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Abstract
Deep neural networks are vulnerable to adver-
sarial examples, which can fool deep models by
adding subtle perturbations. Although existing at-
tacks have achieved promising results, it still leaves
a long way to go for generating transferable ad-
versarial examples under the black-box setting.
To this end, this paper proposes to improve the
transferability of adversarial examples, and applies
dual-stage feature-level perturbations to an existing
model to implicitly create a set of diverse mod-
els. Then these models are fused by the longi-
tudinal ensemble during the iterations. The pro-
posed method is termed Dual-Stage Network Ero-
sion (DSNE). We conduct comprehensive experi-
ments both on non-residual and residual networks,
and obtain more transferable adversarial examples
with the computational cost similar to the state-
of-the-art method. In particular, for the residual
networks, the transferability of the adversarial ex-
amples can be significantly improved by biasing
the residual block information to the skip connec-
tions. Our work provides new insights into the
architectural vulnerability of neural networks and
presents new challenges to the robustness of neural
networks.

1 Introduction
Deep neural networks (DNNs) have shown compelling ac-
curacy in the field of visual tasks. However, it has been
found that DNNs are vulnerable to adversarial examples,
which are input examples perturbed by imperceptible per-
turbations, which are carefully crafted but can fool the net-
works into making wrong predictions [Szegedy et al., 2014;
Goodfellow et al., 2015].

The adversarial examples can be generated by white-box
or black-box attacks. Since the internal information of the
target model is usually not accessible, the black-box attacks
remain a challenge. There are two main types of black-box
methods, the query-based and the transfer-based. The query-
based methods [Chen et al., 2017; Brendel et al., 2018] use
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queries to obtain the information of the target model so as
to estimate the decision boundary, which makes the black-
box attacks almost white-box attacks. However, they re-
quire a large number of queries, which would be impracti-
cal in real-world applications. It has been found that the ad-
versarial examples can transfer, that is, the examples gener-
ated for one model under the white-box setting can success-
fully attack other unknown models [Szegedy et al., 2014;
Liu et al., 2017]. Hence, the transferability of adversarial ex-
amples can be leveraged to conduct black-box attacks.

Many techniques have been proposed to improve the trans-
ferability of adversarial examples, such as integrating the mo-
mentum term into the iterative process [Dong et al., 2018],
applying random transformations to the input [Xie et al.,
2019] and optimizing a perturbation over a set of translated
images [Dong et al., 2019]. The standard model ensemble
method [Liu et al., 2017; Dong et al., 2018] average the out-
puts (e.g., logits) of multiple models to improve the adversar-
ial attacks, which prevents adversarial examples from over-
fitting to a specific model. These methods are either based on
algorithm improvement, data augmentation or model input-
output modification to improve the adversarial attacks, with-
out considering the internal structural characteristics of the
model.

Recently, methods have been proposed to consider the
model internal structures and parameters, such as Ghost Net-
works (GN) [Li et al., 2020], which explores network param-
eter perturbations to potentially create a set of diverse models,
and fuses these models by longitudinal ensemble. As illus-
trated in Fig. 1, the standard ensemble requires averaging the
outputs of different models. For the longitudinal ensemble,
a set of diverse virtual models (e.g., {M11,M12, ...,M1N})
can be obtained from a base model (e.g., M1) by random-
izing the perturbation during iterations of adversarial attack.
GN improves the adversarial attacks and generates adversar-
ial examples efficiently. However, the results in black-box
attacks still leave a lot of room for improvement.

Motivated by the above discussion, in this paper, we pro-
pose a Dual-Stage Network Erosion (DSNE) method, which
makes the network parameters more diversified to further im-
prove the adversarial attacks. By imposing dual-stage erosion
(feature-level perturbations) on the internal structures and pa-
rameters of the base networks on-the-fly, the forward and
back propagation of the information flow would be modified,
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and multiple virtual models with similar decision boundaries
are generated (“virtual” means that the generated models are
not stored or trained). We call this operation “model augmen-
tation”. Then these diversified virtual models are fused by the
longitudinal ensemble during the iterations, which can allevi-
ate the overfitting problem of iterative attacks, and the resul-
tant adversarial examples are more likely to transfer across
models.

Combining the proposed DSNE with any method (e.g.,
momentum iterative method [Dong et al., 2018]), we ob-
tain more transferable adversarial examples with computation
complexity similar to the baseline method. And the longitudi-
nal ensemble can be easily combined with standard ensemble
to further improve the transferability of adversarial examples.
In addition, for the non-residual networks, more diversified
virtual models are generated through the dual-stage network
erosion, which enhances the effectiveness of transfer attacks.
In particular, for the residual networks, since the classifica-
tion performance improvement mainly comes from the skip
connections, we adjust the role of skip connections in attacks.
We find that the attack success rates significantly improved if
the networks bias towards the skip connections. This indi-
cates that the skip connections can expose more transferable
information, which is beneficial for the adversarial examples
to cross the decision boundaries.

