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ABSTRACT

Recently, neural networks (NNs) have been proposed for the detection of cyber attacks targeting in-
dustrial control systems (ICSs). Such detectors are often retrained, using data collected during system
operation, to cope with the evolution of the monitored signals over time. However, by exploiting
this mechanism, an attacker can fake the signals provided by corrupted sensors at training time and
poison the learning process of the detector to allow cyber attacks to stay undetected at test time. Pre-
vious work explored the ability to generate adversarial samples that fool anomaly detection models
in ICSs but without compromising their training process. ~ With this research, we are the first to
demonstrate such poisoning attacks on ICS cyber attack online detectors based on neural networks.
We propose two distinct attack algorithms, namely, interpolation- and back-gradient-based poisoning,
and demonstrate their effectiveness. The evaluation is conducted on diverse data sources: synthetic
data, real-world ICS testbed data, and a simulation of the Tennessee Eastman process. This first prac-
tical evaluation of poisoning attacks using a simulation tool highlights the challenges of poisoning
dynamically controlled systems. The generality of the proposed methods under different NN parame-
ters and architectures is studied. Lastly, we propose and analyze some potential mitigation strategies.

1. Introduction

Neural networks (NN) exhibit impressive performance
and are now being assisted in many different areas such as
medical diagnosis, computer vision, autonomous driving,
and cyber attack detection. In particular, these technolo-
gies have been introduced to monitor and detect possible
incoming cyber attacks that target Industrial Control Sys-
tems (ICS), a subset of cyber-physical systems (CPS) [11,
12, 14, 28,29, 34, 53, 52, 55, 56, 18, 23, 25, 40]. Defending
these systems is extremely important, since ICSs are central
to many areas of industry, energy production, and critical in-
frastructure, and they are exposed to external threats as they
need to be remotely accessible by operators.

However, with the advent of adversarial machine learn-
ing [5], researchers have shown how skilled attackers can
hinder the performances of deep neural networks, by feeding
them with the so-called adversarial examples, making them
unable to fulfill their intended task. These attacks are already
targeting many fields of application, from the image classi-
fication [4, 51, 50, 48], to malware detection [50, 46, 9, 8],
and to network intrusion detection [47, 37]. NN-based algo-
rithms that detect cyber-threats of ICSs are vulnerable to ad-
versarial attacks as well. When an attacker has access to the
target only at test time, they can craft evasion attacks, by ma-
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nipulating input samples that are misclassified by the target
model [11, 56, 29]. In the context of threat detectors, this is
equivalent to bypass detection, with the subsequent success
of the intended attack against the victim. However, it is dif-
ficult to cause a significant physical impact on the controlled
process while evading a NN detector [29]. Hence, to max-
imize the damage, the attacker might attempt poisoning at-
tacks, where they introduce adversarial data when the model
is being trained. Such injected data influences the model by
either degrading its performances and making it unusable,
or by allowing future evasion attacks. The importance of
poisoning attack research increases in light of the popularity
of monitoring system operating in an online training mode.
With online training, the model is periodically trained with
new data collected from the protected system to accommo-
date for the concept drift. It was demonstrated in [56] on two
public datasets collected from the same testbed at two differ-
ent times, that over time such drift can be significant enough
to render the detector trained on the old data useless. The
problem was addressed by the detector’s retraining with the
new data. Another ICS online trained predictor is described
in [42], where it is used to predict mass flow in an industrial
boiler and is retrained to address the concept drift caused by
a nonstandardized feeding process. Such online retraining
provides the adversary with the opportunity to poison the
model; however, the state of the art lacks the study of the
efficacy of poisoning techniques in this context.

Problem statement. The threat model assumed in our re-
search considers an adversary whose goal is to change a phys-
ical process of the targeted ICS, which includes an online-
trained anomaly detector. We model the presence of an ad-
versary that has gained control of a sensor or a number (sub-
set) of sensors, and can falsify the sensors’ readings. Spoofed
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sensory data can cause the controller of the ICS to issue com-
mands, driving the system to a specific state desired by the
attacker. The attacker needs to change the controlled sen-
sor’s data gradually in the direction that would lead the de-
tector to accept the planned attack as normal behavior. The
changes introduced should neither be detected as anomalous
by the detector nor cause the detector to detect the normal
data as anomalous, thus increasing the problem’s difficulty.
The dynamic control of the ICS presents an additional chal-
lenge to the attacker. The process reacts to the introduced
poison in ways that might increase the poison detectabil-
ity and decrease the attack effectiveness. While the major-
ity of prior studies validate the detector and attacks using
static datasets, we hypothesize that the dynamic response
has a major impact on the ability to execute poisoning at-
tacks. To the best of our knowledge, no such dynamic sys-
tem poisoning study was conducted before. Our study aims
to answer the following research questions: (1) What algo-
rithms can be used to effectively generate poisoning input
for an NN-based ICS anomaly detector operating in online
training mode? (2) How robust are the state-of-the-art detec-
tors [52, 11, 29] to such poisoning attacks? (3) How generic
and transferable the attacks generated by the proposed al-
gorithms are? (4) How effective the proposed attacks are
against a dynamic ICS actively countering them? and (5)
How can such attacks be mitigated?

The contributions of this paper are as follows: i) To the
best of our knowledge, we present the first study of poisoning
attacks on online-trained NN-based detectors for multivari-
ate time series. ii) We propose two algorithms for the gener-
ation of poisoning samples in such settings: an interpolation-
based algorithm and a back-gradient optimization-based al-
gorithm. iii) We implement and validate both algorithms on
synthetic data and evaluate the influence of various test pa-
rameters on the poisoning abilities of the algorithms. iv) We
apply the algorithms to an autoencoder-based anomaly de-
tector for real-world ICS data and study the detector’s ro-
bustness to poisoning attacks. v) We conduct an evalua-
tion of the attacks’ transferability to different NN parame-
ters and architectures. vi) We implement the interpolation
poisoning attack in a test environment based on the sim-
ulated Tennessee Eastman process and study the effective-
ness and limitations of the proposed algorithms with regard
to dynamic systems. To the best of our knowledge, this is
the first study on dynamic system poisoning under control
and detector constraints. vii) We propose several mitigation
techniques against poisoning attacks. viii) The implementa-
tion of both algorithms and the evaluation test code are open
source and freely available.'

This study is an extension of our previous work [27].
While the preliminary version focused on the poisoning al-
gorithms and their evaluation on synthetic and static data,
this paper (1) extends the evaluation of the proposed poison-
ing attack to two additional real-world benchmark datasets,
(2) presents a methodology for practical evaluation of the
proposed algorithms, (3) proposes a novel five-step method

Ihttps://github.com/mkravchik/practical-poisoning-ics-ad

for the poisoning algorithms application to dynamic systems
including the use of two additional NN predictors, its imple-
mentation and evaluation, and finally (4) conducts an exten-
sive transferability study.

2. Industrial Control Systems

An Industrial Control System (ICS) is a network-connec-
ted computers that monitor and control physical processes.
These computers obtain feedback about the monitored pro-
cess from sensors and can influence the process using ac-
tuators, such as pumps, engines, and valves. Typically, the
sensors and actuators are connected to a local computing el-
ement, a programmable logic controller (PLC), which is a
real-time specialized computer that runs a control loop su-
pervising the physical process. The PLCs, sensors, and ac-
tuators form a remote segment of the ICS network. The
other ICS components reside in a different network segment,
i.e., the control segment, which typically includes a super-
visory control and data acquisition (SCADA) workstation,
a human-machine interface (HMI) machine, and a historian
server. The SCADA computer runs the software responsi-
ble for programming and controlling the PLC. The HMI re-
ceives and displays the current state of the controlled pro-
cess, and the historian keeps a record of all of the sensory
and state data collected from the PLC. ICSs are typically at-
tacked either at the sensor or at the PLC level in the remote
segment [15, 16].

Intrusion detection systems The intrusion detection sys-
tem (IDS) for ICSs is typically located in the control seg-
ment. Among the various approaches used to build such de-
tectors, in this work we focus on IDSs that model the physi-
cal behavior of the system [16, 38, 22, 15]. These IDSs are
thus expected to detect anomalies when the observed physi-
cal system state deviates significantly from the expected be-
havior predicted by their underlying model. This approach
has recently become very popular due to the ability of NNs to
model complex multivariate systems with nonlinear depen-
dencies among the variables [28, 52, 34, 53, 11, 29]. Various
NN architectures have been used to this end, including con-
volutional NNs, recurrent NNs, feedforward NNs, and au-
toencoders [19]. While our attacks are general enough to be
applied against any kind of NN architectures, in this paper
we opted to evaluate them against autoencoders due to their
increasing popularity [52, 11, 29].

Threat Model To evaluate the robustness of such detec-
tors to poisoning attacks, we consider a malicious sensor
threat model widely studied in the wireless sensor network
domain [43, 49], in a related ICS research [20], and used
in a real-world attack-defense exercise for smart grids [45].
Under this model, the attacker possesses knowledge of the
historical values measured by the sensors and can spoof arbi-
trary values of the sensors’ readings; however, both the PLC
and detector see the same spoofed values. We consider an
ICS with sensors distributed over a large area, which send
their data to a PLC residing at a physically protected and
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monitored location. In this setup, the attacker can replace
the original sensor with a malicious one, reprogram the sen-
sor, influence the sensor externally, or just send false data to
the PLC over the cable/wireless connection, but the attacker
cannot penetrate the physically protected PLC-to-SCADA
network. Even though redundant sensors might be deployed,
they protect against faults but not targeted attacks. The ad-
versary can attack all related sensors, as they have the same
location, protection, and, commonly, the same supply chain.
We argue that this setup is much more realistic than model-
ing an attacker that controls both the sensors and the inter-
nal network of the remote segment or even the network of
the control segment, as considered in previous studies such
asin [11, 56]. Moreover, the setting we considered presents
more constraints and challenges to the attacker, who must
achieve their goals with a single location of data manipu-
lation. Finally, as this is the first work to demonstrate that
is possible to perform poisoning attacks against cyber attack
detectors for ICSs, we assume a white-box attack scenario in
which the attacker has full knowledge of the detector’s model
(i.e,. learning algorithm and hyperparameters) [6]. Related
researches [14, 55, 2] use the white-box threat model as well.
Since ICSs are commonly attacked by state-sponsored ac-
tors, assuming an attacker that has knowledge about the at-
tacked model is not unrealistic. If the retraining schedule is
not known, the attacker can still apply the same algorithms
to calculate the poisoning samples, estimate the maximal re-
training period, and increase the intervals between the poi-
son injections to become larger than this estimation.

