Apicula: Static Detection of API Calls in Generic Streams of Bytes

Mario D’Onghia, Matteo Salvadore, Benedetto Maria Nespoli, Michele Carminati, Mario Polino,
Stefano Zanero®

¢ Dipartimento di Elettronica, Informazione e Bioingengeria, Milan, Italy

Abstract

API functions often require the crafting of specific inputs and may return some output that is
usually processed by the code that immediately follows their invocation. In this work, we claim
that - for some APIs - those two stages are both frequently similar across different binaries and
sufficiently unique to be fingerprinted.

We build upon this intuition and present Apicula, a static analysis tool for identifying API
calls in generic streams of bytes, such as memory dumps, network traffic, or object code files. In
a nutshell, Apicula leverages the control flow graph of a binary to generate a set of fingerprints
for all basic blocks that end with a call instruction. Those sets are then compared against a
database of pre-computed fingerprints to establish whether any known API is being invoked. Due
to its applicability to unstructured byte streams, Apicula can complement the reverse engineering
process when this is carried out over memory dumps collected after a cyber-incident. Moreover, it
can enable behavioral analysis in a fully static way, by identifying sequences of API calls even in
non executable binaries.

We provide a series of experiments that are instrumental (1) in demonstrating that the same
fingerprints computed for specific APIs can be observed across different binaries and (2) in iden-
tifying a subset of the Windows APIs whose usage can be detected by Apicula with sufficient
precision and sensitivity, focusing in particular on malicious binaries. Furthermore, we illustrate
two techniques that can be used to validate different fingerprint databases in case someone wants
to detect APIs belonging to libraries different from those that we consider in this work.

In particular, we prove that fingerprints associated with different APIs are remarkably dissimilar
and therefore can be employed for distinguishing between APIs. More specifically, we find that
fingerprint sets associated with different APIs present on average a Jaccard index value of 0.000125;
in comparison, the average similarity between fingerprint sets associated with the same API is 0.29
(Jaccard index) for binaries compiled with the same optimization level and 0.07 (Jaccard index)
for binaries compiled with different optimization levels. Moreover, we show that we can build
databases of fingerprints that are sufficiently comprehensive to identify specific APIs in unseen
binaries. More precisely, we identify 228 different APIs among the Windows APIs (including the
C run-time libraries) whose usage can be detected by Apicula with sensitivity greater than 80%
and a false discovery rate lower than 5%.

Keywords: Application Programming Interface Detection, Binary Analysis, Static Analysis,
Code Fingerprinting, Malware Analysis

Email address: {mario.donghia, michele.carminati,mario.polino,stefano.zanero}@polimi.it,

Preprint submitted to Elsevier May 31, 2022



1. Introduction

Due to the semantic meaning they bear, as well as the high volume of information that can be
indirectly inferred from them, Application Programming Interfaces (APIs) are of crucial importance
in both the detection and analysis of malware. For instance, APIs have been used for classification
purposes (i.e., the attribution of malware samples to a specific family or type), either cumulatively
as sequences of system calls that define a specific behavior [Il, 2, 3] or individually, when their
mere frequency or the arguments that are passed to them as inputs can be indicative of potentially
malicious activity by a program [4], [5]. Furthermore, identifying APIs calls in a given executable
is a pivotal step for analysts wishing to derive how that program works [6l, Chapter 9], as well
as for estimating the consequences of a malware attack as part of the forensics tasks that are
usually conducted after a cyber-incident (e.g., Li et al. [7] proposed systematic procedures for
reconstructing malicious events through code analysis on Android devices).

Sequences of API calls (alternatively known as API call traces) are usually collected by letting
a sample execute in a controlled environment, such as a sandbox, instrumented to record the
activity of a malicious sample, including all the API calls it performs. This type of approach,
which is usually referred to as dynamic analysis, can facilitate the understanding of a program’s
functions and goals, especially when this employs obfuscation techniques to hinder code analysis.
However, dynamic analysis can be highly resource-demanding, and it is often incapable of producing
an exhaustive report for a given program since, in most cases, only some of its branches are
executed [8,9]. On top of that, this class of techniques requires samples to be working executables,
which makes them unemployable in some rather important forensics tasks, such as the analysis of
memory dumps.

On the other hand, static analysis techniques do not require the direct observation of a pro-
gram’s execution and ideally allow for a more comprehensive analysis, albeit being quite fragile
against obfuscation techniques and almost powerless against packed malware (Moser et al. [10]
demonstrates that de-obfuscating malware can be as hard as solving the 3SAT problem). However,
if we aim at identifying APT calls in executable code, we can analyze some of the fields contained
in the headers of the executable (such as the Import Address Table for Windows PEs and the
Procedure Linkage Table for Linux ELFs) and use that information to reconstruct which APT call
was made and where it was performed in the execution flow of the program [I1]. In an ideal setting,
that would be sufficient to identify almost every API call in a binary program.

In this work, we tackle a more challenging scenario, in which we cannot assume to be able to
locate API calls by simply looking at the information contained within the headers of an executable:
in fact, we do not assume to be dealing with an executable program at all. On the contrary, our
goal is to discover API calls in generic streams of bytes, such as memory dumps, object code files,
or network traffic. We aim to do that by fingerprinting the code that surrounds specific API calls;
we then use those fingerprints to identify the corresponding APIs in previously unseen streams of
bytes. Our intuition is based on the fact that some APIs require the crafting of special inputs and
may also return some output which is usually processed within the code that immediately follows
the API invocation. We claim that, for some APIs, the stages of input preparation and output
processing are somewhat similar across different programs and, at the same time, sufficiently unique
not to be confused with those of other APIs. We implement this intuition in a static analysis tool

{matteo.salvadore, benedettomaria.nespoli}@mail.polimi.it (Mario D’Onghia, Matteo Salvadore, Benedetto
Maria Nespoli, Michele Carminati, Mario Polino, Stefano Zanero)

2



that we have named Apicula. In a nutshell, Apicula first generates a set of fingerprints for each
call instruction found within the byte stream. Then, it compares those sets against a database
of fingerprints that were previously observed for the APIs that we aim to detect. In particular, if
Apicula finds that the matching rate for a given call instruction and a specific API is greater than
a fixed threshold, then it infers that the call instruction is actually invoking that APIL.

We evaluate our system with a series of experiments that are primarily intended to verify that
Apicula can distinguish among different APIs with high accuracy. In particular, we observe how
fingerprint sets associated with different APIs share on average a very low similarity rate (average
Jaccard index 0.000125), whereas fingerprint sets associated with the same API are significantly
more similar (average Jaccard index 0.29 when compiling binaries with the same optimization level,
0.07 when compiling with different ones). Moreover, by testing our system against a dataset of
real-world malicious binaries for the Windows operating system, we are able to produce a list of
228 APIs among the Windows APIs, including the C run-time library, that Apicula can detect
with sufficient sensitivity (i.e., greater than 80%) and negligible false discovery rate (i.e., lower
than 5%).

In summary, we make the following novel contributions:

1. We present a novel system that can enable behavioral analysis in generic byte streams, such
as the payload of malware, by identifying the usage of known APIs.

2. We provide a new method for fingerprinting call instructions in executable code, with par-
ticular emphasis on the x86 architecture.

3. We show that, for some API functions, the code sections that precede and follow their
invocation are similar across different binaries.

4. We demonstrate that, for some API functions, we can build an exhaustive database of fin-
gerprints that can be used to detect the usage of those APIs in unknown streams of bytes.

5. We produce a list of the Windows APIs whose usage can be detected with sufficient precision
and sensitivity; among those, we identified APIs employed by malware to implement evasive
behaviors, to access files on disk, and to allocate computational resources (e.g., to instantiate
Memory Or processes).

6. Lastly, we prove that call instructions to known APIs can specifically be detected with the
proposed approach in real-life malware.

The remainder of this paper is structured as follows: first, we mention some of the most relevant
works in code and function matching, highlighting the main differences with Apicula; next, we
provide an exhaustive description of Apicula, its main components, and the design choices that
were made to maximize its accuracy; we then describe a series of experiments that we produced
in order to prove that Apicula actually works, as well as to calibrate some parameters required by
Apicula to function; furthermore, we discuss the time efficiency of Apicula; moreover, we provide
two strategies that can be used to easily assess the quality of a newly constructed database of
fingerprints; lastly, we discuss the limitations and potential applications of the tool.

