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Abstract

The constantly evolving digital transformation imposes new requirements
on our society. Aspects relating to reliance on the networking domain and
the difficulty of achieving security by design pose a challenge today. As a
result, data-centric and machine-learning approaches arose as feasible solu-
tions for securing large networks. Although, in the network security domain,
ML-based solutions face a challenge regarding the capability to generalize
between different contexts. In other words, solutions based on specific net-
work data usually do not perform satisfactorily on other networks. This
paper describes the stacked-unsupervised federated learning (FL) approach
to generalize on a cross-silo configuration for a flow-based network intrusion
detection system (NIDS). The proposed approach we have examined com-
prises a deep autoencoder in conjunction with an energy flow classifier in an
ensemble learning task. Our approach performs better than traditional local
learning and naive cross-evaluation (training in one context and testing on
another network data). Remarkably, the proposed approach demonstrates a
sound performance in the case of non-IID data silos. In conjunction with
an informative feature in an ensemble architecture for unsupervised learning,
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we advise that the proposed FL-based NIDS results in a feasible approach
for generalization between heterogeneous networks.

Keywords: Network Intrusion Detection, Generalization, Unsupervised
Learning, Federated Learning, Network flows

1. Introduction

The current and envisioned network communications infrastructure is ex-
pected to evolve continuously with technological advancements and the in-
troduction of breakthrough services. For example, by 2030, it is predicted
that the number of Internet of Things (IoT) devices will come to 500 billion,
and 90% of vehicles will be associated with the IoT [1]. These technologi-
cal advancements are enablers of IoT verticals such as smart homes, cities,
industries, healthcare, and transportation. Although, network security is an
emergent property that must be in place by design for trustworthy solutions
that can be pervasive in our society [2].

These networked systems generate a massive amount of data (i.e., network
traffic) that presents a prolific path for machine learning (ML) solutions
that aim to learn from data in contrast with the traditional algorithmic
approach [3]. ML-based Network Intrusion Detection Systems (NIDS) are a
mature research domain. However, with advancements in machine learning
and emerging techniques such as deep learning and federated learning, new
paths in this domain are being explored. A challenge for ML-based NIDS
development is pointed out to privacy concerns regarding the network traffic
itself [4]. Better ML-based solutions require data availability, but the sharing
of network traffic presents a concern associated with the leak of trade secrets
or operational behavior that competitors or malicious agents can misuse.
Thus, without the availability and sharing of a diversity of traffics, this data
scarcity slows down the advancements of ML-based NIDS. Another challenge
for ML-based NIDS is bridging the gap between academic findings and the
real operational environment, with most operational solutions still relying on
rule-based systems (e.g., Snort). This gap is associated with the challenges of
generalizing between different networks or addressing network changes (i.e.,
concept drift).

Federated Learning (FL) is a technique that aims to enable distributed
agents to collaboratively learn a certain task without data sharing [5]. The
application of FL is a candidate for cyberattack detection in mobile net-
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works [6] and applies to edge computing, autonomous driving, and coex-
istence of heterogeneous systems, among others [7]. Additionally, with the
increase in processing capabilities of edge devices, it is envisioned a paradigm
shift from the cloud to the crowd with edge devices (the crowd) performing
local computations and sharing minimal data (e.g., local model parameters)
to a central cloud server as proposed by FL [8]. Most intrusion detection
research using federated learning (FL) focus on the privacy and efficiency
aspects and not on the generalization capabilities achievable with FL. In
addition, unsupervised methods for NIDS typically address aspects of un-
known attack detection. Our work proposes a setup using FL and unsu-
pervised learning to achieve generalization for NIDS. Despite pointing out
the advantage of unsupervised methods over supervised, current works aim-
ing at generalization do not report sound performance to generalize to other
contexts (datasets).

This paper presents an unsupervised FL-based NIDS that can generalize
the intrusion detection task to diverse networked systems (cross-silos fed-
erated learning). Via a stacking learning setup with a state-of-art anomaly
detection algorithm in conjunction with a deep autoencoder. We evaluate our
proposal on four recent flow-based NIDS datasets representing different net-
work contexts. The experimental results and empirical analysis demonstrate
that our proposed scheme can take advantage of the shared knowledge of
its participants through their joint forces for a unified and generalized NIDS
solution. Additionally, this FL approach inherits the privacy-preserving de-
centralized learning aspects from FL.

Our proposed stacked-unsupervised federated learning approach achieves
the best generalization performance between different networks context when
compared to state-of-art algorithms and classic unsupervised learning meth-
ods. Our method successfully applies unsupervised FL for the problem of
network intrusion detection generalization using flow-based data, pushing
the research area for generalization on ML-based NIDS.

This paper is organized as follows: In section 2, we present a techni-
cal background to support understanding network intrusion detection in a
federated learning setting. Then, related works are discussed in Section 3,
presenting both the generalization problem and related FL-based NIDS re-
search. Finally, we describe our methodology in Section 4 with the results
and discussion in Section 5. Finally, we bring conclusions and propose future
directions and challenges in Section 6.
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2. FL and ML NIDS Background

This section presents the Machine Learning (ML)-based Network Intru-
sion Detection System (NIDS) domain and Federated Learning (FL) as they
are the foundational concepts for our approach.

2.1. Machine Learning (ML) based Network Intrusion Detection Systems
(NIDS)

Network intrusion detection systems (NIDS) are responsible for inspect-
ing all network traffic in a specific device or organization to detect malicious
behavior. The NIDS can be categorized regarding aspects of its granularity
and detection method. Regarding granularity, the NIDS inspection can be on
each packet during a network communication session. This approach is usu-
ally associated with deep packet inspection (DPI). However, this approach
has decreased in popularity due to the increase of cryptography in network
communications that, in most cases, make it unfeasible to understand the
payload data of packets [9]. Another level of granularity considers the aggre-
gation of all packets in specific network communication, commonly referred
to as network flows. In network flows, the samples usually are aggregations
defined by source and destination with four tuples composed of source IP,
destination IP, source port, destination port, and 5-tuples, same as the latter
but with the addition of the protocol [10]. The favorable aspect of flow-based
NIDS is the reduced amount of data. On the other hand, it can lose some
possible particularities just in a packet-level analysis.

The detection method for NIDS can be based on the signature of previ-
ous attacks, also known as misuse detection. It represents a high detection
rate for known attacks but cannot achieve sound performance for zero-day
attacks (previously unknown). The other approach is anomaly-based. It is
responsible for determining the expected behavior of the network, and any
example that deviates from this expected behavior is classified as anomalous.
The anomaly-based NIDS is capable of detecting zero-day attacks. However
produces high false positive rates (e.g., unusual network usage or new appli-
cation in use).

Additionally, there are two distinct approaches for ML-based IDS, those
that consider the learning task as a binary classification between benign (or
expected) and malicious (or anomalous) traffic. On the other hand, the multi-
class approach that during ML inference aims to classify if a specific test
sample is benign or one of the specific attacks under the scope, such as denial
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of service (DoS), distributed denial of service (DDoS), scanning/probing,
among others.

In this work, we consider a binary anomaly flow-based NIDS. Further-
more, the use of machine learning for NIDS is not new. However, the NIDS
research domain has specific challenges and pitfalls that must be addressed
when evaluating the usage of ML, and we follow these recommendations as
possible. For additional discussion and background about these challenges,
we suggest other references [11, 12, 13].

2.2. Federated Learning (FL)

Federated Learning (FL) is a collaborative learning method for sharing
intelligence between multiple parties. First introduced by [5] on 2017, it is
increasingly being investigated to the NIDS domain [14].