3. Poisoning Online Attack Detectors

In this section we describe our poisoning attack against
learning-based cyber attack detectors for ICSs. The attacker’s
ultimate goal is to allow a specific attack at test time to stay
undetected, despite involving significant changes to the val-
ues measured by one or more sensors. For example, the at-
tacker might aim to report a very low water level in a tank,
while in reality, the tank is full, thus causing it to overflow.
Without poisoning, the detector would raise an alert upon
encountering such spoofed water-level value, as it deviates
significantly from the level that is normally observed. With
poisoning, instead, we will show that the attacker can suc-
cessfully compromise the learning process of the detector to
allow specific attacks at test time, without substantially af-
fecting other normal system operations.

To poison the detector, the attacker exploits the fact that
itis periodically retrained by using newly collected data from
the monitored system. In this scenario, we assume that the
measured sensor values of the monitored system are added to
the training data, and the attacker knows when to inject their
poisoning samples to be used for retraining. If the detector’s
training schedule is unknown to the attacker, the attacker will
have to inject poisoning samples multiple times. We also as-
sume that only data that does not trigger alerts will be used
for retraining, i.e., only gradual changes are permitted. This
makes our poisoning attack more challenging, as the poison-

ing samples themselves will have to stay undetected.

We first discuss the considered anomaly detector and the
used notation (Section 3.1), then proceed to describe our poi-
soning attack strategies (Section 3.2).

3.1. Anomaly Detection with Autoencoder

In this research, we focus on reconstruction-based ano-
maly detectors, utilized in [18, 23, 28, 34, 53, 52, 29], which
are most commonly used with ICSs [11]. The general idea
behind such detectors is to train the model to reconstruct a
sample from its reduced latent representation, using normal
data. At test time, normal samples should be reconstructed
accurately, while anomalous data should have larger recon-
struction errors. In ICSs, the detectors usually operate on
sensor readings and actuator states. There are two stages
to detection: (1) the model produces its prediction for the
observed input values and the reconstruction error is cal-
culated, and (2) the error is compared to a threshold. To
avoid false alarms, it is common to consider a detection time
window (e.g., the last ten samples) and raise an alert only if
the error is above the threshold for all samples in that win-
dow [52, 11, 29].

We denote with x, € R? the d-dimensional vector con-
sisting of the sensor measurements and actuator states ob-
served by the PLC attime 7, and with X, ¢ = (X,_g, ..., X;) €
R?%S - a sequence of such signals from time ¢t — .S to time
t, being S the sequence length. We consider a cyber attack
detector f based on an NN model (e.g., autoencoder) that
reconstructs such values at each time point ¢ as:

X5 = fuX.s) (1)

where w are the model parameters (i.e., weights) and )A(,, S
is the reconstructed vector. The model parameters w are
learned at training time by minimizing a loss function £L(D,,,
on the training data D, = (X{,...,Xy), with N >> S. In
this work, we use the mean squared error (MSE) as the loss
function, considering each predicted sequence separately, and
it is computed as:

W)

N t
I 2
LDy, w) = 2 Z 1X; —x;1l5 @)
t=S+1i=t-§
At detection time, a test input X,’K = (X,_g,.--»X;), 1.,

a sequence of K vectors, where K is defined as the detection
window size at time ¢ (possibly with K < .S for prompt de-
tection) is compared against the corresponding predictions
to compute the residuals. The residuals are measured as the
Chebyshev distance - the largest deviation between the real
and predicted values across all features (sensors and actua-
tors), and it is defined as follows:

8X; k) = min 1K = X Il o 3)
ke eenst}

{1-K

To avoid false positives, the deviation between the predicted
and observed signals should be significant enough for the
entire length of K. Therefore, an attack is detected if the
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Figure 1: ICS cyber attack detector under a poisoning attack.

smallest residual in this sequence denoted as g exceeds the
detection threshold 7, and we denote such detection function
as:

'attack! if g(X, g) > 7,

otherwise.

X k) = “

"normal’

3.2. Poisoning Attacks

The poisoning attack considered in this work aims to al-
low a specific attack X = (x{, ... ,X"Q) of length QO to stay
undetected at test time, by injecting a carefully-optimized
sequence of M poisoning samples D, = x*, ..., val) into
the training data used by the detector. Note that here each
poisoning sample XZ = (xllz i ,xiT) contains T' poisoning
points, aiming to capture the natural periodicity of the given
physical signals in order to to stay undetected. Our poison-
ing attack is successful if the detector, trained on D;, U Dp,
does not detect X¢ at test time, while also not raising false
alarms on normal data. The proposed poisoning scenario is
summarized in Figure 1. Our attack can be formulated as a
bi-level optimization problem:

D; € argmin L(X?, w*) 5)
D,
s.t. w* € argmin £(D,, UD,, W) (6)
w
gD, =<z N
gDy =7 ®)

where the outer problem in Eq. 5 corresponds to having the
attack sample undetected, the inner problem in Eq. 6 amounts
to training the autoencoder on the poisoned training data,
and the constraints in Eqs. 7-8 respectively require the poi-
soning samples and normal data (drawn from a validation
set) to always stay below the detection threshold z. Note
that the poisoning samples only influence the outer objec-
tive indirectly, through the choice of the optimal parameters
w* learned from the poisoned training data. The outer ob-
jective (the loss on the attack input) L(X?, w) is computed
as done for the training loss in Eq. 2, i.e., by summing the
mean squared errors computed on sequences of the modeled

length S

0 !
LX%w) = Y > IR - X! ©)
1=S+1i=t-S§

Note that while £ denotes the learner’s objective function
(possibly including regularization), we use L(D,w) to de-
note only the loss incurred when evaluating the model with
weights w on the samples in D. We propose below two dif-
ferent poisoning algorithms to solve the given bi-level opti-
mization. In both cases, for computational convenience, we
greedily optimize one poisoning sample XZ at a time, and
add it to the poisoning set D, iteratively.

3.2.1. Back-gradient optimization attack
One approach for solving Problem 5-8 is to use gradi-
ent descent. To keep notation clean, we denote below the
poisoning sample XZ with x,, and the outer objective with
A(W*(x,)), to clarify that it only depends implicitly on x,
through the selection of the optimal parameters w*. Accord-
ingly, the gradient of the outer objective can be computed
with the chain rule as:
swr T

V., A=— VL,
Xe 5xc w

(10)

Sw*

where the term
6x

captures the change induced in the op-

c

timal parameters w* of the autoencoder due to the injection
of the poisoning sample x,. into the training set. For some
learning algorithms, this term can be computed in closed
form by replacing the inner learning problem with its equi-
librium conditions [39]. However, this is not practical for
deep architectures like autoencoders, as they have an ex-
tremely large number of parameters and their equilibrium
conditions are typically only loosely satisfied. To tackle these
issues, we use back-gradient optimization [36], as suggested
in [39]. The core idea of this approach is an iterative back-

wards calculation of both the weights’ updates and M, per-
ox,

formed by reversing the learning process and calculati‘ng the
second gradients in each iteration. We implemented back-
gradient optimization for stochastic gradient descent accord-
ing to Algorithm 1 (based on [39]).

Algorithm [ starts with initializing the derivatives of the
loss relative to the attack input and the weights of the trained
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Algorithm 1 Find the gradient of the loss on attack input w.r.t.
the poisoning sample using back-gradient descent.

Algorithm 2 Compute the poisoning sequence set D, with the
Back-gradient Optimization Attack.

Input: w, the trained model’s weights; @, the learning rate;
x,, the attack input; x_, the poisoning sample; L, the loss function;
L, the learner’s objective; T, the number of iterations.
Output: V, A, the gradient of the loss.
1: function GETPOISONGRAD(W, @, x,, x,, L, L, T)
2 dx, <0
3 dw < V L(x,,w)
4 fort =T to 1 do
5: dx, < dx,—adwV, V L(x., W)
6 dw <~ dw —adwV V_ L(x,wW,)
7 gr < V L(x,,W,)
8 W, < W, t+agr
9

return dx,

model (lines 2 and 3). Then it iterates for a given number
T iterations, rolling back the weight updates made by the
training optimizer (lines 7 and 8). In each iteration, the al-
gorithm calculates the second derivatives of the loss relative
to the weights and the attack input at the current weights’
values (lines 5 and 6) and updates the values maintained for
both derivatives. The final value of V, A accumulates the
compound influence of the poison input through the weights’
updates.
Applying back-gradient optimization to periodic signals.
Algorithm 2, which is one of the contributions of this re-
search, was used to apply Algorithm 1 to autoregression learn-
ing of periodic signals. Algorithm 2 starts with an empty
set of poisoning samples (line 1) and an initial poisoning
value. Then it repeatedly uses a train_test function to per-
form the model retraining with the current training and poi-
soning datasets (line 6). If the target attack input and the
clean validation data do not raise alerts, the problem is solved
(lines 7-9). Otherwise, the gradient of the poisoning input is
calculated using Algorithm 1, normalized, and used to find
the next poison value (lines 10-11). The new poison value is
tested with the current detector (line 13). If it raises alerts,
the value is too large, and the last poison value that did not
raise an alert is added to Dp, the adversarial learning rate is
decreased, and the last good (capable of being added without
raising an alert) poison is used as a base for the calculation in
the next iteration (lines 14-17). If the learning rate becomes
too low, the algorithm terminates prematurely (lines 18-19).
If no alerts were raised, the learning rate is restored to its
original value for the next iteration, in order to accelerate
the poisoning progress (lines 20-21).

For simplicity, we omitted the adversarial learning rate’s
(4) dynamic decay used in the algorithm’s implementation
from the description of Algorithm 2. With the dynamic de-
cay, 4 is decreased if the test error has not decreased, and
the iterations are terminated early if A < 0.00001. Another
implementation optimization not shown in the pseudocode
of Algorithm 2 adds clean data sequences to D, if the de-
tector raises alerts on clean data. If this happens, the model
is “over-poisoned” and clean data is added until these alerts
disappear. This is done after the calls to train_test.

Input: D, the training dataset; D, the validation dataset;
@, learning rate; A, the adversarial learning rate; x,, the attack in-
put; X S, the initial poisoning sample; L, the loss function; £, the
learner’s objective; M, the maximum number of iterations.
Output: D, poisoning sequence set.