2. Related Work

There has been growing interest in automated reverse engineering research in recent years, par-
ticularly in the automatic identification of functions in assembly code. Ding et al. [I2] presented
a learning model based on assembly code representation, which was shown to be efficacious in

3



identifying functions within executable code, including API functions. Similarly, the same au-
thors [I3] first introduced an identification approach that combines locality-sensitive hashing and
sub-graph search to address the problem of scalability, which affected previous works. Polino et
al. [14] used fingerprinting to cluster similar behaviors, but the semantic of those behaviors was
extracted using a dynamic execution approach. On a related note, [15 [16, [17, [I8] [19] are all other
examples of search engines that exploit code similarity to identify known functions and sections of
code. Moreover, graph isomorphism has been widely employed to determine the similarity between
binaries |20}, 211, 22].

All of the above works exploit the fact that code re-use is so frequent that different binaries may
share similar parts or characteristics. This is not far from what we attempt to achieve with Apicula,
although we believe that the efficaciousness of our system is not exclusively due to code re-use:
on the contrary, we strongly believe that the code surrounding certain API calls is intrinsically
similar across different binaries due to the specific input preparation and output handling, which,
respectively, is required by and comes with using those APIs.

Another major difference lies in the overall goal of Apicula when compared against other pub-
lished works, as we try neither to determine the similarity among different binaries nor to identify
any particular code section within a binary. For instance, Ding et al. [12] focus on identifying
the actual code of a function, including that of known API functions. Similarly, the approach
developed by De Nicolao et al. [23] identifies the architecture and differentiate between code and
data. However, they do not address the problem of identifying the usage of APIs in executable
code, which is what we attempt to achieve in this work.

In other words, we are not attempting to identify the code of API functions in a given byte-
stream, i.e., we are not asserting whether a certain sequence of instructions correspond to the
body of some known API. In fact, our objective is to determine whether a given call instruction is
invoking a known API. To the best of our knowledge, we are the first ones to address this problem
in the general case, namely when no debug or linker information is provided.

3. Approach

Apicula identifies API calls in binaries by exploiting a sets of pre-computed fingerprints. This
section provides the details on how Apicula works internally, especially on how the fingerprint sets
are first generated and then compared against each other.

3.1. Apicula Overview
As shown in Figure [T the work-flow of Apicula is composed of three distinct and consecutive
stages, namely:

1. disassembling and control flow graph generation;

2. fingerprint sets generation;

3. matching against the database.

In summary, Apicula works as follows: on input a byte stream, Apicula disassembles it and
constructs the corresponding control-flow graph, keeping track of the basic blocks that end with
a call instruction (1. disassembling and control flow graph generation); next, it generates a set
of fingerprints for each of those blocks (2. fingerprint sets generation), which are then compared
against a database of previously observed fingerprints (3. matching against the database); in
particular, this comparison is carried out by means of the overlap coefficient, which is used to
establish whether a given block is invoking any of the APIs that we want to detect.

4



Step 1: control-flow graph generation Step 2: fingerprint sets generation

A
856
[t o

call instructions |*"

Final output Step 3: matching against the database

R
[

ﬂ APIN

- Basic block a matches API 3
- Basic block b matches API 1

Figure 1: The three stages that compose the workflow of Apicula.

3.2. Disassembling and Control Flow Graph Generation

In order to compute and match fingerprints, Apicula first needs to disassemble the binary and re-
organize its code in a control flow graph structure. A control flow graph (CFG in short from now
on) is a directed graph in which each node, also known as a basic block, represents a linear sequence
of program instructions that are always executed sequentially, whereas the edges represent control
flow paths [24]. CFGs are often employed in tasks such as compiler optimization and program
analysis, including malware. In Apicula, we need to re-organize the binary under analysis in a
CFG because our fingerprints are essentially sequences of colored basic blocks extracted from the
computational paths that pass through a node containing a call instruction, as it will be thoroughly
discussed in the next sections.

3.2.1. Code Disassembling

Before a CFG can be built, Apicula needs to disassemble the byte stream: we use Capstone, a
lightweight disassembler supporting several architectures and instruction sets [25]. It is important
to notice that our inputs are general byte streams and not necessarily binaries in some well-known
executable format (e.g., PE32). Therefore, the initial bytes in the stream might be corrupted or
incomplete or contain no instructions whatsoever, which would jeopardize the ultimate correctness
of the entire disassembling process. However, some instruction set architectures, including the
widely used 86, possess the property of being self-repairing, that is to say, the disassembler
eventually ends up re-synchronizing with the correct stream of instructions regardless of any error
that may happen during the disassembling of the byte stream [26]. In the current version of
Apicula, we focused exclusively on the 286 instruction set architecture. However, it could be easily
extended to any other architecture, as long as this maintains the property of being self-repairing.
Finally, we do not parse or analyze the operands of any of the instructions during the disassembling
process, with the sole exception of the landing addresses of jump and call instructions, which are
needed in order to construct the CFG.



3.2.2. CFG Generation
The generation of the CFG is composed by the following two stages: (1) basic block generation
and (2) basic block linking.

Basic block generation. The byte stream is scanned, and the addresses of the instructions that
start new basic blocks are identified and stored in a list. The byte stream is divided into basic
blocks, each of them starting at one of the identified addresses. Furthermore, blocks that end with
a call instruction are marked accordingly and a reference to them is stored in a separate data
structure.

Basic block linking. Basic blocks are linked together by checking their last instruction. In case
the last instruction is:

e a return or halt instruction, the block does not get connected to any child blocks;

o an unconditional jump, then the block is linked to the block that starts at the jump address
(if that exists);

 a call to an internal subroutine (i.e., that can be found within the byte stream) or a conditional
jump instruction, then the current block is linked to the one that starts at the call/jump
address and to the block whose starting address immediately follows the end address of the
block we are linking. In other words, the second block is the one that contains the code that
will be executed if the jump is not taken or where the execution flow will continue after the
subroutine that is invoked through the call instruction returns;

e a call instruction to an address location which is external to the address offset of the byte
stream, then the block is linked to the block whose start address immediately follows. We
are particularly interested in this type of nodes because those are the basic blocks that may
invoke one of the APIs that we are trying to detect with Apicula.

It is also important to point out that we do not just link one node to its children; in fact, we
also link the children to their parents: we require this because we need to visit the graph backward
in order to fingerprint a block.

3.3. Fingerprinting

The second phase in the Apicula work-flow is the computation of a fingerprint set for each of the
basic blocks that contain a call instruction to an externall|address. For a given basic block b, each
fingerprint represents a computational path that starts before b, passes through it, and eventually
continues ahead, incorporating a certain number of blocks reachable from b. Ideally, b is the basic
block containing a call instruction to an API, whereas the blocks that precede it (and from which
there exists a path that leads to it) are the ones responsible for preparing and pushing onto the
stack the inputs to the API function. Finally, the blocks that follow b are the ones in which the
program processes the potential output of the API function. Given that fingerprints are sequences
of basic blocks of the CFG, we need a method for encoding them so that the resulting fingerprints
can be compared between each other. We borrowed from Kruegel et al. [22] the concept of color
as a means for representing the content of a node in a compact and meaningful way. A color is

'as in "not contained within the address offset of the byte stream".

6



Instruction Classes
Bit Class Name Examples
1 NO CLASS nop
2 ARITHMETIC add, div, idiv
3 BRANCH jne, jz, loop
4 CALL call, lcall
5 CONDITIONAL MOVE cmova, cmove
6 DATA TRANSFER mov, movs
7 FLAGS bt, bts
8 FLOAT addsd, addss
9 HALT hlt
10 JUMP jmp, ljmp
11 LEA lea
12 LOGIC and, not
13 MISCELLANEOUS bound, enter
14 RETURN ret, Iret
15 SIGN cbw, cdq
16 STACK pop, push
17 STRING cmpsb, stos
18 SYSTEM CALL int, syscall
19 TEST cmp, test

Table 1: The first column shows the slot in the array assigned to each class (bit 0 is reserved for fingerprint separators
in the database); the second column specifies the names of the classes that we considered; the last column provides
some examples of the instructions included in each class.

an array of bits, where each bit corresponds to a certain class of instructions. In this array, the
it" Dbit is set to 1 iff the block contains at least an instruction belonging to the i** instruction
class, to 0 otherwise. The only exception is the very first bit of the array, which we reserve for
encoding special symbols that we need for separating the fingerprints inside the database. Table
summarizes the instruction classes that we have included in Apicula.

