
HAL Id: hal-00487312
https://hal.science/hal-00487312

Submitted on 28 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Randomly colouring graphs (a combinatorial view)
Jean-Sébastien Sereni

To cite this version:
Jean-Sébastien Sereni. Randomly colouring graphs (a combinatorial view). Computer Science Review,
2008, 2 (2), pp.63–95. �10.1016/j.cosrev.2008.05.003�. �hal-00487312�

https://hal.science/hal-00487312
https://hal.archives-ouvertes.fr


Draft Version, (2 July 2008), 1–71

Randomly Colouring graphs
(a Combinatorial View)
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Abstract

The application of the probabilistic method to graph colouring has been yield-
ing interesting results for more than 40 years. Several probabilistic tools are
presented in this survey, ranging from the basic to the more advanced. For each
of them, an application to a graph colouring problem is presented in detail. In
this way, not only is the general idea of the method exposed, but also are the
concrete details arising with its application. Further, this allows us to introduce
some important variants of the usual graph colouring notion (with some related
open questions), and at the same time to illustrate the variety of the probabilistic
techniques. The survey tries to be self-contained.

Introduction

Colouring is a core topic of graph theory. It was initiated back in 1852 by the 4-

Colour Problem, which has spawned a plethora of research. Fundamental notions, such

as nowherezero-flows [184], and useful techniques, e.g. the discharging method, were

introduced, studied and developed. The positive answer to the 4-Colour Conjecture

given by Appel and Haken [13, 14] in 1977 (the reader can also consult the shorter proof

by Robertson, Sanders, Seymour, and Thomas [160], or the dedicated web-page of

Robin Thomas [180] for a gentle introduction) did not toll the bell of graph colouring.

Indeed, graph colouring is a very generic notion which admits (infinitely?) many

variants. Many of them are theoretically interesting, and/or useful to model practical

problems. In particular, lots of problems arising in telecommunication networks are

closely related to the world of graph colouring.

This survey deals with the probabilistic method applied to graph colouring. The

goal is to present some powerful probabilistic techniques used in the context of graph

colouring. At the same time, this survey offers a tour in the world of graph colouring,

reviewing some variants and generalisations of the usual “chromatic number” along

with some related important problems.

The essence of the probabilistic method is as follows. Suppose that we want to

prove the existence of a combinatorial object satisfying certain prescribed properties,

e.g. a vertex colouring such that no two neighbours are assigned the same colour.

The idea is to design a random experiment (in an appropriate discrete probability

space) whose outcome is, with positive probability, an object satisfying the desired

properties. It then follows that such an object exists.

The first use of this method in combinatorics dates back to 1943, and is due

to Szele [177], who proved the existence of a tournament on n vertices with at least

n!21−n Hamiltonian paths—a tournament is an orientation of a complete graph, and

a Hamiltonian path is a directed path traversing once each vertex.

The probabilistic method was then applied by Erdős [50] to obtain a result in

Ramsey theory—namely that R(k, k) > 2k/2 for k ≥ 3, where R(k, k) is the smallest

integer r such that any 2-edge-colouring of the complete graph on r vertices contains

a monochromatic complete subgraph on k vertices. Erdős then developed and widely

applied the probabilistic method in combinatorics. His work (and surveys on his

work) should be a source of inspiration and learning for those who want to learn the
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probabilistic method. Regarding the scope of this survey, the most relevant works

were done by Noga Alon, Jeff Kahn, Colin McDiarmid, Michael Molloy, Bruce Reed,

Joel Spencer, Benjamin Sudakov, and many others.

Several probabilistic tools and techniques are presented in this survey, from the

basic to the more advanced (such as McDiarmid’s Inequality). For each of them, an

application to a graph colouring problem is presented in detail. In this way, not only

is the general idea of the method exposed, but also are the concrete details arising

with its application. Further, this allows us to introduce some important variants of

the usual graph colouring notion (with some related open questions), and at the same

time to illustrate the variety of the probabilistic techniques.

The survey is as self-contained as possible. We refer to the books of Alon

and Spencer [11], Molloy and Reed [140] and the lecture notes by Matoušek and

Vondrák [123] for additional background on discrete probabilities. Not only do those

references provide a good introduction to discrete probability theory, but they also

cover advanced techniques, and applications to other combinatorial topics than graph

colouring. Spencer wrote a historical review of the early probabilistic method [174],

and a nice account on some techniques introduced later [173].

One of the main difficulties when applying the probabilistic method is how—and

how much—randomness should be added. A complicated random process may be hard

to analyse, while a simple one often seems too weak to provide the desired result. A

major issue is to actually be able to combine probabilistic arguments with more clas-

sical techniques from graph theory. The latter provides strong structural properties,

which can serve as a starting point for a random process that would fail otherwise or

they may help to analyse the random process. The results presented in this survey

were chosen to illustrate this fact. Moreover, they should be self-contained (so that

the reader sees the whole argument) and with a limited amount of technicalities (so

that the essence of the method is not lost among pages of computation). Last, the

whole set of applications and examples should also give us the opportunity to define

and briefly review some important notions of graph colouring, and state some related

conjectures.

1. Some Basics

We provide some definitions, notation, and facts that are needed, along with

references.

1.1. Graph Colouring

We define some basic notions of graph colouring. Other variants of graph colourings

will be introduced when needed. We refer to the book by Diestel [43] for any notion

that is used without being defined. The book by Jensen and Toft [94] gives an in-depth

review of many graph colouring notions and problems.

Given a graph G = (V,E), and a vertex v ∈ V , the set of vertices of G adjacent

to v is the neighbourhood NG(v) of v. The size of NG(v) is deg(v), the degree of v.

A colouring of G is a mapping that assigns to each vertex an integer, called a colour.
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A colouring c is a k-colouring if f(V ) ⊆ {1, 2, . . . , k}. It is proper if no two adjacent

vertices are assigned the same colour. Thus, a proper k-colouring of G can be seen as

a partition of the vertices into k parts, each being an independent set of G, i.e. a set

of vertices inducing in G a subgraph with no edge. The chromatic number χ(G) of G

is the least integer k for which G admits a proper k-colouring.

The size of a largest complete subgraph of G is ω(G), the clique number of G.

Note that χ(G) ≥ ω(G).

If a graph has maximum degree ∆, then by greedily colouring its vertices we

deduce that its chromatic number is at most ∆ + 1. This bound is tight, as complete

graphs show. However, Brooks [30] proved that complete graphs and odd cycles are

the only connected graphs reaching the bound. In other words, the chromatic number

of a connected graph G is at most its maximum degree, unless G is a complete graph

or an odd cycle.

The decision problem associated with the chromatic number was one of the first

problems shown to be NP-complete, in Karp’s paper [105]. Two years later, Garey,

Johnson, and Stockmeyer [64] proved that the problem remains NP-complete even

when restricted to planar graphs of maximum degree 4. Garey and Johnson [63]

demonstrated that it is NP-hard to approximate the chromatic number to within any

constant less than 2. More recently, Bellare, Goldreich, and Sudan [20] proved that

the chromatic number of a graph on n vertices cannot be approximated within n1/7−ε

for any ε > 0, unless P=NP. Let ZPP be the class of languages decidable by a random

expected polynomial-time algorithm that makes no error. In other words, ZPP is the

class of decision problems L that are decided by algorithms A such that for every input

x, the output of A is L(x) with probability 1, and A runs in expected polynomial-

time. Equivalently, ZPP can be defined as the class of decision problems L for which

there exists a randomised algorithm B that always runs in polynomial time, and on

every input x its output B(x) is either L(x) or “I do not know”, the probability

that B(x) equals L(x) being at least 1
2 for every input x. The chromatic number of a

graph G on n vertices cannot be approximated in polynomial time within n1−ε for any

constant ε > 0, unless ZPP=NP [58]. On the other hand, Halldórsson [77] designed a

polynomial-time algorithm achieving a performance guarantee of O
(
n (log log n)2

(log n)3

)
.

The girth g(G) of the graph G is the length of a shortest cycle of G. Can a

graph of girth at least 4, i.e. a triangle-free graph, have an arbitrarily large chromatic

number? This was answered positively by Tutte [41] and Zykov [198], and several other

authors, namely Ungar and Descartes [185], Kelly and Kelly [106], and Mycielski [146].

(Descartes was also known as Tutte.) However, how much restriction can be put on

the girth? In other words, are there graphs with arbitrarily high chromatic number

and arbitrarily high girth? It may be expected that such graphs should not exist, since

a graph with high girth locally looks like a tree, and trees can be properly 2-coloured.

Erdős [51] proved the existence of such graphs by probabilistic means in 1959. To

do so, he actually used one of the two virtually unique general lower bounds on the

chromatic number of a graph G = (V,E), that is

χ(G) ≥ |V |
α(G)

,



RANDOMLY COLOURING GRAPHS (A COMBINATORIAL VIEW) 5

where α(G) is the independence number of G, i.e. the size of a largest independent

set of G. Without providing any further details on the proof (which can be found

in almost any monograph or lecture notes on the probabilistic method), let us note

that this result is a milestone in the use of the probabilistic method. The approach

introduced by Erdős in his proof is now called the deletion method. It took about ten

more years to be able to exhibit such graphs. Indeed, in 1966, Nešetřil [148] explicitly

constructed graphs with arbitrarily high chromatic number and girth 8. Two years

later, Lovász [119] was the first to explicitly construct graphs with arbitrarily high

girth and arbitrarily high chromatic number. Another short constructive proof was

given in 1979 by Nešetřil and Rödl [150].

On the other hand, imposing both a high girth and planarity—or, more generally,

a fixed genus—allows us to improve bounds on the chromatic number. For instance,

while general planar graphs are 4-colourable, Grötzsch [74] proved that the chromatic

number of any triangle-free planar graph is at most 3. Thus, it is customary, when

studying colourings of planar graphs, to impose some restrictions on the girth of the

considered graphs.

An ℓ-list-assignment of a graph G = (V,E) is a mapping L that assigns to each

vertex a list of ℓ colours. An L-list-colouring of G is a colouring c such that c(v) ∈ L(v)

for each vertex v ∈ V . The graph G is ℓ-choosable if for any ℓ-list-assignment L, there

exists a proper L-list-colouring of G. The choice number ch(G) of G is the least integer

ℓ for which G is ℓ-choosable. Note that if the lists of all the vertices are the same,

then finding a list-colouring amounts to finding a usual colouring.

One may feel that the “harder” case is when all the lists are the same. This is

however false. Let us observe that the gap between the chromatic number and the

choice number of a graph can be arbitrarily large. A graph is bipartite if its vertices

can be partitioned into two independent sets, i.e. if it can be properly 2-coloured.

The complete bipartite graph is composed of two independent sets A and B, and two

vertices a and b are adjacent whenever a ∈ A and b ∈ B. Let Km,m be the complete

bipartite graph with parts A and B each of size m :=

(
2n − 1

n

)
. Then, as observed

by Erdős, Rubin, and Taylor [53] in their seminal paper about list-colouring,

ch(Km,m) ≥ n .

Thus, perhaps counter-intuitively, list-colouring is indeed harder than usual colouring.

Colouring the edges of a graph is defined analogously as vertex colouring. More

precisely, a k-edge-colouring of a graph G = (V,E) is a mapping c : E → {1, 2, . . . , k}.

It is proper if no two adjacent edges have the same colour. In other words, a proper

k-edge-colouring of G is a partition of the edges of G into k matchings—a matching

of G is a set of edges no two of which are adjacent in G. The chromatic index χ′(G)

of G is the minimum k for which G admits a proper k-edge-colouring.

An edge-colouring of a graph G can also be seen as a vertex-colouring of the line

graph of G. The line graph L (G) of G is the graph whose vertex-set is E, and two

elements e and e′ of E are adjacent in L (G) if and only if e and e′ are adjacent edges

of G. Thus,

χ′(G) = χ(L (G)) .
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Vizing’s Theorem [188] ensures that the chromatic index of every graph G of maximum

∆ is either ∆ or ∆ + 1. On the other hand, it is NP-complete in general to choose

between those two values [91]. The list-chromatic index ch′(G) of a graph G is the

choice number of the line graph of G. We end this subsection by stating the main

open problem is in this area.

Conjecture 1.1 (The List-Colouring Conjecture). For every graph G,

ch′(G) = χ′(G) .

1.2. Discrete Probabilities

We give some formal definitions and basic facts. We refer to the three references

given in the introduction [11, 123, 140] for further exposition. For a more general

introduction to the theory of probabilities, one can consult the books by Grimmett

and Stirzaker [72] and by Grimmett and Welsh [73].

A sample space is a finite set Ω. An event is a subset of Ω. A (finite) probability

space consists of a sample space Ω along with a mapping Pr : Ω → [0, 1] such that

∑

ω∈Ω

Pr(ω) = 1 .

The function Pr is extended to any event A by setting Pr(A) :=
∑

a∈A Pr(a). It

follows that Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B) for any two events A and B.

For any events A1, A2, . . . , Ar,

Pr (∪r
i=1Ai) ≤

r∑

i=1

Pr(Ai) ,

with equality if and only if the events Ai are pairwise incompatible, i.e. no two of

them may occur simultaneously.

We often use the uniform distribution on a sample space Ω, defined by Pr(x) = 1
|Ω|

for every x ∈ Ω.

The conditional probability of an event A given that an event B occurs is

Pr(A|B) :=
Pr(A ∩ B)

Pr(B)
.

For every partition B1, B2, . . . , Bn of Ω, and every event A, observe that

Pr(A) =

n∑

i=1

Pr(A|Bi) · Pr(Bi) .