1. D, < {}
2: decay < 0.9
3: eps < 107 > Minimal allowed A
4: origh < A
5: fori =1toMdo
6: (W, alerts) « train_test(D,,, Dy, X, D, X1)
7: if alerts == 0 then
8: D,«D,u{X!} > Add current poison
9: break
10: dx, < getPoisonGrad(w,a,x,, X!, L,L)
11: X« X! — 2-dx,/max(dx,)
12: > Check that the new poison does not generate alerts
13: (w,alerts) « train_test(D,,, D, X,, D,, X
14: if alerts > 0 then
15: D, < D,u{X!} > Add previous poison
16: A« decay- A > Adjust learning rate
17: Xt < X! > Revert to last good poison
18: if 1 <= eps then
19: break > Can’t find anymore poisons
20: else
21: A<« origh

22: return Dp

Sliding window prediction poisoning. NNs detectors com-
monly operate on the multivariate sequences formed by slid-
ing a window of a specified length over the input signal.
These sequences are overlapping, hence a single time point
appears in multiple sequences. As a result, a change to a sin-
gle time point by an attacker affects the detector’s predictions
for the multiple sequences that include this point. More-
over, in order for the changed point to remain undetected, its
prediction should also be close to its (changed) value based
on multiple past input sequences. These self-dependencies
spread across time, both forward and backward, and must
be taken into account when creating the poisoning input, as
this input must therefore be much longer than the sequence
of points changed during the targeted attack. However, the
model at the attacker’s disposal deals only with the short se-
quences. In order to be able to evaluate the total loss value
of the attack for the entire input, we performed the optimiza-
tion on a wrapper model (W.M) built around the original
trained model.

The WM illustrated in Figure 2 extends the trained mo-
del’s graph to calculate the gradient of the attacker’s ob-
jective relative to the entire input. The length of this in-
put for periodic signals needs to be at least one period, as
the attacker must comply with the signal’s normal behav-
ior. Specifically, the WM prepends the original model with
graph operations that divide the long input into overlapping
subsequences and appends the model with operations that
combine the results of individual predictions and calculate
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Algorithm 3 Compute the poisoning sequence set D, with the
Interpolation Attack.

Input: D, the training dataset; D,,,, the validation dataset;
6, the decay rate; x,, the attack input; X?, the initial poisoning
sample.

Output: D, the poisoning sequence set.

:eps <« 1077

: Dp < {}

rate « 1

step « 1

x, « X°

p c

: while max(|step|) > eps do
step = rate - (x, — x,)/2
X, =x,+ step
(err, alerts) <« train_test(D,

current poison raises alert

10: if alerts then

R AN A S s

12 Dyatr Xe> D) > Test if

11: rate < rate - 6 > Decrease the rate
12: else

13: X, < X, > Start interpolating from the new point
14: D,<D,U{x]} > Add current poison
15: rate « rate/é > Increase the rate
16: (err,alerts) «< train_test(D,,, D, x,, D,) > Testif

the attack raises alert after poisoning

17: if alerts == 0 then
18: break

19: return Dp

> The goal is reached

the combined output. The WM allows us to calculate the
gradients and optimize the adversarial input for an arbitrar-
ily long input sequence.

3.2.2. Interpolation-based attack

In addition to the back-gradient optimization algorithm
(Algorithm 1), we propose a much simpler naive interpola-
tion algorithm to identify the poisoning sequence. This al-
gorithm is based on an observation that both the initial poi-
soning sample and the final attack point are known in ad-
vance. The interpolative Algorithm 3 starts with an empty
set of poisoning samples, an initial poisoning sample, and
an initial interpolation step (lines 1-5). In each iteration, the
algorithm attempts to add a poisoning sample that is an in-
terpolation between the initial point and the final point (lines
7-9). If the new poisoning sample does not raise an alert, it
is added to the result set, and the next interpolation between

it and the targeted attack is tested (lines 12-15). Otherwise,
the interpolation step is decreased and the interpolation is re-
calculated (lines 10-11). The algorithm continues until the
attack is not detected or the interpolation step becomes too
small.

4. Evaluation Using Static Datasets

In this section, we present the experimental results of the
adversarial attacks evaluation in the static data setup that al-
lows for testing of a wide range of parameters in a stable and
repeatable environment. We first state our research ques-
tions in Section 4.1, then describe the setup used in the ex-
periments in Section 4.2 and the datasets in Section 4.3, and
conclude with the evaluation results in Section 4.4.

4.1. Research Questions
In this part of our study, we aim at addressing the follow-
ing research questions:

1. Can the proposed algorithms poison an online-trained
NN detector?

2. What is the influence of the detector’s hyperparame-
ters and attack characteristics on the poisoning effec-
tiveness?

3. Is there any difference in the poisoning effectiveness
between the synthetic signals and real-world data?

4. How do the proposed algorithms, i.e., back-gradient
optimization attack and interpolation-based attack, com-
pare against each other?

5. Can the attacks generated by the proposed algorithms
be transferred to a detector with a different optimiza-
tion algorithm, parameters, or architecture?

4.2. Evaluation Setup

This section presents the details of the evaluation setup.
Anomaly detection model. A simple undercomplete au-
toencoder (UAE) network was used for the ICS detector un-
der test. We used the network architecture described in [29]
for all tests, for both synthetic and real data. Table 1 presents
one sample of such detector.

The autoencoder model includes fanh activation in the
last layer. This last activation layer constrains the model’s
output to be between —1 and 1, while the model is trained
with data in the range of —0.5 - 0.5. On the one hand, this
prevents the attacker from introducing large poison values.
On the other hand, it leaves enough space for normal con-
cept drift and for the attacker to execute moderate, under the
radar, poisoning.

The detector was implemented in TensorFlow and trained
using the gradient descent optimizer for 10-30 epochs until
the mean squared reconstruction error for the input signal
decreased to 0.001 and there were no false positives. While
we experimented with various amounts of encoder and de-
coder layers, and multiple inflation factors and input-to-code
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Table 1
Model summary for an UAE Detector with four input signals
and sequence length of 20.
Model: UAE Detector
Layer (type)
x (Placeholder)

Output Shape
None, 20, 4) 0

Param #

(
flat_x (Reshape) (None, 80) 0
encoder _inflator (Dense + tanh)  (None, 160) 12,800
encoder 0 (Dense + tanh) (None, 53) 8,480
decoder _inflator (Dense + tanh)  (None, 160) 8,480
decoder 0 (Dense + tanh) (None, 160) 25,600
decoder last (Dense + tanh) (None, 80) 12,800

(

out (Reshape)
Total params: 68,160

None, 20, 4) 0

ratios, these variables mainly influenced the detector’s accu-
racy and not the poisoning results. The results presented in
this section are for the tests performed with an inflation fac-
tor of two, an input-to-code ratio of two, and a single encod-
ing and decoding layer.

Training process. The model was initially trained using the
entire training dataset. For simulating the online training, we
performed model retraining starting with the original trained
model. After each poisoning iteration, the model was re-
trained using the newly generated poisoning input as well as
the last part of training data (note that only the samples that
were not classified as anomalies by the detector were used).
There are other possible ways of combining the new and ex-
isting training data, e.g., randomly selecting a fixed number
of data samples from both. This setup was tested as well and
caused a larger number of poisoning samples to be added but
did not change the overall findings.

Evaluation metrics. The following metrics were used for
the poisoning effectiveness evaluation: (1) the fest time at-
tack magnitude, measured as the maximal difference between
the original and the target spoofed sensor value; and (2) the
number of poisoning samples in the generated sequence.
Evaluation process. We ran grid tests for both poisoning al-
gorithms for multiple values of: (i) target attack magnitude,
(ii) attack location (explained in the following section), and
(iii) modeled subsequence length. Each configuration was
tested five times, and the metrics were averaged.

4.3. Datasets

This section describes both the synthetic and the real-
world datasets used in our evaluation.
Synthetic dataset. For the synthetic data experiments, we
used several linear dependent sines to model a simple case of
correlated system characteristics. The signal amplitude was
between —0.5 and 0.5, and distorting Gaussian noise with a
mean of zero and a standard deviation of 0.025 was applied
to the signal. To simulate the attacks, we increased the sig-
nal amplitude by a specified value (attack magnitude). Two
different attack locations were tested, the highest point of
the signal (TOP) and the lowest point of the signal (BOT-
TOM), as illustrated in Figure 4.3. The rationale behind
testing these attack locations was to model two types of ma-
licious signal manipulation. For the BOTTOM location, the

Location=SIN_BOTTOM Location=SIN_TOP

1.0 Attack
Original
— 05
(]
C
2
? 0.0
-0.5
0 50 1000 50 100
Timepoint Timepoint

Figure 3: The two possible attack locations. With the BOT-
TOM location, the attack remains within the original signal's
range; with the TOP location, the attack exceeds it.

spoofed signal stays in the range of normal signal values,
while for TOP it goes beyond this range. To simulate an
attacker controlling some of the sensors, the attacks were
applied to just one signal.

ICS testbed datasets. For the real-world data experiments,
we utilized three ICS datasets: SWaT [17], BATADAL [53],
and WADI [1]. These datasets are very popular ICS real-
world benchmark datasets, and have been used in the related
research, such as: SWaT in [55, 56, 24,33, 12,25, 15,44, 18,
34], BATADAL in [52, 11, 29], and WADI in [11, 29, 24].

The SWaT dataset was collected from the secure water
treatment (SWaT) testbed at Singapore University of Tech-
nology and Design and has been used in many studies since
it was created. The testbed is a scaled-down water treatment
plant running a six-stage water purification process. Each
process stage is controlled by a PLC with sensors and actua-
tors connected to it. The sensors include flow meters, water
level meters, and conductivity analyzers, while the actuators
are water pumps, chemical dosing pumps, and inflow valves.
The dataset contains 51 attributes capturing the states of the
sensors and actuators each second for seven days of record-
ing under normal conditions and four days of recording when
the system was under attack (the data for this period contains
36 attacks). Each attack targets a concrete physical effect,
such as overflowing a water tank by falsely reporting a low
water level, thus causing the inflow to continue.

Following our threat model (see Section 2), we selected
seven attacks (3, 7, 16, 31, 32, 33, 36) that involve sensor
value manipulations; the attacks are described in Table 2. In
these attacks, the attacker manipulated the water tank level
sensor value and reported it to be either below or above the
actual level thus causing the PLC to overflow or underflow
the tank. The selected attacks represent many possible lo-
cations and magnitudes. In addition, in attacks #3 and #16,
the attacker changes the attacked sensor’s value gradually
(see Figure 4.3), while in others the value changes abruptly.
Thus, the selected attacks represent a variety of attack meth-
ods.

In the threat model considered, the attacker has access
to the real sensory data. However, as we had no access to
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Figure 4: SWaT attack #16. The gradual decrease of the
LIT301 water level sensor's value leads to overflow (the attack
period is marked by the red arrows).

the testbed, we did not know the real values of the features
during the attacks, only the spoofed ones. After trying to
reconstruct the real values using several heuristic methods,
we concluded that the heuristics provided imprecise results
and would distort the experiment. Therefore, instead of us-
ing the attacks’ sensory data from the SWaT test dataset, we
simulated the selected attacks by applying the same transfor-
mations to the corresponding parts of the training dataset.