In order to be comparable among them, all fingerprints must have a fixed length. We considered
the possibility of assigning a different fingerprint length for each API. However, we eventually
decided to maintain a consistent length for all of them due to the high overhead and the additional
complexity that this would add to the system. In Section we present an experiment that
we conducted to try and identify an optimal length for our fingerprints. Nonetheless, we still
leave the possibility of specifying a custom length to the final users, as they may want to use
Apicula on different API sets, for which the optimal length might be different. In general, not
hard-coding a fixed length can allow the system to be more flexible in case some malicious samples
move up the preparation of the inputs or postpone the processing of the output by injecting junk
instructions and control flow alterations between those two phases and the actual invocation of
the API, in an attempt to evade the API detection performed by Apicula. Moreover, it should be
noted that a computational path may be shorter than the fingerprint length, since either the partial
computational path that leads to the central node or the one that starts from it can be shorter
than half the fingerprint length: in that case, we pad the fingerprint by adding special colors whose
bits are all set to 0. In particular, if the shorter computational path is the one starting before the
block to be fingerprinted, then the padding colors will be added at the beginning of the fingerprint;
on the other hand, if the shorter computational path is the one that starts after the block to be

7



NeErecy@
A n [ @

ol O8] on

) PEY80E:
PErecy@

- = EEYEoEeX
BOY8 (@] (s ]
808 PUE8CE
NYecra

CEn o o

Figure 2: The fingerprinting process for £ = 7. In this figure, each basic block is filled with a color and marked with
the corresponding letter (for example, filled with yellow and marked with a Y), which symbolically correspond to the
colors actually employed in Apicula. White basic blocks marked with a # denote padding colors. The basic block
that is being fingerprinted is the red (central) one.

fingerprinted, then the padding colors will be added at the end of the fingerprint.

Given a certain length k£ and a list of basic blocks [, Apicula generates the fingerprint set for a
basic block b € I by first visiting all the blocks reachable from b by going backward up to a depth
of k/2 (+1 if k is even) nodes, then by visiting all the blocks that are reachable from b by going
forward up to a depth of k/2 nodes. Lastly, Apicula merges all the partial fingerprints computed
by first going "backward" and then going "forward", so to obtain all the possible combinations
of the partial fingerprints. Figure [2] shows how the set of fingerprints for a given basic block is
computed. The single (partial) fingerprint is obtained by concatenating the colors of the blocks
that are encountered while traversing the graph through a depth-first search that starts from the
block to be fingerprinted.

3.4. Matching

After the fingerprint sets are generated for each basic block containing a call instructionlﬂ the
last step in the Apicula’s work-flow is to determine whether any of those basic blocks is actually
invoking one of the APIs that we are interested in detecting. As it was already mentioned before,
the general idea is to compare the fingerprint set found for a single node against a database of
pre-computed fingerprints: if the fingerprint set matches the database with a certain score, then
Apicula infer that the node is invoking that APIL. This is performed through the evaluation of the
overlap coefficient between the two fingerprint sets (namely, the fingerprint set associated with the
basic block and the database of fingerprints for that API). We chose the overlap coefficient over
other similarity measures because we are comparing small sets (a few hundred bytes of information
on average) against much larger ones; thus, it would be inappropriate to use scores that place
more emphasis on the actual similarity between sets (like the Jaccard index). Indeed, the overlap
coefficient is not penalized in case the set of fingerprints of one API in the database is much larger

2again, to an external address.



than the average fingerprint set computed for blocks that invoke it, since it only measures the
extent to which a smaller set overlaps with a greater one. Equation [l| shows how the overlap
coefficient is computed for two sets A and B.

'|A N B (1)
min(|Al,|B|)
After the fingerprinting process has been completed, Apicula iterates over the basic blocks with
a call instruction, computing the overlap coefficient between their fingerprint sets and the set of
fingerprints of each API in the database: if the overlap score between the fingerprint set of a block
b and an API A is greater than a given threshold, then Apicula outputs that b invokes A. Although
we leave the possibility of choosing the preferred threshold to the final users, we set it to 0.55 by
default. In the experiment described in Section [4.2] we observe that a more conservative threshold
can be set in an ideal case, such as extracting the database of fingerprints from binaries that are
very similar to those that are used for testing. Nonetheless, our less conservative threshold proves
to be reliable for a large group of APIs when tested over a more realistic set of binaries, as shown in
the experimental evaluation presented in Section In general, it should be noted that Apicula
might output more than one API for a single block. However, we aim at eliminating this occurrence
by restricting the detectable APIs to those that yield a low number of false positives.

OverlapCoef ficient(A, B) =

3.5. Fingerprint Database Generation

In order to generate a database of fingerprints, we require a large set of executable programs
containing complete information on the imported libraries within their headers. This might sound
in contradiction with what we have said in the beginning, namely that Apicula is meant to work
on generic byte streams and does not require access to the header information of an executable file.
In fact, we are not contradicting our original claim at all, as this is only required for building the
database of fingerprints, which can then used to identify APIs in truly generic streams of bytes.

For this purpose, we focus on Windows Portable Executables (PEs) [27], mainly because it is
relatively easy to access a wide number of malware samples for the Windows operating system.
In short, a PE contains all the information needed by the Windows operating system to load
the executable code in memory and manage its execution. It is composed of several headers and
sections; however, we are only interested in the import directory table and the .text sections.

The import directory table contains information on the Dynamic-link Libraries (DLLs) that are
imported by the executable. In particular, each entry in the table carries the address information
that is used to resolve the entry points in the DLL, most notably the Import Lookup Table (ILT)
and the Import Address Table (IAT). An ILT holds the names (or ordinals) of the objects imported
from a DLL, and we use them to identify which API functions are imported within the executable.
On the other hand, an TAT is a table of pointers where each entry contains the address of a symbol
imported from a DLL: we use these tables to reconstruct where an API call is performed in the
code.

On the other hand, the .texrt section contains the executable code. In Windows, x86 executable
code might contain a jump stub for each API function used within the program. These jump
stubs constitute an additional layer of indirection inserted by the compiler to simplify the task
of overwriting the relative virtual addresses with the effective addresses at which the libraries are
loaded at run time. These stubs are made of one jump instruction to the corresponding TAT
entry: when the code needs to invoke a certain library function, it calls the corresponding jump
stub instead, which will then jump to the actual address specified in the IAT. Alternatively, the

9



IAT

0xbbbb

Oxaaaa

call Oxaab4 > Oxbcad
Oxaab4

Jump stub

0x1234

call 0x1234 jmp Oxaaaa ||

nop

nop

Figure 3: Examples of direct a call to a IAT entry and of an indirect call through a jump stub.

function pointers in the IAT might be invoked directly. Figure [3| shows examples of a direct call
to an IAT entry and an indirect call through a jump stub.

3.5.1. Database Generation Process

In summary, Apicula builds the fingerprint database by iterating over a list of portable executable
files: for each of them, it reads the ILTs and the IATs for all the imported DLLs, constructs a table
in which the name of every API is mapped to the address of the IAT entry that stores its address,
and then extracts the actual executable code along with its static address, which is computed as
shown in Equation [2]

Address = ImageBase + CodeVirtual Address (2)

These initial steps are attained by reading and parsing the information contained within the
header of the PE file. As we wrote Apicula in Python, we resorted to the pefile library [28§].

After this preliminary phase is complete, Apicula continues with the construction of the CFG,
as described in Section the only exception in this case is that the jump stubs are identified
and saved in an appropriate data structure that keeps track of the correspondence between APIs
and jump stubs while the code is being disassembled. Next, blocks that contain a call instruction
to an API are fingerprinted, and the resulting fingerprint sets are appended to the corresponding
database entry, which is essentially a regular file named as the API function it refers to (e.g.,
kernel32-createthread). This is attained by identifying the correct API invoked by each block,
through a look-up to the information held by the data structures described above (namely, the
jump stubs table and the data structure that maps the names of the APIs to their corresponding
IAT entries). Finally, in a second separate phase, all the files are cleaned by merging together

10



single fingerprint sets while removing duplicated fingerprints. We decided to keep these two phases
separated because this would allow us to easily shorten the fingerprint length without having to
re-run the entire database construction process.