Figure 1 represents a generic architecture of a FL setup. The system com-
prises many data silos (e.g., an organization) or devices. Initially, these par-
ticipants retrieve a common global model from a central entity (the server).
Then, each participant starts from this global model and performs ML train-
ing using its local data. In the next step, these participants share the pa-
rameters of their local-trained models (and not their data) with the server.
Finally, the server aggregates all received parameters, and the cycle starts
again. Each cycle of retrieving a global model, performing local training, and
sending the parameters back to the server, is defined as a “round.”

Silo or
Device #1

Silo or
Device #2

Silo or
Device #3

Silo or
Device n

Global 
Model Global 

Model Global 
Model

Global
Model

Server 
(Aggregation)Local 

Model

Local
Training

Local 
Model

Local
Training

Local 
Model

Local
Training

Local
Model

Local
Training...

Remote 
Environment

Local 
Environment

Figure 1: A generic architecture of a Federated Learning setup.
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The internet of things (IoT) context is highly applicable to the FL paradigm
given the various edge devices generating data and the need to learn from
this vast amount of data [6, 7]. Traditionally, it would require transferring
these data to a central server. However, this traditional approach increases
network traffic, directly results in latency and consumption of available de-
vices’ resources, and raises privacy concerns about sending its data to an
external server. Thus, FL enables this learning more securely and efficiently.

On the FL domain, there are many details, such as the number of parties
that could characterize the learning task as cross-silo or cross-device feder-
ated learning. In the cross-silo setup, the participants aggregate the data of
multiple users, such as an enterprise or an IoT gateway. In the cross-device,
devices themself participate in the FL setup. The cross-device setup usually
is from hundreds to millions of participants [15]. The amount of participants
and its computational resources introduces many challenges to the FL, such
as communication failures and staggering participants. These FL-related
challenges are out of our scope. Also, the horizontal and vertical approaches
are essential differences in the FL setup. The horizontal FL is associated
with data that shares the same feature set between the participants of the
FL. As for NIDS, each participant’s data can be made of the same flow-based
features (e.g., total bytes) but based on different network sessions. On the
other hand, the vertical FL does not share the same feature space between
the participants. As in medical or financial data, each participant can have
specific attributes of a single person. For instance, an institution can have
the credit score of a specific customer and the other institution the purchase
history.

The two classic approaches for FL optimization (also referred as aggre-
gation strategy) are the FedSGD [16] and FedAvg [5]. With differences in the
number of participants, epochs, and batch size for each round, the FedAvg is
still the standard baseline for FL. It outperforms the FedSGD due to commu-
nication efficiencies. However, both optimizer degrades their performance in
data heterogeneity between participants. To overcome this challenge of ap-
plying FL to non-IID data, the use of regularization techniques have been ex-
plored [8], with prolific research on the area of aggregation strategies for non-
IID data as the FedProx [17], FedAvgM [18], FedOpt (FedAdam, FedAdagrad,
FedYogi) [19], and Fed+ [20].

Our work considers a horizontal cross-silo federated learning setup with
four participants (silos). We also explore the effects of non-IID data between
silos and aggregation strategies.
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3. Related Work

Our work bonds two prolific research domains: the FL-based NIDS and
the generalization of ML-based NIDS. Thus, our review analyzes these two
domains in this section.

3.1. Generalization Problem

The capability to transpose ML-based NIDS beyond its original dataset
is an open challenge. [21, 22] reports the challenges of public datasets in
representing real network profiles and the inefficiency of generalizing from
trained ML models on specific NIDS datasets to real deployments. In this
study, we propose federated learning as an effective technique to address this
challenge, demonstrating successful performance between diverse datasets
compared to the traditional centralized machine learning setup.

In [23], the authors evaluate the capability of unsupervised learning algo-
rithms to generalize between different network contexts. The authors eval-
uate classic ML algorithms such as isolation forest, local outlier factor, and
one-class SVM (oSVM). Also, they evaluate a deep autoencoder for this
same task. In contrast to our reported results, they do not report a satisfac-
tory performance in an inter-dataset evaluation (training in one dataset and
testing in another). The authors highlight the need for further research in
the generalization of unsupervised methods. [24] also investigates the gen-
eralization capability. The authors evaluate supervised (Extra Tree, Feed
Forward, Random Forest, and LSTM) and unsupervised methods (Isolation
Forest, oSVM, SGD-oSVM). It reports the best performance of unsupervised
methods when compared with supervised. The unsupervised methods have a
F1-score decay of 28% when evaluating the trained model on a dataset other
than its training dataset. Using two datasets with a common feature set and
supervised learning algorithms (classic and deep learning), [25] also reports
the inability to generalize between two datasets.

Both [26, 27] proposes methods for evaluating a ML-based NIDS in differ-
ent datasets. [26] proposes a cross-evaluation method named XeNIDS. The
authors propose this method due to the reported fact that “training an ML-
NIDS on a (large) dataset, such ML-NIDS will detect the attacks contained
in such dataset”. So, their method aims to evaluate the proposed ML-based
solutions in multiple contexts. [27] clearly states that the generalization as-
sumption is false and that further research is needed. Our proposed method
aims to provide directions for tackling the generalization challenge.
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For generalization in the financial domain, [28] explains the challenges of
data-sharing between financial institutions due to regulations. As previously
pointed out, data-sharing is also a challenge for NIDS. The authors then
present the application of federated learning for improving the detection of
financial crimes between institutions without data-sharing. It reports that
the FL-based approach outperforms local trained models by 20%.

3.2. FL-based NIDS

This section reports previous research using federated learning (FL) for
the specific task of network intrusion detection (NIDS). Table 1 summarizes
all the related work.

In summary, most works that use multiple datasets do not explore the
generalization of learning between them [29, 30, 31, 32, 33, 34, 35]. The com-
mon practice adopted by the authors is to evaluate the proposed approach
on each dataset in isolation. Just a few discuss the learning generalization
as represented by the column “generalization” [36, 37, 38] from Table 1.
Our work aligns with the last proposing an FL-based method focusing on
generalization between diverse contexts.

One of the challenges in enabling this cross-evaluation between diverse
NIDS datasets is the need for standard NIDS features (horizontal FL). Also,
most of the FL-based NIDS work with flow-based datasets. The exceptions
are those works in the industrial control system (ICS) domain [39, 40, 41].
This behavior is due to the datasets currently available in this domain that
provides packet-level samples. Other exceptions are the [42] that basis on a
custom dataset developed by the authors using a packet granularity, and the
[43] that uses a dataset with both packet and flow-level features.

Regarding the federated learning setup, most of the related works evaluate
just the FedAvg aggregation method. In the case of [44, 38], they relied on the
aggregation methods available in the IBM-FL framework [45]. [30] proposed
FedAGRU, which, based on FedAvg, uses an attention mechanism for the
participants to share or not their parameters to the server.
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Table 1: Summary of related works – Federated Learning-based Network Intrusion Detection Systems.

