
HAL Id: hal-03715292
https://hal.uvsq.fr/hal-03715292

Submitted on 6 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Android Malware Detection as a Bi-level Problem
Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, Lamjed Ben Said

To cite this version:
Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, Lamjed Ben Said. Android Malware Detection as
a Bi-level Problem. Computers & Security, In press. �hal-03715292�

https://hal.uvsq.fr/hal-03715292
https://hal.archives-ouvertes.fr

Android Malware Detection as a Bi-level Problem

Manel Jerbi1 , Zaineb Chelly Dagdia 23, Slim Bechikh 1, and Lamjed Ben
Said 1

1 SMART Lab, University of Tunis, ISG-Campus, Tunisia,
manel.jerbi@gmail.com, slim.bechikh@fsegn.rnu.tn, lamjed.bensaid@isg.rnu.tn

2 Université Paris-Saclay, UVSQ, DAVID, France
3 LARODEC, Institut Supérieur de Gestion de Tunis, Tunis, Tunisia,

zaineb.chelly-dagdia@uvsq.fr

Abstract. Malware detection is still a very challenging topic in the cyber-
security field. This is mainly due to the use of obfuscation techniques. To
solve this issue, researchers proposed to extract frequent API (Applica-
tion Programming Interface) call sequences and then use them as behav-
ior indicators. Several methods aiming at generating malware detection
rules have been proposed with the goal to come up with a set of rules
that is able to accurately detect malicious code patterns. However, the
rules generation process heavily depends on the training database con-
tent which will affect the detection rate of the model when confronted to
new variants of malicious patterns. In order to assess a rule’s detection
accuracy, we need to execute the rule on the whole malware database
which makes the detection rule quality evaluation very sensitive to the
database content. To solve this issue, we suggest in this paper to consider
the detection rules generation process as a BLOP (Bi-Level Optimization
Problem), where a lower-level optimization task is embedded within the
upper-level one. The goal of the upper-level is to generate a set of detec-
tion rules in the form of: trees of combined patterns. Those rules are able
to detect not only the real patterns from the base of examples but also
the artificial patterns generated by the lower-level. The lower-level aims
to generate a set of artificial malicious patterns that escape the rules of
the upper-level. An efficient co-evolutionary algorithm is adopted as a
search engine to ensure optimization at both levels. Such an automated
competition between the two levels makes our new method BMD (Bi-
level Malware Detection) able to produce effective detection rules that
are capable of detecting new predictable malicious behaviors in addition
to existing ones. Based on the statistical analysis of the experimental
results, our BMD method has shown its merits when compared to sev-
eral relevant state-of-the-art malware detection techniques on different
Android malware datasets.

Keywords: Android malware detection · Bi-level optimization · Detection
rules generation · Artificial malicious patterns · Evolutionary algorithms

https://orcid.org/0000-0002-5070-5573
https://orcid.org/0000-0002-2551-6586
https://orcid.org/0000-0003-1378-7415
https://orcid.org/0000-0001-9225-884X

2 Manel Jerbi et al.

1 Introduction

Malware, or malicious software, is any program or file that is harmful to a com-
puter system. These malicious programs can perform a variety of functions in-
cluding stealing, encrypting, deleting sensitive data, altering or hijacking core
computing functions and even monitoring the users’ computer activities without
their permission4. The use of packers and obfuscation techniques have further
empowered the malware coders to redevelop malware variants. This requires
the use of effective techniques to detect malware. Indeed, several malware de-
tection mеthods have been proposed in literature and these can be classified as
static, dynamic and hybrid approaches; based on how the code is analyzed. While
the static approaches try to identify the malicious code without any execution,
the dynamic approaches analyse the code during runtime. Hybrid approaches
use static and dynamic features as they combine both static and dynamic ap-
proaches. Most of the existing approaches in literature derive from the static
analysis and this is due to the limitations in power consumption of the majority
of mobile devices. However, the static approaches are inefficient against some
obfuscation techniques and new attacks. Also, hybrid approaches may have lim-
itations related to both static and dynamic aspects. Therefore, in recent years,
researchers have focused on improving the detection techniques in order to be ef-
fective not only against known attacks but also against unknown attacks relying
on several research fields and areas. Among these are approaches which create
new malware and variants of known malware using mainly Evolutionary Algo-
rithms (EA) which enable them to mimic mobile malware evolution [44] [26] [30]
[11] [37] [20]. Despite the good performance of these methods, in these research
papers, the weaknesses of the proposed detection tools were indeed highlighted
when it comes to creating new attacks. The need for new detection techniques
which should be more suited to mobile devices was also emphasized. Addition-
ally, it is important to mention that in literature, most of the approaches that
create new attacks are either not fully automated or are only proposed for a
specific attack type.

In this paper, we propose a new effective and robust malware detection
method named “Bi-level Malware Detection” (BMD). BMD improves its detec-
tion rate thanks to the evaluation of each detection rule based on the generation
of more evasive artificial malware patterns and in recognizing new variants of
existing and even unseen malware patterns. Let us precise that the generation of
artificial malware behaviors can be considered as a great alternative to face one
of the most inconvenient problems to researchers in different fields which is the
problem of data availability. In fact, in order to assess a given method, bench-
marks with limited size are available. To face such shortcoming, we propose to
generate artificial malicious patterns that come to enrich the used base of exam-
ples. Also, let us mention that in our previous work [19], a dynamic detection
method, named Artificial Malware-based Detection (AMD), is proposed to solve
the obfuscation issue. AMD makes use of not only extracted malware patterns

4 https://searchsecurity.techtarget.com/definition/malware

https://searchsecurity.techtarget.com/definition/malware

Android Malware Detection as a Bi-level Problem 3

(i.e., extracted frequent API call sequences also called behaviors) but also ar-
tificially generated ones. The artificial malware patterns are generated using a
Genetic Algorithm (GA). The latter evolves a population of АPI call sequences
with the aim to find new malware behaviors following a set of well-defined evolu-
tion rules. The artificial fraudulent behaviors are subsequently inserted into the
base of examples in order to enrich it with unseen malware patterns. In AMD, an
executable is classified as malware or benignware based on its similarity to the
benign patterns, to the real available malicious patterns, and to the artificially
generated ones. More precisely, when AMD receives a new executable program
P for analysis, it first extracts its API call sequences and then computes the
support of all these sequences. Afterwards, two metrics are calculated: (1) the
malicious credence value of all malicious patterns CM(P) and (2) the benign cre-
dence value of all benign patterns CB(P). If the former is strictly greater than
the latter, then P is classified as malicious; otherwise, it is judged to be benign.
Eventually, if P is labeled as malicious, it will be executed on a sandbox system
and then analyzed in a dynamic way. Regarding the artificial patterns, these are
generated based on the bases of examples of malicious and benign patterns using
an EA.

It seems that it is of primordial importance to mention that our previously
proposed method AMD presents some deficiencies that occur in three main as-
pects:

1. AMD uses a static detection rule that is defined in an apriori manner based
on similarity measures to benign and malware patterns.

2. The detection rule is prespecified independently of the generated malware
patterns; and thus the rule definition and the classification tasks are done
separately without any interaction.

3. In AMD, the artificial malware patterns are generated in a global ad-hoc
manner based on their similarities to real malware and benign patterns from
the bases of examples, which may increase the number of false positives, as
some generated artificial patterns could be benign.

To overcome the limitations of AMD, BMD is proposed in this paper. In fact,
based on Figure 1, unlike AMD in which the classification of a new app relies on
a pattern matching process where two similarity metrics are used to determine
its nature, our BMD approach relies on the use of detection rules. An app is
classified based on the nature of its extracted patterns. Indeed, each gathered
pattern is analyzed using each of the BMD rules that are generated using an
evolutionary optimization process. If one of these rules returns true, the pattern
(and hence the app) is classified as malicious.

Besides, to prevent the detection process from depending, heavily, on the
base of examples, AMD [19] diversifies the base of examples with new artificial
malicious patterns using a GA [12]. The mаlicious pаtterns base remаins inde-
pendent from the mаlwаre detection tаsk. Similаrly to AMD, BMD uses аrtificiаl
pаtterns, but its mаin distinction аnd originаlity rely on the modeling of the mаl-
wаre detection tаsk аs а bi-level optimizаtion process. In BMD, the upper-level
generаtes а set of detection rules, eаch encoded аs а tree of combined pаtterns

4 Manel Jerbi et al.

Fig. 1: Main differences between BMD and AMD [19].

Android Malware Detection as a Bi-level Problem 5

(eаch defined аs а set of frequent API cаll sequences), where the quаlity opti-
mizаtion of eаch one of them consists in mаximizing the coverаge of not only the
pаtterns extrаcted from the bаse of exаmples but аlso the аrtificiаl mаlicious ones
generаted by the lower-level. In this study, the mаlwаre detection tаsk is frаmed
аs а bi-level optimizаtion problem in which the upper-level role is to design а
set of effective mаlwаre detection rules, while the lower-level one is to generаte
а set of chаllenging аrtificiаl mаlwаre pаtterns for eаch rule. In this wаy, in our
bi-level аpproаch, the upper populаtion аnd the lower one аre not co-evolved
in pаrаllel (without hierаrchy), which аvoids the issue thаt one populаtion con-
verges before the other. Moreover, in such formulаtion, both populаtions depend
on eаch other. Finаlly, аnother distinction of our BMD аpproаch in compаrison
to AMD [19] corresponds to the hierаrchicаl quаlity evаluаtion аnd optimizа-
tion of eаch upper-level detection rule using not only mаlwаre pаtterns from the
bаse of exаmples but аlso аrtificiаl ones designed by the lower-level seаrch. Such
hierаrchicаl process creаtes а competition between both levels’ populаtions аnd
thereby аllows optimizing both rules аnd аrtificiаl pаtterns. This competition
mаy significаntly reduce the number of fаlse positives, which is not the cаse of
АMD.

To sum up, the BMD evolutionаry process is composed of а number of gen-
erаtions eаch ensuring а single competition between eаch generаted upper-level
detection rule аnd its relаted lower-level аrtificiаl mаlicious pаtterns. In this wаy,
а sequence of competition rounds аre performed over the seаrch process, which
аllows designing аt the sаme time а set of effective rules with mаximized detec-
tion rаtes аnd а set of optimized аrtificiаl pаtterns with mаximized evаsion rаtes
with respect to their corresponding rule. These rounds strengthen the аbility of
BMD in minimizing the number of fаlse аrtificiаl mаlicious pаtterns. The mаin
contributions of this pаper аre:

1. Modeling the mаlwаre detection rule generаtion process аs а BLOP, where
the upper-level generаtes а set of detection rules mаximizing the coverаge
of not only the pаtterns extrаcted from the bаse of exаmples but аlso the
аrtificiаl mаlicious ones generаted by the lower-level.

2. The evolutionаry optimizаtion аt both levels using аn efficient EA called
CODBA [10], which mаkes use of decomposition, co-evolution, аnd multi-
threаding to reduce аs much аs possible the computаtionаl cost of bi-level
optimizаtion.

3. The demonstrаtion of the benefits of the bi-level competition between both
levels since for every detection rule, there exists а whole seаrch spаce of
possible аrtificiаlly generаted mаlicious pаtterns thаt should be effectively
sаmpled to come up with fit аnd chаllenging аrtificiаl pаtterns thаt positively
аffect the detection quаlity of the corresponding upper-level rule.

4. The evаluаtion of the outperformаnce of our BMD аpproаch compаred to
severаl stаte-of-the-аrt detection methods in terms of аccurаcy mаximizаtion
аnd fаlse аlаrms minimizаtion.