4. Validating the Effectiveness of Apicula

In this section, we describe the experimental evaluation conducted to prove the effectiveness of
Apicula. In the first experiment, we verify that Apicula can distinguish among different APIs,
by measuring the similarity between sets of fingerprints belonging to blocks containing a call
instruction to an API function. In the second experiment, we present the approach that we took
for tuning the fingerprint length and the overlap threshold to maximize the accuracy of Apicula.
Lastly, the third experiment identifies the specific APIs that we can match with a certain degree
of confidence across a more significant and heterogeneous dataset of malicious samples. In all
experiments, we work under the Windows environment, as the long-term goal of our research is to
simplify the behavioral analysis of malware.

4.1. Experiment 1: Fingerprint Similarity

With this experiment, we aim at demonstrating that the fingerprint sets generated from basic
blocks that invoke different APIs are statistically dissimilar. In other words, we want to prove
that the fingerprint sets generated by Apicula are unique for each API, as this would otherwise
produce a high misclassification rate. We show this by first averaging the similarity scores among
basic blocks that invoke the same API and, then, by comparing those results against the average
scores computed for basic blocks that invoke different ones. We repeat this across four optimization
levels, namely O1, O2, O3, and Os.

The dataset we perform this experiment on is the GNU core utils, a collection of the "basic
file, shell and text manipulation utilities of the GNU operating system" [29]. We obtain the source
code from the official Github page [30] and build them for Windows through the MinGW [31] port
of GCC within a Cygwin environment [32].

The experiment is composed of two separate parts: we first build our binaries with the same
optimization level and show how the fingerprint sets associated with the same API are statistically
similar, while those associated with different ones are remarkably dissimilar; secondly, we show
how compiling programs with different optimization levels causes the average similarity scores -
among blocks with the same API - to deteriorate significantly. However, we are still able to tell
apart blocks that invoke the same API from blocks that invoke different ones even when considering
binaries compiled with different optimization levels. Nonetheless, the deterioration in the average
similarity between fingerprint sets associated with the same API is important to explicitly point
out the necessity to build databases of fingerprints that are sufficiently diversified to capture all
the possible variations when using Apicula on real-world binaries.

For both the sub-experiments, we employ the Jaccard index to compare the similarity among
the fingerprint sets of basic blocks. The Jaccard index (which is described in Equation [3]) was
preferred over the overlap coefficient, used for matching fingerprint sets against the API database
in Apicula, because it measures the overall similarity between two sets with similar size and not
just the extent to which a smaller set overlaps with a bigger one. As a matter of fact, fingerprint
sets are compared against a database of fingerprint sets whose size may be significantly greater; in

11



this experiment, however, the size of fingerprint sets across different blocks always belongs to the
same magnitude.

Jaccard(A, B) = :i 8 g: (3)

4.1.1. Experiment 1.1: Fingerprint Similarity with same Optimization Level

In this experiment, we show that the average similarity among fingerprint sets associated with
different APIs is significantly lower than the average similarity of fingerprint sets associated with
the same API. In particular, we perform the following computations for all the four considered
optimization levels separately.

First, we compute the average similarity between blocks with the same API call. We do this on
an API basis, meaning that we repeat this procedure for all the APIs that have been encountered
within the dataset. In particular, we compute and then average the similarity scores between all
the possible pairs of fingerprint sets that correspond to the same API. Equation [d] shows how this
computation is performed (for a given optimization level):

1
o= —
n

Z ( Z Jaccard(I,J))] (4)
(

A€APIs \(I,J)e6(A)

In Equation [ # is a function that outputs the superset of all the possible pairs of fingerprint
sets (I,J) observed for a given API A, whereas n is the overall number of these pairs across
all A € APIs. Since the Jaccard index is commutative, pairs (A, B) and (B, A) are considered
equivalent and included in the output of 8 only once.

Next, we compute the average similarity score between blocks that invoke different APIs. Given
two APIs A1 and As, the similarity score is obtained by comparing all the fingerprint sets belonging
to A; against all the fingerprint sets belonging to Ao, and then averaging the results; this is repeated
for all the possible combinations of different APIs, namely for all the pairs (A;, A;) with A; # A;,
as shown by Equation

Bzm{ Z 1( Z Z Jaccard([,J))} (5)
(

AnAyey 1 \res(a) ses(a)

In Equation [5} v is a function that outputs all the possible pairs of distinguished APIs (A;, A;),
A; # Aj, whereas m is the cardinality of v’s codomain; lastly, 6 returns the superset of all the
fingerprint sets observed for a given API, and ¢ = [6(A;)| * [6(A;)].

Table [2 shows the average similarity scores between fingerprint sets associated with the same
API, as well as the average similarity scores of fingerprint sets associated with different APIs across
the four optimization options that we have considered. As the average value of « (i.e., same API)
is 0.29 and the average value of 3 (i.e., different APIs) is 0.000125, we can conclude that (1) there is
a remarkable difference in the order of magnitude between the two measures, and (2) the similarity
of basic blocks that contain a call instruction to different APIs is notably low. In light of these
aspects, we can claim that Apicula can distinguish between different APIs with strong statistical
confidence.

12



01 02 03 Os
Same API («) 0.30 0.28 0.26 0.32
Different APIs (5) 0.0002 0.0001 0.0001 0.0001

Table 2: Average similarity scores between fingerprint sets associated with the same API («) as well as the average
similarity scores of fingerprint sets associated with different APIs (), sorted by optimization option.

4.1.2. Experiment 1.2: Fingerprint Similarity with Different Optimization Level

In the previous experiment, we show that Apicula can distinguish between the invocation of dif-
ferent APIs by comparing the average similarity scores of the corresponding fingerprint sets when
compiling the binaries with the same optimization level. In this experiment, we want to ver-
ify whether Apicula can distinguish between fingerprint sets associated with different APIs when
these are extracted from binaries compiled with different optimization levels.

To this end, we compute for each API the Jaccard index between the fingerprint sets extracted
from programs built with the O1 optimization against the fingerprint sets extracted from programs
compiled with either O2, O3, or Os. Next, we average these values for each pair of optimization
options (i.e., 01&02, 01&03, and O1&0Os). The resulting values are then compared against
the average score obtained for fingerprint sets associated with different APIs, as in the previous
experiment. However, we do not compute the average similarity between fingerprint sets associated
with different APIs when these are extracted from binaries compiled with different optimization
levels. On the contrary, we directly consider the average of the values that were obtained in
the previous experiment (i.e., 0.000125). We do this since the average similarity across programs
compiled with the same optimization option is generally greater than the similarity expected from
programs compiled with different optimization options. In other words, by doing so, we are actually
performing a stricter comparison.

As shown in Table [3], a significant loss of similarity can be observed with respect to the previous
experiment: the average value of o was indeed 0.29, whereas the average value we obtained with this
experiment is instead 0.07, that is to say, the average value decreases by 76%. Notwithstanding this
pronounced loss in the average similarity, we can still distinguish between fingerprints associated
with different APIs, as the average value of 5 remains significantly smaller.

4.1.8. Additional Discussion on Results

It is important to stress once again that the goal of experiment 1 is to demonstrate that Apicula can
distinguish among different APIs. It shows that the fingerprint sets generated from basic blocks that
invoke different APIs are statistically dissimilar. In the process of proving this, we also compute
the similarity among fingerprint sets associated with the same API. Particularly in experiment 1.1,
we observe a significantly high similarity score between fingerprint sets associated with the same
API. Nonetheless, we do not expect the similarity score to be as consistently high when comparing

01&02 01&03 01&0s Average 3
0.08 0.08 0.05 0.000125

Table 3: Similarity scores across different optimization levels: the values are obtained by averaging the Jaccard index
computed between basic blocks with the same API call, which were taken from programs compiled with the option
O1 and then O2 (first column), with O1 and then O3 (second column), and finally with O1 and then Os (third
column). The last column contains the comparison value that we use to determine whether Apicula can distinguish
between different APITs.

13



fingerprint sets extracted from binaries belonging to more heterogeneous datasets, even though they
refer to the same API function. As a matter of fact, we believe that the average similarity scores are
particularly high because of the inherent characteristics of the dataset used, such as the limited size
and the fact that the programs are mainly authored by a restricted group of people (i.e., we expect
code re-use to play a significant role in this). Furthermore, by mixing optimization options, we
observed a significant decrease in the average similarity (76%). However, a lower average similarity
between fingerprint sets associated with the same API does not constitute a limitation of Apicula,
since the detection of API calls is ultimately achieved through the construction of a sufficiently
sizable database of fingerprints (the following experiments will deal with this).