Two events A and B are independent if Pr(A|B) = Pr(A), or equivalently if

Pr(A ∩ B) = Pr(A) · Pr(B). In our considerations, an important notion of indepen-

dence is the following. An event A is mutually independent of a set of events E if for

every B1, B2, . . . , Br ∈ E ,

Pr (A| ∩r
i=1 Bi) = Pr(A) .
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In most of our considerations, a convenient way to check mutual independence is the

Mutual Independence Principle: let X := X1, . . . , Xm be a sequence of independent

random experiments, and suppose that A1, . . . , An are events such that each Ai is

determined by the experiments of a set Fi ⊆ X . Then Ai is mutually independent of

{Ai1 , Ai2 , . . . , Aik
} provided that Fi ∩

(
∪k

j=1Fij

)
= ∅.

Given a probability space (Ω,Pr), a random variable is a function from Ω to R.

The expected value of a random variable X is

E(X) :=
∑

ω∈Ω

Pr(ω)X(ω) .

It is also called the Expectation of X. The Expectation is a linear operator. It

also directly follows from the definition that Pr (X ≤ E(X)) > 0. This is called the

first moment principle. If X is a non-negative integer-valued random variable, and if

E(X) < 1, then the first moment principle ensures that Pr(X = 0) > 0.

Expected values are often much easier to estimate than the corresponding random

variables. Thus, bounding |X − E(X)| is an efficient way of bounding X, and results

bounding this quantity are known as concentration bounds. Some of them are presented

in Section 5. Let us state right now an elementary but useful one, which directly follows

from the definition of the expectation.

Lemma 1.2 (Markov’s Inequality). For every non-negative random variable X and

every positive real number t,

Pr(X ≥ t) ≤ E(X)

t
.

In particular, if X is a non-negative integer-valued random variable, then applying

Markov’s Inequality with t = 1 yields that Pr(X > 0) ≤ E(X). Thus, we obtain

Pr(X = 0) = 1 − Pr(X > 0) ≥ 1 − E(X) ,

which, in case E(X) < 1, lower bounds the probability that X is 0 (while the first

moment principle would just yield that it is positive). The use of the first moment

principle and Markov’s Inequality is often called the first moment method. Four exam-

ples of applications (including the probabilistic proof of the existence of triangle-free

graphs with arbitrarily high girth) are presented in the book by Molloy and Reed [140,

Chapter 3].

We should note here that using discrete probability amounts to counting. In

some simple applications, the probability space may even seem artificial, and one

could just count without using a probabilistic setting. There is no objection to that.

However, one should also see that the use of probability is a very efficient way of

counting, and allows us to utilise powerful theorems inherited from the probability

theory. Knowing how to count is a key issue in combinatorics, and yields powerful re-

sults. For instance, the discharging method—used to prove many theorems, including

the 4-Colour Theorem—also amounts to counting. Thus, developing efficient ways of

counting is a major theme of combinatorics, in a broad sense.
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2. Three Glimpses of Probabilistic Method

The historically first two applications of the probabilistic method, mentioned in

the previous section, are presented in many places, for instance in the monograph of

Alon and Spencer [11]. As a warm-up, we present in this section three more recent

applications. All of them make an elementary and clever use of the probabilistic

method, mixed with structural theorems on graph colouring. The first one is a bound

on the total chromatic number of a graph, derived in the early nineties by McDiarmid

and Reed [127]. The second one deals with the choice number of graphs in relation to

the minimum degree, and is due to Alon [2]. It illustrates the so-called first moment

method. Finally, we introduce the important concept of fractional chromatic number

and discuss a recent result of Hatami and Zhu [80].

2.1. Total-colourings of Graphs

Given a graph G = (V,E) and a positive integer k, a k-total-colouring of G is a

mapping λ : V ∪ E → {1, 2, . . . , k} such that

(1) λ(u) 6= λ(v) for every pair (u, v) of adjacent vertices;

(2) λ(v) 6= λ(e) for every vertex v and every edge e incident to v;

(3) λ(e) 6= λ(e′) for every pair (e, e′) of adjacent edges.

This notion was independently introduced by Behzad [18] in his doctoral thesis, and

Vizing [190]. It is now a prominent notion in graph colouring, to which a whole

book is devoted [194]. Both Behzad and Vizing made the celebrated Total-colouring

Conjecture, stating that every graph of maximum degree ∆ admits a (∆ + 2)-total-

colouring. Notice that every such graph cannot be totally-coloured with less than

∆ + 1 colours. Moreover, a cycle of length 5 cannot be 3-totally-coloured.

A series of upper bounds of the form ∆ + o(∆) were obtained successively by

Hind [89], Chetwynd and Häggkvist [37], and McDiarmid and Reed [127]. Next, Hind,

Molloy, and Reed [88] proved the first bound of the form ∆ + poly(log ∆). The best

general bound so far has been obtained by Molloy and Reed [135]. They established

that every graph of maximum degree ∆ can be (∆ + 1026)-totally-coloured. They

used the probabilistic method to obtain this impressive progress on the previously

known bounds. Moreover, the Total-colouring Conjecture has been shown to be true

for several special cases, namely for ∆ = 3 by Rosenfeld [162] and Vijayaditya [186],

and then for ∆ ∈ {4, 5} by Kostochka [111].

We prove in this subsection the following result obtained by McDiarmid and

Reed [127] in the early nineties.

Theorem 2.1 (McDiarmid and Reed, 1993). Every graph G on n vertices can be

(χ′(G) + k + 1)-totally-coloured for any integer k such that k! ≥ n.

This theorem implies a general upper bound of ∆ + O
(

log n
log log n

)
for all the graphs on

n vertices with maximum degree ∆. Hence, it is not as good as the currently best

bound, found by Molloy and Reed [135]. However, the proof of Theorem 2.1 is much
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shorter and perfectly fits the purposes of this warm-up. It combines an elementary

use of the probabilistic method with Brooks’ and Vizing’s Theorems.

Proof of Theorem 2.1. We let ∆ be the maximum degree of G. We assume that

∆ ≥ 3, the statement of the theorem being trivially true otherwise. Note that the

conclusion holds if k ≥ χ(G), so we may assume that k < χ(G). Moreover, we may

assume that k ≥ 2 and G is connected. Note that the complete graph on n vertices

can be (n + 1)-totally coloured, so we also assume that G is not complete.

The strategy is to start from a proper edge-colouring of G with χ′(G) colours.

By Vizing’s Theorem, χ′(G) ∈ {∆, ∆ + 1}. Thus, by Brooks’ Theorem, we know that

the vertices of G can be properly coloured using at most χ′(G) colours, since ∆ ≥ 3

and G is not complete. We do so using the same set of colours. Next, we try to

combine those two colourings so as to minimise the number of conflicts by permuting

the colours of the edges. Finally, we solve the remaining conflicts by using Vizing’s

Theorem to recolour with new colours the edges involved in conflicts. The existence

of the desired permutation is shown by (elementary) probabilistic means.

Let q := χ′(G) ∈ {∆, ∆ + 1}, and consider a partition M = {M1, M2, . . . ,Mq}
of the edges of G into q matchings. By Brooks’ Theorem, there exists a partition

C = {C1, C2, . . . , Cq} of the vertices of G into q independent sets.

To each bijection π : M → C we associate the conflict graph Gπ, which is the

subgraph of G spanned by those edges xy such that x ∈ π(M) or y ∈ π(M), where

M is the matching in M containing the edge xy. Thus, if we properly recolour the

edges contained in the graph Gπ with new colours, then we obtain a total-colouring

of G. By Vizing’s Theorem, χ′(Gπ) ≤ ∆π + 1, where ∆π is the maximum degree of

Gπ. Therefore, G can be totally coloured using at most

s := q + ∆π + 1

colours. So it only remains to prove the existence of a bijection π : M → C such that

Gπ has maximum degree at most k.

Suppose that v is a vertex of Gπ of degree larger than k. Among the at least k+1

edges of Gπ incident with v, at most one has the same colour as v. Thus, there are

at least k neighbours w of v whose colour is the same as that of the edge vw. (Note

that, consequently, those neighbours have pairwise distinct colours.) Let us exploit

this remark.

We choose a bijection π : M → C uniformly at random, i.e. any particular

bijection is chosen with probability 1
q! . Consider a vertex v of G of degree larger than

k. We define K to be the collection of sets W ⊆ NG(v) of order k such that no two

vertices of W have the same colour. For every W ∈ K , let AW be the event that for

each w ∈ W , the matching M ∈ M containing the edge vw is mapped to the stable

set containing w. Therefore, if v has degree more than k in Gπ, then there exists a set

W ∈ K such that the event AW holds.

For every W ∈ K ,

Pr(AW ) =
k−1∏

i=0

(q − i)−1 =
(q − k)!

q!
.
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As |K | ≤
(|NG(v)|

k

)
, it follows that

(1) Pr(|NGπ
(v)| > k) ≤

(|NG(v)|
k

)
· (q − k)!

q!
.

Further, if |K | =

(|NG(v)|
k

)
then all the neighbours of v have distinct colours (recall

that k ≥ 2). Therefore, the events AW for W ∈ K are not incompatible (since q ≥ ∆).

It follows that the inequality (1) is strict. Consequently,

Pr(|NGπ
(v)| > k) <

(
∆

k

)
· (∆ − k)!

∆!
=

1

k!

since |W | ≤ ∆ ≤ q. This yields that

Pr(∆(G′) ≥ k + 1) <
n

k!
≤ 1 ,

which concludes the proof.

Let us end this subsection by noting that total-colourings of planar graphs have

attracted a considerable amount attention. First, Borodin [25] proved that if ∆ ≥ 9

then every plane graph of maximum degree ∆ fulfils the Total-colouring Conjecture.

This result can be extended to the case where ∆ = 8 by using the 4-Colour Theorem

combined with Vizing’s Theorem—the reader is referred to the book by Jensen and

Toft [94] for further exposition. Sanders and Zhao [163] solved the case where ∆ = 7

of the Total-colouring Conjecture for plane graphs. So the only open case regarding

plane graphs is ∆ = 6. Interestingly, ∆ = 6 is also the only remaining open case for

Vizing’s Edge-colouring Conjecture [189], after Sanders and Zhao [164] resolved the

case where ∆ = 7. Vizing’s Edge-colouring Conjecture states that the chromatic index

of every plane graph with maximum degree ∆ ≥ 6 is ∆. For ∆ ≥ 8, it was proved

to be true by Vizing [189]. The statement cannot be extended to plane graphs with

maximum degree smaller than 6 (except the trivial case where ∆ = 1). Indeed, as

noted by Vizing [189], subdividing one edge in a 4-cycle, the complete graph K4, the

octahedron and the dodecahedron provides examples of plane graphs with maximum

degree ∆ and chromatic index ∆ + 1, for each ∆ ∈ {2, 3, 4, 5}, respectively.

An assertion stronger than that of the Total-colouring Conjecture can be proved

for plane graphs with high maximum degree. More precisely, Borodin [25] showed that

if ∆ ≥ 14 then every plane graph with maximum degree ∆ is (∆+1)-totally-colourable.

He also asked whether 14 could be decreased. Borodin, Kostochka and Woodall ex-

tended this result to the case where ∆ ≥ 12 [27], and later to ∆ = 11 [28]. Wang [193]

established the result for ∆ = 10. Recently, Kowalik, Sereni, and Škrekovski [112]

proved the assertion in the case where ∆ = 9. On the other hand, this bound is not

true if ∆ ≤ 3. The complete graphs K2 and K4 are not 2- and 4-totally-colourable,

respectively. As for ∆ = 2, a cycle of length 3k + 2 with k ≥ 1 cannot be 3-totally-

coloured.
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2.2. Bounding the Choice Number in Terms of the Minimum Degree

We present in this subsection the following important result of Alon [2]. Molloy and

Reed [140, Chapter 3] gave a neat proof of a (slightly) weaker version, following the

lines of Alon’s proof.

Theorem 2.2 (Alon, 2000). Let s be an integer. The choice number of any graph

with minimum degree at least

(2) δ > 22s+2 (s2 + 1)2

(log2 e)2

is greater than s.

Alon [2] noted that this result has several interesting consequences. As pointed out in

Subsection 1.1,

ch(Kδ,δ) = (1 + o(1)) log2 δ .

Thus, the bound in Theorem 2.2 is tight up to a constant factor of 2 + o(1).

The colouring number col(G) of a graph G is the least integer d such that every

subgraph of G contains a vertex of degree smaller than d. Thus, ch(G) ≤ col(G).

Theorem 2.2 implies that ch(G) ≥
(

1
2 − o(1)

)
log2 d for any graph G whose colouring

number exceeds d. Consequently, setting d := col(G),
(

1

2
− o(1)

)
log2 d ≤ ch(G) ≤ d .

As the colouring number of a graph can be computed in linear time, we obtain a

linear-time algorithm providing an estimate of the choice number of any graph. Even

though the approximation ratio is rough, no analog result is known for the chromatic

number of a graph.

Proof of Theorem 2.2. We assume that s ≥ 3, since the assertion is true

when s ≤ 2 thanks to the characterisation of graphs with choice number at most 2,

independently proved by Borodin [24] and Erdős, Rubin and Taylor [53] (the reader

can also consult a paper of Thomassen [181]).

We define n to be the number of vertices of G = (V,E), and we let C :=

{1, 2, . . . , s2} be the set of colours. We show the existence of an s-list-assignment

L : V → 2C for which G admits no proper colouring c with c(v) ∈ L(v) for each

v ∈ V .