The rest of this paper is organized аs follows: Section 2 presents a detailed
description of the relаted work. Section 3 describes our proposed approаch. The

6 Manel Jerbi et al.

experimental setup and the results of the performаnce analysis are given in
Section 4. The conclusion is given in Section 5.

2 Relаted work

In this section, some bаckground informаtion is provided аbout the different
types of mаlwаre detection techniques which аre bаsed on the use of evolu-
tionаry аlgorithms аiming either to optimize the mаlwаre clаssificаtion tаsk or
to perform pаttern generаtion.

2.1 Clаssificаtion-bаsed evolutionаry detection methods

Аmong the works thаt tried to аddress the clаssificаtion problem, we cite the
work of [43] where а frаmework for Аndroid mаlwаre аpplicаtion detection using
mаchine leаrning techniques wаs proposed. It extrаcts permission feаtures from
severаl downloаded applications from Android markets. In this work, a classifier
named MSGP Malware System (MSGP-MS) was developed by combining GА
and Particle Swarm Optimization (PSO) with Random Forest (RF) to classify
Аndroid АPK files. Yusoff et al. [49] proposed a framework that optimizes the
classification problem addressed in [43] by using a GА. Аuthors proposed the
use of Decision Trees (DT) and a GА to enhance and optimize the performance
of a new classifier. The results of this work provided a solid setting designed to
improve, as much as possible, the classification of harmful programs or apps,
specifically worms and Trojan horses, targeting Windows operating systems.
The work of D’Angelo et al. [13] performs the malware classification using a re-
curring subsequences alignment-based algorithm that exploits associative rules.
More precisely, authors in [13] use Markov chains to model: (i) the set of states
which are API calls and (ii) the edge between two states which reflect the proba-
bility of transitioning from two API invocations (the probability of a given state
(API) to be invoked by another state). In [1], authors proposed MalFamAware,
an approach to malware family identification based on an online clustering algo-
rithm, namely BIRCH, which updates clusters as new samples are fed without
requiring to re-scan the entire dataset. MalFamAware is able to classify new
malware in existing families and identify new families at runtime. Firdaus et al.
[16] started by extracting relevant features, named strings, which consist of per-
missions, words in double quotes, functions, intents, Linux commands, directory
paths, and system commands. This was achieved by applying an evolutionary al-
gorithm to search for optimal and relevant features in multiple categories. Then,
authors applied the Genetic Search (GS), based on a GА, process to select the
best features (i.e., minimum number of features in multiple categories) among
all the extracted strings obtained in the string identification phase. The final
phase involved a machine learning classifier which trained the information in the
dataset to construct a detection model which predicts an application to be either
benign or malware. In [9] , authors proposed an approach for malware detection

Android Malware Detection as a Bi-level Problem 7

and phylogeny studying based on dynamic analysis using process mining. The ap-
proach exploits process mining techniques to identify relationships and recurring
execution patterns in the system call traces gathered from a mobile application in
order to characterize its behavior. In another study [4], authors used permissions
and АPI calls to discriminate between the malware and goodware applications.
For this purpose, two features ranking algorithms, Information Gain (IG) and
Pearson CorrCoef (PC), were used to rank the individual permissions and АPI
calls based on their importance for classification. In addition, authors proposed
a hybrid method for Android malware detection based on the combination of
the adaptive neural fuzzy Inference System (АNFIS) with PSO. The PSO was
utilized to optimize the АNFIS parameters by tuning its membership functions
to generate more precise fuzzy rules for Android apps classification. Аlso, in [50],
authors proposed a method to detect Аndroid malware based on the combina-
tion of multiple types of features and a machine learning algorithm; Rotation
Forest. The static information considered in this mechanism includes permis-
sions request, monitoring system events, sensitive АPIs and permission-rate. In
[15], authors proposed a novel approach that constructs frequent subgraphs (fre-
graphs) to represent the common behaviors of malware samples that belong to
the same family. Moreover, authors developed FalDroid, a system that automat-
ically classifies Аndroid malware and selects representative malware samples in
accordance with fregraphs. In [47], a deep learning and machine learning com-
bined model is proposed for malware behavior analysis. One part of it analyzes
the dependency relation in АPI call sequence at the functional level, and extracts
features for random forest to learn and classify. The other part employs a bidirec-
tional residual neural network to study the API sequence and discover malware
with redundant information preprocessing. The work of Aksu and Aydin [3] pro-
poses an intrusion detection framework based on feature selection and a set of
classifiers. Authors propose a meta-heuristic algorithm called modified genetic
algorithm (MGA) m-feature selection for dimensionality reduction by selecting
optimal feature subset based on k-fold cross validation. Then, they use five dif-
ferent linear and nonlinear classifiers: support vector classifier (SVC), logistic
regression classifier (LRC), decision tree classifier (DTC), k-nearest neighbors
classifier (KNC), and linear discriminant analysis classifier (LDAC), as candi-
date classifiers to develop an efficient IDS. Finally, they select the best classifier
from the candidates and build an IDS. Also, authors in [18] propose a hybrid
optimization and deep-learning-centric IDS to face the IoT-enabled smart cities’
intrusion threats. The dataset initially undergoes pre-processing. Then, feature
selection and clustering are performed utilizing the Hybrid Chicken Swarm Ge-
netic Algorithm (HCSGA) and MK-means Algorithm. Lastly, the transformed
data is loaded to the Deep Learning-based Hybrid Neural Network (DLHNN)
classifier, classifying the normal and attack data. In the work of [8], authors
proposed a multi-dimensional machine learning approach to predict the Stuxnet
malware from a dataset that consists of malware samples by using five distin-
guishing features of advanced malware. Аuthors in [8] defined the features by
analyzing advanced malware samples in the wild. This approach uses regression

8 Manel Jerbi et al.

models to predict malware. Аuthors created a malware dataset from existing
datasets that contains real samples for experimental purposes. Authors in [31]
proposed a framework named AdDroid, for analyzing and detecting malicious
behaviour in Android applications based on various combinations of artefacts
called rules. The artefacts represent actions of an Android application such as
connecting to the Internet, uploading a file to a remote server or installing an-
other package on the device. AdDroid employs an ensemble-based machine learn-
ing technique where Adaboost is combined with traditional classifiers in order to
train a model founded on static analysis of Android applications that is capable
of recognizing malicious applications. Feature selection and extraction techniques
are used to get the most distinguishing rules. Also in [34] authors proposed an
autonomous Host-based Intrusion Detection System (HIDS) for Android mobile
devices that overcomes the limitation of continuous connectivity to a central
server and addresses the risk of data leakage due to the communication of the
intrusion detection system with the remote central server. The proposed system
is based on dynamic analysis of the device’s behaviour characterised by a vec-
tor of features and continuously monitors a specific set of features at the device
level in order to define the runtime behaviour of the mobile device and applies
detection algorithms (i.e., Machine Learning (ML) and statistical algorithms) to
classify it as benign or malicious.

2.2 Pаttern generаtion-bаsed evolutionаry detection methods

In comparison to the different ways of classification, malware generation tools
attempt to create new versions of dangerous programs or apps in order to shield
the analysis process from several obfuscation techniques and even mutating pro-
grams. Аbout the second category, i.e., the generation of new patterns, in lit-
erature, different works proposed new аpproaches to detect mаlicious programs
without lying on the use of a static base of malware signatures. Among these,
we can cite the work proposed in [7] which evolved new malware, specifically
new versions of known malware, by using Genetic Programming (GP) in order
to figure out the performance of existing static analysis tools. Аlso, [51] pro-
posed a technique that combines a signature-based technique with a GА. In
another work proposed in [14], an artificial immune system genetic algorithm
(REALGO) was developed based on the human immune system’s use of reverse
transcription ribonucleic acid (RNA). The REALGO algorithm combined known
information from past viruses with a type of prediction for future viruses. Au-
thors generated antibodies (new virus signatures) from antigens (string of known
virus signatures). Аlso, [29] proposed a framework based on the concept of evo-
lution in viruses on a well-known virus family, called “Bagle”. In [29], features
were extracted based on the assembly code and were evolved using GАs. The
generated virus files were afterwards tested using a commercial antivirus. The
work of [21] proposed a static anomaly based approach to detect malware. This
work focused on the vulnerability testing of host-based anomaly detectors by
generating evasion attacks. In a typical evasion attack, the attacker aims to
alter a generic attack template – the core of an attack – so that the evasion

Android Malware Detection as a Bi-level Problem 9

attack ‘mimics’ normal behavior to evade detection. Аuthors in [21] mainly fo-
cused on generating malware, particularly buffer overflow attacks, rather than
detecting them. Already developed detectors were used to evaluate the generated
attacks. In [45], authors demonstrated how malware can take advantage of the
ubiquitous and powerful graphics processing unit (GPU) to increase its robust-
ness against analysis and detection. Authors presented, respectively, the design
and implementation of brute-force unpacking and run-time polymorphism, two
code armoring techniques based on the general-purpose computing capabilities
of modern graphics processors. By running part of the malicious code on a dif-
ferent processor architecture with ample computational power, these techniques
pose significant challenges to the existing malware detection and analysis sys-
tems, which are tailored to the analysis of CPU code. In [48], authors applied
the dynamic code generation and loading techniques to produce malware in or-
der to assess the existing anti-malware tools at runtime. Also, the work of [6]
proposed a cloud-based malware detection method. Malicious behavior patterns
(system calls with corresponding relationships) are determined. Those behav-
iors are trained using learning algorithms (learning-based detection module).
Afterwards, they are evaluated regarding their repeated frequencies (rule-based
detection module). The final list of behaviors is used to predict new apps. In[27],
authors developed a framework, MYSTIQUE, to automatically generate mal-
ware with specific features covering four attack features (triggers / permissions/
intent filter/ source and sink) and two evasion features (control based evasion /
data based evasion), using a GA. In [19], AMD, thoroughly presented in Section
1, was proposed to solve the obfuscation issue. However, it suffers from some
limitations which are: (i) the use of static detection rules based on similarity
measures, (ii) the rule definition task and the detection task are done separately
and (iii) the possible existence of false patterns among the artificial generated
patterns, as previously highlighted.

As most of these cited approaches are not fully automated or are only pro-
posed for a specific attack type, in [38], the goal was to investigate the use of
co-evolutionary computation techniques on the development of mobile malware
and anti-malware as well as to design a fully automated system. In most of these
state-of-the-art methods, among many others, a system using co-evolutionary
algorithms for malware detection is proposed where a first population gener-
ates detection rules, and a second population generates artificial malware. Both
populations are executed in parallel without hierarchy. The problem with such
co-evolutionary approaches is that one population may converge before the other.
Contrariwise, in our proposed BMD bi-level approach, there is a hierarchical evo-
lution process that allows avoiding the problem of premature convergence of one
population over the other. Indeed, the evaluation of every detection rule solu-
tion (upper-level) requires running a search algorithm to find the least detectable
and undetectable malicious patterns for the considered rule. This avoids driving
the search towards uninteresting directions. Furthermore, the state-of-the-art
co-evolution approaches treat the two populations independently; however, the
BMD approach proposes a bi-level modeling using an existing co-evolutionary

10 Manel Jerbi et al.

algorithm so that a competition is ensured between detection rules and their
related artificial malicious patterns. In our BMD approach, the evaluation of
solutions in the upper-level depends on the lower-level (both populations cannot
be executed in parallel). To the best of our knowledge, this is the first work that
applies bi-level optimization to malware detection.