The BATADAL dataset represents a simulated water dis-
tribution network consisting of several storage tanks, pumps,
and valves, with nine PLCs controlling them. The dataset
has 43 variables that represent the water tank levels, the flow
and status of all pumps, and the valves pressure. The test
dataset includes seven attacks that involve malicious actua-
tor activation, PLC set point changes, and sensor measure-
ment falsification. Two sensor manipulation attacks, 9 and
12, were used in our evaluation. Both attacks use the same
sensor manipulation - reporting low water level and leading
to overflow. We modeled the L_T2, F_V2, F_PU1, F_PU2
signals influenced by these attacks, with the attacker control-
ling the L._T?2 sensor.

The WADI dataset was collected from a real-world scaled-
down water distribution testbed consisting of large water tanks
that supply water to smaller consumer tanks. The WADI
dataset has 126 features. The 16 attacks present in the dataset
aim to interfere with the water supply to the consumer tanks.

The attacks involved valves opening and sensor readings spoof-

ing, and were partially concealed by the attacker. Attack 2,
where the sensor level was spoofed in order to cause an in-
crease of chemical dosing, was used in our evaluation. The
1_MV_001_STATUS, 1_FIT_001_PV, and 1_LT_001_PV
signals were modeled.

The data of all datasets was normalized to the —0.5 - 0.5
range.

4.4. Results
In this section, we present the detailed results of the poi-
soning attacks evaluation using both algorithms. We start

Table 2
SWaT attacks selected for poisoning.
Attacked
# sensor Modeled Description !Expected
(magni- sensors impact
tude)
LIT101, Increase Tank
3 LIT-101 FIT101, water level underflow;
(0.83) MV101, by 1mm damage
P101 every second P-101
Stop
LIT301, Increase inflow;
7 I("IIE)?’Ol FIT201, water level Eir:jlferflow
' P302 above HH '
damage
P-301
Decrease
16 LIT-301 I,;::::ggi water level Tank
(-1.0) P302 ' by Imm each | overflow
second
LIT401,
51 | LiT-401 P302, tS:tlelesTt:ao: Tank
(-1.0) LIT301, L overflow
P402
Tank
3 LIT-301 :;::::zgi Set LIT-301 underflow;
(1.0) P302 ' to above HH | damage
P-302
LIT101, Tank
33 LIT-101 FIT101, Set LIT-101 underflow;
(-1.0) MV101, to above H damage
P101 P-101
LIT101,
56 | LIT-101 FIT101, tS:tIe';LTthlao: Tank
(-1.0) MV101, LL overflow
P101

Each attack starts with a water level between L and H
Legend: L - low setpoint value, H - high setpoint value, LL -
dangerously low level, HH - dangerously high level.

with the synthetic signal poisoning results in Section 4.4.1,
present the real-world benchmark datasets poisoning evalu-
ation in Section 4.4.2, and conclude with the poisoning at-
tacks transferability study in Section 4.4.3.

4.4.1. Synthetic signal poisoning

To be consistent with the ratio of the attack duration to
the attacked signal period for attacks in the real-world bench-
mark datasets, we used sine waves with a period of 500 time
steps and attacks with a duration of 40 time steps. In each
poisoning attempt, the attacker generated two periods of the
signal containing the intended poison. The size of the train-
ing set was 20 periods (or 10 poisoning samples). All tests
used a detection threshold of 0.2 and a stochastic gradient
descent optimizer with a learning rate of 0.6. As expected,
we observed that with unlimited time, the algorithms could
poison the model so that it would accept any target attack
(unless it was unachievable due to the tight constraints of
the last layer activation). However, unlimited time attacks
are usually impractical, as the normal system drift and other
environmental and process changes will render the poison
ineffective. Also, prolonged attacks are more likely to be
detected by a human operator. To simplify the presentation
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and limit the test run time, we set the maximal number of
poisoning algorithm iterations to 300. We present the main
highlights of the experiments in Table 3 and the algorithms’
execution time in Table 4.

70 Algorithm
—— Back-gradient
Interpolation

Poisoning samples
N w P ()] (2]
o o o o o

-
o

0.3 0.4 0.5 0.6
Attack maanitude

Figure 5: The average number of poisoning samples required
to achieve the required attack magnitude for the BOTTOM
location. The shaded areas show the confidence interval.

Poisoning effectiveness. In general, both algorithms suc-
cessfully generated poisoning for the target attacks. An anal-
ysis of the results reveals several trends and factors influenc-
ing the success of poisoning:

e The attack magnitude. As can be seen in Figure 5, there
is a dependency between the targeted attack magnitude
and the number of poisoning samples required. Greater
magnitudes required more points. For many tests, the re-
quired amount of poisoning samples was several times
larger than the size of the original training set. We ob-
served that for the greatest attack magnitudes there was
a slight decline in the number of points required. A pos-
sible explanation for that is the attack signal that started
from the lowest point of the sine nearly reached the high-
est point of the sine thus becoming more similar to the
original signal.

e Algorithm. The back-gradient algorithm produced supe-
rior results, obtaining greater magnitudes with fewer poi-
soning samples for all tests except for those performed
with the sequence length of two (see Figure 5 and Table 3).

e Sequence length. In the majority of the tests, longer se-
quence lengths required the attacker to use more poison-
ing samples.

e Attack location. In all tests, the attacker was able to pro-
duce attacks with greater magnitudes for the BOTTOM
location, as evident from Table 3. It should be noted that
the maximal possible magnitude for the TOP location was
limited to 0.5 due to the constraints of tanh activation in
the last layer.

Table 3
Comparison of maximal attack magnitude achieved by poison-
ing for different algorithms and locations.

Modeled Algorithm /Location

seq. Back-gradient Interpolation
length BOTTOM TOP BOTTOM TOP

2 0.60(52) | 0.30(6) 0.80(6) | 0.50(10)
2 0.00(26) | 0.40(14) | 0.50(106) | 0.30(5)
22 0.90(12) 0.40(123) 0.60(98) 0.30(2)
32 0.90(68) 0.40(67) 0.40(89) 0.30(106)
12 0.00(85) | 0.35(45) - -

1 The number of poisoning samples for the attack is shown in paren-
theses.
2 The maximal possible magnitude for the TOP location was 0.5.

Table 4
Iteration execution time (in seconds).

Sequence length
2 12 22 32 42
Interpolative 27.8 | 41.0 | 46.6 | 40.2 | 456
Back-gradient 52.8 | 70.1 | 75.3 | 66.4 | 83.9

The tests were run on AWS c5n.large instance.

Algorithm

Table 5
SWaT attacks’ poisoning results for the interpolation algo-
rithm.

Seq. Attack #

length | 3! 7 16t 311 32 33 36
2 V(1) | V(1) | v(3) | v(11)| v(1) | v(2) | v(1)
10 v(2) | V(1) | X v(31)] v(3) | V(3) | V(2)
20 /(4) | /(6) | X v(29)| v(5) | v/(11)| /(35)
30 v/(8) | V(15)| X v(39)| v(5) | v(19)| v(32)

v denotes successful poisoning with the number of poisoning sam-
ples for the attack shown in parentheses; X denotes failure to gener-
ate the poisoning within 300 iterations.

1 The tests were performed with a threshold of 0.1.

Table 6
SWaT attacks’ poisoning results for the back-gradient algo-
rithm.

Seq. Attack #

length | 3! 7 16t 3171 32 33 36
2 V(1) | V() | V(1) | X /(1) | V(1) | v(1)
10 V(1) | V(9) | X X v/(2) | /(6) | V(4)
20 v(11)] v(21)] X X /(5) | V(9) | v(8)
30 /(9 | V(11)| X X /(10)| X v/ (9)

1 The tests were performed with a threshold of 0.1

4.4.2. Poisoning attacks on SWaT, BATADAL, and
WADI

For the simulated SWaT, BATADAL, and WADI attacks,
we modeled a small number of the features affected by each
attack (see Table 2) with a constrained attacker only able to
manipulate a single sensor’s data. The results are presented
in Tables 5, 6, 7, and 8 with the average number of poisoning
samples shown in parentheses.
Poisoning effectiveness. The results show that several fac-
tors influenced the poisoning’s success:

e The attack magnitude, location, and abruptness. SWaT
attacks #3 and #16, which are characterized by a gradual
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Table 7
BATADAL attacks’ 9 and 12 poisoning results
Sequence Algorithm
length Interpolation | Back-gradient
2 /(1) V(1)
10 V(1) /(1)
20 v/(2) v/ (40)
30 v/ (8) X
Table 8
WADI attack 2 poisoning results
Sequence Algorithm
length Interpolation | Back-gradient
2 V(1) v (135)
10 v (2) v (37)
20 v/ (3) v/ (18)
30 X v/ (32)
Attack 16 Attack 31
06
05 —— Seq. len 2
= o4 = Seq. len 30
__5 o 'S —— Threshold
73 73
& o2 4

0.1

0.0
0 10 20 30 40 50 0 10 20 30 40 50

Poisoning samples Poisoning samples

Figure 6: Attack detection residual change with poisoning
samples addition (presented for attacks #16 and 31), and a
threshold of 0.1 (the red line). With a sequence length of two,
the poisoning succeeds easily, whereas the sequence length of
30 provides strong poisoning resistance and causes the poison-
ing to fail for attack #16.

change of the spoofed signal, were poisoned using only
one or two samples for all sequence lengths when using
the default threshold of 0.2. The main reason for the ease
in the poisoning was the low initial residual of the attack
stemming from its subtle character. Therefore, we tested
poisoning for both attacks with the threshold of 0.1 (see
below).

e Sequence length. The sequence length influences the re-
silience of the model. Increasing it caused the attacker
to use more poisoning samples. Figure 6 illustrates the
change in the detection residual of attacks #16 and #31
with the introduction of additional poisoning samples.

e Detection threshold. The detection threshold has a strong
influence on the model’s resilience as well. Decreasing it
to 0.1 (tested with SWaT attacks #3, #16, and #31) in-
creased the number of poisoning samples required and
caused many of these attacks to fail. We examined the
impact of the detection threshold value on the number of
false positives for the entire SWaT dataset. We found that
when using the detection methodology described in [28]
and [29] the threshold could be as low as 0.05 without
introducing false positives.

e Algorithm. For the SWaT, BATADAL, and WADI tests,
the back-gradient algorithm did not perform better than

the interpolation algorithm and required more poisoning
samples in some cases (e.g. some of the WADI setups).
On the other hand, the back-gradient algorithm was able
to find the poisoning solution in some cases where the in-
terpolation algorithm could not. Our analysis suggests
that the difference between the synthetic and real-world
datasets results from the difference in the poison gener-
ation strategy of the two algorithms. The interpolation
algorithm uses the largest step possible in the direction
of the attack, while the back-optimization takes smaller
steps in the direction of the calculated gradients. The re-
sults show that each strategy has its place. In the case
of closely related (linearly dependent) synthetic signals,
smaller steps are preferred. In the case of more loosely re-
lated real-world sensors (see Figure 4.3), larger steps pro-
vide better results. An optimal learning rate scheduling
algorithm combining the strength of both approaches will
be a topic of future research.