In summary, our main contributions are as follows:

• The proposed Dual-Stage Network Erosion (DSNE)
method can generate more diverse virtual models and
greatly improve the transferability of adversarial exam-
ples.

• We find that the transferability of the resultant adversar-
ial examples can be significantly enhanced by making
the output of residual blocks of the residual network bi-
ased towards the skip connections.

• We conduct extensive experiments both on normally
trained models and robustly trained defense models, and
the results demonstrate that our method can improve the
black-box attacks with almost no extra computational
cost.

• The proposed dual-stage erosion method has wide com-
patibility, which can be imposed on both non-residual
and residual networks, and can also be combined with
different attack methods.

2 Related work
Let x be a clean input that can be correctly classified by a
classifier c(·) as label y. An adversarial example x∗ can be
obtain by adding imperceptible perturbations to x, which may
fool the classifier, i.e., c(x∗) 6= y. For L∞ norm constraint,
the allowed perturbation should be smaller than a threshold ε
as ||x∗ − x||∞ ≤ ε. The attack objective is to maximize the
cross-entropy loss function

J(x∗, y; θ) = −1y · log(softmax(l(x∗))), (1)

where θ denotes the network parameters, −1y is the one-hot
encoding of label y, and l(x∗) is the classification logits of x∗,
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Figure 1: The illustration of standard ensemble and longitudinal en-
semble.

thus the adversarial deep learning problem can be expressed
as

argmax
x∗

J(x∗, y; θ), s.t. ||x∗ − x||∞ ≤ ε. (2)

Iterative Fast Gradient Sign Method(I-FGSM). I-
FGSM [Kurakin et al., 2017a] performs attack iteratively
with a small step size. It initializes an adversarial example
x∗0 = x and the update equation is

x∗t+1 = Clipεx{x∗t + αsign(∇x∗
t
J(x∗t , y; θ))}, (3)

where t is the t-th iteration and α is the step size. sign(·)
is the sign function. Clipεx{x′} function performs per-
pixel clipping of the image x′, it can be expressed as
min {255, x+ ε,max{0, x− ε, x′}}, so the result will be
constrained within ε-ball of the original image x.

Momentum Iterative Fast Gradient Sign Method (MI).
MI [Dong et al., 2018] integrates the momentum term into
I-FGSM to stabilize gradient update direction and avoid trap-
ping into the local maximum, it can be expressed as

gt+1 = µgt +
∇x∗

t
J(x∗t , y; θ)∥∥∇x∗

t
J(x∗t , y; θ)

∥∥
1

, (4)

x∗t+1 = Clipεx{x∗t + αsign(gt+1)}, (5)

where gt accumulates the iterated gradient vector of the loss
function with a decay factor µ.

Translation-Invariant Method (TI). TI [Dong et al.,
2019] optimizes adversarial examples by convolving the gra-
dient with a pre-defined kernel W , so that the generated ad-
versarial examples would be less sensitive to the discrimina-
tive regions of the white-box model being attacked and have
higher transferability. TI can be integrated into any gradient-
based attack method, the integration of TI into the I-FGSM
has the following update rule

x∗t+1 = Clipεx{x∗t + αsign(W ∗ ∇x∗
t
J(x∗t , y; θ)}. (6)

Ghost Networks (GN). For non-residual networks, GN
[Li et al., 2020] generates virtual networks by inserting the
dropout layer densely to every block throughout the base net-
work. Let zl be the activation in the l-th layer, fl be the func-
tion that satisfies zl+1 = fl(zl) for the l-th and (l + 1)-th



layer, after applying dropout erosion, the output of fl, i.e.,
gl(zl), is

gl(zl) = fl

(
rl ∗ zl
1− Λb

)
, rl ∼ Bernoulli(1− Λb), (7)

where ∗ denotes an element-wise product and Bernoulli(1 −
Λb) means the Bernoulli distribution with the probability
p = (1 − Λb) of elements in rl being 1, i.e., p indicates the
probability that zl is preserved. Λb is defined as the magni-
tude of erosion, larger Λb implies a heavier erosion on the
source network, and vice versa.

For the networks with residual blocks, GN applies random-
ized modulating scalar λl to the l-th residual block (see Fig.
3 (b)) by

zl+1 = λlzl + fl(zl, wl), λl ∼ U [1− Λu, 1 + Λu], (8)

where λl is subject to uniform distribution, zl and zl+1 are the
input and output of the l-th residual block with the weights
wl, f(·) denotes the residual function. To keep the expected
input of zl consisted after skip connection erosion, the mean
of the uniform distribution is set to 1.