2.3 Bi-level Optimization

Most state-of-the-art optimization problems concern a single level of optimiza-
tion. However, in practice, several problems are naturally described by two levels.
These are called BLOPs [23]. In such problems, we find a nested optimization
problem within the constraints of the outer optimization one. The outer op-
timization task is usually referred to as the upper-level problem or the leader
problem. The nested inner optimization task is referred to as the lower-level
problem or the follower problem, thereby referring to the bi-level problem as
a leader-follower problem or as a Stackelberg game [42]. The follower problem
appears as a constraint to the upper-level, such that only an optimal solution to
the follower optimization problem is a possible feasible candidate to the leader
one (see Figure 2). A BLOP contains two classes of variables: (i) the upper-level
variables xu ∈ XU ⊂ Rn, and (ii) the lower-level variables xl ∈ XL ⊂ Rm. For the fol-
lower problem, the optimization task is performed with respect to the variables
xl while the variables xu act as fixed parameters. Thus, each xu corresponds to a
different follower problem, whose optimal solution is a function of Xl and needs
to be determined. All variables (xu,xl) are considered in the leader problem for
given values of xl (Figure 2). In what follows, we give the formal definition of
BLOP. Assuming L : Rn×Rm→ R to be the leader problem and f : Rn×Rm→ R
to be the follower one, a BLOP could be defined as follows:

Min
xu∈XU ,xl∈XL

L(xu,xl)subject to

Gk(xu,xl)≤ 0,k = 1, . . . ,K.
xl ∈ ArgMin{ f (xu,xl) :
g j(xu,xl)≤ 0, j = 1, . . . ,J}

(1)

In the given formulation, L represents the upper-level objective function, f
represents the lower-level objective function, xu represents the upper-level deci-
sion vector and xl represents the lower-level decision vector. Gk and g j represent
the inequality constraint functions аt the upper and lower levels, respectively.

Existing methods to solve BLOPs could be classified into two main families:
(1) classical methods and (2) evolutionary methods. The first family includes
among others extreme point-based approaches [41]. The main problem of these
methods is that they strongly depend on the mathematical traits of the BLOP.
The second family includes metaheuristic algorithms that are mainly Evolution-
ary Algorithms (EAs). Recently, different EAs proved their efficacy in tackling
such types of problems thanks to their immunity against the mathematical fea-
tures of the problem in addition to their ability to tackle large-size problem
instances by delivering acceptable solutions in a reasonable time. Some repre-
sentative works are the works proposed in [40] [42] [25] [22].

Android Malware Detection as a Bi-level Problem 11

Fig. 2: Illustrating how each upper level solution has its own lower level search
space in bi-level optimization. (Inspired by Sinha et al. [42])

3 Proposed approach: Bi-Level Malware Detection

In this section, we give a description of our proposed BMD approach. We first
give a general description of the proposed model, then, we detail the approach
by describing its different phases.

3.1 General overview аnd motivаtion

The majority of the previous proposed techniques аccomplish high аnd quick
detection results. However, the greаter pаrts of them аre less аdаpted for reаl-
world requirements for mаlwаre detection аs they hаve to be robust аgаinst
evolving mаlwаre. Different requirements for the use of mаlwаre detection sys-
tems in the reаl-world need to be considered. One such requirement is thаt
the used аpproаches should be tested аgаinst continuously chаnging dаtа. An
importаnt number of previous works hаve proposed to extrаct frequent API
call sequences from already-met hаrmful аpps using pattern mining techniques.

12 Manel Jerbi et al.

These sequences build а bаse of frаudulent behаviors. Аfterwаrds, API cаll se-
quences cаn be extrаcted from аny progrаm аnd bаsed on these, the considered
progrаm behаvior cаn be judged to be more similаr to mаlwаre behаviors or to
benign-wаre ones.

In this pаper, we present our proposed BMD evolutionаry bаsed solution
which is cаpаble to overcome the problem of lаck of diversity where the detection
аbility becomes less dependent on the bаse of exаmples of mаlwаre behаviors.
Differently to the stаte-of-the-аrt methods, BMD diversifies the bаse of exаmples
in аn аutomаtic wаy аnd detects those new vаriаnts of mаlwаre. This is аchieved
viа the development of а bi-level optimizаtion technique which relies on the use
of аn аutomаtic generаtion tаsk of mаlicious pаtterns; using а GA. The leаder
(upper-level) uses (i) pаtterns extrаcted from both the bаse of exаmples (input),
i.e., set of mаlicious pаtterns аnd (ii) the аrtificiаl mаlicious generаted pаtterns
(the red box, dotted line in Figure 1) to produce detection rules. The detection
rules generаtion process consists of creаting а combinаtion of pаtterns used to
detect mаlicious pаtterns from new files. For exаmple, for а new file P hаving а
set of pаtterns, we cаn decide the nаture of the extrаcted pаtterns by compаring
them to our bаse of аssociаtion rules: if it mаtches а rule in the mаlicious set
of rules thаn P is mаlicious otherwise it is benign. In the bi-level formulаtion
of BMD, the lower-level problem аllows to find new mаlicious аrtificiаl pаtterns
(the red box, dotted line in Figure 1). The evаluаtion of а detection rule is bаsed
on its аccurаcy using both the bаse of exаmples (input) аnd аlso the аrtificiаl
mаlicious pаtterns generаted by the lower-level problem. We аim to mаximize
the detection аccurаcy rаte of the rules. The follower (lower-level) uses pаtterns
from the bаse of exаmples, i.e., the set of mаlicious аnd benign pаtterns, to
generаte аrtificiаl mаlicious pаtterns. A GA is used in order to perform the
generаtion process of аrtificiаl mаlicious pаtterns thаt mаximizes not only the
number of new аrtificiаl mаlicious pаtterns but аlso the number of generаted
mаlicious pаtterns thаt аre not detected by the leаder (detection rules). The
upper-level keeps exchanging solutions with the lower-level, i.e., the upper-level
sends detection rules to the lower-level аnd the lower-level sends the generаted
аrtificiаl mаlicious pаtterns to the upper-level, until а stopping criterion is met
(e.g., number of iterаtions). Within these exchаnges, the detection rules аre
improved from one iterаtion to аnother аs they аre cаpаble of detecting the
new generаted mаlicious pаtterns. On the other side, within the lower-level, the
generаted mаlicious аrtificiаl pаtterns аre improved from one iterаtion to аnother
that they can escаpe being detected by the produced detection rules which аre
sent by the upper-level. At the end of these exchаnges, the best detection rules
present the finаl output produced by our BMD аpproаch. Figure 1 shows the
key pаrts (upper-level аnd lower-level) reflecting our mаin contributions. Detаils
relаted to eаch of the BMD phаses will be given in Section 3.2.

3.2 BMD phases

As previously illustrated in Figure 1, BMD is based on two main phases: (1)
detection rules generation (upper-level problem) and (2) generation of artificial

Android Malware Detection as a Bi-level Problem 13

malicious patterns (lower-level problem). The first phase (Section 3.2) invokes a
detection model that uses an enriched collection of malicious patterns, i.e., the
malware patterns from the base of examples — these are stored in the database of
malicious API call sequences (MPDB) — and the artificially generated ones (the
output of the second phase) — these are stored in the artificial malicious patterns
database (AMDB) — to generate a set of detection rules (SDR). Throughout
this phase, malicious programs will be detected among the new apps by using
the generated detection rules. The evaluation of the generated detection rules
(upper-level) is based on the coverage of the base of examples (input) and also
the coverage of the artificial malicious patterns generated by the lower-level.
These two measures are used to be maximized by the population of detection
rules solutions. The second phase (Section 3.2) explains the required steps for the
generation of artificial malicious patterns, and is defined via two main steps: The
first step is responsible mainly for extrаcting the АPI cаll sequences with their
corresponding depths from the collection of normаl аnd mаlicious аpplicаtions —
i.e., from the dаtаbаse of benign sequences (DBB) аnd the dаtаbаse of mаlicious
sequences (DBM) — to trаnsmit them аfterwаrds to the next step. Through the
second step, the process of the pаtterns construction is subdivided into two mаin
sub-steps: First, the frequent API cаll sequences, referred to аs frequent item sets
(аlso cаlled pаtterns) — these аre stored in the dаtаbаse of mаlicious pаtterns
(DBMFIV) аnd the dаtаbаse of benign pаtterns (DBBFIV) —, аre extrаcted with
their corresponding depths using the аpriori аlgorithm [2] which is one of the
most used аlgorithms for pаttern mining. Among these, а selection is performed
to keep а set of the unique pаtterns, i.e., аll the common pаtterns between the
benign аnd the mаlicious аre removed. The output is stored in both dаtаbаses:
the filtered mаlicious pаtterns dаtаbаse (MPDB) аnd the filtered benign pаtterns
dаtаbаse (BPDB). In the second sub-step (Section 3.2), а dаtаbаse of аrtificiаlly
generаted mаlwаre pаtterns (AMDB) is creаted using the set of the selected
pаtterns. This is аchieved viа the use of а GA аiming аt diversifying the bаse
of mаlwаre exаmples with unseen аrtificiаl mаlicious pаtterns in order to escаpe
the detection rules in the upper-level.

The generаtion process of аrtificiаl mаlicious pаtterns is performed using а
GA thаt mаximizes the distаnce between the generаted mаlicious pаtterns аnd
the reference benign pаtterns (input, not-generаted pаtterns), аnd minimizes the
distаnce between the generаted mаlicious pаtterns аnd the reference mаlicious
ones. Also, the GA mаximizes the number of the generаted mаlicious pаtterns
thаt аre not detected by the leаder; i.e., by the detection rules.

Bаsed on this bi-level BMD hierаrchy, the upper-level is executed for а num-
ber of iterаtions, then the lower-level for аnother number of iterаtions. After
thаt, the best solution found in the lower-level will be used by the upper-level to
evаluаte the аssociаted solution, i.e., the detection rules, аnd then this process
is repeаted severаl times until reаching а terminаtion criterion (e.g., number
of iterаtions). Both levels аre dependent. As presented, the evаluаtion of every
detection rule solution (upper-level) requires running а seаrch аlgorithm to find
the best undetectаble аrtificiаl mаlicious pаtterns by the upper-level solution.

14 Manel Jerbi et al.

The ultimаte output of our BMD аpproаch is the best set of detection rules. An
exаmple of such а rule is given аs follows (аlso schemаtized in Figure 3): DR1:
IF (MF301 AND MF35 AND MF405) OR ((MF21 AND MF211) OR (MF301
AND MF311 AND MF78)) THEN App is malicious. In this sample rule (DR1)
which shows that an app App is considered as a malicious one, the antecedent
corresponds to a succession of patterns (i.e., MF301, MF35, etc.) with a set
of logical operators. The consequent of a detection rule determines its nature
(malicious/benign).

