signing operation time measurements in Blindfold lag behind
SoftHSM by 30%. However, the security advantages of utilizing Blindfold
possibly far outweigh the performance overhead. One way to reduce the
signing operation time is to batch the sign API calls to the enclave. A single
enclave transition (i.e., invoking the sign ecall) signs n certificate instead of
just one. However, such an approach is not compliant with PKCS#11 and
will break interoperability with existing software.

We carried out an experiment to determine the time measurements to
issue a certificate by a CA and the impact on user experience. Hence, we
deploy two instances of Boulder; one is integrated with SoftHSM and the
other one with Blindfold. Then, we deploy Certbot, an ACME client, on the
Amazon AWS EC2 t2.xlarge node running Ubuntu 20.04 OS on Intel XEON
processor and 16 GB RAM. We configure Certbot’s IP settings to send re-
quests to the deployed Boulder instances rather than the real Let’s Encrypt

24

server. Furthermore, we configure both Boulder instances with a fake DNS
server to pass the domain validation checks such that it returns the Certbot
node’s IP address for any domain name. Then, we execute a script for Cert-
bot to request 1000 certificates from both Boulder instances. Figure 6 shows
the time measurement to issue a certificate from Boulder instances integrated
with SoftHSM and Blindfold, respectively. From a macro perspective, the
time measurements for certificate issuance are roughly equal with a 0.01%
difference only. Hence, the performance overhead of utilizing Intel SGX has
a negligible impact on the user (i.e., the domain owner) experience of using
a Blindfold-compliant CA.

6. Conclusions

There is no doubt that private keys protection against exposure is of ut-
most importance to ensure the security of any public-key protocol. In this
paper, we designed Blindfold, a generic approach that can protect private
keys in any PKI-based system using a trusted execution environment. We
implement a prototype to protect private keys in web PKI and solve the pri-
vate keys sharing problem between websites and CDNs that is very common
in practice and violates the basic assumption of public-key cryptography.
Furthermore, Blindfold also ensures public verifiability of CA private keys
protection via remote attestation. We carried out several experiments to
measure the performance overhead. We believe that the security benefits
outweigh its performance overhead based on the experimental results.

References

[1] R. Langner, Stuxnet: Dissecting a cyberwarfare weapon, IEEE Security
Privacy 9 (2011) 49–51.

[2] Hashicorp, Codecov security event and hashicorp gpg key exposure.
URL https://discuss.hashicorp.com/t/hcsec-2021-12-codecov-

security-event-and-hashicorp-gpg-key-exposure/23512

[3] J. Prins, Diginotar certificate authority breach “operation black tulip”,
Fox-IT (2011) 18.

[4] K. Zetter, Diginotar files for bankruptcy in wake of devastating hack,
Wired magazine, September 1099 (2011).

25

https://discuss.hashicorp.com/t/hcsec-2021-12-codecov-security-event-and-hashicorp-gpg-key-exposure/23512
https://discuss.hashicorp.com/t/hcsec-2021-12-codecov-security-event-and-hashicorp-gpg-key-exposure/23512
https://discuss.hashicorp.com/t/hcsec-2021-12-codecov-security-event-and-hashicorp-gpg-key-exposure/23512

[5] J. Leyden, 23,000 symantec certificates revoked following leak of private
keys (2018).
URL https://www.theregister.com/2018/03/01/trustico digic

ert symantec spat/

[6] Selfkey, A comprehensive list of cryptocurrency exchange hacks.
URL https://selfkey.org/list-of-cryptocurrency-exchange-ha

cks/

[7] P. Thompson, Most significant hacks of 2019 — new record of twelve in
one year (2020).
URL https://cointelegraph.com/news/most-significant-hacks-

of-2019-new-record-of-twelve-in-one-year

[8] N. Falliere, L. Murchu, E. Chien, W32. stuxnet dossier, White paper,
Symantec Corp., Security Response 5 (2011) 29.

[9] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, J. Wu, When https meets
cdn: A case of authentication in delegated service, in: 2014 IEEE Sym-
posium on Security and Privacy, 2014, pp. 67–82.

[10] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. Maggs, A. Mislove,
C. Wilson, Measurement and analysis of private key sharing in the https
ecosystem, in: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Association for Computing
Machinery, Hofburg Palace, Vienna, Austria, 2016, p. 628–640.

[11] C. Wei, J. Li, W. Li, P. Yu, H. Guan, STYX: A trusted and acceler-
ated hierarchical ssl key management and distribution system for cloud
based cdn application, in: Proceedings of the 2017 Symposium on Cloud
Computing, Santa Clara, California, 2017, p. 201–213.

[12] S. Herwig, C. Garman, D. Levin, Achieving keyless cdns with conclaves,
in: 29th USENIX Security Symposium, 2020, pp. 735–751.