4.4.3. Transferability study

In all experiments described above, we assumed the at-
tacker possessed the perfect knowledge of the process and
the detector. In the experiments described below, we omit-
ted different aspects from this knowledge and explored the
effects of this omission on the attack effectiveness. We con-
ducted three types of transferability experiments that are listed
in the order of the increasing difficulty for the attacker: trans-
ferring the attack (1) to a different detector optimizer, (2) to a
model with different parameters, and (3) to a model of a dif-
ferent architecture. As during these experiments we had to
test a wide range of parameters, such as sequence length and
attack magnitude, the tests were performed on the synthetic
data.
Different optimizer. In this set of the transferability tests,
the detector used Adam and Momentum optimizers, while
the attack poison was calculated using the gradient descent
optimizer we used in all other experiments. The Momentum
optimizer used the learning rate of 0.6 and the momentum
of 0.5, while the Adam optimizer used the learning rate of
0.001. The parameters were selected so that the training pro-
cess converged to similar error rates. We run the tests for se-
quence lengths between 2 and 42 and for attack magnitudes
between 0.4 and 0.9 in the BOTTOM location. Each com-
bination was run five times. The tests were conducted for
the back-gradient poisoning only, as the interpolation poi-
soning is agnostic to the detector optimizer. The results are
presented in Table 9. The results show that despite the dif-
ferences between optimizers, the poisoning attacks are trans-
ferable to some extent. Out of 60 test parameters combina-
tions, poisoning the gradient descent succeeded in 32 and
was successfully transferred in thirteen cases (40%) to Mo-
mentum and in nine cases (28%) to Adam. Surprisingly, in
a few cases the poison that failed with gradient descent suc-
ceeded with the alternative optimizer. This finding stresses
the generality of the found poison.
Different model parameters. In this set of transferabil-
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Table 9

Transferability of gradient descent (GD) back-gradient poisoning to a different optimizer.
The table cells’ triples represent the poisoning outcome for GD, Adam, and Momentum,
respectively. v denotes poisoning success; X - poisoning failure.

Seq. Magnitude
length 0.4 0.5 0.6 0.7 0.8 0.9
2 WV, v, X) | (X, V) | (X X X) X, X X) | (X X X) | (X X X)
12 v, v.V) | V. X V)| (V./.V) | (V. X)) | (VX)) | (Y X X)
22 v, v.v) | (X v, X X V. X) | (XXX | (XX V)| (X X X)
32 VAT TN KX | (LX) (X)X )
42 V.. ) | () (LX) (X)) (KX X)L (XX X)
ity tests, both the detector and the attacker used the same Table 10

gradient descent optimizer and same autoencoder detector
model. We fixed the attack magnitude at 0.4 and the location
at BOTTOM. We tested sequence lengths between 2 and 42,
while the detector used a different length from the one used
by the attacker. For example, if the attacker used the length
of 2, the tests with the detector’s sequence lengths of 12,
22,32, and 42 were conducted. All combinations of lengths
were tested for both poisoning algorithms. The results are
presented in Table 11 and in Table 12 for the interpolation
and for the back-gradient poisoning respectively. The results
present a very similar picture for both poisoning algorithms.
In the vast majority of the test configurations, a poison that
succeeded with a shorter sequence length was also success-
ful when applied to detectors with longer sequence lengths.
Contrarily, the poisons that succeeded for the attacker as-
suming a longer sequence failed in the vast majority of the
tests for shorter sequences. This finding again suggests that
the proposed algorithms’ transferability. It is important to
note that these tests were conducted in the offline setting -
all poisoning samples found by the attacker were added to
the detector’s training set at once. As we show later in Sec-
tion 6, the online training mode where the poisoning samples
are tested by the detector prior to being added to the training
set presents additional obstacles for successful poisoning.

Different model architecture. In this set of transferability
tests, the attacker poisoned the autoencoder detector, while
the defender used a 1D-convolution-based NN. We run the
tests for sequence lengths between 2 and 42 and for attack
magnitudes between 0.3 and 0.9 in the BOTTOM location
for both interpolation and back-gradient algorithms. Table 10
presents the architecture of the 1D convolution detector used
in the experiments. The detector’s parameters were selected
by grid search over hyperparameters as providing the best
detection of the attacks. The 1D convolution detector was
implemented using the Keras framework and trained using
the same gradient descent optimizer like the one used by the
attacker. The same 1D convolution detector configuration
was used in all 70 attacker’s test parameters combinations.
In all the tests, the poisoning of the 1D convolution with
the poison created for the autoencoder failed, regardless of
the poisoning result on the attacker’s autoencoder. To get a
more precise picture of the poisoning effect we compared the
decrease of the detector’s residual due to poisoning by sub-

Model summary for 1D Conv Detector.
Model: 1D Conv Detector

Layer (type) Output Shape  Param #

input 1 (InputLayer) None, 18, 2) 0

conv_ 0 (ConvlD) None, 17, 16) 80

max_ poolingld 1 (MaxPoolinglD) None, 8, 16) 0

conv_1 (ConvlD) None, 7, 32) 1056

conv_ 2 (ConvlD) None, 2, 64) 4160

max_ poolingld 3 (MaxPoolinglD) None, 1, 64) 0

flat_last (Flatten) None, 64) 0

dense last (Dense) None, 2) 130

(
(
E
max_ poolingld 2 (MaxPoolinglD)  (None, 3, 32) 0
(
(
(
(
(

reshape 1 (Reshape) None, 1, 2) 0

Total params: 5,426
Trainable params: 5,426
Non-trainable params: 0
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Figure 7: Attack detection residual for the attacker's and the
defender's models for back-gradient poisoning. The attacker
used autoencoder, while the defender - 1D convolution. The
defender's model exhibits a comparable residual decrease.

tracting the residual produced by the poisoned model from
the residual of the unpoisoned model. As shown in Figure 7,
the residual decrease of the (unknown to the attacker) de-
fender’s model is comparable with the decrease of the at-
tacker’s model. This is not enough to conceal the attack but
demonstrates the generality of the proposed algorithms.

5. Tennessee Eastman Process Simulator

5.1. Research Questions

The synthetic data and the static data collected from the
SWaT testbed provide a good starting point for assessing the
effectiveness of the proposed poisoning algorithms. How-
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Table 11

Transferability of the interpolation poisoning to a model with
different sequence lengths. The attacker's sequence lengths
appear in the rows, the detector's - in the columns. v denotes
poisoning success; X - poisoning failure.

Attacker’s Attacker’s Detector sequence length
seq. length outcome 2 |12 |22 | 32| 42
2 v -l X | V|V v
12 v | - |/ v
22 v X | X - v v
32 v X | X | X - v
42 X X | X | v |V -
Table 12

Transferability of the back-gradient poisoning to a model with
a different sequence length. The attacker's sequence lengths
appear in the rows, the detector's - in the columns.v/” denotes
poisoning success; X - poisoning failure.

Attacker’s Attacker’s Detector sequence length

seq. length outcome 2 [ 12 22| 32| 42
2 v -l X | V|V v
12 v X - v |/ v
22 v v -V v
32 v X | X | X - v
42 v X | X | X | X -

ever, they are not enough for evaluating the algorithm’s per-
formance in dynamic systems. In this part of our study, we
aim at addressing the following research questions:

1. Can the proposed poisoning algorithms be applied to
a dynamically controlled system and what changes are
required to apply them?

2. What is the effectiveness of the proposed algorithms
when applied to a dynamic system?

3. Can poison be generated for different kinds of attacks
on dynamic systems?

4. How do the proposed algorithms compare against each
other?

The most realistic evaluation environment would include a
testbed implementing some industrial process, an NN-based
detector monitoring it, and a compromised sensor used to
carry out the attack. Unfortunately, using such a real-world
testbed for our experiments would be very costly, as hun-
dreds and thousands of experiments are required for a thor-
ough study of the complex interaction between the attacker,
the process, and the detector. Moreover, attacking a real-
world testbed could present safety risks as the attacks might
lead to such effects as high pressure, overheating, or over-
flow.

In order to test the algorithms in a realistic, but safe, con-
trolled, and repeatable way we used a simulated Tennessee
Eastman (TE) industrial process [10]. The TE process model
is a simulation of a chemical plant, which became a standard

Compressor
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Reactor Condenser ') The malicious

sensor’s location

@ Stripper
A(g) +C(g9) + D(g) ~ G(liq)
A(g) +C(g) + E(g) - H(liq)

Figure 8: A schematic TE process diagram.

benchmark in the field of control and monitoring [54], and
is widely used for data-driven fault detection. It has been
used as a base for several cybersecurity testbeds such as the
NIST’s cybersecurity performance testbed [7], Damn Vul-
nerable Chemical Process [31], and GRFICS [13]. Con-
sequently, many recent cyberattack and anomaly detection
studies [26, 14, 35, 21, 41] use TE as a test case.

5.2. TE Process Description

The TE process is an open-loop model representing a
complex non-linear real-world chemical process, described
in detail in [10] and is presented schematically in Figure 8.
The process produces two liquid products, G, and H, from
four gaseous reactants A, C, D and E. The process involves
five major components: areactor, a condenser, a vapor-liquid
separator, a product stripper, and a compressor. The reac-
tants are mixed in the reactor in an irreversible exothermic
reaction. The products leave the reactor and are cooled down
in the condenser. Non-condensed gases are recycled by the
compressor back to the reactor. The condensed stream is
processed by the separator and, finally, the stripper removes
the remaining reactants from the final liquid product. The
process can operate in six different modes that reflect the
desired values of the G/H ratio as well as of the produc-
tion rate; we used the base case - Mode 1. The process has
41 measurements, XMEAS(1) through XMEAS(41), and 12
manipulated variables, XM V(1) through XMV (12). For ex-
ample, XMEAS(1) measures the feed of component A, and
XMV(3) allows controlling this feed by manipulating the
corresponding valve. There is no mathematical model of the
process, and the process state is calculated by the code pro-
vided which is intentionally obfuscated. The process must
be controlled to meet the objectives that include: (1) main-
taining the desired process variables, (2) keeping the pro-
cess within the equipment safety constraints, (3) recovering
quickly from disturbances. This last objective is especially
relevant for us, as it directly interferes with the attacker’s ob-
jective. There are five constraints that ensure safe equipment
operation. The constraints impose both low and high lim-
its on the allowed reactor’s pressure, level, and temperature,
separator level, stripper base level. Violating any constraint
causes the process shutdown. The original TE benchmark
includes twenty process disturbances, such as component A
feed loss. The disturbances are used as tests for comparing
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control strategies.