The strategy is as follows. We consider a set B ⊂ V , with lists assigned to its

members. There are s|B| different colouring of the subgraph of G induced by B (where

each vertex is assigned a colour taken from its list). We would like to show that the

lists of (some of) the remaining vertices can be chosen such that none of the colourings

of B extends to a proper list-colouring of G. In other words, we seek vertices outside

B such that however the vertices of B are coloured, the list of at least one of them

will be included in the set of colours assigned to its neighbours in B. To this end, we

need first to have a fair amount of vertices outside B, thus we should control the size

of B. Then, the vertices outside B that are of interest to us should have neighbours
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in B whose union of lists is somehow large. This is why the set B and the lists for

its vertices should be well-chosen, i.e. they should fulfil certain helpful properties. By

analysing random choices, we are able to show that such a good choice exists. After

fixing one such choice, we proceed with proving the existence of lists for some vertices

outside B such that no proper list-colouring exists. Let us formalise all this.

Each vertex of G is chosen to be a member of B independently at random with

probability δ−1/2. Next, each vertex b of B is assigned a list S(b) of s colours taken

from C , chosen independently and uniformly at random among all the subsets of

cardinality s of C . Note that the expected size of B is n · δ−1/2. Hence, it follows from

Markov’s Inequality that

Pr(|B| > 2n · δ−1/2) <
1

2
.

A vertex v ∈ V \ B is good if for every subset T of C of cardinality ⌈s2/2⌉, there

is a neighbour b of v belonging to B and whose list is contained in T .

We assert that the probability that a vertex v ∈ V is not good is less than 1
4 . Let

us take, for a second, this assertion for granted and see how the desired conclusion

follows from it. We deduce from the assertion that the expected number of bad vertices

is less than n
4 . Thus, Markov’s Inequality implies that the probability that there are

less than n
2 good vertices is less than 1

2 . Consequently, with positive probability it

holds that |B| ≤ 2n · δ−1/2 and the number of good vertices is at least n
2 .

Let us fix such a choice of B and S. Let A be the set of good vertices, so |A| ≥ n
2 .

We extend the s-list-assignment S to A by choosing for each a ∈ A a set S(a) of s

colours uniformly at random, and independently. We show now that, with positive

probability, there is no proper colouring of A∪B that assigns to each vertex a colour

from its list.

There are s|B| different colourings of B. Let us fix such a colouring and estimate

the probability that it can be extended to the vertices of A. For each a ∈ A, let F (a)

be the set of colours that appear on its neighbours belonging to B. Note that if a can

be properly coloured then S(a) * F (a). Since a is good, |F (a)| ≥ ⌈s2/2⌉. Therefore,

the probability that a can be coloured is at most

1 −
(⌈s2/2⌉

s

)
(
s2

s

) ≤ 1 − 2−s−1 ,



RANDOMLY COLOURING GRAPHS (A COMBINATORIAL VIEW) 13

where the inequality follows from (3) below.
(⌈s2/2⌉

s

)
(
s2

s

) =
⌈s2/2⌉

(
⌈s2/2⌉ − 1

)
. . .
(
⌈s2/2⌉ − s + 1

)

s2(s2 − 1) . . . (s2 − s + 1)

≥2−s
s−1∏

i=0

s2 − 2i

s2 − i

=2−s
s−1∏

i=0

(
1 − i

s2 − i

)

≥2−s

(
1 −

s−1∑

i=0

i

s2 − s

)

=2−s−1 .(3)

Since the choice of the lists S(a) for a ∈ A are independent, we deduce that

the probability that a fixed colouring of B can be extended to a proper colouring of

G[A ∪ B] assigning to each vertex a colour from its list is at most

(
1 − 2−s−1

)|A| ≤
(
1 − 2−s−1

)n/2 ≤ exp
[
−n · 2−s−2

]
,

since (1 − x)z ≤ e−xz for positive real numbers x and z. Consequently, the probability

that there is a proper colouring of G[A∪B] assigning to each vertex a colour from its

list is at most

s|B| · exp
[
−n · 2−s−2

]
≤ exp

[
−2n · δ−1/2

]
< 1

by (2) and the fact that s ≥ 3. Therefore, there exists an s-list-assignment of A such

that G[A ∪ B] cannot be properly coloured, as desired.

It remains to prove that the probability that a vertex v ∈ V is not good is at

most 1
4 . Fix a vertex v ∈ V . It belongs to B with probability 1√

δ
. Suppose now that

v /∈ B. Then, for each set T ⊂ C of cardinality ⌈s2/2⌉, and for each neighbour u of v,

it holds that

Pr (u ∈ B and S(u) ⊂ T ) =
1√
δ
· ⌈s

2/2⌉
(
⌈s2/2⌉ − 1

)
. . .
(
⌈s2/2⌉ − s + 1

)

s2(s2 − 1) . . . (s2 − s + 1)
.

There are

(
s2

⌈s2/2⌉

)
possible choices for the subset T , and at least δ possible choices

for the neighbour u. Consequently, the probability that there exists a set T of ⌈s2/2⌉
colours such that each neighbour of v either is not in B or has a list not contained in

T is at most

(
s2

⌈s2/2⌉

)
·
(

1 − 1√
δ
· ⌈s

2/2⌉
(
⌈s2/2⌉ − 1

)
. . .
(
⌈s2/2⌉ − s + 1

)

s2(s2 − 1) . . . (s2 − s + 1)

)δ

.

In total, the probability that an arbitrary vertex v ∈ V is not good is at most

1√
δ

+

(
1 − 1√

δ

)(
s2

⌈s2/2⌉

)(
1 − 1√

δ
· ⌈s

2/2⌉
(
⌈s2/2⌉ − 1

)
. . .
(
⌈s2/2⌉ − s + 1

)

s2(s2 − 1) . . . (s2 − s + 1)

)δ

.
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Hence, from (3) and the fact that

(
s2

⌈s2/2⌉

)
≤ 2s2

/4 for s ≥ 3, we deduce that

Pr (v is not good) ≤ 1√
δ

+
1

4
2s2

(
1 − 2−s−1

√
δ

)δ

≤ 1√
δ

+
1

4
2s2

exp
[
−
√

δ · 2−s−1
]

,

which is less than 1
4 by (2).

We underline the importance of the two steps in the proof. It is not true that,

considering the union of two sets A and B with a list-assignment uniformly at random,

there will be a pair such that no colouring of B can be extended to A. Actually, the

set B (and the list-assignment for the vertices of B) fulfils very particular properties,

even though its existence was proved by considering sets B at random.

2.3. The Fractional Chromatic Number

The chromatic number of a graph can be viewed as the solution of an integer linear

program. Indeed, let S (G) be the set of all the independent sets of the graph G =

(V,E). An r-colouring can be viewed as a mapping f : S (G) → {0, 1} such that

∀v ∈ V,
∑

S∈S (G)
v∈S

f(S) ≥ 1

and

∑

S∈S (G)

f(S) ≤ r .

If we allow f to take values in [0, 1] instead of {0, 1}, then we call f a fractional r-

colouring. The fractional chromatic number χf (G) of G is the least r for which G

admits a fractional r-colouring.

An equivalent definition of the fractional chromatic number of G is obtained

through the concept of weighted colourings. Given integers k and ℓ, a k-tuple ℓ-

colouring of G is a mapping c that assigns to each vertex v a subset c(v) of {1, 2, . . . , ℓ}
of order k such that c(v)∩ c(u) = ∅ whenever uv ∈ E. Then, the fractional chromatic

number of G is the infimum of the ratios ℓ
k for which G admits a k-tuple ℓ-colouring.

Moreover, the infimum of the definition is actually attained [165, p. 24], and thus the

fractional chromatic number is a rational number. Note that χf (G) ≤ χ(G) by the

definition, and the ratio χ(G)
χf (G) can be arbitrarily large. The book of Scheinerman and

Ullman [165] can be consulted for the proof of this fact, and more generally it provides

an excellent account on fractional theory of graphs.

Let G be a triangle-free graph on n vertices, with maximum degree at most 3.

By Brooks’ Theorem, the chromatic number of G is at most 3. Hence, G has an

independent set of size at least n
3 . In 1979, Staton [176] proved that this lower bound

can be improved to 5n
14 . This bound is tight since, as noted by Fajtlowicz [54], it is

attained by the generalised Petersen graph P (7, 2); see Figure 1. About a decade

later, Jones [97] could simplify the proof of Staton’s result. In the mid-1990s, Griggs
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Figure 1: The generalised Petersen graph P (7, 2) has fourteen vertices and indepen-

dence number 5. The black vertices form a maximum independent set.

and Murphy [69] designed a linear-time algorithm to find an independent set of size

at least 5
14 · (n − k), where k is the number of components of G that are 3-regular

(i.e. every vertex has degree exactly 3). Heckmann and Thomas [86] provided a new

(and simpler) proof of Staton’s result. They also designed a linear-time algorithm that

finds an independent set of size at least 5n
14 for every triangle-free graph G of maximum

degree at most 3 with n vertices. Moreover, they conjectured that this lower bound

can be strengthened to a lower bound on the fractional chromatic number.

Conjecture 2.3 (Heckmann and Thomas, 1998). The fractional chromatic num-

ber of every triangle-free graph of maximum degree at most 3 is at most 14
5 = 3 − 1

5 .

The best bound known so far has been obtained by Hatami and Zhu [80], who proved

3 − 3
64 . Moreover, they also studied the fractional chromatic number of such graphs

in relation to their girth. For k ≥ 4, set

τk := max{χf (G) : G is a graph of maximum degree at most 3 and girth at least k} .

Let τ := limk→∞ τk (note that (τk)k is a decreasing sequence bounded below). Hatami

and Zhu [80] studied the sequence (τk)k≥4 by means of a sequence (ck)k≥4 satisfying

τk ≤ ck. This sequence is defined below. Numerical studies suggest that limk→∞ ck =
8
3 , but this is not proved. Finally, a result of McKay [130] implies that τ ≥ 2.1959. This

result combined with that of Hatami and Zhu [80] yields that 2.1959 ≤ τ ≤ 2.66681.

Let us see how Hatami and Zhu [80] obtained the existence of the sequence (ck)k.

Fix a positive integer k and a graph G of maximum degree at most 3 and girth

g ≥ 2k + 1. We define two functions f, F : {0, 1, . . . , g − 1} × [0, 1] → R as follows.

f(0, x) := 0 and F (0, x) := 1 ;

and for j ∈ {1, 2, . . . , g − 1},

f(j, x) := (1 − x)2 + 2(1 − x)(x −
∫ x

0
F (j − 1, y) dy) +

(
x −

∫ x

0
F (j − 1, y) dy

)2

;

F (j, x) := (1 − x)2 + 2(1 − x)(x −
∫ x

0
f(j − 1, y) dy) +

(
x −

∫ x

0
f(j − 1, y) dy

)2

.
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Moreover, we set Ak := x −
∫ x
0 F (k − 1, y) dy.

Theorem 2.4 (Hatami and Zhu, 2008). For every positive integer k, and every

graph G = (V,E) of maximum degree at most 3 and girth at least 2k + 1,

χf (G) ≤ c2k+1 :=

(∫ 1

0

(
(1 − x)3 + 3(1 − x)2Ak + 3(1 − x)A2

k + A3
k

)
dx

)−1

.

Let us define a fractional c2k+1-colouring of G to prove Theorem 2.4. To each ordering

π := v1, v2, . . . , vn of the vertices of G, we associate the independent set Sπ obtained

as follows: for each i from 1 to n, if Sπ contains no neighbour of vi then add the vertex

vi to Sπ.

For each independent set S, we define m(S) to be the number of orderings π

such that S = Sπ. Let f be the mapping that assigns to each independent set S the

number c2k+1·m(S)
|V |! . So,

∑
S∈S (G) f(S) = c2k+1 because

∑
S∈S (G) m(S) = |V |! by the

definition. Hence, the conclusion of Theorem 2.4 follows provided that f is indeed a

fractional colouring, i.e. for every vertex v of G,
∑

S∈S (G)
v∈S

f(S) ≥ 1 .

In other words, it suffices to prove that for every vertex v, the number of orderings π

such that v ∈ Sπ is at least |V |!
c2k+1

.

This is achieved by probabilistic means. Let us define a probability space by

considering all the possible orderings uniformly at random. To this end, for each vertex

v of G we choose uniformly at random (and independently) a weight ω(v) ∈ [0, 1].

Note that, with probability 1, no real number is chosen for two distinct vertices. The

vertices of G can be ordered according to the increasing order of their weights, yielding

the ordering πω. Thus, it suffices to prove the following lemma to finish the proof of

Theorem 2.4.

Lemma 2.5 (Hatami and Zhu, 2008). If π is a permutation chosen uniformly at

random, then for every vertex v of G,

Pr(v ∈ Sπ) ≥ 1

c2k+1
.

Let us do some ground work before starting the proof of Lemma 2.5. Given an ordering

πω and a set X of vertices of G = (V,E), we let πω − X be the restriction of πω to

the vertices of G−X. Let u be a vertex of G with neighbours u1, u2 and u3. For any

positive integer k, let Nk(u, u1) be the set of vertices at distance at most k from u in

G− u1. Since the girth of G is greater than 2k, we deduce that u3 /∈ Nk−1(u1, u) and

Nk−1(u1, u) ∩ Nk−1(u2, u) = ∅.

Choose uniformly at random a weight ω and let π = πω. For every real number

x ∈ [0, 1], we set

mk(u, u1, x) := min
σ

{Pr (u ∈ Sπ|π − {Nk(u, u1) ∪ {u1}} = σ, ω(u) = x, ω(u1) > x)} ,



RANDOMLY COLOURING GRAPHS (A COMBINATORIAL VIEW) 17

and

Mk(u, u1, x) := max
σ

{Pr (u ∈ Sπ|π − {Nk(u, u1) ∪ {u1}} = σ, ω(u) = x, ω(u1) > x)} ,

where the minimum and the maximum are taken over all the permutations σ of

V \ (Nk(u, u1) ∪ {u1}). We define m(k, x) and M(k, x) to be the minimum and the

maximum of mk(u, u1, x) and Mk(u, u1, x) taken over all the edges uu1 of G, respec-

tively. We now bound m(k, x) and M(k, x).