3 Methodology
GN explores network erosion to learn transferable adversar-
ial examples, which can be applied both to single-model and
multi-model attacks, and is compatible with various model
structures and attack methods. However, there are several
limitations: (1) GN generates a virtual model pool based on
one-stage erosion to improve the transferability of adversar-
ial examples, but the diversity of the network parameters is
insufficient; (2) GN analyses the effect of erosion magnitude
on classification accuracy, but does not analyse the effect on
transferable attack performance, leading to inaccurate erosion
magnitude and relatively low black-box attack success rates;
(3) For ResNet-like networks, GN treats the skip connections
(with an expected value of 1 for uniform distribution erosion)
and residual modules equally. However, the main reason for
the advanced performance of ResNet-like networks is the skip
connections with the implementation of identity mapping,
which can improve the information flow during forward and
backward propagation, and enhance training efficiency and
reduce test error [Srivastava et al., 2015; Huang et al., 2016;
Veit et al., 2016]. Therefore, for the parallel structure of the
skip connection and the residual module in a residual block,
the skip connection should be made to transfer more informa-
tion, so as to improve the transferability of adversarial exam-
ples.

To address these issues, firstly, the proposed DSNE method
obtains more diversified networks by imposing dual-stage
erosion on the base network, which further alleviates the over-
fitting phenomenon of iterative attack; secondly, DSNE opti-
mizes the erosion magnitude for different networks according
to the attack effect; thirdly, DSNE makes the output of each
residual block biased towards the skip connection to mitigate
the reduction of transferability information flow.

In the following sections, we provide the detailed descrip-
tion of our DSNE method. The concept of model augmenta-
tion is proposed to introduce the principle of model diversifi-
cation in Sec. 3.1, then we introduce the dual-stage network
erosion for non-residual and residual networks in Sec. 3.2
and Sec. 3.3, respectively. The effect of erosion magnitude
is analyzed in Sec. 4.2, and comprehensive experiments are
conducted for single-model and multi-model attacks in Sec.
4.3 and Sec. 4.4, respectively.

3.1 Model augmentation
Leveraging the transferability to attack is to generate adver-
sarial examples under the white-box setting, and then use
these examples to attack the unknown models. Traditional
iterative attacks may easily overfit the parameters of the at-
tacked white-box model, and thus making the generated ad-
versarial examples rarely transfer to other models.

Different from the common methods, such as algorithm
improvement [Dong et al., 2018; Dong et al., 2019], data
augmentation [Xie et al., 2019] and standard model ensem-
ble [Liu et al., 2017; Dong et al., 2018; Dong et al., 2019],
this paper alleviates the overfitting phenomenon by directly
applying small parameter erosionE(·) to diversify the model,
which satisfied J(x, y;E(θ)) ≈ J(x, y; θ) for any clean in-
put x, by doing so, we derive a new model, and we call such
derivation of models as model augmentation. Therefore, the
constrained optimization problem in Eq. (2) can be rewritten
as

argmax
x∗

J(x∗, y;E(θ)), s.t. ||x∗ − x||∞ ≤ ε. (9)

Due to the randomness of parameter erosion, each itera-
tion will generate a new virtual model with similar decision
boundaries, and then these multiple models generated at each
iteration will be fused by the implicit longitudinal ensemble,
making the resultant adversarial examples more transferable.
The computation cost of the longitudinal ensemble attack is
similar to that of base model iteration attack because network
erosion requires little computation.

3.2 Non-residual network erosion
For non-residual networks, to make the network parame-
ters more diversified, the proposed DSNE method combines
dropout and uniform distribution erosion, and the output of
the l-th layer can be rewritten as

gl(zl) = fl

(
rl ∗ λlzl
1− Λb

)
, (10)

where λl is drawn from the uniform distribution U [1 −
Λu, 1 + Λu], and rl is drawn from the Bernoulli distribution
Bernoulli(1− Λb).

After applying the dual-stage erosion, the gradient of a loss
function J with respect to input z0 in back-propagation from
the L-th layer can be expressed as

∂J

∂z0
=

∂J

∂zL

L∏
l=0

(
rl

1− Λb
∗ λl

∂

∂zl
fl

(
rl ∗ λlzl
1− Λb

))
. (11)
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Figure 2: Conventional view (a) and unraveled view (b) of the resid-
ual network. Circular nodes denote junction point. The backpropa-
gation paths of identity mapping and residual mapping are shown in
green and red color, respectively.
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Figure 3: An illustration of (a) an original residual block, (b) the
block after skip connection erosion and (c) the block after the dual-
stage erosion.

3.3 Residual network erosion
Research [Srivastava et al., 2015; Huang et al., 2016;
Veit et al., 2016] demonstrates that the identity mapping helps
to learn to proceed in very deep networks, and there is some
redundancy in the paths of the residual network, which shows
that the random discard of some residual layers has little im-
pact on the testing results. These techniques are mainly used
to improve the training efficiency and testing accuracy of the
residual networks. However, our work is to study attacking
networks to improve the transferability of the adversarial ex-
amples.