In our experiments, we used the revised Simulink sim-
ulation of the TE process of Bathelt ef al. [3]. The sim-
ulation solves the control problem with the help of twenty
proportional-integral (PI) controllers monitoring the XME-
ASs and influencing the process by changing the XMVs.

5.3. TE Process Threat Model and Attacks

In this experiment, we used the threat model described
in Section 2—an attacker possessing complete knowledge
about the attacked system and capable of falsifying a sen-
sor’s reading at the desired time. As in prior experiments,
we limited the attacker’s tampering ability to a single sensor;
adding more sensors increases the attacker’s power. There
are multiple possible attack goals, for example, decreasing
operational efficiency of the plant [21] or causing a shut-
down in the shortest amount of time [30]. In our study, the
attacker’s goal is to damage the system’s availability and in-
cur operational costs by forcing the system to shut down. In
contrast to an attack aimed at finding the shortest way to shut
the process down [30], we focus on stealthy attacks that (1)
cause a shutdown in a location that is different from the ma-
licious sensor’s location, and (2) delay the shutdown until af-
ter the tampering of the sensor’s reading has been completed.

An example of such stealthy attacks is the infamous Stuxnet
malware [32] that targeted nuclear centrifuges in Iran. To the
best of our knowledge, no prior work has presented such at-
tacks on the TE process. Therefore, we devised several novel
attacks as a part of this research, as described below.

As the TE process does not have a mathematical model,
finding such stealthy attacks was an empirical experimental
process. This attack exploration turned out to be a difficult
task due to the inherent robustness of the control part of the
TE simulator. As mentioned above, the TE process model
already contains a number of process disturbances, and the
control strategies are tested against these disturbances. Hence,
the controllers successfully cope with small and medium chan-
ges of the measurements’ values, and the process stays within
the safety limits. On the other hand, large changes in a sen-
sor reading immediately trigger the safety alarms, and the
system is shut down abruptly and non-stealthily. In order
to be able to conduct the attacks and study their effects, we
augmented the simulation with the MATLAB function that
intercepts the sensors’ readings between the process block
and the PI controllers and enables their manipulation (see
Figure 9). The function (indicated by the red exclamation
mark in Figure 9) hosts the code that analyzes the current
process state reported by the sensors, calculates the poison
or attack value to override the sensor under attack, and se-
lects the right moment to replace the measured value with
the calculated one with the help of the shutdown predictor
(described in Section 5.4). The attacker’s code is concen-
trated in a single location, thus making this attack generation
method generic and applicable to other Simulink-based pro-
cess simulations. The Simulink/MATLAB models and the
attack generation code are open source and freely available

1Y
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(Z) The TE process
implementation
function
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The MATLAB
function for
- malicious sensor
implementation

Figure 9: Attacking the simulated TE process. The Simulink
model of the TE process is augmented with the MATLAB code
for conducting the experiments and attacks. The MATLAB
function hosts all the code for reading the sensors, calculating
the poison and the attack, and executing both.

on GitHub.?

Several factors increased the difficulty of identifying both
effective and stealthy attacks. The high nonlinearity of the
process, active changes by the controllers to restabilize the
process once a disturbance is introduced, and complex inter-
controller dependency made a prediction of the sensor ma-
nipulation’s precise effect close to impossible. Moreover, as
the process has no mathematical model, there is no way to
calculate the required attack working back from the desired
outcome. We explored two kinds of attacks: (1) changing
the real sensor value by a given amount, and (2) setting the
sensor value to a given value. These two kinds of attacks
represent a miscalibrated sensor and a stuck sensor, respec-
tively. While there are many possible attack points, we lim-
ited our search to the incoming flow of component A and
the separator underflow, where we performed most of our at-
tacks. After an extensive search of possible attack spaces, we
selected four different attacks on the TE process which have
not been described in prior work. The attacks are described
in Table 13. As Table 13 shows, the attacks differ from each
other in magnitude, duration, and way of altering the signal.
In order to find an attack, we selected the kind (relative or
fixed change) and run extensive tests over multiple values
of the magnitude and duration until the minimal values that
still cause the attack were found. The smallest possible at-
tack is used in order to prevent a premature shutdown by the
poison that gets incrementally closer to the attack. To under-
stand the complexity of attack crafting, consider Figure 10
that illustrates some of the processes taking place during TE
attack #2.  The attack increases the separator underflow
sensor value by 7. This raise causes the separator flow rate
controller to close the valve which compensates for the flow
raise. Closing the valve causes the flow to decrease (even
though the attack still reports much higher values) and the

Zhttps://github.com/mkravchik/practical-poisoning-ics-ad

Kravchik et al.: Preprint submitted to Elsevier

Page 13 of 22



Practical Evaluation of ICS Attack Detectors Poisoning

Table 13
TE attack description.
Attacked
sensor Modeled .
# [magni- censors Description Impact
tude]
High
XMEAS(1), Increase the ;223; or
1 XMEAS(1) | XMEAS(7), eal value b o
[+2.35] XMEAS(8), ; 35\;0:J3h g stl\i\ilpper
XMV(3) '
level
shutdown
XMEAS(14), |~ " High
, | XMEAS(14) | XMV(7), r” I'ev Sle be stripper
[+7] XMEAS(15), 76?0 ;‘éghy level
XMV(8) e shutdown
XMEAS(14), Decr th Low
3 XMEAS(14) | XMV(7), e: e:llsee be separator
[-7] XMEAS(15), ; for"z ‘5% Y | level
XMV(8) ) shutdown
Low
XMEAS(14), | Set the value
4 EZAS]AS(M) XMV(7), to 22.9 for f:\f;ratm
XMEAS(12) 1.9h shutdown
Legend: XMEAS(1) - A feed, XMEAS(7) - Reactor pres-

sure, XMEAS(8) - reactor level, XMEAS(12) - separator level,
XMEAS(14) - separator underflow, XMEAS(15) - stripper level,
XMV(3) - A feed flow, XMV(7) - separator flow, XMV(8) -
stripper flow.

level starts to rise. The rising level causes the valve to grad-
ually open, eventually reaching a steady state. At the same
time, the stripper level increases, because the flow from the
separator fills it up. When the attack finishes, the sensor
reports the real value of the separator underflow, which is
much lower than the previously reported. This causes the
valve to open and a large inflow from the separator into the
stripper, causing it to reach an unsafe state and shut down.
This description is partial as we omitted the interaction with
the controllers regulating the stripper level and flow rate and
the influence of the attack on the rest of the system. The
simulated TE process presented two new substantial chal-
lenges to the proposed poisoning methods, that were absent
from the static data: (1) the shutdown predictability and (2)
precise modeling of the system’s response to the poison.

The shutdown predictability. The attack timing plays a
crucial role in its outcome. The same attack carried out at
a slightly different time might have a different outcome, de-
pending on the exact state of the entire system, as illustrated
in Figure 11. Figure 11 presents the histogram of the at-
tack 3 outcomes while the attack was performed using dif-
ferent attack magnitudes with fifteen increasing time delays
between 0 and 7.5 hours from the chosen attack time. On the
left side, the attacks were carried out after 63 hours of the
process run, on the right side - after the same time, but with
four poisons introduced during this time period. Two obser-
vations can be made based on this histogram. First, the same
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Figure 10: Attack 2 of the simulated TE process. The graphs
presents the values of XMEAS(14), XMEAS(12), XMV(8),
XMEAS(15) (top to bottom). Adding a fixed value to the real
value of XMEAS(14) eventually causes XMEAS(15) to reach
the dangerous high limit and triggers the safety shutdown.
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Figure 11: Histogram of shutdowns during TE Attack 3 with
and without poisoning. The attacks were conducted using
a number of magnitudes, shown at the x-axis. Each attack
magnitude was tested fifteen times with different delays. The
left histogram presents the test with attacks conducted without
prior poisoning. The right side - attacks after poisoning.

attack magnitude could cause shutdown or not cause it - de-
pending on the attack’s timing. Second, after the poisoning,
the system had more shutdowns at every attack magnitude
and these shutdowns started at lower magnitudes than with-
out poisoning. Consequently, applying poisons could trigger
a premature shutdown, which the attacker usually wants to
avoid. With other attacks, the attack outcome was even less
predictable.

The system response to the poison. As shown in Figure 10,
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the controllers react to the introduced poison and cause abrupt
changes in many signals. In order to avoid triggering the de-
tector’s alarm in these dependent signals, a way to precisely
predict the system’s response while calculating the poison is
required. As illustrated in Figures 10 and 11, the system re-
action to the disturbance is complex and dependent on many
variables of the system state, thus simple interpolation using
the system response to the attack was not enough. Failing to
predict the system’s response caused the detector to trigger
alerts on the poison injected into the simulator. We describe
our solution to these two challenges below.

5.4. TE Simulator Poisoning Setup

In order to cope with the new challenges of the dynamic
system, we augmented our attack with two new components:
(1) process predictor (PP) and (2) shutdown predictor (SP).
The goal of the PP is to predict the values of the variables
monitored by the detector as a result of the injected poison.
In theory, we could find the precise system response by inte-
grating the simulator into the poison calculation. However,
in practice this approach would suffer from very serious per-
formance issues as running the simulator for each poison cal-
culation iteration would make it very slow. Therefore, we
replace the simulator with the PP that approximates it, can
be naturally integrated into the algorithm, and provides ex-
cellent performance. The PP is integrated into the poison
calculation process as follows. The algorithm described in
Section 3.2.1 and Section 3.2.2 work as described with a sin-
gle change: after calculating the next value of the poison we
use PP to predict the values of the dependent signals from
the signal under attack. The architecture of the PP is pre-
sented in Table 14. The PP model predicts the next values
of all modeled sensors based on the previous values of the
signal which is being poisoned (see Table 13). For exam-
ple, for attack #2 it predicts XMV (7), XMEAS(15), XMV (8)
based on XMEAS(14). The model has three fully connected
layers followed by a dropout with a rate of 0.2 and a final
dense layer producing the output. In addition to the attacked
sensor signal (which is fully known to the attacker), it has
an auxiliary input, which we called the bootstrapping in-
put. The bootstrapping input, which is very short compared
to the length of the regular input, contains the values of all
modeled signals as they are under the normal operating con-
ditions. Unlike the values of the real signals which are un-
known when the attack or poison is injected, the values under
normal conditions are known in advance. We found that the
bootstrapping input increased the PP’s accuracy in predict-
ing the process behavior. The reason for that improvement
is that bootstrapping allows the model to establish a baseline
for the predicted signals in relation to the input (i.e. manip-
ulated) signal. The predictor was implemented in Keras and
used 300 last values of the attacked signal and the bootstrap-
ping input of length 50. The predictor was trained on the
data collected from the simulator while conducting attack-
like signal manipulation in the signal range around the target
attack magnitude, with a third of the data set aside as valida-
tion and tested on the simulator’s reaction to the generated