Reference Dataset Granularity ML Algorithma Aggregation Function non-IID
Unsupervised

Learning
Generalization

Rahman et al (2020) [46] NSL-KDD Flow NN FedAvg
Campos et al (2021) [44] ToN IoT Flow Logistic Regression FedAvg, Fed+ 3

Sarhan et al (2021) [36] UNSW-NB15, Bot-IoT Flow DNN and LSTM FedAvg 3

Tian et al (2021) [29] CICIDS-2017, IoT-23 Flow DAE FedAvg 3 3

Hei et al (2020) [47] KDDCup99 Flow MLP, DT, RF, SVM FedAvg
Huong et al (2021) [39] SCADA Packet VAE-LSTM FedAvg 3

Li et al (2020) [40] SCADA Packet CNN-GRU FedAvg
Mothukuri et al (2021) [41] MODBUS Packet GRU FedAvg

Chen et al (2020) [30]
KDDCup99, CICIDS-2017,

WSN-DS
Flow GRU FedAGRU 3

Qin et al (2020) [31]
CICIDS2017,

ISCX Botnet 2014
Flow BNN Majority Vote

Khoa et al (2020) [32]
KDDCup99, NSL-KDD,
UNSW-NB15, N-BaIoT

Flow DBN FedAvg

Attota et al (2021) [43] MQTT Packet, Flow Ensemble: NN and RF FedAvg
Popoola et al (2021) [48] Bot-IoT, N-BaIoT Flow DNN FedAvg

Sun et al (2020) [37]
Custom dataset

(LAN-Security Monitoring)
Flowb CNN FedAvg 3

Nguyen et al (2019) [42] Custom dataset (DÏoT) Packet GRU FedAvg
Tang et al (2021) [49] CICIDS2017 Flow GRU FedAvg

Ferrag et al (2021) [33] MQTTset, BoT-IoT, TON IoT Flow DNN, CNN, LSTM FedAvg 3

Liu et al (2021) [50] KDDCup99 Flow MLP FedAvg

Zhao et al (2019) [34]
CICIDS2017, ISCXVPN2016,

ICSXTor2016
Flow DNN FedAvg

Dong et al (2022) [35]
DDoS2019, DoHBrw2020,

Darknet2020, Maldroid2020
Flow GBDT FedAvg

Popoola et al (2021) [38]
TON IoT, Bot-IoT,

CICIDS2018, UNSW-NB15
Flow DNN

FedAvg, Fed+,
CM, CM+

3

Our work
TON IoT, Bot-IoT,

CICIDS2018, UNSW-NB15
Flow

Stacking
Deep Autoencoder

FedAvg, FedOptc,
FedAvgM

3 3 3

aNN = Neural Network; DNN = Deep Neural Network; DAE = Deep Autoencoder; VAE = Variational
Autoencoder; CNN = Convolutional Neural Network; MLP = Multi-layer Perceptron; DT = Decision Tree;
RF = Random Forest; SVM = Support Vector Machine; BNN = Binarized Neural Network; DBN = Deep
Belief Network; GBDT = Gradient Boosting Decision Tree; LSTM = Long Short Term Memory; GRU =
Gated Recurrent Units

bThe authors use a feature map. Considering as aggregation, we categorize as flow granularity.
cFedOpt consists of the following algorithms: FedAdam, FedAdagrad, FedYogi.
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Some related works use sequence models such as Long Short Term Mem-
ory (LSTM) and Gated Recurrent Units (GRU) as the ML algorithm. How-
ever, the dataset considered in this work is in a network flow granularity.
Flow-based datasets do not present time dependency between samples, so
sequence models such as LSTM and GRU are not applicable. Regarding the
learning approach, most previous works use supervised learning. The excep-
tions are [29, 39]. Also, the aspects of non-IID on federated learning are not
evaluated by all previous works, being discussed by [44, 29, 30, 33].

Our work contributes to the body of knowledge by exploring an FL-based
NIDS for generalization between heterogeneous networks. In our case, we use
an unsupervised method in a stacking setup and evaluate its generalization
between heterogeneous networks. We use different datasets to represent these
networks. It also evaluates the aspects of non-IID (both class and quantity
skewness), and we evaluate the proposed method with aggregation algorithms
beyond the traditional FedAvg.

3.2.1. Generalization on NIDS

In [36], federated learning is proposed to share learning (generalization)
between two organizations. The organizations are represented by two dis-
tinct datasets (UNSW-NB15 and BoT-IoT) sharing the exact feature set
(horizontal FL). Despite reporting satisfactory results, when evaluating the
model trained in one dataset against another, a reduced detection rate of
4.17% and 5.78% was obtained using deep learning and LSTM, respectively.
However, there is a lack of discussion related to the difficulty of generaliza-
tion; their proposal is based on supervised learning.

[38] reports the capability of NIDS generalization through the application
of FL, and more specifically, with two aggregation algorithms: the Fed+ and
the Coordinate Median Plus that is one variation of Fed+. In this work,
the authors also use a supervised learning approach, in contrast with our
approach using unsupervised learning. Also, their results are tied to two
specific aggregation algorithms.

In the direction of being capable of generalizing on the NIDS domain,
[51] presents the Energy Flow Classifier (EFC) for flow-based NIDS. This al-
gorithm reports the capability of domain adaptation (generalization). Based
on the flow features, it calculates the energy associated with each benign
flow and given a specific quantile threshold, a specific flow is categorized as
benign or malicious, given a calculated cutoff. Regarding domain adapta-
tion, EFC reports better performance than supervised learning algorithms
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(Naive Bayes, k-Nearest Neighbors, Decision Tree, Support Vector Machine,
Multi-layer perceptron, AdaBoost, and Random Forest). Their evaluation
consists of training in one dataset and testing in another (the authors used
CIC-IDS-2017 and CIC-DDoS-2019). Our work uses the EFC to generate a
new flow feature in a stacking ensemble setup for unsupervised learning. Our
approach outperforms the EFC detection performance and works unsuper-
vised in contrast with EFC.

4. Methodology

This section details the methodological approach adopted in this work to
evaluate the generalization of an intrusion detection system over heteroge-
neous networks. In our case, heterogeneous networks are the datasets that
represent diverse networks. Then, we use an unsupervised learning algorithm
and an experimental approach to validate that our proposed architecture im-
proves the generalization between those heterogeneous networks.

Our design decisions harness the evidence of past results about the gen-
erality of this approach as promising [24]. In addition to the advantages of
unsupervised over supervised methods, as the capability to detect previously
unknown attacks, as presented in section 2.1. Regarding federated learning
(FL) NIDS, there is a lack of exploration of unsupervised methods. Most of
the previous works do not evaluate the performance of proposed methods in
a cross-evaluation scheme, as discussed in section 3.2.

The envisioned operational environment under consideration for our work
is diverse organizations sharing FL-based NIDS model parameters to compose
a more efficient NIDS solution. In this case, the organization can be units
of a single entity or various institutions. In both cases, an external server
performs the aggregation task. Figure 2 presents this operating environment.

4.1. Data Description

An essential aspect of our methodology is that all participants of the FL
share the same feature set. This design decision is tied with the requirement
for a horizontal FL setup. For this reason, we choose four available datasets
with a feature set obtained with the NetFlow [52].

These four datasets consist of 43 NetFlow features (flow-based). Based on
a five-tuple composed of IP source and destination addresses, source and des-
tination ports, and protocol. Each flow (sample) comprises defining features,
such as flow duration, number of bytes, and packets. In these datasets, they
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Data

Only local model parameters
are shared with an external

server.

Global parameters are retrieved
from an external server.

Organization A

Organization B

Organization C

Local training
on own data

Data

Local training
on own data

Data

Local training
on own data

External 
Server

Figure 2: An illustrative environment considering three participants in a federated learning
setup. It is composed of multiple organizations sharing only local model parameters. This
sharing results in an overall Network Intrusion Detection System (NIDS) solution with
contributions learned from data on different environments. Data privacy is achieved.

are all numerical features. Despite this custom version based on the NetFlow
features, follow a brief description of each dataset.

UNSW-NB15

It is a network-based dataset that was created to substitute the old
datasets used in the NIDS research (KDD-Cup99 and NSL-KDD). It intro-
duces more recent network behaviors and attacks. The dataset was generated
in a testbed using a traffic generator capable to generated both attack and
normal traffic. Its original 49 flow-based features were obtained with the
Argus1 and Bro-IDS2. The attacks present on this dataset are analysis, back-
doors, denial of service (DoS), exploits, generic, reconnaissance, shellcode,
and worms. Details about this dataset are available in its publication [53].