Moreover, throughout this first experiment, we always consider average values and never focus
on the underlying statistical distribution: namely, we do not disclose any specific information on
the APIs observed within the dataset. This has been done voluntarily, as the sole goal of this first
experiment is to show that Apicula can statistically tell apart different APIs. That being said, we
remind the reader that our original claim states that only some APIs possess fingerprints that are
shared across different binaries and at the same time sufficiently unique. In Section we will
address the problem of identifying which APIs possess fingerprints with the said qualities.

4.2. Experiment 2: Average QOuerlap Values and Optimal Fingerprint Length

The goal of this second experiment is to verify whether Apicula is actually capable of identifying
API calls in binaries when provided with a database of fingerprints. We still maintain the same
experimental setting that we used in Section 4.1} namely we perform the experiment over the GNU
core utils. In particular, we build the programs using all the four different optimization options
that we have considered so far. We then shuffle the resulting binaries and randomly select 70% of
them, which we use to build the database of fingerprints. The remaining 30% is instead used to
test whether Apicula can effectively employ that database to identify API calls.

For each basic block b ending with a call instruction to an external API, we measure the overlap
coefficient between its fingerprint set and the database of fingerprints associated with the API it
is invoking. Notice that we can derive which API is being invoked by looking at the information
stored in the headers of the corresponding PE file. We then average the results for all the basic
blocks. The following Equation @ shows how this is attained formally:

n
b= % (Z OverlapCoef ficient(b;, f(bi))> : (6)
i=0

where b; is the i*" basic block with a call instruction, n is the total number of such basic blocks and
f a function that outputs the set of fingerprints in the database associated with the API invoked
by bz

Similarly, we compute the overlap coefficient between each basic block b and the fingerprint set
of each API in the database, excluding the one that was actually invoked by b; we then average
the results (Equation [7)).

n Q(bi)
= L Z OverlapCoef ficient(b;, Aj) | . (7)
m\izo a,

J

In Equation |7}, b; is the i*" basic block containing a call instruction, whereas ¢ is a function that
returns the superset of all the fingerprint sets in the database, excluding the fingerprint set of the

14



1, 575 +
0.95 |
0.9 |
0.85 |
0.8 |
0.75 |
0.7 |
0.65 |
6 =

overlap coefficient

130 +

overlap coefficient * 107>

w
[\

© 1§

3 4 5 6 7 8 9 10 3 4 5 6 7 8
fingerprint length fingerprint length

Figure 4: The graph on the left shows the values of ¢ for fingerprint lengths in [4, 9], whereas the graph on the right
shows the values of ¥ in the same interval.

actual API invoked by b;; lastly m = n  (|APIs| — 1), where n is the number of basic blocks with
a call instruction (as in Equation[6]), and |APIs| the overall number of APIs in the database. The
values that we computed for ¢ and 1 allowed us to claim that, in this scenario, we can identify the
correct, APT calls without producing any false positive by using a default threshold of 0.55.

We take advantage of the relatively small size of the dataset and repeat the experiment for
different fingerprint lengths in an attempt to identify an optimal value or range that could be used
for real-life datasets as well. In particular, we run the experiments starting from a considered
length of 9, and then go down all the way to 4. We measure the performance for a given fingerprint
length k by considering both the average overlap coefficient computed for "matching" fingerprint
sets and APIs (¢r), and the one computed between "non-matching" fingerprint sets and APIs (¢y).
All the six considered lengths performed relatively well in expressing the similarity between blocks
with the same API call. In particular, 4 was the one that performed the best: this was expected
since shorter fingerprints are more generic and therefore can be matched more easily. Nonetheless,
for the very same reason, shorter and thus more generic fingerprints also imply an increment in
the average similarity between "non-matching" fingerprints (). In particular, an increment by an
exponential factor in the value of ) can be seen when shortening the fingerprint length from 7
to 4. We ultimately chose 6 as a reference value, since it constitutes a fair compromise between
the resulting values of ¢ and v and the expected computational performance, given that a length

of 6 allows us to have smaller databases and therefore to compute the overlap coefficient more
efﬁcientlyﬁ

4.3. Ezxperimenting with Real Malware

In the previous experiments, we show that the coloring system of Apicula can produce fingerprint
sets that are similar across different programs. Moreover, we show that we can build a database
of fingerprints which Apicula can employ to identify APIs in binaries. Both experiments are

3when compared to greater fingerprint lengths.

15

10



carried out on a specific dataset (i.e., the GNU core utils), which in our opinion represents an
"ideal" scenario for Apicula, due to the intrinsic similarity that is expected throughout the different
programs in the dataset. Moreover, the (relatively) small size of the dataset allows us to repeat
the second experiment several times, so to estimate an ideal fingerprint length that can be used
on more realistic datasets as well. In both the experiments, we do not pay particular attention
to which specific APIs we are matching. On the contrary, we arbitrarily consider average values,
which turn out to be significantly high for "matching" APIs and remarkably low for "non-matching"
ones: in other words, the results allows us to conclude that - when used on that specific dataset -
Apicula can truly identify APIs with outstanding statistical confidence. Unfortunately, we do not
expect the same to happen for larger, more diverse, as well as more realistic datasets: in truth, we
do not even expect to be able to match all APIs in the average case. Indeed, our original idea is
based on the intuition that some APIs require specific input preparation and return some output
which is potentially processed following the API invocation itself; hence, Apicula is designed to
identify APIs by fingerprinting the code that surrounds a call instruction. However, not all APIs
require the preparation of special inputs nor return an output that needs processing.

The goal of this third experiment is twofold: first, we want to show that Apicula can be used
to identify specific APIs in real-life malware datasets; then, we want to actually find a subset of
the WinAPIs that we can identify with good confidence and without incurring in too many false
positives. For this last purpose, we first introduce and define two essential concepts.

Definition 1: API fingerprintability. By API fingerprintability, we mean the ability to cor-
rectly identify an API through a database of its fingerprints. In order for an API to be "fingerprint-
able," we expect the number of true positives (TPs) to be significantly greater than the number of
false negatives (FNs). For this reason, we consider an API to be fingerprintable if its observed recall
(Equation [8)) is greater or equal than a certain threshold: in our case, we considered a threshold
of 0.8. TPs

Recall = TPs + FNs (8)
Definition 2: A PI fingerprint uniqueness. By API fingerprint uniqueness, we mean that the
fingerprints collected for a specific API are sufficiently unique not to be confused with those of
other APIs. Since it is unfeasible to compare the APIs we are interested in against all the possible
APIs in the world, we only expect APIs to be sufficiently unique among the ones that we are
actually fingerprinting. For an API to be considered sufficiently "unique", we expect the observed
false positives (FPs) to be adequately low, especially in relation to the number of observed TPs.
For this reason, we consider the fingerprint set of an API to be sufficiently unique if the observed
false discovery rate (Equation @ is smaller than a certain threshold, in our case 0.05.

FPs

FDR= FPs+TPs ©)

To carry actual statistical relevance, both properties need to be confirmed over a large number

of samples since they are evaluated through data analysis metrics (i.e., recall and false discovery
rate). In this experiment, we consider a dataset that comprises 6000 unpacked malware samples
retrieved from Virusshare [33]: in particular, we select a malware bundle of 130000 samples and
randomly extract 6000 from it. We use half of those (i.e., 3000) to build the database of fingerprints
and the other half to identify APIs that possess both the properties described above. For this test,
we use a fingerprint length of 6 (for the reasons highlighted in the previous experiment) and an

16



overlap threshold of 0.55. We identified a total number of 1510 different APIs belonging to 34
different DLLs. Of these, 427 APIs were fingerprintable, while 271 had unique fingerprints: finally,
a total number of 228 APIs were found to be both fingerprintable and to have unique fingerprints.
These all belong to either user32.dll (63), kernel32.dll (142) or msvcrt.dll (23).

4.8.1. Identified APIs

After constructing a database of fingerprints from 3000 binaries and identifying the detectable 228
APIs from other 3000 executable programs, we further evaluate the generated database over a
second dataset of malicious binaries comprising 1000 samples. This time, we also investigate the
influence of the overlap threshold over the accuracy of Apicula when using that specific database of
fingerprints. In particular, we measure the False Acceptance Rate (FAR - described in Equation
for a fixed threshold value) and the False Rejection Rate (FRR - described in Equation [L1| for a
fixed threshold value) while varying the overlap threshold. As Apicula performs identification of
multiple APIs, both FAR and FRR are computed cumulatively for all the 228 APIs.