[13] R. Ahmed, Z. Zaheer, R. Li, R. Ricci, Harpocrates: Giving out your
secrets and keeping them too, in: 2018 IEEE/ACM Symposium on Edge
Computing (SEC), Bellevue, WA, USA, 2018, pp. 103–114.

26

https://www.theregister.com/2018/03/01/trustico_digicert_symantec_spat/
https://www.theregister.com/2018/03/01/trustico_digicert_symantec_spat/
https://www.theregister.com/2018/03/01/trustico_digicert_symantec_spat/
https://www.theregister.com/2018/03/01/trustico_digicert_symantec_spat/
https://selfkey.org/list-of-cryptocurrency-exchange-hacks/
https://selfkey.org/list-of-cryptocurrency-exchange-hacks/
https://selfkey.org/list-of-cryptocurrency-exchange-hacks/
https://cointelegraph.com/news/most-significant-hacks-of-2019-new-record-of-twelve-in-one-year
https://cointelegraph.com/news/most-significant-hacks-of-2019-new-record-of-twelve-in-one-year
https://cointelegraph.com/news/most-significant-hacks-of-2019-new-record-of-twelve-in-one-year
https://cointelegraph.com/news/most-significant-hacks-of-2019-new-record-of-twelve-in-one-year

[14] I. Boureanu, D. Migault, S. Preda, H. Alamedine, S. Mishra, F. Fieau,
M. Mannan, Lurk: Server-controlled tls delegation, in: IEEE 19th Inter-
national Conference on Trust, Security and Privacy in Computing and
Communications, Guangzhou, China, 2020, pp. 182–193.

[15] L. Encrypt, Boulder - an acme ca (2015).
URL https://github.com/letsencrypt/boulder

[16] O. Standard, PKCS# 11 Cryptographic Token Interface Base Specifica-
tion Version 3.0 (2020).

[17] T. Spring, Let’s encrypt to revoke millions of tls certs (2020).
URL https://threatpost.com/lets-encrypt-revoke-millions-tl

s-certs/153413/

[18] C. Forum, Baseline requirements documents (ssl/tls server certificates).
URL https://cabforum.org/baseline-requirements-documents/

[19] N. Serrano, H. Hadan, L. Camp, A complete study of pki (pki’s known
incidents), SSRN (2019).

[20] M. Meli, M. R. McNiece, B. Reaves, How bad can it git? characterizing
secret leakage in public github repositories., in: NDSS, 2019.

[21] D. Sullivan, Our aws encryption keys were exposed accidentally, now
what? (2015).
URL https://searchcloudsecurity.techtarget.com/answer/Encr

yption-key-management-AWS-encryption-keys-got-exposed-now-

what

[22] M. Mimoso, D-link accidentally leaks private code-signing keys (2015).
URL https://threatpost.com/d-link-accidentally-leaks-priva

te-code-signing-keys/114727/

[23] J. Nurminen, Adobe security team accidentally posts private pgp key
on blog (2017).
URL https://twitter.com/jupenur/status/911286403434246144

[24] D. Kim, B. J. Kwon, T. Dumitraş, Certified malware: Measuring
breaches of trust in the windows code-signing pki, in: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1435–1448.

27

https://github.com/letsencrypt/boulder
https://github.com/letsencrypt/boulder
https://threatpost.com/lets-encrypt-revoke-millions-tls-certs/153413/
https://threatpost.com/lets-encrypt-revoke-millions-tls-certs/153413/
https://threatpost.com/lets-encrypt-revoke-millions-tls-certs/153413/
https://cabforum.org/baseline-requirements-documents/
https://cabforum.org/baseline-requirements-documents/
https://searchcloudsecurity.techtarget.com/answer/Encryption-key-management-AWS-encryption-keys-got-exposed-now-what
https://searchcloudsecurity.techtarget.com/answer/Encryption-key-management-AWS-encryption-keys-got-exposed-now-what
https://searchcloudsecurity.techtarget.com/answer/Encryption-key-management-AWS-encryption-keys-got-exposed-now-what
https://searchcloudsecurity.techtarget.com/answer/Encryption-key-management-AWS-encryption-keys-got-exposed-now-what
https://searchcloudsecurity.techtarget.com/answer/Encryption-key-management-AWS-encryption-keys-got-exposed-now-what
https://threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/114727/
https://threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/114727/
https://threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/114727/
https://twitter.com/jupenur/status/911286403434246144
https://twitter.com/jupenur/status/911286403434246144
https://twitter.com/jupenur/status/911286403434246144

[25] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, J. Halderman, The mat-
ter of heartbleed, in: Proceedings of the 2014 Conference on Internet
Measurement Conference, Vancouver, BC, Canada, 2014, p. 475–488.