1Argus: https://openargus.org/
2Bro-IDS is now Zeek: https://zeek.org/
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CSE-CIC-IDS-2018

The authors also claiming the lack of adequate datasets. By the date
of dataset release, the authors evaluated 11 datasets and claimed they were
outdated and unreliable to use. Thus, the authors published a dataset com-
posed of normal and attacks as network flows. The attacks that compose
the dataset are DoS, Heartbleed, SSH-Patator, FTP-Patator, Web attack,
infiltration, bot, portscan, and distributed DoS (DDoS). The dataset was
generated in a testbed divided into two networks (victims and attackers).
The original dataset is available with 80 flow features extracted with the
CICFlowMeter3. More details about this dataset are available in its publi-
cation [54].

Bot-IoT

The Bot-IoT is a dataset that considers the internet of things (IoT) con-
text. Thus, this dataset addresses the lack of a dataset with botnet samples.
The testbed is based on simulated IoT services using MQTT protocol and
based on virtual machines (VM). In this dataset, the authors use the Argus
to extract network features and also propose other using a sliding window.
The Ostinato tool generates normal traffic, and Kali VMs are responsible for
generating the attacks (service scanning, OS fingerprint, DoS, DDoS, keylog-
ging, and data theft). A characteristic of this dataset is a high imbalance in
favor of attack samples. More details about this dataset are available in its
publication [55].

ToN-IoT

It is also a IoT-focused dataset. In addition, the authors considers In-
dustrial IoT (IIoT), and their testbed provides a more complete IoT archi-
tecture. This testbed considers three layers of devices, the cloud layer, the
fog layer (using virtualization), and an edge layer composed with physical
devices. The attacks present in this dataset are scanning, DoS, ransomware,
backdoor, injection attack, cross-site scripting (XSS), password cracking, and
man-in-the-middle (MITM). The dataset originally provides custom features
for the IoT devices, host-based features for Windows and Linux datasets.
And regarding network, it provides a version with 44 features extracted with
Zeek. More details about this dataset are available in its publication [56].

3CICFlowMeter: https://github.com/ahlashkari/CICFlowMeter
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A highlight of these datasets is that they are composed of various attacks
and regular traffic. A solution capable of generalizing between them can be
advantageous to the participants once they can anticipate detecting attacks
never previously seen in their network context.

4.2. Proposed Architecture

Figure 3 presents our proposed architecture. In our methodology, we
initially perform a scaling step from each of the original datasets (min-max
scaler) before using each dataset. Then, the dataset split between train and
test sets are 80% and 20%, respectively.

Regarding stacking, we use the Energy Flow Classifier (EFC) as a first
step in the overall architecture. The decision to use EFC as part of our
architecture is that it is the only algorithm with the proven capability of
generalization between datasets to the best of our knowledge. Then, we
train an EFC only on training data, and the predictions obtained on both
train and test sets are appended to the original sets. Later, the train data
with EFC predictions are split on 90% from training and 10% for validation
(during autoencoder training). The test data remains 20% of the original
data.

Fit on Train Data

Train Data

Test Data

80%

20%

MinMax 
Scaler

Predictions on Train Data

Predictions on Test Data

Energy Flow
Classifier

(EFC)

Train Data

Validation Data

Test Data

Train Data

Test Data

90%

10%
Original 
Dataset

Figure 3: The overall setup for the proposed stacked-unsupervised learning setup. It re-
ports the overall data processing, from the original datasets, the scaling step with MinMax,
the split of data, the usage of EFC as part of the stacking as new feature for the original
dataset, and the final split of the data.

4.3. Deep Autoencoder

The unsupervised learning algorithm adopted by us is a deep autoencoder
that has been applicable to problems such as image denoising, dimensional-
ity reduction, and anomaly detection. The autoencoder (f) is responsible for
given an input (x) generate a output (f(x) = x̃) that is similar to its input
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x x 
Encoder 

Layer
Decoder 

Layer
Bottleneck

Layer

Input
Output / Reconstructed

Input

Reconstruction Loss calculated between x and x 
 

Flow Sample composed by: 
NetFlow Features + EFC

~

~

Figure 4: Deep Autoencoder architecture composed by input (x), encoder layer, bottleneck
layer, decoder layer and output or reconstructed input (x̃). The reconstruction loss is
calculated between x and x̃.

(x̃ ≈ x). The structure of autoencoders is composed of three layers, an en-
coder network, a bottleneck section also known as latent space or compressed
representation, and a decoder network. All three layers are neural networks.
This overall architecture of the autoencoder is detailed by Figure 4.

The process of training a deep autoencoder aims to minimizes the recon-
struction loss (L(x, x̃)), from a given input x ∈ RN minimizes the distance
between the input to the output x̃ ∈ RN . In our case, N represents the num-
ber of flow-based features associated with each sample x from the datasets.

During the training of our autoencoder, the input are the training data
composed by the flow-based features and the EFC predictions. The output
used for distance calculation during training is the same as the input data.
During this training process we uses the Mean Squared Error (MSE) as the
loss function. The parameters of the autoencoder that we use in this work is
summarized in Table 2.

The input and output layers from Table 2 is reported as a variable because
using EFC as a feature can be removed. Also, from the original datasets with
42 features, the following features are removed: IP source and destination
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Table 2: Deep Autoencoder Architecture and Hyperparameters

Attribute Value

Input / Output Layer (# neurons) Variable
Encoder Layer (# neurons) 32 : 16 : 8
Bottleneck Layer (# neurons) 4
Decoder Layer (# neurons) 8 : 16 : 32
Hidden Layers Activation Function ReLU
Output Layer Activation Function Sigmoid
Optmization Algorithm Adam
Training Loss Function Mean Squared Error
Learning Rate 0.001
Batch Size 128
Epochs 10

addresses and source and destination ports. This decision avoids learning
the specific characteristics of the testbed for dataset generation (e.g., specific
IP generated specific attack traffic) as also pointed out by [57] regarding
shortcut learning. Removing IPs and ports aims to make the model learn
the flow properties instead of the particular endpoints responsible for each
traffic. Because of being an unsupervised learning task, the feature attack
that represents each specific attack contained on the datasets, the feature
dataset representing the dataset name, and the feature label with 1 for attack
and 0 for normal flow are removed. The features list and description are
available in [52].

4.3.1. Detecting Attacks with Autoencoder

After the training of the Autoencoder, we calculate a threshold for eval-
uating the test data. If a test sample presents a reconstruction loss greater
than this threshold, then this sample is considered an attack. In our case,
the reconstruction loss under consideration during threshold calculation and
inference is the mean absolute error (MAE):

Reconstruction Loss = MAE =
1

N

N∑
i=1

|xi − x̃i|

Our work proposes using two possible thresholds for each client partic-
ipating in the federated learning scheme. These thresholds are calculated
locally on each client (i.e., silo instance). Before the federated learning ex-
ecution, we separate 10% from the training data to create a validation set
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(also represented in Figure 3). Then this validation data are separated locally
on only benign or only attack samples, respectively, B = {(xm,Benign)} and
A = {(xn,Attack)}. m represents the number of benign samples, n is the
number of attack samples, and m + n is the total samples of the validation
set.

In each round, during local evaluations, we use these two validation sub-
sets (B and A) to recalculate the reconstruction loss for both benign and
attack samples. The definition if a test sample is benign or attack uses the
benign (TB) and attack (TA) thresholds, they are the MAE calculated over
the validation subsets and the local inference performed by the autoencoder
(B̃ = {x̃m} and Ã = {x̃n}):

TB = MAE(B, B̃), TA = MAE(A, Ã).