FP
FAR= —~~° (10)
observations
FN
FRR = —8 (11)
observations

The results that we obtained show no significant variation of either the FAR or FRR average
values for all overlap thresholds greater than 0.0. This is not unexpected, as we built the database
of fingerprints from APIs that could be detected with high recall and low false discovery rate while
considering an overlap threshold of 0.55. This implies that the fingerprints of most of the detectable
APIs are highly specific and unique; moreover, the database we built is sufficiently comprehensive
to match the fingerprint sets associated with most APIs with high overlap scores. For instance,
for an overlap threshold of 0.05, we obtained an average FAR of 0.22% and an average FRR of
0.0003%; similarly, for an overlap threshold of 0.95, we obtained an average FAR of 0.15% and
an average FRR of 0.0003%. However, the overlap threshold still plays an important role when
focusing on specific APIs, namely when we do not evaluate the overall performance of Apicula for
all the APIs in the database simultaneously. For instance, EnableWindow in User32.dll was falsely
detected 238 times when using an overlap threshold of 0.05; on the other hand, setting the overlap
threshold to 0.55 caused the overall false positive number to decrease to 81. Furthermore, the
number of FNs remained 0 regardless of the threshold, with a constant value of 571 TPs. Similarly,
ExitProcess in Kernel32.dll was detected correctly 983 times when using both thresholds (i.e., 0.05
and 0.55); however, 119 FPs were recorded when using 0.05 as overlap threshold, while no FPs
were reported when using 0.55. For all the APIs, the overall number of observations across the
1000 binaries was 42956.

Additional examples are:

1. Kernel32.dll-GlobalAlloc: overlap threshold 0.05 TPs:1202|FPs:214|FNs:0; overlap threshold
0.55 TPs:1202|FPs:5[FNs:0.

2. Kernel32.dll-GetCurrentProcess: overlap threshold 0.05 TPs:258|FPs:13|FNs:0; overlap thresh-
old 0.55 TPs:258|FPs:0|FNs:0.

3. Kernel32.dll-GetCurrentProcessld: overlap threshold TPs:241|FPs:192|FNs:0; overlap thresh-
old 0.55 TPs:213|FPs:16|FNs:0.

17



Exceptions & Events [ ]9
GUI | | 58
Arithmetic {] 1
System | | 27
10 Ju

Files & Paths | 42

Memory | 42

Processes & Threads | 36

Env | |3

String & Bytes | | 40

0 10 20 30 40 50 60 70
Number of APIs

Figure 5: The histogram shows the ten classes in which we grouped the APIs that we found to be fingerprintable
and to possess sufficiently unique fingerprints.

It should be noticed that, for many APIs, the number of FPs (and therefore the FAR) is
influenced by the the choice of the overlap threshold; conversely, the number of FNs (and therefore
the FRR) is seldom affected by it.

Database composition. To provide further details on the detectable APIs, we group them in
the ten classes that are reported in Figure [bl It must be noticed that an API could be assigned
to more than one class. For instance, many APIs belonging to the file class could be assigned to
the input/output class as well. In those corner cases, we assign the APIs to the classes that best
describes them.

The following are examples of the APIs that are identifiable by Apicula:

o Kernel32.dll-I1sDebuggerPresent and Kernel32.dlIl-OutputDebugStringA, employed by evasive
malware to check whether they are being executed within a debugger [34) 35] (we assigned
it to the system queries class);

e many file manipulation APIs such as Kernel32.dll-CreateFile, Kernel32.dll-WriteFile and

Kernel32.dll-DeleteFile, as well as some file discovery APIs, for example Kernel32.dll-FindFirstFileA

and Kernel32.dll-FindNextFileA;
o Kernel32.dll-LoadLibraryL, which loads a library in the memory of a process;
o several APIs for creating and manipulating processes and threads, for example Kernel32.dll-

CreateProcessA, Kernel32.dll-CreateThread and Kernel32.dlIl-OpenProcess;

18



e many memory management APIs, such as Kernel32.dll- VirtualAlloc, Kernel32.dll- VirtualFree,
Kernel32.dlI- VirtualQuery, and Kernel32.dlIl-GlobAllock.

5. Time Performance

In this section, we discuss the time efficiency of Apicula. In particular, we report to the computation
times that we recorded while validating Apicula on the second malware dataset comprising 1000
binaries. The computations were run on an Intel Xeon X3440 CPU, equipped with 4 cores working
at a base frequency of 2.53 GHz. All 1000 binaries have size ranging from 1 Kb to 1 Mb. The
version of Python that we used is the 3.7.3 for Linux, which was run with a nice value of —20,
namely with top priority over all other running processes.

Our simplified CFG construction algorithm took 1.99 seconds on average, while the generation
of the fingerprint sets was completed in about 0.05 seconds. The mean time required to match
the fingerprint set of each basic block against the 228 database entries was about 1.86 seconds.
On average, 208.42 seconds were taken by Apicula to check all the fingerprint sets generated for a
single binary against all the 228 entries in the database. Overall, Apicula took around 2 days and
8 hours to analyze all 1000 binaries. All average times for the single phases as well as the overall
time taken by Apicula are summarized in Table [4]

Size range Avg CFG con- | Avg fingerprint- | Avg matching | Avg matching time
struction time | ing time time for a single | for a binary
fingerprint set
1024 Dbytes - || 1.99 seconds 0.05 seconds 1.86 seconds 208.42 seconds
903168 bytes

Table 4: The table summarizes the average time taken by Apicula to complete each single phase in its workflow,
namely CFG construction, fingerprinting, matching of the fingerprint sets against the database of fingerprints.

As shown in Table 4], CFG construction and API matching were the two phases in the Apicula
workflow that most affected the overall execution time. With respect to the time required to
evaluate whether a given fingerprint set matches a certain API, it should be noticed how this
depends predominantly on the size of the database of fingerprints associated with that API. As
a matter of fact, the fingerprint set associated with a basic block does not usually exceed a few
hundred bytes, whereas the database entries range from a few kilobytes to several hundreds. For
example, matching a fingerprint set against the database entry for Kernel32.d1l-GetProcAddress,
which has size 241.248 Kb, took around 0.06 seconds on average. On the other hand, the average
matching time for Kernel32.d1l-GlobalAlloc, whose database entry is 104.384 Kb, was about 0.025.
Lastly, the matching time for Kernel32.dll-AddAtomA, which has size 1.12 Kb, was roughly 0.0003
seconds.

6. Validating the Fingerprint Database

In Section [, we demonstrate that Apicula is able to identify APIs in binaries. More specifically,
in Section we build a database of fingerprints from a dataset of real malware samples and
test it against a separate set of malicious programs. In this way, we show that Apicula can be
successfully employed on real malware datasets, in which it can identify specific APIs with high

19



accuracy. However, the approach we take for the latter is computationally expensive and has the
downside of requiring separate datasets to construct the database and measure the performance of
each API. Given that someone might want to build a new database of fingerprints (for example,
in order to include some specific software library), we want to provide a method for validating the
quality of the database. In particular, we need to provide a method for identifying the APIs that
are fingerprintable and have sufficiently unique fingerprints without having to resort to the more
complex approach described in Section [4.3] To this end, we take advantage of the results obtained
from the experiment in Section [4-3] to derive two strategies that can allow a user to infer which
APIs possess the two properties mentioned above.

6.1. Determining Fingerprintability from Database Size
In order for Apicula to correctly identify the API A invoked by a basic block b, its database entry
for A must contain at least some of the fingerprints in the fingerprint set of b: this means that some
of the fingerprints in the fingerprint set of b must have already been observed in some other binary.
More precisely, we expect Apicula to encounter the same fingerprints several times and across
multiple binaries while constructing the database of fingerprints. Clearly, this is not always true,
as utilizing a low number of samples for constructing the database of fingerprints might preclude the
observation of repeated fingerprints altogether. Nonetheless, when an appropriately sized dataset
(such as the one that we employed) is used to construct the database, we can confidently expect
to observe repeated fingerprints for a given API (if this is truly fingerprintable, that is to say).

We exploit this intuition and claim that, in the average case, we can identify a fingerprintable
API by considering how much the byte size of the fingerprint database associated with it shrinks
down, when this is processed during the second phase of the database construction, namely when
the observed sets of fingerprints are merged into a single set and all duplicated fingerprints removed.
In particular, we are looking for a real number p € (0, 1], such that the following inequality holds
true:

DB < p| DB (12)

where | DBY¢™"| is the size of the fingerprint database for an API A after the merging and removal
of duplicated fingerprints, and |DB’"| is the size of the raw database obtained after the first part
of the database construction.