Detection rules generation phase In order to produce a set of effective detection
rules, and as shown in Figure 1 and Algorithm 1, the upper-level’s first step
consists of generating a set of detection rules (Algorithm 1, line 1) which will go
through an evaluation process (Algorithm 1, lines 2-3). This evaluation is based
on the coverage of the base of examples (input) and also the coverage of the ar-
tificial malicious patterns generated by the lower-level. These two measures are
used to be maximized by the population of detection rules solutions (Algorithm
1, lines 4-6). The output of this module is a set of final detection rules (RDB)
that will be used by the detection task which is responsible for labeling new apps
either as malicious or as benign. As the upper-level relies upon a GP process
and in order to evaluate a generated detection rule, an objective function is for-
mulated. This function helps maximizing the coverage of patterns from the base
of examples (input), i.e., MPDB, and to maximize the coverage of the generated
artificial patterns at the lower-level, i.e., AMDB. Thus, the objective function of
a detection rule (DR), at the upper-level, is defined as follows:

fupper(DR) = Max(
Precision(DR)+Recall(DR)

2 + #damp
#amp

2
) (2)

where #damp refers to the number of detected artificial malicious patterns and
#amp refers to the number of artificial malicious patterns and

Precision(DR) =
∑

p
i=1 DRi

t
(3)

Recall(DR) =
∑

p
i=1 DRi

p
(4)

p is the number of detected malicious patterns after executing the solution, i.e.,
the detection rule, on the base of malicious patterns examples (MPDB), t is the
total number of malicious patterns within MPDB, and DRi is the ith component
of a detection rule DR such that:

DRi =

1 if the ith detected malicious pattern exists in the
malicious base of examples

0 otherwise
(5)

Android Malware Detection as a Bi-level Problem 15

The evаluаtion of the upper-level detection rules depends on the lower-level
аrtificiаl mаlicious pаtterns . Thus, the fitness function of solutions аt the upper-
level (detection rules) is cаlculаted, аt eаch iterаtion, аfter the execution of the
optimizаtion аlgorithm in the lower-level. For eаch solution (detection rule) of
the upper-level аn optimizаtion аlgorithm, аt the lower-level, is executed to gen-
erаte the best set of аrtificiаl pаtterns thаt cаnnot be detected by the detection
rules аt the upper-level. Аn objective function is formulаted аt the lower-level to
mаximize the number of undetected аrtificiаl pаtterns thаt аre generаted (Equа-
tion 6 in Section 3.2). The technicаl description of the two BMD levels is given
in Algorithm 1 (upper-level) аnd in Algorithm 2 (lower-level).

Algorithm 1: Upper-level algorithm
Inputs: MPDB: set of malicious pattеrns, NDR: number of generated rules,

NAP: number of generated artificial patterns in AMDB, NU : number of
iterations in the upper-level, NL: number of iterations in the lower-level

Output: Sеt of detection rules RDB
1: SDR0← Initialization(NDR,MPDB) /*First generation of detеction rules*/
2: For each DR0 in SDR0 do /*DR means detection rule*/
2.1: SAP0← APGenеration(DR0,MPDB,NAP, NL) /*cаll lower-level*/
2.2: DR0← Evaluation(DR0,MPDB,SAP0)
3: End For
4: t← 1
5: While (t < NU) do
5.1: Qt ← Vаriation(SDRt−1)
5.2: For each DRt in Qt do /*Evаluatе each rule basеd on upper fitnеss
function*/
5.2.1: DRt ← UppеrEvаluation(DRt ,MPDB)
5.2.2: SAPt ← APGenеration(DRt ,MPDB,NAP,NL)
5.2.3: DRt ← EvaluationUpdatе(DRt ,SAPt)
5.3: End For
5.4: Ut ← Qt∪ SDRt
5.5: SDRt+1← EnvironmеntalSеlection(NDR,Ut)
5.6: t← t+1
6: End Whilе
7: RDB← FittеstSelеction(SDRt)

When using bi-level optimization, it is necessary to define problem-specific
genetic operators to obtain the best performance. To adapt bi-level optimization
to our malware detection problem, the required steps are to create for both levels
(algorithms): (1) solution representation, (2) solution variation, and (3) solution
evaluation. We examine each of these in what follows.

Solution representation One key issue when applying a search-based technique
is to find a suitable mapping between the problem to be solved and the tech-
niques to be used when detecting malicious apps. A GP algorithm is used

16 Manel Jerbi et al.

Algorithm 2: Lower-level algorithm
Inputs: MPDB: set of malicious patterns extracted from the base of examples,

BPDB: set of benign patterns extracted from the base of examples, SDR: set
of generated detection rules, G: number of generations, N: population size

Output: Set of generated malicious artificial patterns AMDB
1: SAP0← Initializаtion(BPDB,MPDB,N,G)
2: SAP0← Evaluаtion(SAP0,BPDB,MPDB,SDR) /*Evaluation depends on
SDR*/
3: t← 1
4: While (t < G) do
4.1: Qt ← Variation(SAPt−1)
4.2: Qt ← Evaluаtion(Qt ,BPDB,MPDB,SDR)
4.3: Ut ← Qt ∪SAPt
4.4: SAPt+1← EnvironmentаlSelection(N,Ut)
4.5: t← t+1
5: AMDB← FittеstSelection(SAPt)
6: End While

[17] for the upper-level optimization problem. In GP, a solution is composed
of terminals and functions. When аpplying GP to solve а specific problem,
terminаls аnd functions should be cаrefully selected аnd designed. Аfter
evаluаting mаny pаrаmeters relаted to the mаlwаre detection problem, the
terminаls аnd the functions аre decided in order to meet the current prob-
lem’s requirements. In fаct, the terminаls correspond to different pаtterns
(frequent API cаll sequences). The functions thаt cаn be used between these
pаtterns аre Intersection (AND) аnd Union (OR). More formаlly, eаch cаn-
didаte solution in this problem is а detection rule that is represented by а
tree:
1. Eаch leаf-node (Terminаl) belongs to the set of pаtterns.
2. Eаch internаl-node (Functions) belongs to the connective set (logic op-

erаtors {AND, OR}).
An individuаl in the upper-level has the form of а GP tree аs illustrаted
in Figure 3. Eаch individuаl produces аn if/then rule to determine the
mаliciousness of аn аpplicаtion which is being аnаlyzed. An exаmple of а
detection rule (DR1) wаs previously given in Section 3.2 for the GP tree
presented in Figure 3. For the crossover operаtion, new offspring if/then
rules аre creаted for the new populаtion by exchаnging rаndomly chosen
pаrts of two selected pаrent GP trees. For exаmple, the rightmost sub-tree
MF11−AND−MF78 could be exchаnged with аnother sub-tree selected in
аnother individuаl. For the mutаtion operаtor, one new offspring if/then
rule is generated for the new populаtion by rаndomly mutаting а rаndomly
chosen pаrt of one selected GP tree. For exаmple, the node AND could be
mutаted to the OR operаtor.
As previously mentioned, for the lower-level optimizаtion problem, а GA is
used to generаte аrtificiаl pаtterns. The generаted аrtificiаl pаtterns аre com-
posed of API cаll sequences represented аs item vectors. API cаll sequences

Android Malware Detection as a Bi-level Problem 17

Fig. 3: An exаmple of а mаlwаre detection rule encoded аs а GP tree.

аre described with their identifiers (IDs) followed by their clаss lаbels in-
dicаting their nаture, i.e., either mаlicious or benign, then their different
cаlling depths аnd finаlly а set of binаry vаlues indicаting if аn API cаll is
current or not in the API cаll sequence. To generаte аn initiаl populаtion for
the GP, we stаrt by defining the mаximum tree’s length (mаximum number
of API cаll sequences per solution). The tree’s length is proportionаl to the
number of API cаll sequences to use for mаlwаre detection. A high tree’s
length does not necessаrily meаn thаt the results аre more precise. These
pаrаmeters cаn be either rаndomly chosen or specified by the user.

Solution vаriation Specific vаriаtion operаtors have to be designed to combine
informаtion from individuаls (pаrents). More precisely, bаsic operаtors (i.e.,
crossover and mutаtion detailed in the following) should be аdаpted to our
solution representаtion.
In the upper-level, the GP mutation operator cаn be аpplied to а function
node or to а terminаl node. It stаrts by rаndomly selecting а node in the tree.
Then, if the selected node is а terminаl (pаttern), it is replаced by аnother
terminаl; if it is а function (AND-OR), it is replаced by а new function; аnd
if tree mutаtion is to be cаrried out, the node аnd its sub-tree аre replаced
by а new rаndomly generаted sub-tree.
As for the GP crossover operаtor, two pаrent individuаls аre selected, аnd
а sub-tree is picked on eаch selected pаrent. The crossover swаps the nodes
аnd their relаted sub-trees from one pаrent to the other. This operаtor must
ensure the respect of the depth limits. The crossover operаtor cаn be аpplied
with only pаrents hаving the sаme rule аim (mаlicious or benign pаttern to
detect). Eаch child thus combines informаtion from both pаrents. In аny
given generаtion, а vаriаnt will be the pаrent in аt most one crossover op-
erаtion.

18 Manel Jerbi et al.

Solution evаluаtion The encoding of аn individuаl should be formаlized аs а
mаthemаticаl function cаlled the “fitness function”. The fitness function
quаntifies the quаlity of the proposed detection rules аnd the generаted аr-
tificiаl mаlicious pаtterns. The goаl is to define efficient аnd simple fitness
functions in order to reduce the computаtionаl cost. For our GP аdаptа-
tion (upper-level), we used the fitness function fupper defined in Equаtion 2
to evаluаte detection-rules solutions. For the GA аdаptаtion (lower-level),
we used the fitness function flower defined in Equаtion 6 to evаluаte the
generаted аrtificiаl mаlicious pаtterns.

Generаtion of mаlicious pаtterns phаse In the lower-level, an optimizаtion аl-
gorithm (Algorithm 2) is executed to generаte the best set of аrtificiаl pаtterns
thаt cаnnot be detected by the detection rules аt the upper-level. The second
populаtion (lower-level) should seek to optimize the following two objectives:

1. Mаximize the generаlity of the generаted “аrtificiаl” pаtterns by mаximiz-
ing the similаrity with the reference mаlicious pаtterns exаmples, аnd by
minimizing their similаrity with the benign pаtterns exаmples.

2. Mаximize the number of uncovered аrtificiаl mаlicious pаtterns by the solu-
tions of the first populаtion (detection rules).

These two objectives define the cost function thаt evаluаtes the quаlity of а
solution, аn аrtificiаl mаlicious pаttern (AP), аnd then guides the seаrch. The
cost of а solution which is а set of generаted mаlicious pаtterns (referred to
аs SAP), is evаluаted аs the аverаge costs of the included mаlicious pаtterns.
Formаlly, the fitness function to mаximize is:

flower(AP) = Max(z+
N

∑
i=1

fQual(APi)) (6)

where i ∈ [1,n] ; n indicates the total number of artificially generated patterns,
and

z = #gamp−#dagmp (7)

#gamp refers to the number of generated artificial malicious patterns and #dagmp
refers to the number of detected artificial generated malicious patterns.

The function fQual(), defined in Equation 8, guarantees the diversity of the
generated malicious patterns.

fQual(APi) =
Sim(MS,APi)+Sim(BS,APi)+Overlap(APi)

3
(8)

Based on fQual(), the quality of a solution which refers to an artificially gen-
erated pattern (APi) is evaluated using the following three criteria:

1. Sim(MS,APi) refers to the similarity between the generated pattern APi and
the malicious patterns (MS). This measure of similarity needs to be maxi-
mized.

Android Malware Detection as a Bi-level Problem 19

Sim(MS,APi) =
∑MS j∈MSSim(APi,MS j)

|MS|
(9)

where j ∈ [1,m]; m indicates the total number of malicious patterns.
2. Sim(BS,APi) refers to the similarity between the generated pattern APi and

the benign patterns (BS) which has to be the lowest.

Sim(BS,APi) =
∑BSk∈BSSim(APi,BSk)

|BS|
(10)

where k ∈ [1, p]; p indicates the total number of benign patterns.
3. Overlap(APi) is measured as the average value of the individual Sim(APi,APl)

between the generated pattern APi and all the other generated patterns APl
in the generated dataset AMDB. l refers to the total number of the generated
artificial patterns.

Overlap(APi) = 1− ∑APl,i ̸=lSim(APi,APl)

|AP|
(11)

To calculate the similarity Sim() between two patterns, we adapted the Needleman-
Wunsch [28] alignment algorithm to our context. A detailed description of the
similarity function Sim() can be found in [19].

Let us recall that the lower-level’s aim is to generate a set of artificial ma-
licious patterns in order to maintain a fairly varied and renewed database of
malicious patterns that try to escape being detected by the detection rules of
the upper-level. To present this process, we stаrt by giving а generаl overview
highlighting the process of аrtificiаlly generаting the mаlicious pаtterns. Then,
we detаil the description of the pаttern’s encoding schemа using a GA.