For the inference of a sample using both thresholds, the sample calculated
loss (Sloss) is considered an attack if |Sloss − TB| > |Sloss − TA|, otherwise it
is considered benign. For the case of only benign threshold, if Sloss > TB,
then it is considered an attack. Otherwise, it is considered benign. A point
of attention for this two thresholds approach is to deploy the solution. All
the silos must have an initial training dataset composed of benign and attack
samples. Using only a benign threshold is still possible and evaluated in our
work.

4.4. Federated Learning

From the augmented data obtained with the stacking strategy detailed
in section 4.2, and the deep autoencoder presented in section 4.3, in this
section, we present the federated learning setup.

Each dataset represents a silo in our cross-silo federated learning setup.
Thus, we have four clients. Each client is composed of the dataset and
the autoencoder architecture. In the initialization of the setup, each client
retrieves the model’s architecture from the global server with random weights.

Then, for each round, the client performs the training on its local data
using ten epochs and a batch size of 128. After this training, the clients may
perform a local evaluation (test the trained model on its test set) or directly
send its model weights to the server for aggregation. The aggregation may
be performed with many algorithms such as FedAvg and FedOpt. In our
case, the use of different aggregation algorithms is reported in section 5.

In this FL setup, many aspects can be evaluated, such as the impact
of staggering participants, impacts of communication latency, trustworthy
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behavior of clients, and adversarial attacks, among others. However, these
FL-related challenges are not evaluated in this work.

4.5. Evaluation Criteria

To evaluate our proposed method and the baselines, we consider the F1-
score. The F1-score is a valuable learning metric for unbalanced data. Un-
balanced data is inherently the case of network intrusion detection, wherein
in the typical environment, the majority of samples in composed of regular
traffic and a minority of malicious samples.

The F1-score is a harmonic mean of the precision and recall (also known
as true positive rate - TPR). The precision metric measures the proportion of
positive inferences that are actually correct. In comparison, recall measures
the proportion of actual positives that are identified correctly. These metrics
can be easily interpretable from the traditional confusion matrix, as presented
in Table 3. In our case, the positive class is the “attack.” For instance, a flow-
based sample from “normal” traffic, if inferred by our method as an “attack,”
would count as a false positive (FP). However, if predicted as “normal,” it
counts as a true negative (TN).

Table 3: A confusion matrix for the classification of network flow-based samples. The
predict columns refers to the output of the inference based on the input samples.

Predict as “Attack” Predict as “Normal”

Sample is “Attack” True Positive (TP) False Negative (FN)
Sample is “Normal” False Positive (FP) True Negative (TN)

Formalizing the concepts of F1-score, Precision, and Recall in terms of
the parameters from the confusion matrix, results in the equations:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F1-score = 2× Recall× Precision

Recall + Precision
.

When evaluating the performance of each silo after the end of the feder-
ated learning simulation, we also report additional learning metrics to sup-
port the interpretability of these results. The additional metric is the accu-
racy, which, despite being misleading on unbalanced cases, is being reported
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for completeness. The other metrics are more related to the needs of the in-
trusion detection problem. The Missrate, also known as false negative rate,
measures the attacks that have been missed by the system (false negatives -
FN) and are an essential metric due to the fact of the high cost of errors in
intrusion detection. A simple missed sample can represent the compromise of
the system. This high cost of error is not present in other ML domains such
as natural language processing or product recommendation [12]. The fallout
metric, also known as false positive rate, is concerned about false positives
(FP) once it induces high human intervention to filter out false alarms. The
last metric is the area under the ROC curve (AUC). The receiver operating
characteristic curve (ROC) measures the performance of a model in terms
of true positive (TPR) and false positive rates (FPR) for multiple decision
thresholds. The AUC aggregates ROC. It measures the model’s quality irre-
spective of what classification threshold is chosen.

Based on Table 3, these metrics can be represented by the following equa-
tions:

Accuracy =
TP + TN

TP + TN + FP + FN
, Missrate =

FN

FN + TN
,

Fallout =
FP

FP + TN
.

4.6. Baselines

For comparison of our proposed method with other approaches, we choose
as baselines the Energy Flow Classifier (EFC) algorithm that was previously
proven to generalize between datasets [51]. Also, the classical unsupervised
algorithms Isolation Forest (IF) and Local Outlier Factor (LOF), as recom-
mended by [13], address the pitfall for inappropriate baselines using simpler
methods. Additionally, we evaluate a deep autoencoder as the chosen ap-
proach by [23, 29].

Regarding the FL-based NIDS listed in Table 1, only the unsupervised
methods are under consideration. In our case, the deep autoencoder is similar
to [29]. The sequence model proposed by [39] (LSTM) does not apply to flow-
based data. Thus, we also evaluate the deep autoencoder in an FL setup.

For the classical unsupervised algorithms, the default hyperparameters
are in use. Just for the deep autoencoder that we considered the architecture
reported in section 4.3 and ten training epochs. For the autoencoder in naive

19



evaluation (local training and cross-silo evaluation), the reconstruction loss
was obtained from the mean absolute error over the validation dataset and
using the loss value from the 95% quantile of the reconstruction losses.

5. Results and Discussion

This section reports the results obtained with the methodology presented
in section 4. In addition, the results are presented with the respective dis-
cussion to facilitate the interpretation and derivations from them and to
understand the adopted methodological decisions.

The results were achieved with a CPU Intel(R) Xeon(R) Gold 5117 with
14 cores and 128 GB RAM, using the Tensorflow 2.9.1, Scikit-Learn 1.1.1,
and the federated learning framework Flower 0.19. The reproducible code is
available on our laboratory’s repository4.

5.1. Silos (Datasets) Configurations – non-IID influence

The three datasets configuration for evaluating our method are the origi-
nal datasets, a sampled version containing 1 million samples of these original
datasets, and a reduced version. In our case, each dataset is a data silo for
the federated learning setup. A summary of the number of samples and the
binary class (benign or attack) distribution is reported in Table 4. These
three dataset configurations are based on past research references. From Ta-
ble 4 we can confirm that despite the TON-IoT reduced version, in all other
cases, the class distribution is the same, despite the differences in the number
of samples.

The skewness of the data silos is an essential factor in a federated learning
setup. Figure 5 supports the visual evaluation of the quantity and class
skewness for each configuration. From these figures, the sampled version of
the datasets (Figure 5b) does not present a quantity skewness compared to
the other two configurations. Nevertheless, the class skewness is still present.

We first evaluate the three configurations (original5, sampled, reduced)
in a cross-silo configuration for ten rounds with just the FedAvg aggregation

4Repository: https://github.com/c2dc/fl-unsup-nids
5For the simulation with the original datasets, due to computational resource constraint

(i.e., RAM), a feasible approach was to reduce just the Bot-IoT by 50%, from 37.763.497
to 18.893.708 samples, this is the same quantity as CSE-CIC-IDS-2018 (the second largest
dataset).
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(a) The number of data samples from the original datasets [52], considering benign and attack samples.
The quantity and class skewness are present.
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(b) The number of data samples from the sampled datasets (1 million samples) as reported by [24],
considering benign and attack samples. The class skewness is present.
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(c) The number of data samples reported by [38] referred as “reduced,” considering benign and attack
samples. The quantity and class skewness are present.

Figure 5: Three different data silos configurations to analyze the non-IID influence on the
federated learning.
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Table 4: Datasets distribution (number of samples) for the three versions evaluated. The
original datasets, the sampled version, with 1 million samples from original dataset, and
the reduced version of the dataset.