Let B be the event that ω(u) = x and ω(u1) > x. We partition the set of all events

using the following three events. Let B1 be the event that min (ω(u2), ω(u3)) > x, let

B2 be the event that either ω(u2) < x < ω(u3) or ω(u3) < x < ω(u2), and let

B3 be the event that max (ω(u2), ω(u3)) < x. Fix an arbitrary permutation σ of

V \ (Nk(u, u1) ∪ {u1}), and let A be the event that πω − (Nk(u, u1) ∪ {u1}) = σ. Then

Pr (u ∈ Sπ|A, B) =
3∑

i=1

Pr (u ∈ Sπ|A, B,Bi) · Pr(Bi) .

Let us estimate pi := Pr (u ∈ Sπ|A, B,Bi) for i ∈ {1, 2, 3}. First, p1 = 1. Moreover,

1

x2

(∫ x

0
(1 − M(k − 1, y)) dy

)(∫ x

0
(1 − M(k − 1, y)) dy

)
≤ p3

and

p3 ≤ 1

x2

(∫ x

0
(1 − m(k − 1, y)) dy

)(∫ x

0
(1 − m(k − 1, y)) dy

)
.

Last,
1

x

∫ x

0
(1 − M(k − 1, y)) dy ≤ p2 ≤ 1

x

∫ x

0
(1 − m(k − 1, y)) dy .

Note that Pr(B1) = (1 − x)2, and Pr(B2) = 2x(1 − x) and Pr(B3) = x2. Therefore,

we deduce that

m(k, x) ≥(1 − x)2 + 2(1 − x)

(
x −

∫ x

0
M(k − 1, y) dy

)
+

(
x −

∫ x

0
M(k − 1, y) dy

)

and

M(k, x) ≤(1 − x)2 + 2(1 − x)

(
x −

∫ x

0
m(k − 1, y) dy

)
+

(
x −

∫ x

0
m(k − 1, y) dy

)
.

Consequently, M(k − 1, y) ≤ F (k − 1, y).

We are now ready to prove Lemma 2.5.

Proof of Lemma 2.5. Let π = πω be a random permutation chosen uniformly at

random according to a weight ω. It suffices to prove that

(4) Pr(v ∈ Sπ|ω(v) = x) ≥ (1 − x)3 + 3(1 − x)2Ak + 3(1 − x)A2
k + A3

k .
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For i ∈ {0, 1, 2, 3}, let Di be the event that i neighbours of v appear before v in the

random permutation πω. Thus,

Pr(v ∈ Sπ|ω(v) = x) =

3∑

i=0

(Pr(v ∈ Sπ|Di, ω(v) = x) · Pr(Di|ω(v) = x)) .

Note that P (Di|ω(v) = x) =

(
3

i

)
(1 − x)3−ixi for each i ∈ {0, 1, 2, 3}. Moreover,

Pr(v ∈ Sπ|D0, ω(v) = x) = 1.

Now, fix i ∈ {1, 2, 3} and assume that ω(vj) < ω(v) = x for each j ∈ {1, . . . , i}.

Then, v ∈ Sπ if and only if {v1, . . . , vi} ∩ Sπ = ∅. Set Pj := Pr(vj ∈ Sπ|ω(vj) <

x, ω(v) = x). Hence,

Pr(v ∈ Sπ|Di, ω(v) = x) =

i∏

j=1

(1 − Pj) .

Thus, the conclusion follows provided that

i∏

j=1

(1 − Pj) ≥
1

xi
Ai

k ,

which in turn is implied by

Pj ≤
1

x

∫ x

0
F (k − 1, y) dy .

But, by the definition, Pj ≤ 1
x

∫ x
0 M(k − 1, y) dy, which yields the conclusion since

M(k − 1, y) ≤ F (k − 1, y) as we noted before starting the proof.

3. A Few Words on Entropy

We briefly present the concept of entropy, and we illustrate its use in two combi-

natorial problems. Entropy was introduced by Shannon, and it plays a fundamental

role in information theory. It has also proved to be a useful tool for some combinatorial

problems, including graph colouring problems [100, 101]. In particular, the ideas of the

theory of information can be applied to study counting questions and graph covering

issues [156]. It is also a good way to obtain (standard or not) inequalities [61]. (There

is also a notion of entropy colouring of graphs [10], though we do not deal with it in

this survey.)

We present two applications: a short proof [155] of a theorem of Brègman [29] on

the maximum number of different perfect matchings of a bipartite graph, and a result

of Kahn [102] about the number of independent sets in bipartite graphs. The general

idea illustrated in this section is to express a certain quantity as the (logarithm of the)

entropy of a related random variable, and then use tools from the probability theory

to derive an upper bound.
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Recall that a matching of a graph is a subset of its edges no two of which are

adjacent. Thus, a colour class of a proper edge-colouring is a matching, and every

matching can be viewed as the colour class of some edge-colouring. A matching M

of a graph G is perfect if every vertex of G is incident to exactly one edge of M .

If G is a ∆-regular bipartite graph, then its edge-chromatic number is ∆, and any

proper ∆-edge-colouring of G is a partition of its edge-set into ∆ perfect matchings.

Consequently, if G has p different perfect matchings, then it has
(

p

∆

)
· ∆! =

p!

(p − ∆)!

different proper ∆-edge-colourings. The next theorem [29] gives an upper bound on

the number of perfect matchings in any bipartite graph. It was originally conjectured

by Minc [131], in terms of permanent of matrices.

Theorem 3.1 (Brègman, 1973). Let G be a bipartite graph with parts A and B.

The number of perfect matchings of G is at most
∏

v∈A

(deg(v)!)1/ deg(v) .

Several proofs of this result are known, the original being combinatorial. In 1978,

Schrijver [166] found a short proof. A probabilistic description of this proof is presented

in the book of Alon and Spencer [11, Chapter 2]. The one we see in Subsection 3.2 uses

the concept of entropy, and was found by Radhakrishnan [155] in the late nineties.

We present in Subsection 3.3 a result related to the number of independent sets

of a bipartite graph due to Kahn [102].

Theorem 3.2 (Kahn, 2001). The number of independent sets of any ∆-regular bi-

partite graph on 2n vertices is at most

(
2∆+1 − 1

)n/∆
.

As shown by a disjoint union of copies of the complete bipartite graph K∆,∆, this

upper bound is tight. Kahn [102] conjectured that this bound is true for general

graphs with 2n vertices and maximum degree ∆.

3.1. Some Background

We give the definition of entropy along with the basic results that we need to prove

Theorems 3.1 and 3.2. We refer to the books by McEliece [128, 129] for a nice expo-

sition of the topic. Simonyi wrote a survey on graph entropy [169], and another one

devoted to the links between graph entropy and perfect graphs [170]—thus perfectly

fitting our setting.

All the logarithms of this section are in base 2. We now define the entropy of a

random variable X. As for the entropy, the values taken by X are not relevant, only

the probabilities with which X takes those values are. This is why, in this section,

we slightly deviate from our definition of random variables, by allowing them to take
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values in any set (and not only R). Moreover, we assume that their images is a finite

set. We let 0 · log(1/0) := 0.

Let X be a random variable taking values in a set X . The entropy of X is

H(X) :=
∑

x∈X

PrX(x) log
1

PrX(x)
,

where PrX(x) := Pr(X = x). If X is a 0–1 random variable being 0 with probability

p, then E(X) is the binary entropy function, i.e.

E(X) = H(p) := −p log p − (1 − p) log(1 − p) .

Let Y be a random variable taking values in a set Y . The joint entropy of the

two random variables X and Y is

H(X, Y ) =
∑

x∈X
y∈Y

Pr(X = x, Y = y) log

(
1

Pr(X = x, Y = y)

)
.

Thus, H(X, Y ) ≤ H(X)+H(Y ) with equality if and only if X and Y are independent.

We can condition the entropy of a random variable on a particular observation, or

more generally on the outcome of another random variable. The conditional entropy

of X given that Y = y is

H(X|Y = y) =
∑

x∈X

Pr (X = x|Y = y) log

(
1

Pr (X = x|Y = y)

)
.

The conditional entropy of X given Y is the average of the preceding, i.e., letting Y

take values in Y ,

H(X|Y ) :=
∑

y∈Y

Pr(Y = y)H(X|Y = y)

=
∑

x∈X
y∈Y

Pr (X = x, Y = y) log

(
1

Pr (X = x|Y = y)

)
.

We deduce directly from the definitions that

H(X, Y ) = H(X) + H(Y |X)(5)

and

H(X, Y |Z) = H(X|Z) + H(Y |X, Z) .(6)

By induction, (5) generalises to the so-called chain rule, i.e.

(7) H(X1, X2, . . . , Xn) =

n∑

i=1

H(Xi|X1, . . . , Xi−1) .

Moreover,

(8) H(X) ≤ log |X | ,
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with equality if and only if X is uniformly distributed. Indeed, since log is concave,

Jensen’s Inequality implies that

H(X) ≤
∑

x∈X

PrX(x) log

(∑
x∈X

PrX(x)/PrX(x)∑
x∈X

PrX(x)

)

=
∑

x∈X

PrX(x) log

( |X |
1

)

= log |X | ,

the first line being an equality if and only if X is uniformly distributed. This point is

a key ingredient in the proofs presented in the next two subsections.

Finally, we also use the following result, known as Shearer’s Lemma [40]. If

X = (Xi)i∈I is a vector and A a subset of I , we set XA := (Xi)i∈A.

Lemma 3.3 (Shearer, 1986). Let X = (X1, X2, . . . , Xn) be a random variable and

let A = {Ai}i∈I be a collection of subsets of {1, 2, . . . , n} such that each integer

i ∈ {1, 2, . . . , n} belongs to at least k sets of A . Then

H(X) ≤ 1

k

∑

i∈I

H (XAi
) .

3.2. Radhakrishnan’s Proof of Brègman’s Theorem

We prove Theorem 3.1. Let G be a bipartite graphs with parts A and B. We define

M to be the set of all the perfect matchings of G, and we suppose that M 6= ∅,

otherwise the statement of the theorem holds trivially. In particular, |A| = |B|; let us

set n := |A|. For a perfect matching M and a vertex a ∈ A, we let M(a) be the vertex

of B that is adjacent to a in M . Further, for every vertex b ∈ B, we let M−1(b) be

the vertex of A that is adjacent to b in M .

We choose a perfect matching M ∈ M uniformly at random. Thus, log |M | =

H(M). Let a1, a2, . . . , an be an ordering of the vertices of A. Then, by the chain

rule (7),

H(M) =H(M(a1)) + H(M(a2)|M(a1))

+ . . . + H(M(an)|M(a1), M(a2), . . . ,M(an−1)) .(9)

Note that this equation yields the trivial upper bound |M | ≤ ∏
a∈A deg(a). Indeed,

H(M(ai)|M(a1), M(a2), . . . ,M(ai−1) is at most H(M(ai)), which in turn is at most

log deg(ai). We would obtain a better upper bound on |M | if we manage to infer a

better upper bound on H(M(ai)|M(a1), M(a2), . . . ,M(ai−1)).

To this end, note that the range of M(ai) given M(aj) for j ∈ {1, 2, . . . , i − 1} is

actually contained in NG(ai)\{M(a1), M(a2), . . . ,M(ai−1)}. So, it may well be smaller

than deg(ai). Moreover, its size depends on the ordering chosen for the vertices of A.

To exploit this remark, let σ be a permutation of {1, 2, . . . , n}, chosen uni-

formly at random. For each index i ∈ {1, 2, . . . , n}, we set Ri(M,σ) := |NG(ai) \
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{M(aσ(1)), . . . ,M(aσ(k−1))}|, with k := σ−1(i). Observe that, for every integer j ∈
{1, 2, . . . , deg(ai)},

(10) Pr
M,σ

(Ri(M,σ) = j) =
1

deg(ai)
.

Indeed, for any fixed matching M ,

(11) Pr
σ

(Ri(M, σ) = j|M) =
1

deg(ai)
,

since σ is chosen uniformly at random. In fact, (11) can also be proved, for instance,

by counting directly: the number of permutations such that j vertices of M−1(NG(ai))

occur before ai is

n∑

k=1

(
deg(ai) − 1

j

)(
n − deg(ai)

k − j − 1

)
(k − 1)!(n − k)!

=(deg(ai) − 1)!(n − deg(ai))! ·
n∑

k=1

(
k − 1

j

)(
n − k

deg(ai) − j − 1

)

=
n!

deg(ai) ·
(

n

deg(ai)

) ·
n−1∑

k=0

(
k

j

)(
n − 1 − k

deg(ai) − j − 1

)

=
n!

deg(ai)
,

where the last line follows from the following classical binomial identity [67, p. 129].

n−1∑

k=0

(
k

j

)(
n − 1 − k

d − j − 1

)
=

(
n

d

)
.

Now, (11) implies (10) by averaging over all M ∈ M , i.e.

Pr
M,σ

(Ri(M, σ) = j) =
∑

M

Pr(M) · Pr
σ

(Ri(M,σ) = j|M) =
1

deg(ai)
.

On the other hand, applying (8) we obtain

(12) H(M(ai)|M(aσ(1)), . . . ,M(aσ(σ−1(i)−1))) ≤
deg(ai)∑

j=1

Pr
M

(Ri(M, σ) = j) · log j .

Furthermore, (9) translates to

H(M) =H(M(aσ(1))) + H(M(aσ(2))|M(aσ(1)))

+ . . . + H(M(aσ(n))|M(aσ(1)), M(aσ(2)), . . . ,M(aσ(n−1))) .(13)

Summing (13) over all the permutations σ, we obtain

n!H(M) =
∑

σ

n∑

i=1

H
(
M(aσ(i))|M(aσ(1)), . . . ,M(aσ(i−1))

)
,
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i.e.