Residual networks [He et al., 2016a; He et al., 2016b] are
neural networks in which each layer consists of two subterms:
an identity skip connection mapping and a residual module
mapping. With zl as the input, the output of the (l + 1)-th
block is recursively defined as

zl+1 = zl + fl(zl, wl). (12)
Consider a 3-block residual network, from input z0 to z3,

by expanding the recursion into the exponential number of
nested items, we can make the structure of the residual net-
work apparent, and obtain an unraveled view of the residual
network [Veit et al., 2016]. Omitting the weights for clarity,
the output can be expanded as

z3 =z2 + f2(z2) = [z1 + f1(z1)] + f2(z1 + f1(z1))

= [z0 + f0(z0) + f1(z0 + f0(z0))] + f2(z0 + f0(z0)+

f1(z0 + f0(z0))).
(13)

As shown in Fig. 2, (a) is conventionally display form of
the residual network, and (b) is the unraveled view as ex-
pressed in Eq. (13). The reduction of residual gradients is ac-
cumulated along the backpropagation paths (red paths), while

the identity mappings (green paths) facilitate the information
propagation [He et al., 2016b]. Therefore, a bias toward
identity mappings may expose more transferable information.

The network parameters are first learned by training the
source network from scratch, then we apply dual-stage ero-
sion on the identity mapping and the residual module in the
l-th residual block (see Fig. 3 (c)) by

zl+1 = λl(zl + γlf(zl, wl)), (14)

where λl is drawn from the uniform distributionU [1−Λu, 1+
Λu], γl is the bias factor and 0 < γl ≤ 1, such that the
network is initially biased towards the shortcut connections
which simply perform identity mapping. By doing so, it helps
to improve the transferable information flow during forward
and backward propagation, so as to enhance the attack effec-
tiveness and obtain more transferable adversarial examples.
It is worth noting that the model is not trained via Eq.(14).

The input of the L-th layer during inference can be written
as

zL = (

L−1∏
l=0

λl)z0 +

L−1∑
l=0

(

L−1∏
l=0

λl)γlf(zl, wl). (15)

The gradient of a loss function J with respect to input z0
can be expressed as

∂J

∂z0
=

∂J

∂zL

(
(

L−1∏
l=0

λl) +

L−1∑
l=0

(

L−1∏
l=0

λl)γl
∂f(zl, wl)

∂z0

)
.

(16)
The process of generating virtual models for non-residual

or residual networks can be described in detail as follows:
1) conduct the uniform distribution erosion on the base net-
work to obtain the perturbed network; 2) conduct the dropout
or bias erosion on the perturbed network; 3) repeat step 1)
and 2) to independently sample λ, r or γ for N times (N is
the iteration number), and obtain a pool of virtual networks
M = {M1,M2, ...,MN}, which are fused by the implicitly
longitudinal ensemble for attacks, i.e., at the i-th iteration, it
attacks the virtual model Mi only.

Based on the above analysis, it can be inferred from the
gradient of the loss function that a larger magnitude of ero-
sion will have a greater influence on the source network, and
deeper networks are influenced more easily according to the
product rule. This is consistent with GN.

DSNE is compatible with various attack methods, e.g.,
combined with MI and TI, we get the TI-MI-DSNE attack,
with x∗0 = x, it can be written as

gt+1 = µgt +
W ∗ ∂J

∂z0∥∥∥W ∗ ∂J
∂z0

∥∥∥
1

, (17)

x∗t+1 = Clipεx{x∗t + αsign(gt+1)}, (18)
where z0 = x∗t is the input of the network at the t-th step, and
∂J
∂z0

for non-residual and residual networks are shown in Eq.
(11) and (16), respectively. The TI-MI-DSNE combined with
standard ensemble algorithm is summarized in Algorithm 1.



Algorithm 1 TI-MI-DSNE combined with standard ensem-
ble
Input: A clean example x with label y; K classifiers
c1, c2, ..., cK ; ensemble weights w1, w2, ..., wK ;
Parameter: Perturbation size ε; iteration number N and mo-
mentum decay factor µ; pre-defined kernelW ; uniform distri-
bution parameter Λu, dropout parameter Λb and scaling factor
γ.
Output: An adversarial example x∗.

1: α = ε/N ;
2: g0 = 0; x∗0 = x;
3: for t = 0 to N − 1 do
4: Input x∗t and output the logits of K classifiers:

lk(x∗t ), k = 1, 2, ...,K;
5: Fuse the logits as l(x∗t ) =

∑K
k=1 wk(lk(x∗t ));

6: Get the cross-entropy loss J based on l(x∗t ) and Eq.
(1) ;

7: Let z0 = x∗t , for non-residual network and residual
network, the gradient ∂J

∂z0
is calculated by Eq. (11)

and (16), respectively;
8: Update the accumulated gradient gt+1 and adversarial

example x∗t+1 by Eq. (17) and (18), respectively;
9: end for

10: return: x∗ = x∗N .

4 Experiments
In this section, we evaluate our method by comparing the
transfer attack success rates on the ImageNet dataset [Rus-
sakovsky et al., 2015] through a large number of experiments.
We make our codes public at https://github.com/YeXinD/
DSNE.