Original Sampled Reduced

Dataset Benign Attack Benign Attack Benign Attack

Bot-IoT
135.037 (0.4%) 37.628.460 (99.6%) 3.569 (0.4%) 996.431 (99.6%) 1.285 (0.5%) 277.496 (99.5%)

37.763.497 1.000.000 278.781

TON-IoT
6.099.469 (36%) 10.841.027 (64%) 359.618 (36%) 640.382 (64%) 54.024 (25%) 159.436 (75%)

16.940.496 1.000.000 213.460

UNSW-NB15
2.295.222 (96%) 95.053 (4%) 960.078 (96%) 39.922 (4%) 455.751 (97%) 11.788 (3%)

2.390.275 1.000.000 467.539

CSE-CIC-IDS-2018
16.635.567 (88%) 2.258.141 (12%) 880.623 (88%) 119.377 (12%) 154.649 (87%) 22.490 (13%)

18.893.708 1.000.000 177.139

technique. There is a minor difference in the average F1-score achieved during
tests on the 10th round (original=0.841, sampled=0.842, reduced=0.853).
Thus, to further investigate the other variables in our setup, we move along
with just the sampled configuration because it requires less computational
resources in comparison with the original dataset and provides more samples
than the reduced configuration. The sampled and reduced configurations
presented similar performance from the previous analysis and, as discussed
next, for baseline performance. Thus, in our case, the quantity skewness
was not a significant factor of influence. Thus, the reported results in the
following subsections are mainly based on the sampled silos configuration.

5.2. Federated Learning Strategies

An initial evaluation is the influence of different federated learning strate-
gies (also known as fusion or aggregation algorithms) for the learning task.
As available by the Flower framework, we simulated a ten rounds setup
with the following strategies: FedAvg, FedAvgM, FedAdagrad, FedYogi, and
FedAdam with the default hyperparameters.

The results are summarized in Figure 6. When the EFC is not an ad-
ditional feature as originally proposed, we observed a fluctuation of the F1-
score metric during the 10 rounds. The worst case is the FedAdam strategy
oscillating over all rounds, and the FedYogi is the best performer, achieving
a F1-score of 0.63 at the 10th round.

The initial fluctuation on the first two rounds with and without EFC re-
ported in Figure 6 is because, on the initial rounds of the federated learning
simulation, the server was not waiting for all silos to be online prior to start-
ing. From round 3 and on, all the silos are online and participating in the
federated learning setup.
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5.3. Stacking Approach

A contribution proposed by us is using an autoencoder stacked with the
EFC (Figure 3). To measure the contribution of EFC to a federated learning
setup using the deep autoencoder, we performed an analysis simulating the
federated learning without the stacking of EFC.

For both sampled and reduced datasets using the FedAvg strategy for ten
rounds, the average F1-score on the 10th round were 0.46 and 0.49, respec-
tively. Analyzing each silos’ performance, we confirmed that UNSW-NB15
and CSE-CIC-IDS-2018 were the worst performers without the EFC, pulling
the average F1-Score down.

Using the EFC as part of the stacked architecture, the strategy did not
demonstrate influence on the federated learning (Section 5.2), being a robust
setup despite the strategy in use. For all strategies, the F1-score on the 10th

round is 0.78 when considering a reconstruction loss calculation based only
on benign samples.

Furthermore, we can infer that EFC is a vital feature to be incorporated
into ML-based NIDS using a stacking strategy. It also highlights the im-
portance of further investigating descriptive features for flow-based network
samples and their contribution to improving generalization in addition to the
federated learning approach.

5.4. Comparison with Baselines

The next step was evaluating our proposed method in contrast to the
baselines from section 4.6. The baselines are evaluated locally, with the
training and testing sets derived from the same silo. Next, the baselines
are evaluated on a cross-evaluation setup, training on the original dataset
silo but testing on the test set from the other silos. For instance, training
on Bot-IoT, testing on TON-IoT, UNSW-NB15, and CSE-CIC-IDS-2018.
The cross-evaluation is then summarized as average F1-scores. The local
evaluation is summarized on an average F1-score achieved on each of the
four silos for each baseline. The results are summarized on the Table 5.

We can confirm the best local performance for Energy Flow Classifier
(EFC) by analyzing the results from Table 5. Also, the EFC presented a
lower standard deviation representing a more stable performance over the
four silos in a localized evaluation setup. By contrast, both Isolation Forest
(IF) and Local Outlier Factor (LOF) presented high standard deviations. For
instance, IF presented a F1-score of 0.95 on the sampled version of UNSW-
NB15 but 0.01 on the sampled version of the Bot-IoT (0.58 for the sampled
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Figure 6: Evaluation of the Federated Learning Strategy in use (FedAvg, FedAvgM,
FedAdagrad, FedYogi, FedAdam) and the F1-score performance for 10 rounds. The per-
formance for the Deep Autoencoder setup with and without the EFC algorithm in the
stacking setup.

TON-IoT, and 0.92 for CSE-CIC-IDS-2018). Similarly, the LOF presented
a high F1-score for the sampled version of UNSW-NB15 (0.97) and a low
F1-score of 0.01 for the Bot-IoT (0.72 for sampled TON-IoT and 0.93 for
sampled CSE-CIC-IDS-2018).

This performance behavior based on the localized evaluations allows us to
conclude the impact of non-IID (99% of attack samples on Bot-IoT, Table 4)
on the LOF and IF algorithms. The local evaluation on the reduced version
of the datasets, as expected, is close to the average F1-scores obtained on
sampled versions, also with a high standard deviation for LOF (0.62± 0.37),
IF (0.60 ± 0.38), and deep autoencoder (0.51 ± 0.23). Moreover, the best
local performance kept with EFC, achieving an average local F1-score of
0.78± 0.16.

The main focus of our proposed method is to achieve good performance
in overall silos (heterogeneous networks), generalizing the learning. There-
fore, in the cross-evaluation of the baseline algorithms, the best performer
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Table 5: Evaluation of baselines and proposed method on the four datasets/silos (sampled
version). The average local F1-score represents the average from each dataset. The average
cross F1-score the average from all cross-evaluations. Our proposal and the Autoencoder
without (w/o) EFC reports the F1-score on the 10th round of the FL setup.

Algorithm Average Local F1-score Average Cross F1-score

Energy Flow Classifier (EFC) 0.77± 0.14 0.52± 0.38
Isolation Forest (IF) 0.61± 0.38 0.18± 0.24

Local Outlier Factor (LOF) 0.66± 0.38 0.03± 0.05
Deep Autoencoder (q=0.95, epochs=10) 0.35± 0.26 0.41± 0.34

Federated Learning F1-score @ 10th round

Deep Autoencoder (only benign threshold) 0.51
Deep Autoencoder (benign and attack threshold) 0.47

Our proposal (only benign threshold) 0.77
Our proposal (benign and attack threshold) 0.84

is the EFC with an average cross F1-score of 0.52± 0.38. The classic unsu-
pervised algorithms presented a lower performance on this cross-evaluation.
The cross-evaluation on the reduced version of the datasets, as expected, were
similar to the sampled case for average cross F1-scores: EFC (0.53 ± 0.40),
IF (0.13±0.19), LOF (0.06±0.09), and deep autoencoder (0.50±0.34). The
non-generalization between the unsupervised methods in a cross-evaluation
fashion (i.e., inter-dataset evaluation) is similar to the findings of [23].

We confirmed that the deep autoencoder in a federated learning setup
does not guarantee a good generalization performance. The reported F1-
score supports this conclusion on the 10th round for both cases, 0.47 con-
sidering both benign and attack thresholds, and 0.51 for only the benign
threshold. Despite [29] not focusing on performance between heterogeneous
networks, the deep autoencoder alone does not show generalization. These
obtained metrics are close to EFC’s average cross-silo performance but do
not outperform EFC.