H(M) =E
σ

[
n∑

i=1

H
(
M(aσ(i))|M(aσ(1)), . . . ,M(aσ(i−1))

)
]

.

We write the terms of the sum in a different order, and use the linearity of Expectation.

H(M) =

n∑

i=1

E
σ

[
H
(
M(ai)|M(aσ(1)), . . . ,M(aσ(σ−1(i)−1))

)]

≤
n∑

i=1

E
σ




deg(ai)∑

j=1

Pr
M

(Ri(M,σ) = j) · log j



 by (12)

=
n∑

i=1

deg(ai)∑

j=1

∑

σ

Pr(σ)Pr
M

(Ri(M,σ) = j) · log j .

Observe that

∑

σ

Pr(σ)Pr
M

(Ri(M, σ) = j) = Pr
M,σ

(Ri(M, σ) = j) .

Thus, (10) implies that

H(M) ≤
n∑

i=1

deg(ai)∑

j=1

1

deg(ai)
· log j

=
n∑

i=1

log (deg(ai)!)
1/ deg(ai) ,

which concludes the proof.

We end this subsection by mentioning the related problem of lower bounding the

number of perfect matchings in regular bipartite graphs with n vertices. A graph is

k-regular if all the vertices have degree k. The first non-trivial lower bound on the

number of perfect matchings in 3-regular bridgeless bipartite graphs was obtained in

1969 by Sinkhorn [171], who proved a bound of n
2 . He thereby established a conjecture

of Marshall. The same year, Minc [132] increased this lower bound by 2 and one year

after, Hartfiel [78] obtained n
2 + 3. Next, Hartfiel and Crosby [79] improved the bound

to 3
2n − 3. The first exponential bound was obtained in 1979 by Voorhoeve [191],

who proved 6 ·
(

4
3

)n/2−3
. This was generalised to all regular bipartite graphs in 1998

by Schrijver [167], who thereby proved a conjecture of himself and Valiant [168]. His

argument is involved, and as a particular case of a different and more general approach

(using hyperbolic polynomials), Gurvits [76] managed to slightly improve the bound,

as well as simplify the proof. His main result unifies (and generalises) the conjecture

of Schrijver and Valiant with that of van der Waerden on the permanent of doubly

stochastic matrices. An N ×N -matrix is doubly stochastic if it is non-negative entry-

wise and every column and every row sums to 1. In 1926, van der Waerden [192]
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conjectured that the permanent of every N×N -doubly stochastic matrix is at least N !
NN ,

with equality if and only if each entry of the matrix is 1
N . The conjecture was proved

about sixty years later by Egorychev [47, 48, 49] and, independently, Falikman [55].

The problem of lower bounding the number of perfect matchings is also related

to a conjecture of Lovász and Plummer. They conjectured in the mid-1970s that the

number of perfect matching of a 3-regular bridgeless graph grows exponentially with

the number of vertices (see the book by Lovász and Plummer [121, Conjecture 8.1.8]).

Edmonds, Lovász, and Pulleyblank [46] and, independently, Naddef [147], proved that

the dimension of the perfect matching polytope of a cubic bridgeless graph with n

vertices is at least n/4 + 1. Since the vertices of the polytope correspond to distinct

perfect matchings, it follows that any 3-regular bridgeless graph on n vertices has at

least n
4 + 2 perfect matchings. Recently, Krá ’l, Sereni, and Stiebitz [116] proved a

lower bound of n
2 + 2 except for 17 exceptional graphs (one having exactly n

2 perfect

matchings, the others n
2 + 1). In addition, Chudnovsky and Seymour [39] proved that

Lovász and Plummer’s conjecture is true for planar graphs.

3.3. The Proof of Kahn’s Theorem on the Number of Independent
Sets

Let I be the collection of independent sets of a ∆-regular bipartite graph G with parts

A and B. Let us write |A| = n = |B|. We want to show that |I | ≤
(
2∆+1 − 1

)n/∆
.

Let I be an independent set of G chosen uniformly at random among the ele-

ments of I . Thus, H(I) = log |I | by (8). Write A = {v1, v2, . . . , vn} and B =

{vn+1, vn+2, . . . , v2n}. The independent set I can be written as its characteristic vec-

tor x = x(I) = (xi)1≤i≤2n where xi = 1 if vi ∈ I and xi = 0 otherwise. For a set W ⊆
{v1, v2, . . . , v2n}, let xW = (xi)vi∈W . Thus, xA = (xi)1≤i≤n and xB = (xi)n+1≤i≤2n.

Then, by the chain rule,

H(I) = H(xA|xB) + H(xB) .

Let us consider the part B as the (non-disjoint) union of neighbourhoods of the vertices

of A. As G is ∆-regular, each vertex of B belongs to ∆ neighbourhoods. Therefore,

by applying Lemma 3.3 to H(xB), we infer that

H(I) ≤
n∑

i=1

H (xi|xB) +
1

∆

n∑

i=1

H
(
xN(vi)

)

≤
n∑

i=1

(
H
(
xi|xN(vi)

)
+

1

∆
H
(
xN(vi)

))
.(14)

For i ∈ {1, 2, . . . , n}, let

1i :=

{
0 if xN(vi) = 0 := (0, 0, . . . , 0)

1 otherwise.

Moreover, set p := Pr (1i = 0). Then

(15) H
(
xi|xN(vi)

)
= H(xi|1i) ≤ p .
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On the other hand,

H
(
xN(vi)

)
= H

(
xN(vi),1i

)

= H (1i) + H
(
xN(vi)|1i

)
by the chain rule.(16)

By the definitions, H(1i) = H(p) and

H
(
xN(vi)|1i

)
=pH

(
xN(vi)|1i = 0

)
+ (1 − p)H

(
xN(vi)|1i = 1

)

=(1 − p)H
(
xN(vi)|1i = 1

)

=(1 − p)
∑

ω∈{0,1}∆\{0}
Pr(xN(vi) = ω|1i = 1) log

((
Pr(xN(vi) = ω|1i = 1)

)−1
)

≤(1 − p) log
(
2∆ − 1

)
by Jensen’s Inequality, since log is concave.

Therefore, we infer that

(17) H
(
xN(vi)

)
= H

(
xN(vi),1i

)
≤ H(p) + (1 − p) log

(
2∆ − 1

)
.

By (14), (15), and (17), we deduce that

(18) H(I) ≤
n∑

i=1

(
p +

1

∆

(
H(p) + (1 − p) log

(
2∆ − 1

)))
.

A straightforward study of the function f(x) := x + 1
∆

(
H(x) + (1 − x) log

(
2∆ − 1

))

yields that its maximum is 1
∆ log

(
2∆+1 − 1

)
, which is attained when x = 2∆

2∆+1−1 .

Consequently, (18) implies that

log |I | = H(I) ≤ n

∆
log
(
2∆+1 − 1

)
,

as stated.

Using similar ideas and techniques, Kahn [103] generalised Theorem 3.2 to the

weighted setting.

Theorem 3.4 (Kahn, 2002). Let G be a bipartite graph with parts A and B such

that {
∀a ∈ A, deg(a) ≤ k and

∀b ∈ B, deg(b) ≥ k .

Let α, β ∈ [1,∞) and set

λv :=

{
α if v ∈ A,

β if v ∈ B.

Then,

(19)
∑

S∈S (G)

∏

v∈S

λv ≤
(

(1 + α)k + (1 + β)k − 1
)|A|/k

.

Again, a disjoint union of copies of the complete bipartite graph shows the tightness of

the given bound. Moreover, Kahn [103] conjectured that the statement of the theorem

actually holds for α, β ∈ [0,∞).
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4. The Lovász Local Lemma

We state a version of the Lovász Local Lemma in each of the following three

subsections. The first two versions are equivalent, and an application to an edge-

colouring problem is given for both of them. The last version is weaker, yet very

handy to work with. We use it several times in Section 6.

4.1. Asymmetric Version

Lemma 4.1 (The Lovász Local Lemma, 1975). Let A = {A1, A2, . . . , An} be a set

of events in a probability space Ω, and let G = (V,E) be a graph with V = {1, 2 . . . , n}
such that for each i ∈ {1, 2, . . . , n}, the event Ai is mutually independent of {Aj : ij /∈
E}. Suppose that there exist real numbers x1, x2, . . . , xn ∈ (0, 1) such that

Pr(Ai) < xi

∏

ij∈E

(1 − xj)

for every i ∈ {1, 2, . . . , n}. Then the probability that no event in A occurs is positive.

The Lovász Local Lemma [52] is a beautiful and powerful result, which has been

extensively applied to solve many different problems. Its philosophy is that if there is

a set of events, each having low probability and being mutually independent of many

others, then with positive probability none of the events occur. Consequently, the

events A1, A2, . . . , An are usually the “bad” events, i.e. all the situations we would

like to avoid. Then, provided our setting fulfils the hypothesis of the lemma, we

are ensured that a configuration avoiding all the bad events exists. We present an

application of the Asymmetric Lovász Local Lemma to acyclic edge-colourings due to

Alon, Sudakov, and Zaks [12].

Recall that a proper edge-colouring of a graph G is an assignment of colours to

the edges of G such that no two adjacent edges are assigned the same colour. An

edge-colouring is acyclic if G has no 2-coloured cycles, i.e. the subgraph of G induced

by the union of any two colour classes is a forest. The acyclic edge-chromatic number

of G is a′(G), the least number of colours in an acyclic edge-colouring of G.

Acyclic colourings were introduced by Grünbaum [75]. The acyclic edge-chromatic

number (and its vertex analog) can be used to obtain bounds on other colouring

parameters, such as the oriented chromatic number or the circular chromatic number

which are of particular interest to model various practical problems.

Being a proper edge-colouring, any acyclic edge-colouring of a graph of maximum

degree ∆ uses at least ∆ colours. Alon, Sudakov, and Zaks [12] made the following

conjecture.

Conjecture 4.2 (Alon, Sudakov, and Zaks, 2001). For any graph G of maximum

degree ∆,

a′(G) ≤ ∆ + 2 .

The first upper bound on the acyclic edge-chromatic number was obtained by Alon,

McDiarmid, and Reed [8], who proved that a′(G) ≤ 60∆ for any graph G of maximum



RANDOMLY COLOURING GRAPHS (A COMBINATORIAL VIEW) 27

degree ∆. This bound was later decreased to 16∆ by Molloy and Reed [135], and

this is the best bound known so far—let us note here that Muthu, Narayanan, and

Subramanian [145] observed a flaw in the sketch of an argument yielding an upper

bound of 9∆, given by Molloy and Reed [140, Chapter 19, p. 226].

Alon, Sudakov, and Zaks [12] proved that Conjecture 4.2 is true for “almost all”

∆-regular graphs. This was improved by Nešetřil and Wormald [151] who obtained

the upper bound ∆ + 1 for a random ∆-regular graph.

Further, Alon, Sudakov, and Zaks [12] proved that Conjecture 4.2 holds for graphs

with sufficiently high girth (in terms of the maximum degree). This latter result is

stated and proved below. Muthu, Narayanan, and Subramanian [145] showed that

a′(G) ≤ 4.52∆ for every graph G of maximum degree ∆ and girth at least 220.

Theorem 4.3 (Alon, Sudakov, and Zaks, 2001). For every graph G of maximum

degree ∆ and girth at least 2000∆ log ∆,

a′(G) ≤ ∆ + 2 .

The proof illustrates a useful strategy: given a non-valid colouring with few conflicts,

introduce some randomness to solve the conflicts and obtain the desired properties.

The non-valid colouring may be obtained by a random colouring procedure—designed

such that the number of conflicts can be bounded—or it can, as here, be given by a

known theorem.

Proof of Theorem 4.3. Let G = (V,E) be a graph of maximum degree ∆ and girth

x ≥ 2000∆ log ∆. By Vizing’s Theorem [188], let c : E → {1, 2, . . . , ∆+1} be a proper

edge-colouring of G. Each edge is recoloured with the new colour ∆ + 2 randomly

and independently with probability 1
32∆ . We assert that, with positive probability,

the obtained colouring is proper (i.e. no pair of adjacent edges are recoloured) and

acyclic (i.e. every cycle of G contains at least three different colours).

So as to use the Asymmetric Lovász Local Lemma, we now have to design a

suitable set of “bad” events. Let us define them according to three types. An even

cycle C half of whose edges are assigned the same colour by the colouring c is half-

monochromatic. We let H(C) be the set of those edges (so H(C) induces a perfect

matching of C). Note that if C is a 2-coloured cycle, then there are two choices for

H(C).

Type I For each pair B of adjacent edges, let EB be the event that both the edges of B

are recoloured.

Type II For each cycle C of G that is 2-coloured by c, let EC be the event that no edge

of C is recoloured.

Type III For each half-monochromatic cycle D, let ED be the event that every edge not

in H(D) is recoloured.

Our aim now is to apply the Asymmetric Lovász Local Lemma to show that,

with positive probability, no event of type I, II or III holds. This would imply that

the obtained edge-colouring is acyclic. Indeed, the colouring would be proper since
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no event of type I holds. Moreover, let C be an even cycle of G. Since no event of

type II holds, C is not 2-coloured unless one of the two colours is ∆ + 2. Thus, as the

obtained colouring is proper, the edges not coloured ∆ + 2 cannot be monochromatic,

because no event of type III holds.

So it remains to show that our setting satisfies the conditions of the Asymmetric

Lovász Local Lemma. Let us first look at the dependencies. We have defined an event

EH for each subgraph H of G composed of either two adjacent edges, or a 2-coloured

cycle, or an half-monochromatic cycle. Observe that any edge e is adjacent to less

than 2∆ edges, and it is contained in less than ∆ two-coloured cycles.