4.1 Experimental settings
Source Models. We choose six models: Inception-v3 (Inc-
v3) [Szegedy et al., 2016], Inception-v4 (Inc-v4), Inception-
ResNet-v2 (IncRes-v2) [Szegedy et al., 2017], ResNet-v2-
{50, 101, 152} (Res-{50, 101, 152}) [He et al., 2016b] as
the source models.

Target Models. To evaluate the transferability of the ad-
versarial examples generated by the source models, we con-
sider fifteen target models, nine of which are normally trained
models: Inc-v3, Inc-v4, IncRes-v2, Res-{50, 101, 152},
Densenet-169 (Dense-169) [Huang et al., 2017], Xception-
71 (Xcep-71) [Chollet, 2017], and PNASnet-Large (PNAS)
[Liu et al., 2018]. The other six are robustly trained de-
fense models, including three ensemble adversarially trained
models: Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens [Tramèr
et al., 2018], and the top-3 models in the NIPS 2017 De-
fense Competition: high-level representation guided denoiser
(HGD) [Liao et al., 2018], input transformation through ran-
dom resizing and padding (R&P) [Xie et al., 2018] and rank-
3 solution1 in the NIPS 2017 defense competition (NIPS-r3).

Datasets. It is less meaningful to study the attack success
rates if the models cannot correctly classify the original im-
ages. Therefore, we randomly choose 5000 images from the

1https://github.com/anlthms/nips-2017/tree/master/mmd

Figure 4: The average losses with different uniform distribution ero-
sion magnitude of the six source models.

ImageNet validation set, and these images are correctly clas-
sified by all source models. All these images are resized to
299× 299× 3 beforehand.

Baselines. We mainly compare our DSNE method with
MI [Dong et al., 2018], TI [Dong et al., 2019] and the cor-
responding GN [Li et al., 2020] methods. For all attack
methods, the iteration number N is set to 10, other hyper-
parameters are set as in their original papers. We generate
untargeted adversarial examples under maximum L∞ pertur-
bation ε = 16 with respect to pixel values in [0, 255].

4.2 Effect of erosion parameters
Due to the important influence of erosion parameters on the
generation of strong transferable adversarial examples, a se-
ries of ablation experiments are conducted to study the effect
of different erosion magnitude.

Uniform distribution parameter Λu. Uniform distribu-
tion parameter plays an important role in network diversity.
We first verify the property of erosion parameter, i.e., the ef-
fect of erosion on the classification performance of the model,
with Λu ∈ [0, 0.5], where Λu = 0 means no erosion on
the source network. We input the clean images of the whole
ILSVRC2012 validation set into the Inc-v3, Inc-v4, IncRes-
v2, Res-50, Res-101 and Res-152, respectively. The average
losses over all clean images for models with different erosion
magnitude are shown in Fig. 4.

It can be seen that with the increase of the erosion magni-
tude, the loss increases smoothly. Therefore, J(x, y;E(θ)) ≈
J(x, y; θ) is satisfied when this erosion magnitude is within a
small range, which is consistent with the proposed concept of
model augmentation in Sec. 3.1. This rule also applies to the
other two erosion parameters.

We then test the transferability with varying Λu ∈ [0, 0.2].
The larger the Λu, the greater the erosion of the source net-
work. The attack results of DSNE combined with MI method
against six target models (one white-box and five black-box
models) are illustrated in Fig. 5 (a1), (b1), (c1) and Fig. 6
(a1), (b1), (c1). It can be observed that the trends of attack
success rates of all black-box attacks against different tar-
get models are consistent. Increasing the erosion magnitude
Λu tends to improve transferability until it exceeds a certain
threshold.

For the Inception series networks, all three source models
have the highest attack success rates when Λu is set to 0.10;

https://github.com/YeXinD/DSNE
https://github.com/YeXinD/DSNE
https://github.com/anlthms/nips-2017/tree/master/mmd


(a1) Λu tuning

(b1) Λu tuning

(c1) Λu tuning

(a2) Λb tuning (Λu =0.10)

(b2) Λb tuning (Λu =0.10)

(c2) Λb tuning (Λu =0.10)

Figure 5: The attack success rates of Inception series networks with
different erosion magnitude. The left column shows the Λu tuning,
the right column shows the Λb tuning.

for the ResNet series networks, Λu is set to 0.14 for ResNet-
50, 0.12 for ResNet-101, and 0.10 for ResNet-152. It can be
seen that for deeper networks, the erosion magnitude should
be smaller, which is consistent with the previous inference
that deeper networks are influenced more easily.

When the enhancement of transferable information
brought by the network diversity is greater than the gradient
information loss caused by network erosion, the attack suc-
cess rates will increase. If the erosion magnitude is too large,
the gradient information of the virtual networks will be quite
different from that of the source network, and the obtained
virtual network will not satisfy J(x, y;E(θ)) ≈ J(x, y; θ),
leading to the decrease of the attack success rates.