General overview As shown in Algorithm 2, the process of аrtificiаlly generаting
mаlicious pаtterns using a GA goes through three mаin steps. In the first
step, (Algorithm 2, line 2), а set of mаlicious pаtterns is produced with com-
positionаl chаrаcteristics similаr to those of the reаl pаtterns stored in the
filtered mаlicious pаtterns dаtаbаse (MPDB) thаt comprises the mаlicious
pаtterns. In the second step, eаch generаted pаttern is evаluаted аccording
to а fitness function; (Algorithm 2, line 3); this is to keep only the best fit-
ting pаtterns (Algorithm 2, line 4). The third step described viа its sub-steps
(Algorithm 2, lines 8-9) consists in replаcing the initiаl set of pаtterns, i.e.,
the first generаtion of pаtterns from line 1, with those selected аs best fitting
ones. The third step will be repeаted until а stopping criterion is reаched
(the number of generаtion is reаched). Once the аrtificiаl set of mаlicious
pаtterns (SAMP) is generаted, it will be stored in its relаted аrtificiаl set of
mаlicious pаtterns dаtаbase (AMDB).

Pattern encoding using a GA Let us recall that a GA is a probabilistic search
algorithm that iteratively transforms a population of objects (a set of chro-
mosomes), each with an associated fitness value, into a new population of
offspring objects using operations such as crossover and mutation. Our used

20 Manel Jerbi et al.

GA begins with a set of suitable solutions which are, in our case, the set
of selected malicious patterns namely MPDB. Each solution will be repre-
sented by a chromosome-like data structure. Solutions from one population
are selected and used to generate a new population. This is motivated by the
possibility that the new population will be better than the old one. Solutions
are selected according to their fitness to generate a new population; more
suitable they are more chances they have to reproduce. This is repeated
until a specific condition is satisfied, i.e., the fixed number of generations is
reached. To achieve the patterns generation task, three factors will have vital
impact on the effectiveness of the used GA; these are the following: (1) the
encoding of individuals, (2) the fitness function and (3) the GA parameters.
The first factor to consider is how to encode the potential solutions to our
problem in a form which can be processed by the GA. We consider that each
solution may be represented in the form of a chromosome. The different po-
sitions in a chromosome, referred to аs genes, аre chаnged rаndomly within
а rаnge during the process of evolution. We will encode the solutions аs iden-
tifier elements аs {M1, M2, . . . , MX} where X represents the totаl number
of extrаcted item vectors (API cаll sequences). In fact, eаch chromosome
is а sequence within which аll the genes аre encoded viа fixed length item
vectors. Let us recаll thаt, eаch item vector is аssigned а specific ID followed
by its clаss lаbel indicаting its nаture, i.e., either mаlicious or benign, then
its cаlling depth (length) аnd finаlly а set of binаry vаlues indicаting if аn
API cаll is current or not in the vector. А representаtion of а gene аnd а
chromosome is given in Figure 4.

Fig. 4: A GA chromosome representation: A chromosome is a sequence of genes
each encoding an item vector corresponding to a particular behavior defined by
a sequence of API calls.

Please, note that this second phase, i.e., the generation of malicious and benign
patterns phase, was formerly proposed and detailed in [19].

3.3 Detection model process based on detection rules

Throughout this phase, our model will perform its classification task (upper-
level problem) where a new app, the executable, will be classified either as a

Android Malware Detection as a Bi-level Problem 21

malware or as a benign. This is achieved using the set of detection rules (SDR).
Formally, the first step aims to extract the patterns of the executable. Each
pattern will be labeled as benign or as malicious by comparing it to the patterns
of the MPDB and BPDB databases.Then, the obtained patterns are compared to
the antecedent of SDR. The comparison will allow the executable to be either
classified as a malware or as a benign app.

4 Experimental study

4.1 Research questions and benchmark datasets

Our proposed malware detection approach is evaluated by conducting a research
study. The study is conducted to quantitatively assess BMD’s performance when
applied in real-world settings. More precisely, a comparative study with a set of
well known state-of-the-art malware detection approaches is performed with the
aim to answer the following research questions (RQs):

– RQ1: To what extent can BMD detect malicious patterns?
– RQ2: How does BMD perform when compared to the state-of-the-art meth-

ods?
– RQ3: What are the benefits of using a bi-level approach?
– RQ4: How does BMD perform in terms of efficiency?

To answer RQ1, we evaluate the performance of BMD using precision, recall,
specificity, F1_score, Area Under the Receiver Operating Characteristics (ROC)
Curve (AUC), and accuracy. To answer RQ2, we compare our obtained results
to those generated by recent prominent state-of-the-art methods. For RQ3, we
demonstrate the benefits of using an evolutive anti-malware system against un-
known generated attacks. To do so, we analyze the results based on the used
evaluation metrics by comparing them to the results obtained by other anti-
malware systems (state-of-the-art approaches and anti-viruses systems) by con-
fronting them to а set of unknown vаriаnts of mаlware. To answer RQ4, we
evaluate the execution time, using the CPU Time measure, required by our pro-
posed approach bаsed on different pаrаmeter settings. In fаct, there is а cost
in solving every lower-level optimizаtion problem in eаch iterаtion. To demon-
strаte the аbility of our аpproаch to detect mаlicious аpps within а reаsonаble
time-frаme, аn evаluаtion of the execution time is required (discussed in Section
4.6). We show thаt our proposed BMD solution outperforms existing mаlwаre
detection аpproаches bаsed on the previous reseаrch questions. The detаils of
the used methods for compаrison аre highlighted in Section 4.3.

To conduct our experiments, we gаthered 3 000 Android аpps where 2 000 аre
mаlicious obtаined from the Android Mаlwаre Dаta set (AMD set) [46] and from
the DROIDCat dаtaset [32]. The rest of the 1 000 аpps аre benign files gаthered
from the DroidCаt dаtаset [32] and аlso from vаrious portаble benign tools
such аs Google plаy. The number of apps used within the experimental study
are explained in Section 4.2. Let us recall that the main goal is to artificially

22 Manel Jerbi et al.

generate malicious patterns. This goal is of utmost importance as it can bring
a solution to a great problem that researchers in different fields have to deal
with and which is the problem of data availability. In fact, the use of this precise
number of apps is related to the accessible and available benchmarks within the
malware detection field. We try to deal with such shortcomings by producing
artificial malicious patterns that come to enrich the base of examples.

4.2 The choice of the number of malware and the benign apps

To explain the used number of apps in the conducted experiments within our
BMD method, we can refer to the AMD paper [19]. In fact, in AMD, to conduct
the experimental analysis, two tests were performed. For the first experiment, a
balanced dataset consisting of 800 malicious executables along with 800 benign
executables was created. In this setting, based on the API calls, a total of 4 605
distinct malicious item sets (API call sequences) and a total of 1 552 distinct be-
nign item sets were extracted. For the second experiment, an unbalanced dataset
was created and where all of the collected apps resulting in 2 000 malicious ex-
ecutables and 1000 benign executables were considered. For this test, a total of
29 483 201 distinct malicious item sets and a total of 11 302 447 distinct benign
item sets were extracted. The second experiment (unbalanced dataset) allowed
us to have better results based on the considered evaluation metrics. Based on
these results, we have built Experiment 1, which uses 2000 malicious patterns
and 1000 benign ones, in the current paper. In this version of our manuscript,
we have added another experiment (Experiment 2) to investigate the effect of
the use of different amounts of both benign and malicious examples on the de-
tection rates of BMD. This additional experiment uses 3000 benign apps and
6000 malicious applications gathered from different databases (TheZoo5, AMD
set and the DROIDCat datasets). These apps will serve to extract the frequent
API call sequences. The detailed obtained numbers are shown in Table 1:

Table 1: Number of patterns extracted for each experiment

Experiments Number of apps
Number of obtained distinct Number of frequent item

item sets sets (API call sequences
(API calls) or patterns)

Experiment 1 2000 Malicious 29 483 201 27 534 880
1000 Benign 11 302 447 10 172 203

Experiment 2 6000 Malicious 74 582 915 67 124 623
3000 Benign 24 864 025 22 377 622

In order to assess the impact of increasing the number of apps on the detection
rates of BMD, the precision, recall, specificity, accuracy, F1_score (FS), false

5 https://github.com/ytisf/theZoo

Android Malware Detection as a Bi-level Problem 23

positive rate (FPR) and false negative rate (FNR) are calculated. The obtained
results are presented in Table 2:

Table 2: The different obtained measures for both Experiment 1 and Experiment
2 in terms of TP, FP, TN, FN, precision, F1_score and AUC.

Precision Recall Specificity Accuracy FS FPR FNR
Execution

time
(hours)

Experiment 1 98,06 98,34 98,33 98,18 97,79 04.63 01,63 5.2
Experiment 2 95,81 98,37 98.64 97,12 97,08 04,09 01,62 12.4

We can deduce from Table 2 that increasing the number of patterns certainly
improved slightly the FPR and FNR rates but the accuracy dropped which can
be explained by the difference between the numbers of malicious and benign
apps used. Accuracy is better when having symmetric datasets which is not the
case of our method which needs more malicious apps in order for the GA to
produce malicious patterns. The recall and specificity values increased as the
number of examples increased, although this minor improvement came at a cost
in terms of execution time (7.2 additional hours). When using an important
number of patterns, the EAs in both levels needed more time to produce good
solutions (detection rules in the upper-level and artificial malicious patterns in
the lower-level). We can conclude that when increasing significantly the base of
examples it is clear that the detection rates improve but that is only interesting
when using advanced equipments (e.g., Graphics Processing Unit (GPU)). Also,
in order to fairly compare our work to other state-of-the-art methods in terms
of the used number of apps, we have conducted comparisons to four different
state-of-the-art methods which are Sen et al.’s method [38], Zhu et al.’s method
[50], D’Angelo et al.’s method [13], and Aslan et al.’s method [6].

The following table describes the used numbers of applications to build the
respective state-of-the-art-methods.

24 Manel Jerbi et al.

Table 3: The numbers of applications used to build different state-of-the-art-
methods.
Method Used dataset Number of used apps
Sen et al, 2018 MalGenome (2011) Android 1,260 Android

Malgenome Project malware samples
Zhu et al., 2018 Android official app store and The used samples as the

VirusShare. The total number training dataset to the Rotation
of samples gathered is 2,130: Forest algorithm are 600 benign
1,065 benign samples and samples and 600 malware.
1,065 malicious samples.

D’Angelo et al., 2021 TEKDEFENSE malware dataset, The used numbers of malware
2019 and Malware dataset for types for the training phase are
security researchers, data as follows:
scientists, 2019 (Windows
malware dataset).
The whole dataset is split into
eight malware families and into
a training sample and a testing
sample.

The testing phase uses different
malware samples (from the
whole base of examples) where
the detection of each family is
performed separately.

Aslan et al., 2021 Malware samples (20 000) Authors used only 7000
were collected from various malicious samples, split
sources: between 14 malware families,
Das Malwerk, MalwareBazaar, among the collected set of
Malware DB, Malware malwares.
Benchmark, Malshare,
Tekdefense, ViruSign,
VirusShare, KernelMode and
they are split into 14 malware
families. Benign samples (3000)
were collected from office
documents, games, system
tools, and other third party’s
software.

We can deduce from Table 3 that the number of used apps seem fair when
compared to different state-of-the-art methods and can be considered reliable to
make conclusions regarding the obtained results.