We assert that any edge e is contained in less than 2∆k−1 half-monochromatic

cycles D of length 2k. Indeed, let D := v1v2 . . . v2k with e = v1v2k. Suppose first that

e ∈ H(D). Then (recalling that the colouring c is proper), there is at most one choice

for each vertex v2i−1 with i ∈ {2, 3, . . . , k}. Further, there are at most ∆ choices for

each vertex v2i, where i ∈ {1, 2, . . . , k − 1}. Hence, in total, there are at most ∆k−1

such cycles. If e /∈ H(D), a similar argument applied to the edge v2v3 gives an upper

bound of ∆k−1, which ends the proof of the assertion.

Consider the dependency graph described in the Asymmetric Lovász Local Lemma.

Note that an event EH is mutually independent of the set all the events EH′ , where

H ′ does not share an edge with H. Thus, in the dependency graph, each event EH

where H contains x edges is adjacent to at most 2x∆ events of type I, at most x∆

events of type II and at most 2x∆|H(D)|−1 events ED of type III (where D is an

half-monochromatic cycle).

We now have to bound the probability of each event, and find appropriate real

constants xi to be able to finish the proof. The following bounds readily follow from

the definition of the events.

(1) Pr(EB) = 1
1024∆2 for each event EB of type I;

(2) Pr(EC) =
(
1 − 1

32∆

)x ≤ e−x/(32∆) for each event EC of type II, where C is a

cycle of length x; and

(3) Pr(ED) ≤ 2
(32∆)x for each event ED of type III, where D is an half-monochromatic

cycle of length 2x.

To each event of type I, we associate the real constant 1
512∆2 . To each event of

type II is associated the real constant 1
128∆2 , and 1

(2∆)|H(D)| is associated to each event

ED of type III. Thus, it only remains to show the following three inequalities.

1

1024∆2
≤ 1

512∆2

(
1 − 1

512∆2

)4∆(
1 − 1

128∆2

)2∆∏

k

(
1 − 1

(2∆)k

)4∆k−1

(20)

e−
x

32∆ ≤ 1

128∆2

(
1 − 1

512∆2

)2x∆(
1 − 1

128∆2

)x∆∏

k

(
1 − 1

(2∆)k

)2x∆k−1

(21)

2

(32∆)x
≤
(

1

2∆

)x(
1 − 1

512∆2

)4x∆(
1 − 1

128∆2

)2x∆∏

k

(
1 − 1

(2∆)k

)4x∆k−1

(22)

with x ≥ 4 in (21) and x ≥ 2 in (22).
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We prove them using some standard estimates. For every real x ≥ 2 it holds that(
1 − 1

x

)x ≥ 1
4 . Thus, for every x, d ≥ 2,

∏

k

(
1 − 1

(2∆)k

)2x∆k−1

=
∏

k

(
1 − 1

(2∆)k

)(2∆)k·21−k·x/∆

≥
∏

k

(
1

4

)21−k·x/∆

≥
(

1

4

)2x·Pk 2−k/∆

≥ 4−x/(256∆) ,(23)

where the last inequality uses that 2k ≥ g(G) ≥ 20. Similarly,

(
1 − 1

512∆2

)2x∆

≥ 4−x/(256∆) ,(24)

and

(
1 − 1

128∆2

)x∆

≥ 4−x/(128∆) .(25)

Therefore, we deduce from (23), (24), and (25) that

(
1 − 1

512∆2

)2x∆(
1 − 1

128∆2

)x∆∏

k

(
1 − 1

(2∆)k

)2x∆k−1

≥ 2−x/(32∆) .

Consequently, (20) holds because 2(1− 1

16∆) ≥ 1, and so does (22) since 2(1−5x+x+ x

16∆) ≤
1 for all x ≥ 1. Finally, since x ≥ 2000∆ log ∆ ≥ 32∆ log(128∆2)

log(e/2) and ∆ > 2, we infer

that

e−x/(32∆) ≤ 1

128∆2
· 2−x/(32∆) ,

which implies (21), thereby completing the proof.

In the previous proof, we started from a proper colouring using at most ∆ + 1

colours, whose existence is ensured by Vizing’s Theorem. Then, a new colour was used

uniformly at random on the edges. The Asymmetric Lovász Local Lemma guaranteed

that with positive probability, the recolouring destroyed all 2-coloured cycles without

violating the properness.

The requirement on the girth is natural: in this setting, short 2-coloured cycles

have a much larger probability of surviving the recolouring than long cycles.

The approach used recently by Muthu, Narayanan, and Subramanian [145] (to

prove a weaker upper bound, but with a much weaker girth assumption, as we saw

earlier) is similar. In particular they use the Lovász Local Lemma in the same way.

However, instead of starting from a proper colouring and destroying 2-coloured cycles,

they colour all the edges randomly.



30 JEAN-SÉBASTIEN SERENI

4.2. Multiple Version

Here is the so-called multiple version of the Lovász Local Lemma. It is equivalent

to the asymmetric version, and we refer the reader to the monograph of Alon and

Spencer [11] for further details.

Lemma 4.4 (The Multiple Lovász Local Lemma, 1975). Let A be a finite set of

events, partitioned into parts A1, A2, . . . ,Ar such that Pr(A) ≤ pi for every A ∈ Ai

and each i ∈ {1, 2, . . . , r}. Suppose that there exist real numbers ai ∈ (0, 1) and ∆ij ≥ 0

for every (i, j) ∈ {1, 2, . . . , r}2 such that

(1) for any event A ∈ Ai, there exists a set DA ⊆ A such that A is mutually

independent of A \ (DA ∪ {A}) and |DA ∩Aj | ≤ ∆ij for every j ∈ {1, 2, . . . , r};
and

(2) pi ≤ ai
∏r

j=1(1 − aj)
∆ij for every i ∈ {1, 2, . . . , r}.

Then with positive probability none of the events in A holds.

Let us see an application of this lemma to non-repetitive colourings. Given a finite

set S of symbols, a finite sequence of elements of S is non-repetitive over S if it does

not contain a subsequence of the form xx, where x is a finite sequence of symbols of

S . Thue [182, 183] proved the existence of arbitrarily long non-repetitive sequences

provided that S contains (at least) three different symbols. Several generalisations of

this concept have been introduced, and the one we focus on concerns graph colouring.

Alon et al. [4] introduced the concept of non-repetitive colouring of graphs. Let

G = (V,E) be a graph. An edge-colouring c of G is non-repetitive if for any path

v1v2 . . . vr of G (where all the vertices are distinct), the sequence (c(vivi+1))1≤i≤r−1 is

non-repetitive over c(E). The smallest number of colours needed in a non-repetitive

edge-colouring of G is π(G), the Thue number of G.

In this setting, Thue’s Theorem states that the Thue number of any path (of

length at least 3) is 3. Consequently, the Thue number of any cycle is at most 4 (and

it can be 4 as shown by a cycle of length 5). Thus, π(G) ≤ 4 for any graph G of

maximum degree at most 2. It is natural to look for an upper bound on π(G) in terms

of the maximum degree of G. Alon et al. [4] proved the following.

Theorem 4.5 (Alon, Grytczuk, Ha luszczak, and Riordan, 2002). For every graph

G of maximum degree ∆,

π(G) ≤ 2e16∆2 .

They moreover conjectured a linear bound in terms of the number of vertices.

Conjecture 4.6 (Alon, Grytczuk, Ha luszczak, and Riordan, 2002). There exists

an integer c such that

π(G) ≤ c · n
for every graph G on n vertices.

Proof of Theorem 4.5. Let G be a graph of maximum degree ∆, and let C be a

set of 2e16∆2 colours. For each edge e of G, we choose uniformly at random a colour
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c(e) from C , independently from the choices already made. We aim at applying the

Multiple Lovász Local Lemma to prove that, with positive probability, the obtained

edge-colouring of G is non-repetitive.

For any path P := v1v2 . . . v2s of G of even length, let AP be the event that

(c(vivi+1))1≤i≤s−1 = (c(vivi+1))s≤i≤2s−1. Let

As := {AP : P path of length 2s} .

Thus, c is non-repetitive if and only if no event in A := ∪sAs occurs.

For any positive integer s and any event AP ∈ As, the probability that AP occurs

is at most |C |−s. Moreover, AP is mutually independent of all the events AQ where Q

has no common edge with P . Since a path of length 2s shares an edge with at most

(2s) · (2t)∆2t = 4st∆2t

paths of length 2t, we set ∆st := 4st∆2t.

It remains to define the real numbers as for s ∈ {1, 2, . . . , r} so that the condition

(2) of the Multiple Lovász Local Lemma is satisfied. Set as := a−s with a := 2∆2.

Since as ≤ 1
2 , it follows that

1 − as ≥ e−2as .

So the condition (2) is fulfilled if

|C |−s ≤as

∏

t

e−2at∆st

=as

∏

t

exp
[
−8 · 2−t · st

]
,

i.e. if

|C | ≥a · exp

[
8
∑

t

2−t · t
]

=2∆2e8·2 ,

since
∑∞

t=1 t2−t = 2. This is the case by the choice of C . Consequently, the Multiple

Lovász Local Lemma applies and yields the sought conclusion.

We end this subsection with an open problem about non-repetitive colouring of

cycles. As mentioned in the introduction, the Thue number of any cycle is at most 4,

and this upper bound is attained by the 5-cycle. Let Cn be the cycle with n vertices.

Alon et al. [4] verified by numerical experiment that if n ≤ 2001, then π(Cn) = 4 if

and only if n ∈ {5, 7, 9, 10, 14, 17}. This is why they made the following conjecture.

Conjecture 4.7 (Alon, Grytczuk, Ha luszczqk, and Riordan, 2002). Every cycle of

length at least 18 has Thue number at most 3.

4.3. Symmetric Version

Let us state the so-called symmetric version of the Lovász Local Lemma [52]. It is

less general than the versions seen previously. However, it is very handy to work with,

and it is sufficient in many situations. It is applied in Section 6.
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Lemma 4.8 (The Symmetric Lovász Local Lemma, 1975). Let A = {A1, . . . , An}
be a set of random events so that, for each i ∈ {1, 2, . . . , n},

(1) Pr(Ai) ≤ p and

(2) Ai is mutually independent of all but at most d other events of A .

If pd ≤ 1
4 then the probability that no event of A occurs is positive.

5. Concentration Inequalities

As mentioned in the introduction, concentration inequalities bound the deviation

between a random variable and its expected value (or its median). Thus, they allow

us to translate bounds on the expected value of a random variable to bounds on the

random variable. It is useful since the expected value of a random variable is often

easier to bound than the random variable itself.

We present three concentration bounds in this section, namely Chernoff’s Bound,

Talagrand’s Inequality and McDiarmid’s Inequality. We do not state them in their

full generality. We rather give weaker (but handy) versions.

5.1. The Chernoff Bound

The binomial random variable Bin(n, p) is the sum of n independent 0–1 variables,

each being 1 with probability p. Thus, E (Bin(n, p)) = np. The well-known Chernoff

Bound [11, 36, 124] bounds the probability that Bin(n, p) deviates from its expected

value np. It appears in the literature under many guises, and we give several formu-

lations. Further details and proofs can be found, for instance, in the book by Janson,

Luczak, and Ruciński [93, Chapter 2].

Lemma 5.1 (Chernoff’s Bound, 1952).

(1) For every t ≥ 0,

Pr(Bin(n, p) ≥ np + t) ≤ exp

[
− t2

2(np + t/3)

]
.

(2) For every t ≥ 0,

Pr(Bin(n, p) ≤ np − t) ≤ exp

[
− t2

2np

]
.

(3) For every t ∈ [0, np],

Pr (|Bin(n, p) − np| > t) < 2 exp

(
− t2

3np

)
.

Let us give a somehow less friendly but slightly more general version that is used in

Subsection 6.2. We also refer to it as to the Chernoff Bound.
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Lemma 5.2 (Chernoff’s Bound, 1952). For every t > 0,

Pr (|Bin(n, p) − np| > t) < 2 exp

(
t − ln

(
1 +

t

np

)
(np + t)

)
.

There are many applications of Chernoff’s Bound in the literature, and the one we

present now allows us to introduce a very interesting circular variant of list-colouring.

Let G = (V,E) be a graph. If p and q are two integers, a (p, q)-colouring of G is

a function c : V → {0, . . . , p − 1} such that for each edge uv ∈ E,

q ≤ |c(u) − c(v)| ≤ p − q .

The circular chromatic number of the graph G is

χc(G) := inf {p/q : G admits a (p, q)-colouring} .

The circular chromatic number was introduced by Vince [187] under a different termi-

nology. He proved in particular that the infimum in the definition is always attained.

Hence, the circular chromatic number is always a rational number. Furthermore,

χ(G)− 1 < χc(G) ≤ χ(G) for every graph G. Thus, the chromatic number of a graph

is the ceiling of its circular chromatic number. We refer to the survey of Zhu [196] for

an in-depth review of this fundamental notion.

The concept of circular choosability, introduced by Mohar [133] and Zhu [197],

combines the concepts of circular colouring and list-colouring, respectively, in a natural

way.

A list-assignment L is a t-(p, q)-list-assignment if L(v) ⊆ {0, . . . , p − 1} and

|L(v)| ≥ tq for each vertex v ∈ V . The graph G is (p, q)-L-colourable if there ex-

ists a (p, q)-L-colouring c, i.e. c is both a (p, q)-colouring and an L-colouring. For any

real number t ≥ 1, the graph G is t-(p, q)-choosable if it is (p, q)-L-colourable for every

t-(p, q)-list-assignment L. Last, G is circularly t-choosable if it is t-(p, q)-choosable for

any p, q. The circular choice number of G is

cch(G) := inf{t ≥ 1 : G is circularly t-choosable} .