Dropout parameter Λb. For the Inception series net-
works, after tuning the uniform distribution parameter Λu,
we test the transferability with varying dropout parameter
Λb ∈ [0, 0.014], where Λb = 0 means no dropout erosion on
the network, and Λu is set to 0.10. As shown in Fig. 5 (a2),
(b2), (c2), the attack success rates increase until Λb is greater
than a certain value, 0.002 for Inc-v3, 0.004 for Inc-v4, 0.006
for IncRes-v2. The second stage erosion can make the virtual
model more diverse, which further alleviates the overfitting
problem and makes the resultant adversarial examples more
transferable.

Bias factor γ. For residual networks, after tuning the ero-
sion parameter Λu, we investigate the effect of initial bias of
the residual block towards identity mapping on transfer at-
tack. We set the range of the bias factor γ ∈ [0.5, 1.0], where

(a1) Λu tuning

(b1) Λu tuning

(c1) Λu tuning

(a2) γ  tuning (Λu =0.14)

(b2) γ  tuning (Λu =0.12)

(c2) γ  tuning (Λu =0.10)

Figure 6: The attack success rates of ResNet series networks with
different erosion magnitude. The left column shows the Λu tuning,
the right column shows the γ tuning.

γ = 1.0 means no bias in the residual blocks.
Different layers of a neural network learn different lev-

els of features, but the identity mapping can help preserve
low-level features and avoid performance degradation when
adding more layers, and allow unimpeded information flow
across several layers [Srivastava et al., 2015; He et al.,
2016b]. While the reduction of residual gradients is accu-
mulated along the backpropagation path, that is, the resid-
ual gradients at lower layers will be reduced more times than
those at higher layers, the bias towards the identity mapping
would help to preserve the low-level features (see Fig. 2 (b)
and Eq. (13)) and expose more gradient information, so that
the information flow bias towards the identity mapping (by
reducing γ) could boost the adversarial attack and improve
the transferability of adversarial examples.

As shown in Fig. 6 (a2), (b2), (c2), the trends of the in-
fluence of bias factor on transfer attack are consistent. And
these three residual networks share the same optimal γ, e.g.,
γ = 0.8, which makes it easier to optimize the attack results.
When the bias factor is too small, the class-relevant informa-
tion will be excessively reduced, resulting in the failure of
the model to obtain the correct class information and the use-
ful gradient of the loss function, therefore, the attack success
rates will decrease.

4.3 Single-model attacks
In this section, we perform adversarial attacks on a single net-
work. We craft adversarial examples on each of the six source



Table 1: The attack success rates (%) against the normally trained models. * indicates the white-box attacks. The adversarial examples are
generated on each of the six source models, respectively. The best results are in bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-50 Res-101 Res-152 Dense-169 Xcep-71 PNAS Time(s)

Inc-v3
MI
MI-GN
MI-DSNE

100.0∗

99.8∗

100.0∗

48.6
60.4
65.9

45.5
59.1
64.2

43.1
53.5
58.2

40.7
49.7
54.5

36.5
45.5
50.7

46.2
56.0
59.8

43.0
54.7
58.4

33.3
41.5
46.8

997.0
1053.2
1013.1

Inc-v4
MI
MI-GN
MI-DSNE

65.8
79.6
81.4

100.0∗

99.3∗

99.8∗

52.0
67.5
71.3

49.8
63.2
66.1

47.9
61.4
63.3

45.3
58.6
60.9

59.0
71.7
75.2

56.6
72.4
73.9

49.5
64.9
66.9

1424.6
1665.2
1710.3

IncRes-v2
MI
MI-GN
MI-DSNE

68.3
79.6
86.0

61.1
71.9
79.6

99.5∗

99.7∗

99.6∗

55.4
64.8
72.2

52.8
61.8
69.9

50.6
59.3
67.1

58.8
68.1
74.7

53.2
62.3
71.4

48.5
57.4
65.8

1548.5
1744.8
1833.1

Res-50
MI
MI-GN
MI-DSNE

55.1
74.1
84.4

48.1
68.3
78.8

45.4
64.9
78.1

99.5∗

99.8∗

99.9∗

85.9
94.4
97.1

81.7
92.1
95.5

60.2
77.8
86.1

48.8
66.2
77.5

41.9
58.7
70.8

922.5
975.0
975.1

Res-101
MI
MI-GN
MI-DSNE

56.3
75.5
83.9

50.1
69.1
77.9

47.0
65.1
76.8

87.2
95.6
97.4

99.4∗

99.8∗

99.9∗

85.4
93.9
96.6

61.6
79.4
85.9

51.3
69.3
78.4

44.3
60.1
69.2

1241.1
1319.5
1385.7

Res-152
MI
MI-GN
MI-DSNE

53.2
70.6
80.9

46.8
64.1
76.3

45.1
60.0
73.5

81.4
92.9
96.9

82.9
93.0
97.1

98.7∗

99.6∗

99.8∗

58.5
75.0
83.9

48.7
65.7
76.5

42.3
55.3
67.0

1615.0
1688.1
1812.4

Table 2: The black-box attack success rates (%) against the robustly trained defense models. The adversarial examples are generated on each
of the six source models, respectively. The best results are in bold.