[26] L. Zhang, D. Choffnes, D. Levin, T. Dumitraş, A. Mislove, A. Schulman,
C. Wilson, Analysis of ssl certificate reissues and revocations in the
wake of heartbleed, in: Proceedings of the 2014 Conference on Internet
Measurement Conference, 2014, pp. 489–502.

[27] Fortanix, Self-defending key management service.
URL https://www.fortanix.com/products/data-security-manage

r/sdkms/

[28] Amazon, Aws cloudhsm: Managed hardware security module (hsm) on
the aws cloud.
URL https://aws.amazon.com/cloudhsm/

[29] IBM, Ibm cloud hardware security module.
URL https://www.ibm.com/cloud/hardware-security-module

[30] CloudFlare, Overview of keyless ssl.
URL https://www.cloudflare.com/en-ca/ssl/keyless-ssl/

[31] M. Myers, C. Adams, D. Solo, D. Kemp, Internet x. 509 certificate
request message format, Request for Comments 2511 (1999).

[32] I. Anati, S. Gueron, S. Johnson, V. Scarlata, Innovative technology for
cpu based attestation and sealing, in: Proceedings of the 2nd interna-
tional workshop on hardware and architectural support for security and
privacy, Vol. 13, 2013.

[33] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, F. Mckeen, Intel®
software guard extensions: EPID provisioning and attestation services,
White Paper 1 (2016) 119.

[34] V. Scarlata, S. Johnson, J. Beaney, P. Zmijewski, Supporting third party
attestation for intel® SGX with intel® data center attestation primi-
tives, Intel White paper (2018).

28

https://www.fortanix.com/products/data-security-manager/sdkms/
https://www.fortanix.com/products/data-security-manager/sdkms/
https://www.fortanix.com/products/data-security-manager/sdkms/
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/cloudhsm/
https://www.ibm.com/cloud/hardware-security-module
https://www.ibm.com/cloud/hardware-security-module
https://www.cloudflare.com/en-ca/ssl/keyless-ssl/
https://www.cloudflare.com/en-ca/ssl/keyless-ssl/

[35] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. Wenisch, Y. Yarom, R. Strackx, Foreshadow: Ex-
tracting the keys to the intel sgx kingdom with transient out-of-order
execution, in: Proceedings of the 27th USENIX Conference on Security
Symposium, Baltimore, MD, USA, 2018, p. 991–1008.

[36] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, S. Capkun, ROTE: Rollback protection for trusted execution,
in: 26th USENIX Security Symposium, Vancouver, BC, 2017, pp. 1289–
1306.

[37] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley, A. Flores-
López, J. A. Halderman, J. Hoffman-Andrews, J. Kasten, E. Rescorla,
S. Schoen, B. Warren, Let’s encrypt: An automated certificate authority
to encrypt the entire web, in: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, Lon-
don, United Kingdom, 2019, p. 2473–2487.

[38] L. Encrypt, Web hosting providers let’s encrypt support status (2020).
URL https://community.letsencrypt.org/t/web-hosting-who-su

pport-lets-encrypt/6920

[39] C. Li, T. Hwang, N. Lee, Remark on the threshold rsa signature scheme,
in: Advances in Cryptology, Santa Barbara, California, USA, 1994, pp.
413–419.

[40] R. Gennaro, S. Goldfeder, Fast multiparty threshold ecdsa with fast
trustless setup, in: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, Toronto, Canada, 2018, p.
1179–1194.

[41] V. Karande, E. Bauman, Z. Lin, L. Khan, SGX-log: Securing system
logs with SGX, Abu Dhabi, United Arab Emirates, 2017.

[42] P. Aublin, F. Kelbert, D. O’keeffe, D. Muthukumaran, C. Priebe,
J. Lind, R. Krahn, C. Fetzer, D. Eyers, P. Pietzuch, Talos: Secure
and transparent tls termination inside SGX enclaves, Imperial College
London, Tech. Rep 5 (2017).

29

https://community.letsencrypt.org/t/web-hosting-who-support-lets-encrypt/6920
https://community.letsencrypt.org/t/web-hosting-who-support-lets-encrypt/6920
https://community.letsencrypt.org/t/web-hosting-who-support-lets-encrypt/6920

	1 Introduction
	2 Key Sharing, Exposure Incidents, and Related Work
	2.1 Private Key Exposure and Sharing Practices
	2.2 Related Work

	3 Background and Threat Model
	3.1 X.509 Certificate
	3.2 Intel Software Guard Extensions (SGX)
	3.3 Threat Model and Assumptions

	4 Blindfold Design
	4.1 Notation and APIs
	4.2 Overview
	4.3 Certificate Issuance
	4.4 Integrating Blindfold with a CDN
	4.5 Provisioning of Private Keys

	5 Evaluation
	5.1 Security Analysis
	5.2 Prototype Development
	5.3 Interoperability Evaluation
	5.4 Performance Evaluation

	6 Conclusions