Zhu [197] proved that cch(G) ≥ max{ch(G) − 1, χc(G)} for every graph G. He also

raised several very interesting questions, including whether the infimum of the defini-

tion is always attained. This was answered negatively by Norine [152]. To this end, he

proved that the complete bipartite graph K2,4 has circular choice number 2, and yet it

is not circularly 2-choosable. In other words, K2,4 is circularly t-choosable if and only

if t > 2. Thus, it is natural to ask, as Zhu did, whether the circular choice number

is always a rational number. This latter question was answered in the affirmative by

Müller and Waters [142].

Another problem concerns the link between the circular choice number, and the

(usual) choice number. Zhu [197] asked whether cch(G) = O (ch(G)) for every graph G

(and he observed that there are graphs G for which cch(G) ≥ 2 ch(G)). So far, the only

general link between those two graph invariants is the following, which unfortunately

depends on the number of vertices of the considered graph [81].
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Theorem 5.3 (Havet, Kang, Müller, and Sereni, 2006). For every graph G with n

vertices,

cch(G) ≤ 36 · (ch(G) + ln n) + 3 .

The proof of Theorem 5.3 is probabilistic, and we present it as an application of the

Chernoff Bound. The way Chernoff’s Bound is used is typical: the probability of an

event is upper bounded by that of the deviation of a binomial random variable from

its expected value.

Proof of Theorem 5.3. Fix two integers p and q and set t := 36 ·(ch(G)+ln n)+3.

Suppose that lists L(v) ⊆ Zp of size at least ⌊tq⌋ + 1 are given. If q = 1, then we can

certainly (p, q)-L-colour G, as t > ch(G). So we assume that q ≥ 2.

Let us partition
{

0, . . . ,
⌊

p−1
q−1

⌋}
into groups gi := {3i, 3i + 1, 3i + 2} of three

consecutive numbers, where the last group may contain less than three numbers. Out

of each group of three numbers but the very last one, we pick one element at random,

but in such a way that we never pick two consecutive numbers. To be more precise, for

i = 0 we simply pick one of 0, 1, 2 uniformly at random. Once a choice has been made

for gi−1, we pick one of 3i, 3i+1, 3i+2 uniformly at random provided we did not choose

3(i− 1) + 2 from gi−1. Otherwise, we choose one of 3i + 1, 3i + 2 at random each with

probability 1
2 . The set of selected indices is K := {k : k was chosen}. With each index

k ∈
{

0, . . . ,
⌊

p−1
q−1

⌋}
, we associate an interval Ik = {k(q − 1), . . . , (k + 1)(q − 1)− 1} of

Zp. Notice that the Ik are disjoint intervals of length q − 1. A crucial observation for

the sequel is that if k and l are two distinct elements of K, then |a− b|p ≥ q for every

a ∈ Ik and every b ∈ Il.

Let us set I :=
⋃

k∈K Ik. For each v ∈ V , we let S(v) := {k ∈ K : Ik ∩ L(v) 6= ∅}.

The idea for the rest of the proof is to show that t was chosen in such a way that

Pr(|S(v)| < ch(G)) < 1
n for all v. Then it follows that

Pr(|S(v)| < ch(G) for some v ∈ V ) < n · 1

n
= 1 .

In other words, there exists a choice of non-adjacent intervals, one from each group of

three, for which |S(v)| ≥ ch(G) for all v ∈ V . By the definition of the choice number,

there exists a proper colouring c of G with c(v) ∈ S(v). Let us define a new colouring

f by choosing f(v) ∈ Ik ∩ L(v) if c(v) = k. This can be done for each v, by the

definition of S(v). Now f is a (p, q)-L-colouring, because if vw ∈ E(G) then c(v) and

c(w) are distinct elements of K. Consequently, f(v) and f(w) have been chosen from

non-adjacent intervals Ic(v) and Ic(w), and hence |f(v) − f(w)|p ≥ q.

It remains to show that t is chosen such that Pr(|S(v)| < ch(G)) < 1
n . We first

assert that the probability that |S(v)| < ch(G) is bounded above by

Pr

(
Bin

(
s,

1

6

)
≤ ch(G)

)
,

where s :=
⌈

t
3

⌉
− 1. To prove the assertion, we “thin” the lists L(v) to get sublists

L′(v) ⊆ L(v) with

|L′(v)| ≥
⌈ |L(v)|

3(q − 1)

⌉
− 1 >

t

3
− 1 ,
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and a distance of at least 3(q−1) between elements of L′(v). Indeed, we can construct

L′(v) by taking the first, the (3(q − 1) + 1)th, the (6(q − 1) + 1)th, and so on up to

(and including) the ((M − 1)(q− 1) + 1)th element of L(v), where M :=
⌈

tq
3(q−1)

⌉
, and

we discard the (M(q − 1) + 1)th element, to avoid possible wrap-around effects. Let

L′(v) := {a1, . . . , al} with ai ≤ ai+1. For J ⊆ {1, . . . , i − 1}, let A(i, J) be the event

that aj ∈ I for j ∈ J and aj 6∈ I for all j ∈ {1, . . . , i− 1} \ J . We assert that for every

J ⊆ {1, . . . , i − 1},

(26) Pr(ai ∈ I|A(i, J)) ≥ 1

6
.

To see this, observe that if ai ∈ I3k+1 or ai ∈ I3k+2 for some k, then the probability

that ai is covered by I given that A(i, J) holds is at least 1
3 . Indeed, regardless of

which element of gk−1 was selected, the probability that 3k + 1 (respectively 3k + 2)

is selected is at least 1
3 . Now, supposing that ai ∈ I3k for some k, it follows that

ai−1 6∈ I3(k−1)+1 ∪ I3(k−1)+2. Therefore, the probability that ai is covered given that

A(i, J) holds is at least the minimum of two probabilities: the probability that 3k is

chosen given that 3(k−1) was chosen from gk−1; and the probability that 3k is chosen

given that 3(k − 1) was not chosen from gk−1. This minimum is 1
6 , which proves the

assertion.

We use the following Chernoff Bound.

∀r ≥ 0, Pr(Bin(k, p) ≤ kp − r) ≤ exp

[
−2

r2

k

]
.

Setting r := s
6 − ch(G) ≥ 0, it follows that

Pr(|S(v)| < ch(G)) ≤ Pr

(
Bin

(
s,

1

6

)
≤ s

6
− r

)
≤ exp

[
−3

r2

s

]
.

This yields the conclusion provided that

3
(

ch(G) − s

6

)2
> s ln n ,

i.e.,

s2 − 12 · (ch(G) + ln n) s + 36 ch2(G) > 0 .

This is certainly true if

s >
1

2

(
12 ch(G) + 12 ln n +

√
144 (ch(G) + ln n)2 − 144 ch(G)2

)

= 6(ch(G) + ln n) + 6
√

(2 ch(G) + ln n) · ln n .

Thus, since 2
√

ab < a+ b for any two distinct positive real numbers a and b, it suffices

that

s ≥ 12 · (ch(G) + ln n) ,

which is the case because

3s ≥ t − 3 = 36 · (ch(G) + ln n) .
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Let us note that known results about the choice number yield an upper bound

on cch that is exponential in ch. Given a graph G, let δ∗(G) be the degeneracy of G,

i.e. the smallest integer k such that each induced subgraph of G contains a vertex of

degree at most k. Hence, the greedy algorithm shows that ch(G) ≤ δ∗ +1. The results

of Alon [2] studied in Subsection 2.2 yield that ch(G) = Ω(ln(δ∗(G))). On the other

hand, as Zhu [197] noted, cch(G) ≤ 2δ∗(G). Therefore, we deduce that

cch(G) ≤ eβ ch(G) ,

for some β > 0.

5.2. Talagrand’s and McDiarmid’s Inequalities

In the mid-1990s, Talagrand [178] exhibited a very useful concentration inequality. The

version we give, though not quite as powerful as the original one, is usually sufficient

for our purposes and at the same time handy to use. Further exposition can be found

in the survey written by McDiarmid [125], the lecture notes of Lugosi [122], and in the

book by Molloy and Reed [140]. Examples of applications of concentration inequalities

in computer science are presented in the survey of Dı́az, Petit, and Serna [42].

Lemma 5.4 (Talagrand’s Inequality, 1995). Let X be a non-negative random vari-

able determined by the independent trials T1, . . . , Tn. Suppose that for every set of

possible outcomes of the trials

(1) changing the outcome of any one trial can affect X by at most c; and

(2) for each s > 0, if X ≥ s then there is a set of at most rs trials whose outcomes

certify that X ≥ s.

Then for every t ∈
[
60c
√

r E(X),E(X)
]
,

Pr (|X − E(X)| > t) ≤ 4 exp

(
− t2

32c2r E(X)

)
.

Let us now see an application of Talagrand’s Inequality, which deals with the

chromatic number of graph powers. It is due to Alon and Mohar [9]. We note that

the way we stated Talagrand’s Inequality permits a slightly less technical application

than that of the original proof.

The kth-power Gk of the graph G = (V,E) is the graph on V where two vertices

are adjacent whenever their distance in G is at most k. Alon and Mohar [9] defined the

parameter fk(∆, g) to be the maximum of the values χ(Gk) taken over all the graphs

G with maximum degree ∆ and girth g. Since the maximum degree of the square of

a graph with maximum degree ∆ is at most ∆2, it follows that f2(∆, g) ≤ ∆2 + 1. By

Brooks’ Theorem, this upper bound can be attained only if g ≤ 5 and if there exists a

graph of diameter 2, maximum degree ∆ and ∆2 + 1 vertices. As shown by Hoffman

and Singleton [90], such graphs exist only for ∆ ∈ {2, 3, 7} and possibly ∆ = 57. Alon

and Mohar [9] observed that f2(2, g) = 4 if g ≥ 6, and proved the following theorem

which determines the behaviour of f2(∆, g).
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Theorem 5.5 (Alon and Mohar, 2002).

(i) For all g ≤ 6,

(1 − o(∆))∆2 ≤ f2(∆, g) ≤ ∆2 + 1 .

(ii) There are absolute constants c1 and c2 such that for every ∆ ≥ 2 and every

g ≥ 7,

c1
∆2

log ∆
≤ f2(∆, g) ≤ c2

∆2

log ∆
.

Thus, there is a phase transition as g grows: f2(∆, g) stays roughly the same when

g grows from 3 to 6, decreases significantly when g grows from 6 to 7 and then stays

essentially the same as g increases.

Let us also note that the upper bounds are obtained using a result of Alon,

Krivelevich, and Sudakov [7] about the chromatic number of sparse graphs, which was

proved using a similar approach to that in Subsection 6.1. However, this last result is

stronger than the one we present in Subsection 6.1, and the proof more involved.

It is natural to ask for the behaviour of the functions fk when k 6= 2. The complete

graph on ∆ + 1 vertices shows that f1(∆, 3) = ∆ + 1 for any integer ∆. In addition,

well-known results about random graphs [21] ensure the existence of a constant c1

such that

f1(∆, g) ≥ c1
∆

log ∆

for every g ≥ 4. Obtaining an upper bound can be seen as improving Brooks’ Theorem

for graphs with no short cycles. The first non-trivial result was obtained, indepen-

dently, by Borodin and Kostochka [26], Catlin [34], and Lawrence [117]. Their results

imply that

f(∆, 4) ≤ 3

4
· (∆ + 2) .

It took almost ten years until Kostochka [110] improved this upper bound to 2
3∆ + 2.

In the mid-1990s, Kim [107] and, independently, Johansson [95] made a dramatic

breakthrough by proving that

f(∆, 4) ≤ (1 + o(1))
∆

log ∆
.

Kim obtained this result by the naive colouring procedure. The proof requires a very

detailed and highly technical analysis of the deviations of random variables from their

means. In that regards, recent concentration results (as Talagrand’s and McDiarmid’s

Inequalities) may help to simplify the analysis. Kim’s proof is algorithmic, and both

him and Johansson actually obtained the upper bound for the choice number (and

hence for the chromatic number as well). To sum-up, there exist two constants c1 and

c2 such that for every ∆ ≥ 2 and every g ≥ 4,

c1
∆

log ∆
≤ f1(∆, g) ≤ c2

∆

log ∆
.

As for k ≥ 3, Alon and Mohar [9] proved the following.
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Theorem 5.6 (Alon and Mohar, 2002).

• There exists a constant c such that for all integers k ≥ 1, ∆ ≥ 2 and g ≥ 3k + 1

fk(∆, g) ≤ c

k
· ∆k

log ∆
.

• For every positive integer k, there exists a positive number bk such that for every

∆ ≥ 2 and every g ≥ 3

fk(∆, g) ≥ bk
∆k

log ∆
.

The upper bound is proved by an analog argument as for the case where k = 2.

Let us prove the lower bound. The approach used has the same flavor as Erdős’ proof

that there are graphs with arbitrary high girth and chromatic number [51].

To lower bound the chromatic number of a graph G = (V,E), the usual lower

bound used is χ(G) ≥ |V |
α(G) , where α(G) is the independence number of G (defined in

Subsection 1.1). We first obtain a graph satisfying some properties, which allow us to

remove from it some vertices in order to obtain the desired graph.

Fix a positive integer k and an integer g ≥ 3. We assume that ∆ is sufficiently

large compared to k. Let V ′ = {1, 2, . . . , n} with n ≫ ∆max(2k,g). We let G′ be the

random graph Gn,p with p := ∆
2n , i.e. G′ has vertex-set V ′, and each pair of distinct

elements of V ′ is chosen to be an edge randomly and independently with probability

p. We first prove two properties about G′, using the first moment method.