Model Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P NIPS-r3 Time(s)

Inc-v3
TI-MI
TI-MI-GN
TI-MI-DSNE

30.3
41.5
43.7

28.1
39.0
41.2

20.0
26.6
30.5

20.3
28.8
31.4

17.0
24.4
27.4

21.2
24.9
30.3

1090.2
1149.7
1128.7

Inc-v4
TI-MI
TI-MI-GN
TI-MI-DSNE

32.3
45.8
46.2

31.3
43.5
44.7

23.5
34.2
34.6

24.2
35.8
35.4

21.6
32.5
32.5

24.9
37.6
37.2

1520.2
1759.6
1767.4

IncRes-v2
TI-MI
TI-MI-GN
TI-MI-DSNE

44.0
53.4
57.6

41.2
49.9
54.7

40.2
48.7
52.9

37.2
46.1
49.7

36.2
43.7
47.7

39.2
48.5
52.7

1626.5
1779.2
1919.4

Res-50
TI-MI
TI-MI-GN
TI-MI-DSNE

32.0
47.2
55.8

31.3
45.0
54.6

24.1
36.9
43.9

24.0
37.0
42.5

22.2
33.7
40.0

26.3
40.0
47.6

927.1
1036.9
1012.2

Res-101
TI-MI
TI-MI-GN
TI-MI-DSNE

35.5
48.0
56.4

34.3
46.2
56.0

26.8
37.4
44.7

27.4
38.1
41.9

25.1
35.1
40.3

28.8
41.1
47.5

1269.9
1352.7
1495.0

Res-152
TI-MI
TI-MI-GN
TI-MI-DSNE

34.7
46.4
55.5

33.8
44.5
55.4

27.5
36.0
45.4

27.1
36.1
42.9

25.4
33.8
41.7

29.5
39.4
48.5

1721.0
1784.3
1879.8

models and test them on all fifteen target models.
According to the discussion above, we select the optimized

erosion parameters for each source model and combine our
DSNE method with MI [Dong et al., 2018] method to attack
against the nine normally trained models, the comparison of
the results are shown in Table 1. Since TI [Dong et al., 2019]
method is more effective for the defense models, we combine
it to attack six robustly trained defense models, and the results
are shown in Table 2.

It can be seen that the black-box attack success rates of
the proposed DSNE method are significantly higher than that
of the baselines. Especially when the source model is the
residual network, the average black-box attack success rates

of our DSNE method is about 7% ∼ 10% higher than that of
the Ghost Networks (GN) [Li et al., 2020] method.

Note that the generated virtual networks are fused by the
longitudinal ensemble, and these virtual models are not stored
or trained, thus our attacks require similar time and space
complexity to the baselines.

In the last column of each table, we also list the running
time as the computational cost of each attack method, each
attack is run on an NVIDIA GTX 1080Ti GPU. It can be seen
that our proposed DSNE method has similar computational
costs to the baseline methods.

We visualize two randomly selected clean images and their
corresponding adversarial examples in Fig. 7. All these ad-



Table 3: The attack success rates (%) against the normally trained models, and adversarial examples are generated on an ensemble of three
source models. * indicates the white-box attacks. The best results are in bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-50 Res-101 Res-152 Dense-169 Xcep-71 PNAS Time(s)

Inc-v3
+

Inc-v4
+

IncRes-v2

MI
MI-GN
MI-DSNE
TI-MI
TI-MI-GN
TI-MI-DSNE

100.0∗

99.8∗

99.9∗

99.6∗

98.0∗

98.9∗

99.7∗

98.5∗

99.3∗

97.7∗

94.8∗

96.7∗

98.4∗

99.3∗

98.9∗

93.1∗

94.8∗

92.2∗

74.8
86.3
87.1
62.7
71.4
72.1

73.8
85.5
85.9
62.1
70.3
70.4

72.1
83.7
84.7
61.0
68.5
68.6

79.4
89.1
90.2
69.4
78.8
79.4

77.9
89.5
90.1
66.5
75.8
76.5

76.6
86.9
87.1
67.8
74.4
74.9

3087.2
3222.1
3300.9
3090.8
3212.1
3340.1

Res-50
+

Res-101
+

Res-152

MI
MI-GN
MI-DSNE
TI-MI
TI-MI-GN
TI-MI-DSNE

79.6
91.6
96.7
64.2
74.3
78.4

74.8
89.3
94.8
58.5
68.8
73.4

73.9
87.3
94.8
57.3
65.8
70.8

99.4∗

99.7∗

99.9∗

99.0∗

98.2∗

98.5∗

99.4∗

99.7∗

99.9∗

99.0∗

98.4∗

98.2∗

99.4∗

99.7∗

99.9∗

98.8∗

98.3∗

98.2∗

81.7
93.9
97.3
63.8
74.3
77.1

72.9
88.5
94.5
56.0
66.5
70.0

72.7
86.5
92.1
59.9
68.6
71.6

2707.0
2836.3
3189.3
2859.8
2972.2
3281.4

Table 4: The black-box attack success rates (%) against the robustly trained defense models, and adversarial examples are generated on an
ensemble of three source models. The best results are in bold.