Table 14
Model summary for TE Process Predictor.
Layer (type) Output Shape :éaram Connected to
input_1
(InputLayer) (None, 400, 1) 0
bootstrapper

(InputLayer) (None, 50, 4) 0

flat (Flatten)  (None, 400) 0 input_ 1[0][0]
?I(-')I(;ttst:rﬁﬂat (None, 200) 0 bootstrapper[0][0]
Ezrc])iita&l— (None, 600) 0 flat[0][0]

nate) bootstr _flat[0][0]
?SZS,ZE)O (None, 900) 540900 concat 1[0][0]
?stnesg)l (None, 225) 202725 dense_0[0][0]
?82?122)2 (None, 900) 203400 dense_1[0][0]
?Biz(;itu?)l (None, 900) 0 dense_2[0][0]
?SZZeSE)laSt (Norne, 3) 2703  dropout_1[0][0]
E(;S:sahgi;)l (None, 1, 3) 0 dense_last[0][0]

poison. A dedicated predictor was created for each attack.
The goal of the SP is to predict whether the system will
shut down in response to the given poison or attack. This
is a classification problem that was solved using a Random-
ForestClassifier model with 100 estimators from sklearn Py-
thon package, which showed the best F1 score when com-
pared to LogisticRegression, LogisticRegressionCV, and a
fully connected NN classifiers (see Table 16). The SP was
trained with the data collected from the simulator while con-
ducting attacks with magnitude and duration in the range
around the values of these variables for the specific attack.
Commonly, the range of magnitudes started 1.5-2 unites be-
low the attack magnitudes and finished at the attack magni-
tude and the range of duration span around one-tenth of an
hour with the attack duration in the middle. The SP was inte-
grated into the attack process as follows. Before injecting a
poison or an attack, the probability of the shutdown was esti-
mated using the trained SP. Poison was not injected until the
probability was below a threshold, typically set at 0.4. The
attack was not carried out unless its probability is above 0.8.
Figurel2 summarizes the final setup of the TE simulator

poisoning. The process consisted of the following phases:

1. Detector training. The detector was trained on the
normal simulation data. We found it useful to add
light disturbances into the training data to increase the
training set variability.

2. Attack engineering. Once the target attack scenario
is selected the simulator was used to establish the suc-
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cessful attack conditions: the magnitude, the duration,
the poison length, and the delay of the attack start rel-
ative to the signal period. The poison length includes
the time of the attack itself as well as the no attack pe-
riod before and after the attack allowing the system to
recover from the poisons. Without this recovery pe-
riod, the poison could cause a premature shutdown.
The outcomes of this phase were: (1) the attack data
values of all relevant signals (2) trained PP and SP
models;

3. Poison calculation. We iteratively calculated the next
poison candidates using the algorithms presented in
Section 3.2. After calculating the poison values for
the attacked signal, we used the PP to calculate the
values of all other modeled signals before testing them
with the detector. The outcome of this phase was a
sequence of the found poisoning samples.

4. Poisoning and Attack Injection. The found poison-
ing samples were injected sequentially into the run-
ning simulation process. The SP was used to find the
safe time for the poison injection and for the appro-
priate time for conducting the attack. The outcome of
this phase was the recording of the system behavior
under the injected poisons and attack.

5. Attack Detection Verification. The recorded signals
containing the actual system behavior under poisoning
and attack were passed through the detector. First, the
poison part is used to train it in an online way, then the
attack is tested.

The desired outcomes of the entire process were (1) the poi-
son not triggering alerts, (2) the poison not causing the shut-
down, (3) the attack succeeding, and (4) the attack being not
detected or being detected at the very end immediately be-
fore the shutdown. We present the results of these experi-
ments in Section 5.5.

5.5. Poisoning Tennessee Eastman Process Static
Data

In the first set of experiments, we conducted poisoning of
the TE process signals in the same setup used for the SWaT
dataset. The goal of these experiments was to compare the
TE process to the SWaT process poisoning findings. For that
purpose, we created two series of attacks based on data ma-
nipulation only (not involving the actual simulation). The
two sets were based on the signals used for the TE attacks 2
and 3 (see Table 13. These two attacks represent changing
the signal towards higher (attack 2) and lower (attack 3) val-
ues relative to its real value and come to represent a generic
family of such attacks. The original signals were scaled to
be between -0.5 and 0.5, as in the synthetic data experiments
described in Section 4.3. For each attack, we tested the at-
tack magnitudes (the relative signal distortion) up to 0.5 for
attack 2 and -0.5 for attack 3. We tested the same sequence
lengths as in all other experiments and run each configura-
tion at least 3 times. The results are presented in Table 15.

Poisoning effectiveness. In general, both algorithms suc-
cessfully generated poisoning for the target attacks for the
majority of test configurations. The following observations
can be made:

o Interpolation algorithm’s stability. The interpolation
poisoning demonstrated stable and predictable results con-
forming to the findings of the experiments with the syn-
thetic and SWaT data. Larger attack magnitudes required
more poisoning samples and longer sequences were harder
to poison.

e Back-gradient algorithm’s lack of predictability. On
the other hand, the back-gradient algorithm’s results had
a high variance in the required number of poisoning sam-
ples and these numbers were higher than of the interpola-
tion algorithm. At the same time, it has succeeded to cre-
ate a poison where the interpolation algorithm has failed
(e.g. attack 2, sequence length 42). Our analysis indicates
that the high samples number’s variance is most probably
caused by the very noisy gradients, which are due to the
abrupt changes in the signals.

5.6. Poisoning Tennessee Eastman Process
Simulator

In the second set of TE experiments, we conducted poi-
soning of the TE process simulator. We followed the five-
stage process described in Section 5.4. The most difficult
aspect of the simulator’s poisoning appeared to be the influ-
ence of the poison on the system behavior and on the attack
outcome. Adding a poison and the introduced process state
change, causing the controllers to react and further alter the
process state, thus influencing its response to the subsequent
poisons and to the attack. So in order to engineer the attack,
we needed to anticipate the reaction to the poison, and in
order to calculate the poison, we needed to know the form
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Table 15
Poisoning attacks on static TE process signals. v denotes poisoning success; X - poisoning
failure. The median number of the required poisoning samples is shown in parenthesis.

Attack Algorithm Seq. Attack magnitude
# length | 0.05 | 0.10 | 020 | 0.30 0.40 0.50
2 v(36) | v(34) | /(55) | v/(18) | v(10) | v(11)
12 /(1) | V(1) | V(1) /(1) V(1) V(1)
Back-gradient | 22 /(1) | v1) | /(1) V(1) V(1) V(1)
32 /(1) | v/(68) | v(21) | v/(18) | /(45) | /(157)
) 42 /(56) | /(87) | /(45) | /(50) | /(114) | /(46)
2 /(1) | V(2) | V(2) v (2) v (2) v (3)
12 /) | v | V(D) /(1) /(1) /(1)
Interpolation 22 /(1) V(1) V(1) v/ (1) V(1) V(1)
32 /1) | V(2) | V(7)) | /(10) | v(12) | /(15)
42 X X X X X X
2 V(1) | /(13) | v(14) | /(14) | v(10) | v(11)
12 /) | v | V(D /(1) /(1) /(1)
Back-gradient | 22 /(1) V(1) V(1) v/ (1) V(1) v (50)
32 V(1) [ /(29) [ /(38) | /(139) X X
3 42 X | /(26) | /(69) X X X
2 /(1) | V(2) | V(2) v (2) v (2) v (2)
12 /1) | V(1) | /(1) V(1) V(1) V(1)
Interpolation 22 /1) | v1) | /(1) V(1) V(1) v/ (2)
32 V1) [v/a2) [ /(18) | v(22) | /(24) | /(29)
42 /(19) | /(48) | /(70) | /(101) X X
Table 16 generating suitable data for training the process and shut-
F1 scores of shutdown predictors for each attack. down predictor. In addition, the response of the system to
Tost the poison introduced even more noise into the gradients and
Attack cases LR LRCV NN RF made the back-gradient convergence very slow. For these
num. reasons, we limited our experiments to a more stable and
1 19537 | 0.633 0.633 0.901 0.959 predictable interpolative algorithm. Table 17 summarizes
2 518 0.865 0.865 0.970 1 the poisoning of the four TE attacks on the simulator and
3 266 0.760 0.740 0.902 0.938 Figures 13 and 14 illustrate a successful poisoning and at-
4 5035 0.684 0.723 0.719 0.75 tacking in the TE attack 2 setup. Figure 13 shows all four
LR - Logistic Regression, LRCV - Logistic Regression CV, RF - Ran-  Signals of the simulator while the poisons and the attack are
dom Forest, NN - Neural Network. injected into XMEAS(14), shown at the top. It can be seen

that the attacker waits for a long time before launching the
attack, waiting for the shutdown predictor to indicate the cor-
rect moment for the attack. Also, it can be seen that while
the attack is conducted on XMEAS(14), the shutdown oc-
curs due to the safety limit violation on XMEAS(15) (the
third signal from the top). Figure 14 shows the detector’s
state for the XMEAS(15) signal without poisoning (on the
left) and after poisoning (on the right). The poisoning causes
the predicted value to get closer to the observed one thus re-
moving the alert. Only immediately before the shutdown,
the detector starts triggering an alert, but this happens after
the attack has completed. The collected datasets for the SP
and PP, trained models, the attack signals, and the detector’s
results for the attacks are freely available.”.

of the attack. Performing a systematic grid search over the
attack lengths and magnitudes and training both the SP and
the PP with data collected over a wide range of scenarios
simulating different poison-like disturbances allowed us to
successfully poison the simulator in all four TE attacks sce-
narios. Table 16 shows the F1 classification metric for dif-
ferent shutdown predictor models. The NN SP model was a
fully connected 3-layers network with 64 units, ReLU acti-
vations, and Dropout layers between the Dense layers with
the rate of 0.25. It was implemented in Keras and trained
using Adam optimizer with binary cross-entropy as a loss
function. All classifiers used balanced class weights and 20-
80 test-train split. Random Forest classifier showed the best
performance and was used in all the attacks.

All tests were conducted with the detector using the se- 6. Poisoning Attack Mitigation
quence length of 20. The back-gradient algorithm’s lack of
predictability on the TE signals already demonstrated on the
static data experiment was ever larger in the real simulator
experiment. This lack of predictability prevented us from *Link will be provided later

Our findings suggest that decreasing the detection thresh-
old is an effective means of poisoning mitigation. Figure 15
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Table 17

Poisoning attacks on TE process simulator. v/ denotes poison-
ing success; The number of the required poisoning samples is
shown in parenthesis.