In order to find an appropriate value for p, such that an API could be safely deemed "fingerprint-
able", we estimate how much the fingerprint sets for the APIs that we found to be fingerprintable
in Section [4.3] shrink down on average. We then use the resulting value as an upper-bound for p.
Furthermore, to show that the value of p can indeed be used to tell apart fingerprintable APIs from
non-fingerprintable ones, we perform the same computation for the APIs that were not identified
as fingerprintable in Section [£.3] Figure [6] shows the results that we obtained; more specifically, it
plots the average values of p for the APIs with observed recall in the corresponding recall range
(the recall ranges that we considered are [0.0,0.05), [0.05,0.10), [0.10,0.15), and so on). Setting p
to an upper bound of 0.266 allows us to label all fingerprintable APIs with an accuracy of 99.6%,
while generating only 6 false positives out of the total 1510 APIs that were identified in Section [4:3]
This upper-bound can therefore be used to identify fingerprintable APIs when constructing new
fingerprint databases.

6.2. Fingerprint Uniqueness
In Section [6.1I] we propose a method that can potentially allow us to determine which APT is
fingerprintable, without having to recur to the computationally demanding approach taken in

20



o 8 |
o0
o]
g
>
CG —
17
17 333
5 52
0.1} =
0 | | | | | |

| | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
observed recall

Figure 6: The graph shows the average values of p for APIs with observed recall in the corresponding recall range
(i.e., [0.0,0.05), [0.05,0.10), [0.10,0.15), and so on). Each point is labeled with the number of APIs found in that
range. The red horizontal line indicates the upper-bound that we select for p.

Section In this subsection, we complete our discussion on the validation of a database of
fingerprints by introducing an alternative method for identifying which APIs possess sufficiently
unique fingerprints, according to the property first defined in Section To this end, we evaluate
the overlap coefficient (described in Equation (1) between an API A; and all other APIs in our
database: if all the values are smaller than a certain upper-bound ¢, then we claim that A;
possesses fingerprints that are sufficiently unique among the APIs that we wish to identify with
Apicula. Conversely, an overlap value computed between A; and another API A;, greater than the
estimated ¢, might indicate that both APIs might yield at least some FPs and, therefore, should
be ideally eliminated from the database altogether.

Similarly to what we do for the first property, we exploit the results obtained in Section to
estimate an ideal value for q. Consequently, we expect this method to properly function only when
the database is constructed from a sufficiently large number of executable programs (for instance,
greater or equal to the one that we employ, i.e., 3000 samples). To find an optimal value for g,
we divide all the APIs found in Section into 20 distinct groups, based on their observed false
discovery rate: in particular, we consider 20 distinct ranges (i.e., [0.0,0.05), [0.05,0.10), [0.10,0.15),
and so on).

We compute the overlap coefficient for each pair of fingerprint sets associated with two distin-
guished APIs (A;, A;); we then average the results first on an API basis and then on a range basis,

21



that is to say, for all the APIs with false discovery rate in the range [rq, 1), we first average all the
overlap scores computed for each of those APIs. Then, we average all the resulting mean values in
the range [rq, 7). The reader should notice that, given two APIs A; and A;, if the respective false
discovery rates belong to two different ranges, then the resulting overlap scores will be included
separately in the average value computed for both ranges. Figure [7] shows the average overlap
scores that we obtain for each considered range. An upper-bound ¢ = 0.0005 can be set to distin-

guish APIs with observed false discovery rate smaller or equal to 0.05, with an overall accuracy of
100%.

100

80

(=2}
(e}

average ¢ * 1074

W
(@}

20

0 | | | | | | |
0 0.1 02 03 04 05 06 07 08 09 1

observed false discovery rate

Figure 7: The graph shows the average values of ¢ for APIs with observed false discovery rate in the corresponding
recall range (i.e., [0.0,0.05), [0.05,0.10), [0.10,0.15), and so on). Each point is labeled with the number of APIs
found in that range. The red horizontal line indicates the upper-bound that we select for gq.

7. Conclusions and Future Work

In this work, we show how the fingerprinting of code can be used to identify APIs in unseen
binaries. In particular, we focus on the fingerprinting of the code that precedes and immediately
follows a call instruction, as those two sections usually contain the code responsible for preparing
the inputs to an API function and for processing its output (if any). Through the experiments that
we conduct, we manage to validate our original claim: for some APIs, the code responsible for the
preparation of the inputs and the processing of the output is shared across different binaries and
sufficiently unique to be fingerprinted. Moreover, we test our tool against a set of real-life malware

22



samples, which allows us to show how Apicula can indeed be used as a complementary tool for
analyzing malicious binaries. Furthermore, we isolate a subset of the Windows APIs that can be
detected with sufficient sensitivity and negligible false discovery rate.

Notwithstanding the efficacy shown throughout the experiments that we perform, our approach
suffers from most of the limitations that are associated with other static analysis techniques, such
as the scarce resilience to obfuscation and packing. In particular, obfuscation techniques, such
as the injection of junk instructions, could be used to generate basic blocks whose colors have
most bits set to 1, which would result in very poor performances by Apicula. Similarly, the code
responsible for the preparation of the inputs to an API might be anticipated in the flow of the
program, while the code responsible for the processing of the output could be postponed in order
to avoid being fingerprinted by Apicula: in these cases, we could extend the fingerprint length,
although that would worsen the time performance of Apicula as longer fingerprints would imply an
additional overhead. On the other hand, we do not worry excessively about packing and encryption
because we imagine Apicula being primarily employed on memory dumps, which can be expected
to contain at least some parts of the binary that are unpacked or decrypted.

In conclusion, we believe that Apicula could be used as a base for more advanced tools. In
particular, we intend to employ Apicula to perform automated malware classification, similarly to
what has already been done in [I} 2, B] (dynamic analysis) and in [I1] (static analysis). However,
our aim is to automatically classify byte streams that can neither be executed nor carry headers
information that can be exploited to reconstruct traces of API calls (for instance, incomplete
memory dumps or files containing only object code). Moreover, we intend to experiment with
live memory analysis, with the goal of performing live API call detection by directly analyzing
the physical memory (for example, through a field-programmable gate array directly connected to
the RAM of a computer). Lastly, we intend to integrate Apicula in Jackdaw, a hybrid-analysis
tool meant to produce human-readable reports to aid analysts in performing manual malware
analysis [14].

Acknowledgment

Mario D’Onghia acknowledges support from TIM S.p.A. through the PhD scholarship.

References

[1] K. Rieck, P. Trinius, C. Willems, T. Holz, Automatic analysis of malware behavior using machine learning,
Journal of Computer Security 19 (2011) 639-668. doi:10.3233/JCS-2010-0410,

[2] G. E. Dahl, J. W. Stokes, L. Deng, D. Yu, Large-scale malware classification using random projections and
neural networks, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp.
3422-3426. |doi:10.1109/ICASSP.2013.6638293.

[3] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, A. Hamze, Malware detection based on mining api
calls| in: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, Association for Computing
Machinery, New York, NY, USA, 2010, p. 1020-1025. |doi:10.1145/1774088.1774303.

URL https://doi.org/10.1145/1774088.1774303

[4] N. Peiravian, X. Zhu, Machine learning for android malware detection using permission and api calls, in: 2013
IEEE 25th International Conference on Tools with Artificial Intelligence, 2013, pp. 300-305. doi:10.1109/
ICTAI.2013.53l

[5] Z. Salehi, A. Sami, M. Ghiasi, Using feature generation from api calls for malware detection, Computer Fraud
& Security 2014 (9) (2014) 9-18. doi:https://doi.org/10.1016/51361-3723(14)70531-7,

URL https://www.sciencedirect.com/science/article/pii/S1361372314705317

23


https://doi.org/10.3233/JCS-2010-0410
https://doi.org/10.1109/ICASSP.2013.6638293
https://doi.org/10.1145/1774088.1774303
https://doi.org/10.1145/1774088.1774303
https://doi.org/10.1145/1774088.1774303
https://doi.org/10.1145/1774088.1774303
https://doi.org/10.1109/ICTAI.2013.53
https://doi.org/10.1109/ICTAI.2013.53
https://www.sciencedirect.com/science/article/pii/S1361372314705317
https://doi.org/https://doi.org/10.1016/S1361-3723(14)70531-7
https://www.sciencedirect.com/science/article/pii/S1361372314705317

(6]

(8]

(9]

[10]

(11]

(12]

(13]

23]

24]

[25]
[26]

C. H. Malin, E. Casey, J. M. Aquilina, Malware forensics: investigating and analyzing malicious code, Syngress,
2008.

J. Li, D. Gu, Y. Luo, Android malware forensics: Reconstruction of malicious events, in: 2012 32nd International
Conference on Distributed Computing Systems Workshops, 2012, pp. 552—-558. [doi:10.1109/ICDCSW.2012.33.
T. Ball, The concept of dynamic analysis, in: Software Engineering—ESEC/FSE’99, Springer, 1999, pp. 216
234.