Model Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P NIPS-r3

Inc-v3
+

Inc-v4
+

IncRes-v2

MI
MI-GN
MI-DSNE
TI-MI
TI-MI-GN
TI-MI-DSNE

35.3
44.5
44.9
61.3
70.0
70.4

30.4
39.1
38.7
59.1
67.8
68.5

18.6
23.0
23.0
53.3
62.1
62.6

22.7
23.6
22.3
56.5
64.8
64.9

18.5
23.8
23.5
50.2
60.1
61.0

28.9
37.6
36.9
54.6
64.3
64.7

Res-50
+

Res-101
+

Res-152

MI
MI-GN
MI-DSNE
TI-MI
TI-MI-GN
TI-MI-DSNE

39.6
51.6
67.9
57.4
67.8
76.0

33.9
44.2
61.2
55.0
65.7
76.3

21.8
28.4
43.2
47.6
58.7
66.7

33.7
42.3
49.2
51.3
60.6
65.9

22.3
28.9
44.6
46.1
56.6
63.7

32.2
41.6
59.2
51.1
62.0
70.4

Clean

MI MI-GN MI-DSNE

TI-MI TI-MI-GN TI-MI-DSNE

Clean

MI MI-GN MI-DSNE

TI-MI TI-MI-GN TI-MI-DSNE

Figure 7: The adversarial examples generated by the proposed
DSNE method and other baselines on the Inc-v3 model.

versarial examples are generated on Inc-v3 using different
methods with the maximum perturbation ε = 16. Although
the proposed DSNE method has significantly improved the
black-box attack success rates, we can see that the magnitude
of adversarial perturbations is almost the same as that of the
baselines.

4.4 Multi-model attacks
Research [Liu et al., 2017] demonstrated that attacking dif-
ferent models simultaneously can significantly improve the
transferability of adversarial examples, which can also eval-
uate the robustness of the target models more accurately. We
combine the standard ensemble and longitudinal ensemble,
i.e., the multi-model attack treats each longitudinal ensemble
as a branch of the standard ensemble (seen in Fig. 1).

We attack the Inception series and ResNet series model en-
sembles, respectively. The success rates against nine nor-
mally trained models and six robustly trained models are
summarized in Table 3 and Table 4, respectively. Note that
the TI method is originally used to attack robustly trained de-
fense models, although here we use it to attack both normally
trained and robustly trained models. It can be seen that sim-
ilar to single-model attacks, our DSNE method can improve
the transferability of the resultant adversarial examples sig-
nificantly.



As shown in Table 3, for the Inception series ensemble,
the black-box attack performance of our DSNE method com-
bined with MI is better than other methods. For the ResNet
series ensemble, our DSNE method combined with MI con-
sistently outperforms all other methods under both white-box
and black-box settings. Compared with the strong baseline,
e.g., MI-GN, our MI-DSNE method improves the average
black-box attack success rates by a large margin (about 6%).
Even only three source models are used, MI-DSNE achieves
a high average black-box attack success rate (95.0%), which
verifies that the bias towards identity mapping makes the ad-
versarial examples transfer more easily.

In Table 4, for the Inception series ensemble, the DSNE
method also shows superior attack performance. In addi-
tion, for the ResNet series ensemble, similar to the results
of against normally trained models, DSNE combined with TI
and MI consistently improves the transferability of the ad-
versarial examples by a large margin, e.g. the average attack
success rate is about 8% higher than the TI-MI-GN. The re-
sults indicate that the structures of the deep networks are still
vulnerable and the security of the networks can be enhanced
from the structure design.

5 Conclusion
This paper studies enhancing the transferability of adversar-
ial examples by eroding the internal parameters of the source
network on-the-fly. First, we adopt the proposed dual-stage
network erosion to augment the source models and make
the models more diversified, which alleviates the overfitting
problem of iterative attacks and makes the generated adver-
sarial examples more transferable. Second, we fuse the gener-
ated virtual models by the longitudinal ensemble, which sig-
nificantly enhances the black-box attack success rates with
similar computational consumption. Particularly, for the
residual network, we find that when the network is biased
towards identity mapping, the transferability of the resultant
adversarial examples will be improved significantly, the av-
erage attack success rates are about 6% ∼ 10% higher than
that of the state-of-the-art method under the single-model and
multi-model settings. Our work poses new challenges for the
application of deep neural networks.
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