Attack A!erts Alerts with Poisoning
without ) outcome

# poison poison (samples)

1 276 0 /(11)

2 349 7 v (5)

3 73 0 7(3)

g 133 0 /(3

I The alerts immediately preceded the shutdown thus pro-
viding no early notice to the defender.
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Figure 13: Attack 2 for the TE process simulator. The picture
shows the five poisons followed by the attack after a prolonged
waiting until the SP predicts a certain shutdown, which indeed
happens as the value of XMEAS(15) becomes too high.

illustrates this effect for attack #7, the same behavior was
observed with other attacks. At the same time, decreasing it
too much will introduce false positives by the attack detec-
tion model.
Increasing the sequence length seems to be another ef-
fective poisoning countermeasure (see Tables 5 and 6). To
evaluate the influence of this length increase on the overall
anomaly detection performance, we performed the detection
of all attacks (not only the selected ones) in the SWaT dataset
using different sequence lengths and compared the average
F1 detection score from five runs of each configuration. As
can be seen in Table 18, increasing the length results in just
a 2-4% decrease in the detection score.

As the third form of mitigation, we propose using two
detector models with different sequence lengths - one short
and one long. The models process the input in parallel and

No poisoning With poisoning

1.4

1.2 = Real xmeas_15 = Real xmeas_15
1.0 Predicted xmeas_15 Predicted xmeas_15
0.8

Residue Residue
0.6 — Threshold — Threshold
— Alert — Alert

oo \ ] \ NY

Normalized signal
|
o
N

3000 0 1000 2000 3000
Timepoint
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Figure 14: The poisoning effect during Attack 2 for the TE
process simulator. On the left, where the attack is conducted
without poisoning the residual between the real and predicted
signal is above the threshold and an alert is issued at the begin-
ning of the attack. On the right side, the residual is kept below
the threshold due to prior poisoning and an alert happens after
the attack has ended, right before the shutdown.

100 Seq. length
2
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— 20

— 30

Poisoning samples
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Attack detection threshold
Figure 15: The average number of poisoning samples required
to achieve the SWaT attack #7 under the given detection
threshold. Lower thresholds require more points. It was not
possible to achieve the attack for thresholds lower than the
left-most point of each graph.

Table 18
Average F1 for attack detection on the SWaT dataset for dif-
ferent modeled sequence lengths.

Modeled
sequence 1 10 20 30 40
length
Average
detection F1 0.846 | 0.826 | 0.831 | 0.828 | 0.824

either one can detect an anomaly. In this setup, the attacker
will have to produce poisoning that influences both models
simultaneously. The differences in modeling that result from
different sequence lengths should prove challenging to the
attacker. We tested this hypothesis on the synthetic data with
two models, one using the sequence length of two and an-
other with a length of 22, using the interpolation algorithm.
As shown in Table 19, the dual model detector exhibited
stronger resilience than each component on its own. This
promising direction will be studied in more depth in future
research.
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Table 19
Dual detector poisoning results.

Seq. length Second seq. length Attack magnitude
0.4 0.5

2 - v/ (5) v (8)

- 22 v (3) v (5)

2 22 /(12) /(62)

7. Related Work

Several recent studies have focused on evasion attacks
on CPS anomaly detectors. In [12], the authors showed that
generative adversarial networks (GANs) can be used for real-
time learning of an unknown ICS anomaly detector (more
specifically, a classifier) and for the generation of malicious
sensor measurements that will go undetected. The research
in [14] presents an iterative algorithm for generating stealthy
attacks on linear regression and feedforward neural network-
based detectors. The algorithm uses mixed-integer linear
programming (MILP) to solve this problem. For NN detec-
tors, the algorithm first linearizes the network at each op-
erating point and then solves the MILP problem. The paper
demonstrates a successful evasion attack on a simulated Ten-
nessee Eastman process. Recently, Erba er al. [11] demon-

strated a successful real-time evasion attack on an autoencoder-

based detection mechanism in water distribution systems.
The authors of [11] considered a white-box attacker that gen-
erates two different sets of spoofed sensor values: one is sent
to the PLC, and the other is sent to the detector. Another
recent paper in this area [56] also focused on an adversary
that can manipulate sensor readings sent to the detector. The
authors showed that such attackers can conceal most of the
attacks present in the SWaT dataset. In [33], a framework for
generating adversarial examples generation for CPS with lin-
ear input constraints is presented and successfully evaluated
with simulated data. In [24], the authors present a successful
evasion of both NN detector and additional rules checkers in
CPSs with the help of genetic algorithms evaluated on two
public datasets. Our study differs from these studies in sev-
eral ways. First and foremost, all of the abovementioned pa-
pers examined evasion attacks, while our research focuses on
poisoning attacks. Second, [12, 11, 56] considered a threat
model in which the attacker manipulates the detector’s input
data in addition to manipulating the sensor data fed to the
PLC. Such a model provides a lot of freedom for the adver-
sary to make changes to both types of data. Our threat model
considers a significantly more constrained attacker that can
only change the sensory data that is provided both to the
PLC and the detector.

A few recently published papers have studied poisoning
attacks, however, the authors considered them in a differ-
ent context. The study performed by Muifloz-Gonzailez et
al. [39] was the first one to successfully demonstrate poi-
soning attacks on multiclass classification problems. It also
was the first to suggest generating poisoning data using back-
gradient optimization. Our research extends this method to
semi-supervised multivariate time series regression tasks in

the online training setting and evaluates the robustness of an
autoencoder-based detector to such attacks.

Shafani et al. [48] and Suciu et al. [50] studied clean-
label poisoning of classifiers. In targeted clean-label poison-
ing, the attacker does not have control of the labels for the
training data and changes the classifier’s behavior for a spe-
cific test instance without degrading its overall performance
for other test inputs. These studies differ significantly from
ours, both in terms of the learning task to be poisoned (clas-
sification vs. regression) and the domain (images vs. long
interdependent multivariate time sequences).

Madani et al. [37] studied adversarial label contami-
nation of autoencoder-based intrusion detection for network
traffic monitoring. Their research considered a black-box at-
tacker that gradually adds existing malicious samples to the
training set, labeling them as normal. Such a setting is very
different from the one studied in our work. First, we con-
sider semi-supervised training; thus, there is no labeling in-
volved. Second, we explore algorithms for generating adver-
sarial poisoning samples that will direct the detector’s out-
come towards the target goal. Table 20 summarizes related
studies and compares them to our research.

To summarize, although some of the previous research
has dealt with related topics or domains, to the best of our
knowledge, this study is the first one to address poisoning
attacks on multivariate regression learning algorithms and
specifically on online-trained physics-based anomaly and in-
trusion detectors in CPSs.

8. Conclusions

The reliability of NN-based cyber attack detectors de-
pends on their resilience to adversarial data attacks. In this
study, we presented two algorithms for poisoning such de-
tectors under a threat model relevant to online-trained ICSs.
The algorithms were evaluated on two datasets and found ca-
pable of poisoning the detectors both using artificial and real
testbed data. To the best of our knowledge, this is the first
time adversarial poisoning of multivariate NN regression-
based tasks with constraints has been presented. We also
demonstrated that attacks are transferrable to detectors dif-
ferent from those used to generate the attacks, albeit in a
limited form. Lastly, we presented a method for applying
poisoning attacks to dynamic systems and successfully con-
ducted four and novel attacks on the TE process simulator.

Our results also point out several factors influencing the
examined detectors’ robustness to poisoning attacks. First,
in most attacks, the attacker had to generate long sequences
of poisoning samples, often exceeding the amount of train-
ing data. This creates practical difficulty in carrying out such
attacks without being detected or affected by natural process
changes. Therefore, we can point out a certain inherent ro-
bustness of the detectors. In addition, the detectors can lever-
age the constraints of the NN architecture used to prevent the
attacker from causing the model to accept arbitrary values
even with the unlimited attack time. In our experiments, we
used the fanh activation in the last layer for such protection.
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Table 20

Comparison of related adversarial attacks studies.

Ref. Application area Attack location Attacked detector model Online Attack target Attack type
12 ICS IDS Sensor + Detector Recurrent NN (LSTM) No Static Evasion
14 ICS IDS Sensor + Detector Feedforward NN No Dynamic Evasion
37 Network IDS IDS Autoencoder NN Yes Static Poisoning
11 ICS IDS Sensor 4+ Detector Autoencoder NN No Static, Dynamic Evasion
56 ICS IDS Detector + IDS Recurrent NN (LSTM) No Static Evasion
33 ICS IDS Sensor only Feedforward NN No Static Evasion
24 ICS IDS Sensor only Recurrent NN (LSTM) No Static Evasion

[ Ours | ICS IDS [ Sensor only [ Autoencoder NN [ Yes [ Static, Dynamic | Poisoning

Our experiments show that neither of the algorithms has ~ Acknowledgments

a definitive advantage when evaluated with real-world data-
sets. The back-gradient algorithm required more poisoning
points in some cases, yet it was able to find a solution in sev-
eral instances where the interpolation algorithm failed. The
interpolation algorithm generally performed better when the
detector used shorter sequences, while the back-gradient per-
formed better with longer sequences. Therefore, the algo-
rithms will complement each other in the attacker’s toolbox.
As both the interpolation and back-gradient algorithms are
contributions of this research, we believe that presenting the
algorithms’ advantages and limitations has scientific value.
In addition, TE simulator experiments have revealed another
difficult challenge for the attacker: predicting the poison-
ing’s effect on a dynamic system. The dynamic reaction of
the control loops and of the controlled process significantly
complicates the attacker’s ability to manipulate the process
and the detector. The TE process’s control strategy may
pose a particularly difficult challenge to the attacker [30].
Follow-up research with other real-world dynamic systems
is required to assess this aspect of ICS poisoning susceptibil-
ity. One of the main goals of this research was to investigate
whether adversarial poisoning attacks that were evaluated on
static datasets perform similarly in dynamic environments.
Our results show that this is not the case, suggesting that
such attacks must be evaluated in a dynamic environment to
understand their actual impact.

In addition, we evaluated three poisoning mitigation tech-
niques: (1) decreasing the detection threshold, (2) increas-
ing the sequence length, and (3) using dual detectors. The
mitigations were found effective and did not degrade the de-
tection metrics significantly.

Some limitations and future directions of this study are
worth noting. First, this study mostly focused on autoencoder-
based detectors; studying the robustness of other NN archi-
tectures is a topic for future research. Another important is-
sue for future studies is increasing the efficiency of the poi-
soning algorithms proposed. Currently, they require signif-
icant computational time, thus making them inappropriate
for real-time poisoning. We have discovered that real-world
dynamic systems present multiple challenges for the poison-
ing attacker. The two most important challenges to be re-
searched are: (1) improving the attacker’s ability to engineer
the attack while accounting for the system response to the
poisoning and (2) adapting the back-gradient optimization
for dynamic systems attacks.
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