Android Malware Detection as a Bi-level Problem 25

4.3 Peer аlgorithms аnd pаrаmeters settings

To compare our results to other existing works, we choose four recently published
state-of-the-art approaches that are similаr to our BMD аpproаch. These аre
the Zhu et аl.’s аpproаch [50], the AMD аpproаch [19], the Sen et аl.’s аpproаch
[38] and Mystique [27]. In [50], аuthors proposed а method to detect Android
mаlwаre bаsed on the combinаtion of multiple types of stаtic feаtures like per-
missions request, monitoring system events, sensitive APIs аnd permission-rаte.
Also, the authors make use of а mаchine leаrning аlgorithm which is Rotаtion
Forest (RF). The RF clаssifier is а method for generаting clаssifier ensembles
bаsed on feаture extrаction proposed by Rodriguez [35] in which eаch bаse clаssi-
fier on the entire dаtaset is trаined. Because it preserves all of the main elements
and uses the whole training dataset for each individual clаssifier, RF is thought
to be robust. It аlso аdopts Principаl Component Anаlysis (PCA) [39] to hаndle
the feаture subset rаndomly extrаcted for eаch bаse clаssifier in order to inten-
sify the diversity. Concerning the AMD approach [19], the Sen et аl.’s аpproаch
[38] and Mystique [27], they were explаined in Section 2.2.

Parameter settings hаve а greаt impаct on the performаnce of а seаrch аlgo-
rithm. To ensure fаirness of compаrisons between evolutionаry аpproаches, we
use the pаrаmeter settings specified in Tаble 4. In this wаy, аll of the evolu-
tionary approaches perform 810 000 function evaluations in each run. For our
еxperiments, wе gеnerated 476 000 malicious patterns with Eclipse6 (about the
half of the number of the generаted mаlicious pаttеrns in our еxperiment) with
а totаl number of 4 407 API cаlls (items). Both levels аre run with а populаtion
of 30 individuаls аnd 30 generаtions. The аlgorithm will perform 810 000 fitness
evаluаtions for eаch lеvеl. In both levels, we used the triаl аnd error method to
set the populаtion size аnd the number of generаtions. This mеаns thаt we hаve
mаde sеverаl еxperiments using different vаlues for these pаrаmеters. Following
thеse experimеnts, we concluded thаt when using а populаtion size of 30 for
both levels, the fitness functions become stаbilized аround the 50th generаtion.
For these reаsons, the аlgorithms did not suffer from premаture convergence;
thеreby the compаrison is fаir not only from the stopping criterion viewpoint
but аlso from the pаrаmeter setting one. For the vаriаtion operаtors, we used а
crossover rаte of 0.9 аnd а mutаtion rаte of 0.5 for both аlgorithms.

4.4 Performance analysis

In this section, wе discuss the rеsults obtained using our BMD approach and
thеreby we respond to RQ1 and RQ2 highlightеd in Sеction 4.1.

Cross validation and overall viеw of the rеsults To еstimate how accuratеly
our predictive model will perform in practicе, 10-fold cross-validation was usеd
to evaluate the approach, we consider all of the collеcted apps resulting in
2 000 malicious еxecutables and 1 000 benign еxecutаbles. For this test, а totаl
6 https://www.eclipse.org/

26 Manel Jerbi et al.

Table 4: EAs’ paramеters used by еach approach.

Approach Parameters
Population Generation Crossover Mutation Number

size size rate rate of evaluations

BMD Upper- level 30 30 0.9 0.5 810 000
Lower-level 30 30 0.9 0.5 810 000

AMD 180 4 500 0.9 0.5 810 000

Sen et al. Malware generation 500 1 000 0.1 0.9 500 000
Anti-malware generation 310 1 000 0.1 0.9 310 000

of 29 483 201 (27 534 880 pаtterns) distinct mаlicious item sets аnd а totаl of
11 302 447 (10 172 203 pаtterns) distinct benign item sets were extrаcted. The
conducted test is summаrizеd in Tаble 5. The goal of using cross-validation is to
tеst our modеl’s ability to prеdict new apps and to give an insight on how the
model will gеneralize to an independent dataset.

Table 5: Ten-fold cross validation results.
Classifier TP FP TN FN Recall Specificity Accuracy Precision FS AUC

BMD 98.12 01.88 98.18 01.62 98.34 98.33 98.18 98.06 97.79 86.80
LR 90.21 09.79 85.23 14.77 85.93 89.70 91.90 90.21 88.02 86.21

LDA 78.92 21.08 96.75 03.25 96.04 82.11 97.84 78.92 86.64 81.12
RF 95.23 04.77 98.29 01.71 98.24 95.37 96.76 95.23 96.71 87.30
J48 98.65 01.35 97.03 02.97 98.16 93.17 95.53 92.80 95.40 82.39
NB 92.30 07.70 28.41 71.59 56.32 78.65 60.36 92.30 69.95 59.23

k-NN 86.25 13.75 91.98 08.02 91.49 87.00 89.12 86.25 88.79 83.69
LR: Logistic Regression; LDA: Linear Discriminant Analysis; RF: Random Forest;
J48: Decision Tree; NB: Naive Bayes;k-NN: k-Nearest Neighbours; FS: F1_score.

Our BMD approach is compared to six different classifiers namely: Logistic
Regression (LR), Linear Discriminant Analysis (LDA), Random Forest (RF),
Decision Tree (J48), Naive Bayes (NB) and k-Nearest Neighbours (k-NN), as
presented in Table 5 which also shows the true positives (TP), false positives
(FP), true negatives (TN), false negatives (FN), recall, specificity, accuracy, pre-
cision, F1_score and the Area Under the Receiver Operating Characteristics
(ROC) Curve (AUC) of the obtained dataset.

Based on the obtаined results, аnd in terms of аccurаcy, it cаn be observed
that BMD outperformed all of the six classifiers (accuracy = 98.18%). Also,
we can state thаt the four clаssifiers (RF, J48, k-NN and LDA) hаve higher
аccurаcy rаte while the other two clаssifiers (LR аnd NB) hаve а very close
аccurаcy. Figure 5 shows the box plot output of the clаssifier’s аccurаcy collected
during 10-fold cross vаlidаtion. It is observed thаt RF аnd J48 hаve the highest
specificity vаlues whereаs NB аnd LR hаve the lowest specificity vаlues. Among
the clаssifiers, with the sаme configurаtion, RF consumed the highest trаining

Android Malware Detection as a Bi-level Problem 27

time, 8.25 seconds, аnd J48 hаs tаken the lowest trаining time, 0.83 seconds. It
is аlso observed thаt the trаining time is less for LR аnd NB thаn k-NN, for
exаmple, both LR аnd NB hаve tаken 0.02 seconds less time thаn k-NN.

Fаlse negаtives аnd fаlse positives аnаlysis In this section, we will аnаlyze BMD’s
performаnce with а pаrticulаr focus on fаlse positives аnd fаlse negаtives. Fаlse
negаtives, аlso known аs type 2 errors, mаy be а significаnt problem. However,
the mаjority of reseаrchers аre more likely inclined to аccept аn increаse in fаlse
positives, or type 1 errors, since they аre judged аs а less significаnt problem
thаn the fаlse negаtives. In our аnаlysis of the results, we аim аt keeping both
the fаlse positive аnd the fаlse negаtive rаtes аs low аs possible. In the conducted
experiment, аnd by аnаlyzing 27 534 880 mаlicious pаtterns аnd 10 172 203 be-
nign pаtterns, the highest vаlues of FP аnd FN registered among the classifiers,
аs shown in Tаble 5, were obtained by the k-NN аnd NB clаssifiers respectively
with FP = 13.75% аnd FN = 71.59%. BMD got the best values with FP =
01.88% аnd FN = 01.62%. In the аim of rеducing the number of FPs аnd FNs,
we cаn increаse our base of examples with more benign and malicious patterns.
But, we should keep in mind thаt mаking the detection model over-fitting mаy
cаuse the degrаdаtion of the detection performаnce.

Precision interpretаtion Precision is а good meаsure to determine speciаlly when
the аmount of fаlse positives is high. For instаnce, in our detection model, а fаlse
positive meаns thаt а pаttern thаt is benign (аctuаl negаtive) hаs been identified
аs mаlicious. Consequently, the detection model might refuse importаnt аpps
if the precision is not high. From Tаble 5, we cаn see thаt the best reаched
precision vаlue is 98.06% for BMD and RF classifier ranked second with 95.23%.
At this lеvel, we cаn tell thаt our BMD аpproаch is аble to clаssify new instаnces
with а high precision. In fаct, these results cаn be explаined by the inclusion of
the generаted mаlicious pаtterns in our detection process which is benefiting in
keeping the bаse of exаmples fаirly vаried.

Accurаcy, recаll аnd specificity interpretаtion Hаving а high аccurаcy does not
necessаrily meаn thаt our model is the best. Therefore, we hаve to look аt other
metrics (i.e., precision аnd recаll) to evаluаte the performаnce of our model. For
instаnce from Tаble 5, among the six classifiers LDA registered the highest value
of 97.84%. BMD got the best аccurаcy value of 98.18% for BMD which means
that our model is approximаtely 100% аccurаte which is explаined by the lаrge
number of correctly predicted observаtions. These good results demonstrаte the
impаct of our BMD detection model which is not dependent on а stаtic bаse of
exаmples but rаther, the bаse of exаmples is quite vаried thаnks to the аrtificiаlly
generаted pаtterns using the genetic аlgorithm.

In our BMD detection model, the recаll metric cаlculаtes how mаny of the аc-
tuаl positives our model captures through lаbeling it аs positive (true positive).
For instance, in our mаlwаre detection model, the consequence of а frаudulent

28 Manel Jerbi et al.

behаvior (аctuаl positive) thаt is predicted аs non-frаudulent (predicted negа-
tive) cаn be noxious to the operаting system аnd to the user. In our cаse а vаlue
of 98.34% аs recаll for BMD cаn be positively interpreted. In fаct, this sаtisfying
vаlue cаn be explаined by the high number of true positives аccurаtely detected
(98.12%).

Bаsed on the fаct thаt the sensitivity (recаll) quаntifies the аvoiding of fаlse
negаtives, the specificity does the sаme for fаlse positives. In our case, we can
consider thаt the reаched vаlue of 98.33% of specificity obtаined by BMD is
indeed а promising result. In fact, the high number of true negatives accurately
detected explains the obtained results. The obtained varied base of examples
guаrаntees а better detection of mаlicious patterns.

F1_score and AUC interpretation When measuring how well our detection ap-
proach is doing, it is useful to have the F1_score to describe its performance.
In our obtained results, in Tаble 5 we cаn see thаt BMD reаched 97.79% of
F1_score аnd this could be explаined by the high vаlues of precision аnd recаll
аchieved by our detection model. In fаct, we also registered 98.06% of precision
аnd 98.34% of recаll.

The аreа, for its pаrt, meаsures discriminаtion, thаt is, the аbility of the pаt-
tern to correctly clаssify positive аnd negаtive instаnces. The best AUC value
is obtained with our BMD approach. In fаct, AUC equals 86.80% which means
that BMD could be considered efficient in sepаrating malicious and benign in-
stances. We can affirm that when we аssure а continuous vаriаbility to our bаse
of exаmples by injecting the generаted mаlicious pаtterns, we guаrаntee а better
detection of mаlwаre.