As reported in Table 5, our proposal, stacking of the autoencoder and
EFC, was tested in two possible usages: using two thresholds for benign
and attack samples (best performer, 0.84) and only one threshold for just
benign samples (0.77). In both cases, the proposed method outperforms all
unsupervised methods under consideration.

Based on our proposal metrics, there is a trade-off between using only the
benign threshold or both. Despite a lower performance for the only benign
in contrast to using both benign and attack thresholds, the only benign ap-
proach gives an advantage because we can deploy the solution relying only
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on benign network flow samples, which is more straightforward from an op-
erational perspective. The EFC can also be trained only on benign samples,
feasible on our stacking architecture.

5.5. Error Analysis

In this section, we further analyze the performance of each silo as part
of the federated learning setup. We dig further into the silos performance
on the 10th round using the FedAvg strategy. The performance summary is
presented in Table 6. From Table 6, we can confirm by the F1-score that
TON-IoT (sampled only) and UNSW-NB15 are those silos that negatively
impact the overall performance.

The error analysis is a systematic approach that checks our setup’s mis-
takes on the test set. From the UNSW-NB15, these misclassified examples
consist of 99% from the Benign class out of 5.949 mislabeled samples (the
test set for the sampled case is composed of 200.000 samples). Reviewing
these mislabeled samples results in the majority of cases with source IP ad-
dress as 175.45.176.0/24, which according to the testbed architecture [53]
were expected to provide only attack samples. This misbehavior must be
further investigated.

For the TON-IoT sampled case, we had 52.031 misclassified examples
out of 200.000. An error analysis in these cases represents that 71% are
scanning attacks, and 24% are benign cases. From the scanning class, the
misclassified samples on its majority are from IP sources 192.168.1.30, 31, 32
targeting IoT/IIoT devices in the subnet 192.168.1.0/24. According to the
testbed [56] performs the scanning attacks with both Nmap and Nessus. Our
analysis raises the question that vulnerability scanners (e.g., Nessus) can be
mistakenly understood as benign traffic and must be further investigated on
flow-based security mechanisms, or separated from port-scan attacks, in this
case, those performed with the Nmap.

Table 6: Learning metrics for each silo during evaluation step on the 10th round of feder-
ated learning training – Results obtained with FedAvg strategy on sampled and reduced
silos configuration (separated by “/”) with both benign and attack threshold.

Silo Accuracy Recall Precision F1-Score Miss-rate Fallout AUC

Bot-IoT 0.93 / 0.90 0.93 / 0.90 0.99 / 0.99 0.96 / 0.95 0.07 / 0.1 0.02 / 0.01 0.95 / 0.94
TON-IoT 0.74 / 0.85 0.69 / 0.85 0.87 / 0.95 0.77 / 0.90 0.31 / 0.14 0.18 / 0.14 0.76 / 0.86

UNSW-NB15 0.97 / 0.97 0.99 / 1.0 0.57 / 0.50 0.73 / 0.66 0.0002 / 0.0 0.03 / 0.14 0.98 / 0.99
CSE-CIC-IDS-2018 0.98 / 0.98 0.88 / 0.88 0.91 / 0.92 0.90 / 0.90 0.11 / 0.12 0.01 / 0.01 0.94 / 0.93
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This error analysis could derive further actions such as the detailed in-
vestigation of the original UNSW-NB15 dataset and the use of vulnerability
scanners in the same category as port scanners on the TON-IoT dataset.
Thus, working on cases of UNSW-NB15 and TON-IoT (e.g., understand-
ing the network or the specific composition of the datasets) would achieve
the most significant improvement of our method. Similar discussion about
troubleshooting NIDS dataset is presented by [57]. Although, our proposed
method is not expected to be tied with the specific datasets chosen in this
paper. So, fixing the mislabeled samples on the dataset is out of scope.
Additionally, this post-mortem analysis is insightful for interpretability, but
addressing the changes in our current data would introduce data snooping
to the overall analysis. However, the insights possible with this error anal-
ysis are recommended to be part of the deployment, composing the overall
operations of a federated learning-based intrusion detection system.

6. Conclusions

In this work, we present unsupervised federated learning (FL)-based net-
work intrusion detection system (NIDS). It can achieve generalization be-
tween heterogeneous networks in a stacking setup with a descriptive algo-
rithm, the Energy Flow Classifier (EFC). The heterogeneous networks are
represented in our evaluation as four recent NIDS datasets from different
network contexts. This generalization advances the research of NIDS capable
of being deployed in diverse environments. Additionally, our unsupervised
approach can be deployed in network environments with only benign network
flow-based samples.

We contribute by bonding the field of FL-based NIDS and the generaliza-
tion of machine learning-based NIDS. With the evidence of FL as a promising
approach for generalization between diverse networks. Also, with the use of
FL, we provide an efficient distributed NIDS, once no data is required to be
moved to a central server, and provide privacy for the system participants.

In future works, we plan to investigate the proposed method in a cross-
device environment, considering the deployment of a distributed NIDS in con-
junction with the concept of zero-trust architecture. Additionally, using FL
introduces new security challenges related to adversarial machine learning.
Thus, we consider the robustness evaluation of our proposal for adversarial
attacks as future works for a dependable distributed NIDS solution.
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S. Kumar, H. B. McMahan, Adaptive federated optimization (2020).
doi:10.48550/ARXIV.2003.00295.
URL https://arxiv.org/abs/2003.00295

[20] P. Yu, L. Wynter, S. H. Lim, Fed+: A family of fusion algorithms for
federated learning, CoRR abs/2009.06303 (2020). arXiv:2009.06303.
URL https://arxiv.org/abs/2009.06303

[21] M. Catillo, A. Pecchia, M. Rak, U. Villano, Demystifying the role of
public intrusion datasets: a replication study of dos network traffic data,
Computers & Security (2021) 102341.

[22] A. Kenyon, L. Deka, D. Elizondo, Are public intrusion datasets fit for
purpose characterising the state of the art in intrusion event datasets,
Computers & Security 99 (2020) 102022.

[23] M. Verkerken, L. D’hooge, T. Wauters, B. Volckaert, F. De Turck, To-
wards model generalization for intrusion detection: Unsupervised ma-
chine learning techniques, Journal of Network and Systems Management
30 (1) (2022) 1–25.

[24] S. Layeghy, M. Portmann, On generalisability of machine learning-based
network intrusion detection systems (2022). doi:10.48550/ARXIV.

30

https://doi.org/10.1007/978-3-030-96896-0_1
https://doi.org/10.1007/978-3-030-96896-0_1
https://arxiv.org/abs/1909.06335
https://arxiv.org/abs/1909.06335
https://doi.org/10.48550/ARXIV.1909.06335
https://doi.org/10.48550/ARXIV.1909.06335
https://arxiv.org/abs/1909.06335
https://arxiv.org/abs/2003.00295
https://doi.org/10.48550/ARXIV.2003.00295
https://arxiv.org/abs/2003.00295
https://arxiv.org/abs/2009.06303
https://arxiv.org/abs/2009.06303
http://arxiv.org/abs/2009.06303
https://arxiv.org/abs/2009.06303
https://arxiv.org/abs/2205.04112
https://arxiv.org/abs/2205.04112
https://doi.org/10.48550/ARXIV.2205.04112


2205.04112.
URL https://arxiv.org/abs/2205.04112

[25] S. Al-Riyami, F. Coenen, A. Lisitsa, A re-evaluation of intrusion detec-
tion accuracy: Alternative evaluation strategy, in: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS ’18, Association for Computing Machinery, New York, NY,
USA, 2018, p. 2195–2197. doi:10.1145/3243734.3278490.
URL https://doi.org/10.1145/3243734.3278490

[26] G. Apruzzese, L. Pajola, M. Conti, The cross-evaluation of machine
learning-based network intrusion detection systems, IEEE Transactions
on Network and Service Management (2022) 1–1doi:10.1109/TNSM.
2022.3157344.