B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke, A systematic survey of program com-
prehension through dynamic analysis, IEEE Transactions on Software Engineering 35 (5) (2009) 684-702.
doi:10.1109/TSE.2009.28.

A. Moser, C. Kruegel, E. Kirda, Limits of static analysis for malware detection, in: Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007), 2007, pp. 421-430. |doi:10.1109/ACSAC.2007.21.
J.-Y. Xu, A. Sung, P. Chavez, S. Mukkamala, Polymorphic malicious executable scanner by api sequence
analysis, in: Fourth International Conference on Hybrid Intelligent Systems (HIS’04), 2004, pp. 378-383. |doi:
10.1109/ICHIS.2004.75.

S. H. H. Ding, B. C. M. Fung, P. Charland, Asm2vec: Boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization, in: 2019 IEEE Symposium on Security and Privacy
(SP), 2019, pp. 472-489. doi:10.1109/SP.2019.00003.

S. H. Ding, B. C. Fung, P. Charland, Kam1n0: Mapreduce-based assembly clone search for reverse engineering,
in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, Association for Computing Machinery, New York, NY, USA, 2016, p. 461-470.|/doi:10.1145/2939672.
2939719.

URL https://doi.org/10.1145/2939672.2939719

M. Polino, A. Scorti, F. Maggi, S. Zanero, Jackdaw: Towards automatic reverse engineering of large datasets
of binaries, in: International conference on detection of intrusions and malware, and vulnerability assessment,
Springer, 2015, pp. 121-143.

M. R. Farhadi, B. C. Fung, P. Charland, M. Debbabi, Binclone: Detecting code clones in malware, in: 2014
Eighth International Conference on Software Security and Reliability (SERE), 2014, pp. 78-87. |doi:10.1109/
SERE.2014.21.

W. M. Khoo, Decompilation as search, 2013.

M. R. Farhadi, B. C. Fung, Y. B. Fung, P. Charland, S. Preda, M. Debbabi, |Scalable code clone search for
malware analysis, Digit. Investig. 15 (C) (2015) 46—60. doi:10.1016/j.diin.2015.06.001.

URL https://doi.org/10.1016/j.diin.2015.06.001

Y. David, E. Yahav, Tracelet-based code search in executables, SIGPLAN Not. 49 (6) (2014) 349-360. doi:
10.1145/2666356.2594343.

URL https://doi.org/10.1145/2666356.2594343

W. M. Khoo, A. Mycroft, R. Anderson, Rendezvous: A search engine for binary code, in: 2013 10th Working
Conference on Mining Software Repositories (MSR), 2013, pp. 329-338. [doi:10.1109/MSR.2013.6624046.

T. Dullien, R. Rolles, Graph-based comparison of executable objects (english version), SSTIC 5 (01 2005).

M. Bourquin, A. King, E. Robbins, Binslayer: Accurate comparison of binary executables, in: Proceedings of
the 2nd ACM SIGPLAN Program Protection and Reverse Engineering Workshop, PPREW ’13, Association for
Computing Machinery, New York, NY, USA, 2013. [doi:10.1145/2430553.2430557.

URL https://doi.org/10.1145/2430553.2430557

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, G. Vigna, |Polymorphic worm detection using structural infor-
mation of executables, in: Proceedings of the 8th International Conference on Recent Advances in Intrusion
Detection, RAID’05, Springer-Verlag, Berlin, Heidelberg, 2005, p. 207-226. |doi:10.1007/11663812\_11.

URL https://doi.org/10.1007/$11663812_ 11

P. De Nicolao, M. Pogliani, M. Polino, M. Carminati, D. Quarta, S. Zanero, Elisa: Eliciting isa of raw binaries
for fine-grained code and data separation, in: International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, Springer, 2018, pp. 351-371.

F. E. Allen, Control flow analysis, in: Proceedings of a Symposium on Compiler Optimization, Association for
Computing Machinery, New York, NY, USA, 1970, p. 1-19. |[doi:10.1145/800028.808479.

URL https://doi.org/10.1145/800028.808479

Capstone engine, https://www.capstone-engine.org/, accessed: 2021-06-07.

C. Linn, S. Debray, Obfuscation of executable code to improve resistance to static disassembly, in: Proceedings
of the 10th ACM Conference on Computer and Communications Security, CCS ’03, Association for Computing
Machinery, New York, NY, USA, 2003, p. 290-299. doi:10.1145/948109.948149.

24


https://doi.org/10.1109/ICDCSW.2012.33
https://doi.org/10.1109/TSE.2009.28
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1109/ICHIS.2004.75
https://doi.org/10.1109/ICHIS.2004.75
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1145/2939672.2939719
https://doi.org/10.1109/SERE.2014.21
https://doi.org/10.1109/SERE.2014.21
https://doi.org/10.1016/j.diin.2015.06.001
https://doi.org/10.1016/j.diin.2015.06.001
https://doi.org/10.1016/j.diin.2015.06.001
https://doi.org/10.1016/j.diin.2015.06.001
https://doi.org/10.1145/2666356.2594343
https://doi.org/10.1145/2666356.2594343
https://doi.org/10.1145/2666356.2594343
https://doi.org/10.1145/2666356.2594343
https://doi.org/10.1109/MSR.2013.6624046
https://doi.org/10.1145/2430553.2430557
https://doi.org/10.1145/2430553.2430557
https://doi.org/10.1145/2430553.2430557
https://doi.org/10.1007/$11663812_11
https://doi.org/10.1007/$11663812_11
https://doi.org/10.1007/11663812_11
https://doi.org/10.1007/$11663812_11
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://www.capstone-engine.org/
https://doi.org/10.1145/948109.948149
https://doi.org/10.1145/948109.948149

URL https://doi.org/10.1145/948109.948149

[27] Pe format, https://docs.microsoft.com/en-us/windows/win32/debug/pe-format, accessed: 2021-06-22.

[28] Python pefile, https://github.com/erocarrera/pefile, accessed: 2021-06-22.

[29] Gnu core utils, https://www.gnu.org/software/coreutils/, accessed: 2021-06-23.

[30] Gnu core utils official github page, https://github.com/coreutils/coreutils, accessed: 2021-06-23.

[31] Mingw, http://mingw-w64.org/doku.php, accessed: 2021-06-23.

[32] Cygwin, https://www.cygwin.com/, accessed: 2021-06-23.

[33] Virusshare, https://virusshare.com/, accessed: 2021-06-30.

[34] D. C. D’Elia, E. Coppa, F. Palmaro, L. Cavallaro, On the dissection of evasive malware, IEEE Transactions on
Information Forensics and Security 15 (2020) 2750-2765. |doi:10.1109/TIFS.2020.2976559.

[35] J. Singh, J. Singh, Challenges of malware analysis : Obfuscation techniques, 2018.

25


https://doi.org/10.1145/948109.948149
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://github.com/erocarrera/pefile
https://www.gnu.org/software/coreutils/
https://github.com/coreutils/coreutils
http://mingw-w64.org/doku.php
https://www.cygwin.com/
https://virusshare.com/
https://doi.org/10.1109/TIFS.2020.2976559

	Introduction
	Related Work
	Approach
	Apìcula Overview
	Disassembling and Control Flow Graph Generation
	Code Disassembling
	CFG Generation

	Fingerprinting
	Matching
	Fingerprint Database Generation
	Database Generation Process


	Validating the Effectiveness of Apìcula
	Experiment 1: Fingerprint Similarity
	Experiment 1.1: Fingerprint Similarity with same Optimization Level
	Experiment 1.2: Fingerprint Similarity with Different Optimization Level
	Additional Discussion on Results

	Experiment 2: Average Overlap Values and Optimal Fingerprint Length
	Experimenting with Real Malware
	Identified APIs


	Time Performance
	Validating the Fingerprint Database
	Determining Fingerprintability from Database Size
	Fingerprint Uniqueness

	Conclusions and Future Work