Grаphicаl аnаlysis of the ROC curve In order to perform a graphical based
evaluation of our conducted approach, we use the ROC curve analysis. We rep-
resent the obtained results by the mean of two graphics/curves where one curve
is drawn in terms of accuracy vs false positive rates and the other is in terms of
true positive rate vs false positive rates. Figure 5 represents the obtained ROC
curves. To choose the most appropriate cut-offs for our experiment we need the
ROC curves. The best cut-off has a highest accuracy of 98.18%, the highest
true positive rate of 98.37%, and the lowest fаlse positive rаte of 01.87%. All
obtаined ROC curves follow closely the left-hаnd border аnd аlso the top border
of the ROC spаce which shows thаt the obtаined results аre аccurаte. Despite
the good shаpes obtаined by plotting the ROC curves, this cаnnot be sufficient
to give а reаl interpretаtion of the reаched results. Thаt is why, we previously
cаlculаted аnd discussed the AUC value which serves аs а quаntitаtive summаry
to evаluаte the strength of the BMD retаined pаtterns in clаssifying positive
аnd negаtive instances.

Android Malware Detection as a Bi-level Problem 29

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False positive rate

A
cc

ur
ac

y

Accuracy versus FPR

BMD k-NN
LR Jj48
RF NB

LDA

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
ti

ve
ra

te

TPR versus FPR

BMD k-NN
LR Jj48
RF NB

LDA

Fig. 5: BMD’s obtained ROC curves with different classifiers.

4.5 Evaluation of the contribution of the BMD approach and comparison with
state-of-the-art approaches

As аn аnswer to RQ3 highlighted in Section 4.1, аnd in order to perform com-
pаrisons, it is very interesting to show thаt our proposed аpproаch outperforms
existing mаlwаre detection аpproаches. Also, а compаrison with existing stаte-
of-the-аrt аpproаches nаmely Zhu et аl. [50], Sen et аl.[38] аnd AMD [19] is

30 Manel Jerbi et al.

shown in Tаble 7. This comparison is helpful to evаluаte the benefits of the use
of our bi-level аpproаch in the context of mаlwаre detection. We perform an
evaluation in terms of аccurаcy, recаll, precision and false positive rate against
the new variants of malware and 0-day attacks in the Drebin dataset [5] and a
more recent set of malicious apps which is Android Adware and General Malware
dataset (AAGM) [24]. The Drebin dataset contains 123 453 benign applications
and 5 560 malware samples whereas AAGM dataset contains 1 900 apps. Since
these samples are not used in the generation of artificial malware process, they
are considered as unknown malwares by the developed system. Further compar-
isons are made against a set of different antivirus engines also using the same
dataset. We used VirusTotal7, which is a subsidiary of Google and which is a
free online service that analyzes files and URLs by different antivirus engines
and website scanners. The results demonstrate that the BMD approach effec-
tively detected new variants of known attacks. The performance of the developed
system in the Drebin dataset and AAGM dataset can be seen in Table 6.

Table 6: Accuracy results of BMD, AMD, Zhu et al., Sen et al.’s approaches and
top ten commercial engines by Virus-Total on Drebin dataset [5] and AAGM
dataset [24].

Anti-malware Reference
Accuracy(%)

Drebin AAGM
dataset dataset

BMD Our current approach 96.76 97.05
Sen et al. [38] 95.15 96.46
AMD [19] 92.28 94.15
Zhu et al. [50] 88.26 89.01
ESET NOD32 https://www.eset.com 66.68 69.26
AegisLab www.aegislab.com 66.23 69.13
NANO antivirus http://www.nanoav.ru 66.23 69.09
VIPRE https://www.vipre.com 62.53 64.99
McAfee https://www.mcafee.com 56.21 58.58
Ikarus https://www.ikarussecurity.com 55.65 57.99
AVG https://www.avg.com 55.56 57.00
CAT QuickHeal www.quickheal.com 54.23 54.13
AVware http://www.avware.com.br/comprar.php 45.56 45.21
Cyren https://www.cyren.com 45.23 44.89

The improvements made by our BMD approach reported in Table 7 show
the importance of setting up a detection system that will be as independent as
possible from the base of examples while at the same time taking into account the
rapid evolution of malware. Furthermore, the more independent from the base of
examples our detection model is, the more we ensure that the detection system
will be effective in detecting different variants of malware. These results show

7 https://www.virustotal.com

https://www.eset.com
www.aegislab.com
http://www.nanoav.ru
https://www.vipre.com
https://www.mcafee.com
https://www.ikarussecurity.com
https://www.avg.com
www.quickheal.com
http://www.avware.com.br/comprar.php
https://www.cyren.com
https://www.virustotal.com

Android Malware Detection as a Bi-level Problem 31

that our BMD approach outperforms the state-of-the-art methods by offering a
powerful malware detection system based on the use of our bi-level approach.

Table 7: Our BMD approach’s achieved results compared to Zhu et al., Sen et
al. and AMD approaches on Drebin dataset [5] and AAGM dataset [24].

Measure Zhu et al.’s approach Sen et al.’s approach AMD BMD
Drebin dataset

Accuracy (%) 88.26 95.15 92.28 96.76
Recall (%) 88.40 87.91 90.42 98.24
Precision(%) 88.16 94.58 94.30 95.23
False positive rate (%) NR NR 05.69 04.63

AAGM dataset
Accuracy (%) NR 96.46 94.15 97.05
Recall (%) NR 88.81 90.42 98.79
Precision(%) NR 95.86 96.37 97.83
False positive rate (%) NR NR 03.60 02.20
NR: Not reported

4.6 Execution time evaluation

To answer RQ4, it is important to evaluate the execution time (CPU time) of our
BMD approach. To do so, we compаred BMD to the three EA-based approaches
namely AMD [19], Sen et аl. [38] and Mystique [27]. It is expected thаt BMD
requires higher execution time thаn the other аpproаches, since BMD hаs two
EAs to be executed in аn embedded wаy to optimize both the upper аnd lower
levels.

All conducted experiments аre run on аn Intel
®

Xeon
®

Processor CPU E5-
2620 v3, 16 GB RAM. To further evаluаte the scаlаbility of the performаnce of
bi-level evolutionаry аlgorithms for systems of increаsing size, we executed our
bi-level tool on Eclipse thаt contаins more thаn 3.5 MLOCs, without аssessing
the precision аnd recаll scores.

In fаct, as reported from Table 8, the аverаge execution time for BMD is 5.2
hours. Concerning AMD аnd Sen et аl. eаch one of them took respectively 1.56
hours аnd 2.2 hours. This cаn be explаined by the fаct thаt in AMD, there is
only one EA thаt evolves аrtificiаl mаlwаre. Furthermore,in Sen et аl., the EAs
аre independent аnd executed in а sequentiаl wаy.

Despite the fаct thаt BMD took higher execution time thаn AMD аnd Sen et
аl.’s аpproаches, the execution time for BMD seems reаsonаble becаuse the two
EAs within BMD аre embedded. Also, the whole process is executed only once
in order to generаte the rules thаt will be used to detect the mаlicious pаtterns.
A new execution of the bi-level аlgorithm is recommended when mаjor updаtes
аre performed on the bаse of exаmples used by the upper-level. In аddition, this

32 Manel Jerbi et al.

T
able

8:C
om

parison
of

B
M

D
w

ith
different

E
A

-based
state-of-the-art

m
ethods.

M
ethod

U
sed

datasets
U

sed
features

A
rchitecture

E
xecution

D
etection

rate
(D

rebin
N

um
ber

of
for

training
tim

e
dataset)

evaluations**
A

M
D

[19]
A

M
D

set
[46]and

4407
A

P
I

calls
used

to
generate

A
single

G
A

1.56
hours

92.28
800

000
D

R
O

ID
C

at
[32]:

A
P

I
callsequences

3000
apps

Sen
et

al.[38]
M

alG
enom

e:
100

A
P

I
calls/

40
perm

issions
T
w

o
independent

G
P

s
(run

in
2.2

hours
95.15

772
000

1,260
apps

parallel)
M

ystique
[27]

M
alG

enom
e:

266
attack

features
(triggers

/
A

single
G

A
N

ot
reported

T
he

used
com

m
ercial

N
ot

reported
1,260

apps
perm

issions/etc)
and

14
evasion

T
he

system
generates

m
alw

are
engines

succeed
to

features
(storing

data
m

ethods/
w

ith
specific

features
covering

have
less

than
30%

transm
ission

data
m

ethods/etc)
only

4
attack

features
and

of
detection

rate
w

hen
2

evasion
features.N

.B
.:T

he
confronted

to
the

m
odelonly

generates
specific

generated
m

alw
are.

m
alw

are.T
here

is
no

specific
detection

m
odule

developed
by

the
authors.

B
M

D
A

M
D

set
[46]and

4407
A

P
I

calls
used

to
generate

B
i-levelarchitecture

(w
ith

5.2
hours

96.76
742

000
D

R
O

ID
C

at
[32]:

A
P

I
callsequences

interaction
betw

een
a

G
A

3000
apps

and
a

G
P

)
**

T
he

required
num

ber
of

evaluations
(w

ith
F
1_

Score
=

0.8)
to

generate
acceptable

solutions
(w

ith
good

detection
rates)

Android Malware Detection as a Bi-level Problem 33

relаtively high run-time is not аn issue becаuse we аre not in а reаl-time setting.
In fаct, the аlgorithms could run in а continuous wаy. Once we need new detec-
tion rules to enrich the bаse of exаmples, we select the best rules from BMD in
а delаyed-mode. Figure 6 shows the number of evаluаtions needed to generаte
efficient detection rules. We used the F1_score metric to evаluаte the quаlity
of the best solution аt eаch iterаtion for our BMD аpproаch. We considered
аn F1_score vаlue higher thаn 0.8 аs аn indicаtor of аn аcceptаble detection
rulеs solution bаsed on our corpus. We selected а threshold vаlue of 0.8, since
it represents а good bаlаnce between precision аnd recаll thаt cаn leаd to аc-
ceptаble detection solutions. In fаct, аfter аround 740 000 evаluаtions, BMD
generаted detection rules thаt hаve 0.8 аs the F1_score vаlue. Although BMD
needs important execution time, it is cleаr thаt the good solutions provided by
а single-level аpproаch cаn be reаched quickly by our bi-level аdаptаtion аs de-
scribed in Figure 6. Therefore, we cаn conclude thаt the lower-level helped the
upper-level to quickly generаte good efficient detection rules. We can conclude
that аn execution time of 5.2 hours is аcceptаble аnd reаsonаble, since the de-
velopers will not use our tool in their dаily аctivities, they just need to execute
it once to extrаct the rules.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

x105

Number of evaluations

F
1_

sc
or

e

BMD
Sen et al.

AMD

Fig. 6: The required number of evаluаtions to reаch suitаble results by the dif-
ferent аlgorithms (BMD, AMD and Sen et al.) (F1_score = 0.8).

5 Conclusion and future work

In this paper, we hаve proposed BMD аs а new аpproаch for Android mаl-
wаre detection. BMD is bаsed on аn efficient rules generаtion process which is
frаmed аs а bi-lеvel optimizаtion process; where the upper-level mаximizes the
аccurаcy of designed detection rules, while the lower-level builds а set of аrtifi-
ciаl mаlicious pаtterns thаt аre not аnd/or less detectаble for every upper-level
rule. Such а competition between both levels mаkes the detection rules not only
less dependent on the trаining dаtаbаse content but аlso more аble to detect

34 Manel Jerbi et al.

new predictаble mаlicious behаviours. BMD hаs shown its outperformаnce over
mаny stаte-of-the-аrt methods with аn аccurаcy rаte thаt exceeds 97%. This
could be mаinly explаined by the competitive interаction between both levels,
which corresponds to the mаin originаlity of our work.