[27] L. D’hooge, T. Wauters, B. Volckaert, F. De Turck, Inter-dataset gener-
alization strength of supervised machine learning methods for intrusion
detection, Journal of Information Security and Applications 54 (2020)
102564. doi:https://doi.org/10.1016/j.jisa.2020.102564.
URL https://www.sciencedirect.com/science/article/pii/

S2214212619310415

[28] T. Suzumura, Y. Zhou, N. Barcardo, G. Ye, K. Houck, R. Kawahara,
A. Anwar, L. L. Stavarache, D. Klyashtorny, H. Ludwig, K. Bhaskaran,
Towards federated graph learning for collaborative financial crimes de-
tection, CoRR abs/1909.12946 (2019). arXiv:1909.12946.
URL http://arxiv.org/abs/1909.12946

[29] P. Tian, Z. Chen, W. Yu, W. Liao, Towards asynchronous
federated learning based threat detection: A dc-adam ap-
proach, Computers & Security 108 (2021) 102344. doi:https:

//doi.org/10.1016/j.cose.2021.102344.
URL https://www.sciencedirect.com/science/article/pii/

S0167404821001681

[30] Z. Chen, N. Lv, P. Liu, Y. Fang, K. Chen, W. Pan, Intrusion detection
for wireless edge networks based on federated learning, IEEE Access 8
(2020) 217463–217472. doi:10.1109/ACCESS.2020.3041793.

31

https://doi.org/10.48550/ARXIV.2205.04112
https://arxiv.org/abs/2205.04112
https://doi.org/10.1145/3243734.3278490
https://doi.org/10.1145/3243734.3278490
https://doi.org/10.1145/3243734.3278490
https://doi.org/10.1145/3243734.3278490
https://doi.org/10.1109/TNSM.2022.3157344
https://doi.org/10.1109/TNSM.2022.3157344
https://www.sciencedirect.com/science/article/pii/S2214212619310415
https://www.sciencedirect.com/science/article/pii/S2214212619310415
https://www.sciencedirect.com/science/article/pii/S2214212619310415
https://doi.org/https://doi.org/10.1016/j.jisa.2020.102564
https://www.sciencedirect.com/science/article/pii/S2214212619310415
https://www.sciencedirect.com/science/article/pii/S2214212619310415
http://arxiv.org/abs/1909.12946
http://arxiv.org/abs/1909.12946
http://arxiv.org/abs/1909.12946
http://arxiv.org/abs/1909.12946
https://www.sciencedirect.com/science/article/pii/S0167404821001681
https://www.sciencedirect.com/science/article/pii/S0167404821001681
https://www.sciencedirect.com/science/article/pii/S0167404821001681
https://doi.org/https://doi.org/10.1016/j.cose.2021.102344
https://doi.org/https://doi.org/10.1016/j.cose.2021.102344
https://www.sciencedirect.com/science/article/pii/S0167404821001681
https://www.sciencedirect.com/science/article/pii/S0167404821001681
https://doi.org/10.1109/ACCESS.2020.3041793


[31] Q. Qin, K. Poularakis, K. K. Leung, L. Tassiulas, Line-speed and scal-
able intrusion detection at the network edge via federated learning, in:
2020 IFIP Networking Conference (Networking), 2020, pp. 352–360.

[32] T. V. Khoa, Y. M. Saputra, D. T. Hoang, N. L. Trung, D. Nguyen,
N. V. Ha, E. Dutkiewicz, Collaborative learning model for cyberat-
tack detection systems in iot industry 4.0, in: 2020 IEEE Wireless
Communications and Networking Conference (WCNC), 2020, pp. 1–6.
doi:10.1109/WCNC45663.2020.9120761.

[33] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, L. Shu, Federated
deep learning for cyber security in the internet of things: Concepts,
applications, and experimental analysis, IEEE Access 9 (2021) 138509–
138542. doi:10.1109/ACCESS.2021.3118642.

[34] Y. Zhao, J. Chen, D. Wu, J. Teng, S. Yu, Multi-task network anomaly
detection using federated learning, in: Proceedings of the Tenth Inter-
national Symposium on Information and Communication Technology,
SoICT 2019, Association for Computing Machinery, New York, NY,
USA, 2019, p. 273–279. doi:10.1145/3368926.3369705.
URL https://doi.org/10.1145/3368926.3369705

[35] T. Dong, S. Li, H. Qiu, J. Lu, An interpretable federated learning-based
network intrusion detection framework (2022). doi:10.48550/ARXIV.

2201.03134.
URL https://arxiv.org/abs/2201.03134

[36] M. Sarhan, S. Layeghy, N. Moustafa, M. Portmann, Cyber threat intel-
ligence sharing scheme based on federated learning for network intrusion
detection, Journal of Network and Systems Management 31 (1) (2022)
3. doi:10.1007/s10922-022-09691-3.
URL https://doi.org/10.1007/s10922-022-09691-3

[37] Y. Sun, H. Esaki, H. Ochiai, Adaptive intrusion detection in the net-
working of large-scale lans with segmented federated learning, IEEE
Open Journal of the Communications Society 2 (2021) 102–112. doi:

10.1109/OJCOMS.2020.3044323.

[38] S. I. Popoola, G. Gui, B. Adebisi, M. Hammoudeh, H. Gacanin, Fed-
erated deep learning for collaborative intrusion detection in heteroge-
neous networks, in: 2021 IEEE 94th Vehicular Technology Conference

32

https://doi.org/10.1109/WCNC45663.2020.9120761
https://doi.org/10.1109/ACCESS.2021.3118642
https://doi.org/10.1145/3368926.3369705
https://doi.org/10.1145/3368926.3369705
https://doi.org/10.1145/3368926.3369705
https://doi.org/10.1145/3368926.3369705
https://arxiv.org/abs/2201.03134
https://arxiv.org/abs/2201.03134
https://doi.org/10.48550/ARXIV.2201.03134
https://doi.org/10.48550/ARXIV.2201.03134
https://arxiv.org/abs/2201.03134
https://doi.org/10.1007/s10922-022-09691-3
https://doi.org/10.1007/s10922-022-09691-3
https://doi.org/10.1007/s10922-022-09691-3
https://doi.org/10.1007/s10922-022-09691-3
https://doi.org/10.1007/s10922-022-09691-3
https://doi.org/10.1109/OJCOMS.2020.3044323
https://doi.org/10.1109/OJCOMS.2020.3044323


(VTC2021-Fall), 2021, pp. 1–6. doi:10.1109/VTC2021-Fall52928.

2021.9625505.

[39] T. T. Huong, T. P. Bac, D. M. Long, T. D. Luong, N. M. Dan,
L. A. Quang, L. T. Cong, B. D. Thang, K. P. Tran, Detecting cy-
berattacks using anomaly detection in industrial control systems: A
federated learning approach, Computers in Industry 132 (2021) 103509.
doi:https://doi.org/10.1016/j.compind.2021.103509.
URL https://www.sciencedirect.com/science/article/pii/

S0166361521001160

[40] B. Li, Y. Wu, J. Song, R. Lu, T. Li, L. Zhao, Deepfed: Federated
deep learning for intrusion detection in industrial cyber–physical sys-
tems, IEEE Transactions on Industrial Informatics 17 (8) (2021) 5615–
5624. doi:10.1109/TII.2020.3023430.

[41] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha,
G. Srivastava, Federated-learning-based anomaly detection for iot secu-
rity attacks, IEEE Internet of Things Journal 9 (4) (2022) 2545–2554.
doi:10.1109/JIOT.2021.3077803.

[42] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, A.-
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