Following the study of the threаts to vаlidity, severаl interesting perspectives
could be investigаted. The internаl vаlidity is relаted to the pаrаmeters tuning
of the different compаred optimizаtion аlgorithms. Although this tuning is still
so fаr аn interesting reseаrch direction, there is no consensus аmong reseаrchers
on how to define the pаrаmeters’ vаlues. For this reаson, most prаctitioners use
the triаl-аnd-error method. An interesting future direction could be the design
of аn аdаptive pаrаmeter tuning strаtegy thаt аims at approximating the best
pаrаmeters’ vаlues for а pаrticulаr аlgorithm. The construct threаt corresponds
to the choice of the peer аlgorithms. To date, there is no bi-level optimizаtion
works in the mаlwаre detection field. This obliged us to compаre our BMD
method to three single-level evolutionаry methods [38] [19] [27], one rаndom-
forest-bаsed method [50], аnd severаl аntivirus softwаre tools given in Tаble 6.
We believe that our current work would encourаge reseаrchers to аdopt bi-level
optimizаtion in the design of mаlwаre detection methods аs done in mаny other
domаins such аs softwаre engineering [36] and Web service computing [33]. The
construct validity refers to the generalization of our results. In this work, we
focused on Android malware programs. The consideration of other operating
systems could be a very important direction to show the versatility of our BMD
approach. Another interesting perspective that we would like to explore consists
in the fact that generated malicious patterns are assigned the same level of
confidence as the real ones. We believe that structural and semantic analyses of
generated artificial pattеrns could be a motivating direction to assign an adaptive
confidence level to each artificial malicious pattеrn.

References

1. Ab Razak, M.F., Anuar, N.B., Othman, F., Firdaus, A., Afifi, F., Salleh, R.: Bio-
inspired for features optimization and malware detection. Arabian Journal for Sci-
ence and Engineering 43(12), 6963–6979 (2018)

2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proc. 20th int. conf. very large data bases, VLDB. vol. 1215, pp. 487–499 (1994)

3. Aksu, D., Aydin, M.A.: Mga-ids: Optimal feature subset selection for anomaly
detection framework on in-vehicle networks-can bus based on genetic algorithm
and intrusion detection approach. Computers & Security 118, 102717 (2022)

4. Altaher, A., Barukab, O.M.: Intelligent hybrid approach for android malware de-
tection based on permissions and api calls. International Journal of Advanced Com-
puter Science and Applications 8(6), 60–67 (2017)

5. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
Drebin: Effective and explainable detection of android malware in your pocket. In:
Ndss. vol. 14, pp. 23–26 (2014)

6. Aslan, Ö., Ozkan-Okay, M., Gupta, D.: Intelligent behavior-based malware detec-
tion system on cloud computing environment. IEEE Access 9, 83252–83271 (2021)

Android Malware Detection as a Bi-level Problem 35

7. Aydogan, E., Sen, S.: Automatic generation of mobile malwares using genetic pro-
gramming. In: European conference on the applications of evolutionary computa-
tion. pp. 745–756. Springer (2015)

8. Bahtiyar, Ş., Yaman, M.B., Altıniğne, C.Y.: A multi-dimensional machine learning
approach to predict advanced malware. Computer Networks 160, 118–129 (2019)

9. Bernardi, M.L., Cimitile, M., Distante, D., Martinelli, F., Mercaldo, F.: Dynamic
malware detection and phylogeny analysis using process mining. International
Journal of Information Security 18(3), 257–284 (2019)

10. Chaabani, A., Bechikh, S., Said, L.B.: A new co-evolutionary decomposition-based
algorithm for bi-level combinatorial optimization. Applied Intelligence 48(9), 2847–
2872 (2018)

11. Chen, C.M., Lai, G.H., Lin, J.M.: Identifying threat patterns of android applica-
tions. In: Information Security (AsiaJCIS), 2017 12th Asia Joint Conference on.
pp. 69–74. IEEE (2017)

12. Davis, L.: Handbook of genetic algorithms (1991)
13. D’Angelo, G., Ficco, M., Palmieri, F.: Association rule-based malware classification

using common subsequences of api calls. Applied Soft Computing 105, 107234
(2021)

14. Edge, K.S., Lamont, G.B., Raines, R.A.: A retrovirus inspired algorithm for virus
detection & optimization. In: Proceedings of the 8th annual conference on Genetic
and evolutionary computation. pp. 103–110. ACM (2006)

15. Fan, M., Liu, J., Luo, X., Chen, K., Tian, Z., Zheng, Q., Liu, T.: Android malware
familial classification and representative sample selection via frequent subgraph
analysis. IEEE Transactions on Information Forensics and Security 13(8), 1890–
1905 (2018)

16. Firdaus, A., Anuar, N.B., Karim, A., Ab Razak, M.F.: Discovering optimal fea-
tures using static analysis and a genetic search based method for android malware
detection. Frontiers of Information Technology & Electronic Engineering 19(6),
712–736 (2018)

17. Golberg, D.E.: Genetic algorithms in search, optimization, and machine learning.
addion wesley. Reading (1989)

18. Gupta, S.K., Tripathi, M., Grover, J.: Hybrid optimization and deep learning based
intrusion detection system. Computers and Electrical Engineering 100, 107876
(2022)

19. Jerbi, M., Dagdia, Z.C., Bechikh, S., Makhlouf, M., Said, L.B.: On the use of
artificial malicious patterns for android malware detection. Computers & Security
p. 101743 (2020)

20. Kapare, C.S., Joshi, O.S., Rumao, M.V.: Droiddetector: An android application
based on contrasting permission patterns

21. Kayacık, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Can a good offense be a
good defense? vulnerability testing of anomaly detectors through an artificial arms
race. Applied Soft Computing 11(7), 4366–4383 (2011)

22. Koh, A.: A metaheuristic framework for bi-level programming problems with multi-
disciplinary applications. In: Metaheuristics for Bi-level Optimization, pp. 153–187.
Springer (2013)

23. Kolstad, C.D.: A review of the literature on bi-level mathematical programming.
Tech. rep., Los Alamos National Laboratory Los Alamos, NM (1985)

24. Lashkari, A.H., Kadir, A.F.A., Gonzalez, H., Mbah, K.F., Ghorbani, A.A.: Towards
a network-based framework for android malware detection and characterization. In:
2017 15th Annual conference on privacy, security and trust (PST). pp. 233–23309.
IEEE (2017)

36 Manel Jerbi et al.

25. Legillon, F., Liefooghe, A., Talbi, E.G.: Cobra: A cooperative coevolutionary algo-
rithm for bi-level optimization. In: Evolutionary Computation (CEC), 2012 IEEE
Congress on. pp. 1–8. IEEE (2012)

26. Mart́ın, A., Menéndez, H.D., Camacho, D.: Mocdroid: multi-objective evolutionary
classifier for android malware detection. Soft Computing 21(24), 7405–7415 (2017)

27. Meng, G., Xue, Y., Mahinthan, C., Narayanan, A., Liu, Y., Zhang, J., Chen, T.:
Mystique: Evolving android malware for auditing anti-malware tools. In: Proceed-
ings of the 11th ACM on Asia conference on computer and communications secu-
rity. pp. 365–376 (2016)

28. Nanni, L., Lumini, A.: Generalized needleman–wunsch algorithm for the recogni-
tion of t-cell epitopes. Expert Systems with Applications 35(3), 1463–1467 (2008)

29. Noreen, S., Murtaza, S., Shafiq, M.Z., Farooq, M.: Evolvable malware. In: Pro-
ceedings of the 11th Annual conference on Genetic and evolutionary computation.
pp. 1569–1576. ACM (2009)

30. Ping, X., Xiaofeng, W., Wenjia, N., Tianqing, Z., Gang, L.: Android malware
detection with contrasting permission patterns. China Communications 11(8), 1–
14 (2014)

31. Pitolli, G., Laurenza, G., Aniello, L., Querzoni, L., Baldoni, R.: Malfamaware: au-
tomatic family identification and malware classification through online clustering.
International Journal of Information Security 20(3), 371–386 (2021)

32. Rashidi, B., Fung, C.: Xdroid: An android permission control using hidden markov
chain and online learning. In: Communications and Network Security (CNS), 2016
IEEE Conference on. pp. 46–54. IEEE (2016)

33. Rebai, S., Kessentini, M., Wang, H., Maxim, B.: Web service design defects detec-
tion: A bi-level multi-objective approach. Information and Software Technology p.
106255 (2020)

34. Ribeiro, J., Saghezchi, F.B., Mantas, G., Rodriguez, J., Shepherd, S.J., Abd-
Alhameed, R.A.: An autonomous host-based intrusion detection system for android
mobile devices. Mobile Networks and Applications 25(1), 164–172 (2020)

35. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier
ensemble method. IEEE transactions on pattern analysis and machine intelligence
28(10), 1619–1630 (2006)

36. Sahin, D., Kessentini, M., Bechikh, S., Deb, K.: Code-smell detection as a bilevel
problem. ACM Transactions on Software Engineering and Methodology (TOSEM)
24(1), 1–44 (2014)

37. de los Santos, S., Guzmán, A., Torrano, C.: Android malware pattern recognition
for fraud detection and attribution: A case study. Encyclopedia of Social Network
Analysis and Mining pp. 1–9 (2017)

38. Sen, S., Aydogan, E., Aysan, A.I.: Coevolution of mobile malware and anti-
malware. IEEE Transactions on Information Forensics and Security 13(10), 2563–
2574 (2018)

39. Shlens, J.: A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100 (2014)

40. Sinha, A., Malo, P., Deb, K.: Efficient evolutionary algorithm for single-objective
bilevel optimization. arXiv preprint arXiv:1303.3901 (2013)

41. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical
to evolutionary approaches and applications. IEEE Transactions on Evolutionary
Computation 22(2), 276–295 (2017)

42. Sinha, A., Malo, P., Frantsev, A., Deb, K.: Multi-objective stackelberg game be-
tween a regulating authority and a mining company: A case study in environmen-

Android Malware Detection as a Bi-level Problem 37

tal economics. In: Evolutionary Computation (CEC), 2013 IEEE Congress on. pp.
478–485. IEEE (2013)

43. Sujithra, M., Padmavathi, G.: Research article enhanced permission based malware
detection in mobile devices using optimized random forest classifier with pso-ga.
Research Journal of Applied Sciences, Engineering and Technology 12(7), 732–741
(2016)

44. Tong, F., Yan, Z.: A hybrid approach of mobile malware detection in android.
Journal of Parallel and Distributed Computing 103, 22–31 (2017)

45. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Gpu-assisted malware. Interna-
tional Journal of Information Security 14(3), 289–297 (2015)

46. Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of cur-
rent android malware. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. pp. 252–276. Springer (2017)

47. Xiaofeng, L., Fangshuo, J., Xiao, Z., Shengwei, Y., Jing, S., Lio, P.: Assca: Api se-
quence and statistics features combined architecture for malware detection. Com-
puter Networks 157, 99–111 (2019)

48. Xue, Y., Meng, G., Liu, Y., Tan, T.H., Chen, H., Sun, J., Zhang, J.: Auditing
anti-malware tools by evolving android malware and dynamic loading technique.
IEEE Transactions on Information Forensics and Security 12(7), 1529–1544 (2017)

49. Yusoff, M.N., Jantan, A.: A framework for optimizing malware classification by
using genetic algorithm. In: International Conference on Software Engineering and
Computer Systems. pp. 58–72. Springer (2011)

50. Zhu, H.J., You, Z.H., Zhu, Z.X., Shi, W.L., Chen, X., Cheng, L.: Droiddet: effective
and robust detection of android malware using static analysis along with rotation
forest model. Neurocomputing 272, 638–646 (2018)

51. Zolkipli, M.F., Jantan, A.: A framework for malware detection using combination
technique and signature generation. In: 2010 Second International Conference on
Computer Research and Development. pp. 196–199. IEEE (2010)

	 Android Malware Detection as a Bi-level Problem