(A) The probability that G′ has at most 10∆g cycles of length less than g is at least

0.9.

By the linearity of Expectation, the expected number of cycles of length less than g

in G′ is
g−1∑

i=3

(
n

i

)
· (i − 1)!

2
· pi <

1

2

g−1∑

i=3

(
∆

2

)i

< ∆g .

The desired property follows by Markov’s Inequality.

(B) The probability that G′ has at most 10n · 2−∆/10 vertices of degree more than ∆

is at least 0.9.

To see this, we assert that the expected number of vertices of G′ of degree greater

than ∆ is at most n · 2−∆/10. The conclusion then follows by Markov’s Inequality. To

prove the assertion, notice that the degree of any fixed vertex is the random binomial

variable Bin(n − 1, p). Consequently, we deduce from the Chernoff Bound that the

probability that any fixed vertex has degree more than ∆ is less than 2−∆/10. The

linearity of Expectation now yields the assertion.

The following lemma is a key ingredient of Alon and Mohar’s proof. Let x :=

ck
n

∆k log ∆, where ck > 0 (to be made precise later).

Lemma 5.7. The following holds with probability 1 − o(1). For every set U ⊆ V ′ of

cardinality x, there are at least
c2

kn log2 ∆
2k+5∆k internally vertex-disjoint paths of length k,

both of whose endpoints are in U and whose other vertices are in V ′ \ U .
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Before proving Lemma 5.7, let us see how it allows us to obtain the desired lower

bound.

We choose a graph G′ satisfying Properties (A) and (B), and Lemma 5.7 (∆ and

n being sufficiently large). We define G to be obtained from G′ by removing all the

vertices of degree greater than ∆, and in addition one vertex chosen from each cycle

of length less than g. Thus, G has maximum degree at most ∆, girth at least g and

more than n
2 vertices. Let us be more precise: the number of vertices we removed is

at most

10n · 2−∆/10 + 10∆g <
c2
k log2 ∆

2k+5∆k
.

Thus, since G′ satisfies Lemma 5.7, every set of x vertices of G contains at least

one path of length at most k both of whose endvertices are in U (and internally

disjoint from U). Therefore, we deduce that Gk contains no independent set of size x.

Consequently,

χ
(
Gk
)
≥ n

2
· 1

x
=

∆k

2ck log ∆
.

By adding to G pendant edges and a disjoint cycle of length g (if needed), we obtain

the desired conclusion for an appropriately defined constant bk > 0.

It remains to prove Lemma 5.7. Given a subset U of vertices of a graph G, a

U -path is a path of G of length k both of whose endvertices are in U , and whose

internal vertices are outside U .

Proof of Lemma 5.7. Let us fix a set U of size x. Let X be the maximum

number of internally vertex-disjoint U -paths in G. We obtain the desired result by

first lower bounding the expected value of X, and then we prove, thanks to Talagrand’s

Inequality that X is concentrated.

Let us show that

(27) E(X) ≥ c2
k · n log2 ∆

2k+2 · ∆k
.

The expected number of U -paths is

µ :=

(
x

2

)
(n − x)(n − x − 1) . . . (n − x − k + 2)pk .

Since ∆ ≫ k, we deduce that

µ > 0.49 · c2
kn log2 ∆ · 2−k∆−k .

Let ν be the expected number of pairs of U -paths that share at least one common

internal vertex. By the linearity of Expectation, E(X) ≥ µ−ν. We assert that ν < µ
3 ,

which hence will yield (27). Indeed, we can classify pairs of internally intersecting

U -paths into several types, according to the number of vertices they share. Note that

the number of types is upper bounded by a function of k. Moreover, the number of

pairs of any given type is at most

µxnk−2pk−1 ,
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since n ≫ ∆ ≫ k. The assertion follows.

The random variable X is determined by the outcomes of the random process

determining the edges of G. The change of any single outcome changes the value of

X by at most 1, by the definition of X. Moreover, if X = s then there are at most

ks edges whose presence certify this fact. Thus, we may apply Talagrand’s Inequality

with c = 1 and r = k. Set t := E(X)
2 . Talagrand’s Inequality ensures that

Pr(|E(X) − X| > t) ≤4 · exp

[
− E(X)

128 · k

]

≤4 · exp

[
−c2

k · n log2 ∆

2k+9 · k · ∆k

]
.

Note that if X <
c2

kn log2 ∆
2k+5∆k then |E(X) − X| > t by (27).

On the other hand, the number of choices for the set U is

(
n

x

)
≤
(en

x

)x
≤
(

e∆k

ck log ∆

)ckn∆−k log ∆

≤ eckkn∆−k log2 ∆ .

Consequently, the statement of the lemma follows provided that

lim
n→∞

exp

[
−c2

k · n log2 ∆

2k+9 · k · ∆k

]
· exp

[
ck · k · n log2 ∆

∆k

]
= 0 .

This holds if
c2
k

2k+9 · k > ck · k ,

which is true if

ck > 2k+9k2 .

McDiarmid [126] extended Talagrand’s Inequality to the setting where X depends

on independent trials and permutations. We state a useful corollary rather than the

original inequality. The derivation can be found in the book by Molloy and Reed [140].

Lemma 5.8 (McDiarmid’s Inequality, 2002). Let X be a non-negative random vari-

able determined by the independent trials T1, . . . , Tn and m independent permutations

Π1, . . . , Πm. Suppose that for every set of possible outcomes of the trials

(1) changing the outcome of any one trial can affect X by at most c;

(2) interchanging two elements in any one permutation can affect x by at most c;

and

(3) for each s > 0, if X ≥ s then there is a set of at most rs trials whose outcomes

certify that X ≥ s.

Then for every t ∈
[
60c
√

r E(X),E(X)
]
,

Pr (|X − E(X)| > t) ≤ 4 exp

(
− t2

32c2r E(X)

)
.

McDiarmid’s Inequality is used in Subsection 6.2.
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6. Reed’s Lemma (Cutting Graphs into Pieces)

When it comes to showing that a graph can be coloured using at most a certain

number of colours, a possible probabilistic approach is as follows. The graph is de-

composed into several parts, and each part is coloured one after the other to finally

obtain a colouring of the whole graph. Each part is coloured using a random proce-

dure, which is analysed to show that, with positive probability, the partial colouring

obtained so far is valid (regarding the particular sought conditions). It is customary

to colour not any graph, but rather a supposed counter-example to the statement to

establish. Such a counter-example is often assumed to be minimal regarding some

parameters—e.g. graphs with less vertices all fulfil the statement to establish—which

permits to prove some useful structural properties.

In that regards, it is important to cut the graphs into pieces having helpful prop-

erties to design or analyse the random colouring procedures. An efficient tool towards

this goal is a lemma due to Reed [157], that we present next. It also appears in Chapter

15 of the book by Molloy and Reed [140, Lemma 15.2].

Let G = (V,E) be a graph of maximum degree ∆. A vertex of G is d-sparse if

the subgraph induced by its neighbourhood contains fewer than
(
∆
2

)
− d∆ edges. A

vertex of G is d-dense if it is not d-sparse. Note that a vertex v can be d-sparse even if

its neighbourhood induces a clique, provided that the degree of v is sufficiently small.

Lemma 6.1 (Reed, 1998). Let G = (V,E) be a graph of maximum degree ∆ and

let d ≤ ∆
100 . The vertices of G can be partitioned into sets D1, D2, . . . , Dℓ, S such that

(1) ∆ + 1 − 8d ≤ |Di| ≤ ∆ + 4d for every i ∈ {1, 2, . . . , ℓ};
(2) for each i ∈ {1, 2, . . . , ℓ}, at most 8d∆ edges of G join Di to V \ Di;

(3) for each i ∈ {1, 2, . . . , ℓ}, a vertex belongs to Di if and only if it has at least 3
4∆

neighbours in Di; and

(4) every vertex of S is d-sparse.

The decomposition of Lemma 6.1 can be built in linear time, in a greedy fashion. We

refer to the book of Molloy and Reed [140] for further exposition (including a proof of

the lemma).

Lemma 6.1 has proved to be a key ingredient in several results obtained via the

probabilistic method [83, 136, 138, 139, 157, 158, 159]. Thanks to the partition given

by the lemma, one can design appropriate (random) colouring procedures for different

parts of the graph, regarding their density. We present techniques used to colour sparse

vertices in the next subsection, and see an approach to colour “big” cliques (for instance

contained in the sets Di) in Subsection 6.2. The remaining vertices are usually coloured

after the sparse ones and before the big cliques. Because big cliques are removed when

we colour them, a greedy procedure can suffice. However, one often wants to have

more control on the obtained colouring, in particular to ensure some extra-properties

that will help when it comes to colouring big cliques. To this end, it may be useful

(i.e. powerful enough) to design an iterative random colouring procedure, and colour

those vertices in many iterations. At each iteration, the colouring obtained so far is



42 JEAN-SÉBASTIEN SERENI

randomly extended to some more vertices, and the Lovász Local Lemma is used (at

each iteration) to show that, with positive probability, the obtained colouring fulfils

the required properties.

6.1. Colouring Sparse Graphs

As already mentioned, sparse vertices are those whose neighbourhood induces a graph

with “few” edges. If the neighbourhood of a (sparse) vertex v is small enough, then

however the neighbours of v are coloured, the colouring can be greedily extended

to v. Otherwise, we know that the subgraph induced by the neighbourhood of this

sparse vertex v has “many” pairs of non-adjacent vertices. If we can obtain a partial

colouring of a graph such that every uncoloured vertex has “many” repeated colours in

its neighbourhood, then we can finish the colouring greedily. The meaning of “many”

depends on the kind of colouring we want. Generally speaking, if we have c colours,

and an uncoloured vertex has at most f ≥ c neighbours, then we would like to have

at least f + 1 − c repeated colours in the neighbourhood of v.

This strategy is widely used to deal with the sparse vertices of Lemma 6.1, or when

the whole graph considered is sparse itself. The reader is referred to the references

given after Lemma 6.1 for many applications. However, proofs using Lemma 6.1 are

too long to be presented here. This is why we focus on an application that uses the

same approach, but deals only with sparse graphs.

It is a result by Molloy and Reed [134] from 1997, which deals with a generalisation

of the chromatic index suggested by Erdős and Nešetřil back in 1985. More details

can be found in the papers of Faudree et al. [56, 57] and Horák [92].

In a proper edge-colouring, every edge is adjacent to at most two edges of any

given colour. A proper edge-colouring is strong if every edge is adjacent to at most one

edge of each colour. The strong chromatic index sχ′(G) of a graph G is the minimum

number of colours for which G admits a strong edge-colouring.

Another way to define the strong chromatic index is by using the line graph of a

graph. Recall that the square G2 of the graph G = (V,E) is the graph with vertex-set

V , and an edge between any two vertices that are at distance at most 2 in G. Then

sχ′(G) = χ(L (G)2) .

Let ∆ be the maximum degree of G. Then, L (G)2 has maximum degree 2∆2−2∆.

Thus, by Brooks’ Theorem sχ(G) ≤ 2∆2 − 2∆.

As reported by Faudree et al. [56], Erdős and Nešetřil exhibited, for any even in-

teger ∆, a graph G∆ of maximum degree ∆ and such that sχ(G∆) = 5
4∆2. Indeed, one

can take for G∆ the graph obtained from a cycle of length 5 by replacing each vertex

with an independent set of size ∆
2 ; see Figure 1. The line graph of G∆ has diameter

2 and 5
4∆2 edges, thus the desired property follows. They moreover conjectured the

following.

Conjecture 6.2 (Erdős and Nešetřil, 1985). For every graph G of maximum de-

gree ∆,

sχ′(G) ≤ 5

4
∆2 .
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Figure 1: The graph G8 has maximum degree 8 and strong chromatic number 5
4 · 82 =

80.

Actually, they even asked if an upper bound of c∆2 for any constant c smaller than 2

could be proved. Molloy and Reed [134] answered this question in the affirmative.

Theorem 6.3 (Molloy and Reed, 1997). There is a constant ε such that for every

graph G of maximum degree ∆,

sχ′(G) ≤ (2 − ε)∆2 .

Theorem 6.3 directly follows from the following theorem.

Theorem 6.4 (Molloy and Reed, 1997). There is a constant ∆0 such that if G has

maximum degree ∆ ≥ ∆0 then sχ′(G) ≤ 1.99995∆2.

We use the following lemma to obtain Theorem 6.4. Its proof consists of a careful case

analysis [134], and we omit it.

Lemma 6.5. If G has a sufficiently large maximum degree ∆, then for each edge e of

G the subgraph of L (G)2 induced by the neighbourhood of e has at most
(
1 − 1

36

)(2∆2

2

)

edges.

Using Lemma 6.5, the next result directly implies Theorem 6.4. Its proof illustrates

the probabilistic approach used to colour sparse graphs. It also includes several other

common techniques. In particular, to upper bound the probability of a given event it

is customary to actually consider a less restrictive event that is easier to upper bound.

The result we propose is stronger that what we really need, and a close version—

whose proof is omitted—is given in the book of Molloy and Reed [140, Chapter 10].

The approach of the proof is basically the original one. However, the presentation is

closer to what is used in some other papers [83, 159].

Theorem 6.6 (Molloy and Reed, 1997). There exists ∆0 such that if G has max-

imum degree ∆ ≥ ∆0 and for each vertex v of G, the neighbourhood of v in G induces
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a subgraph with at most
(
∆
2

)
− B edges where B ≥ e12 · 7680 · ∆ log ∆, then

χ(G) ≤ ∆ + 1 − B

e6∆
.

Proof . In the sequel, we suppose that ∆ is sufficiently large so that the asserted

inequalities are satisfied. Let C := {1, 2, . . . , ∆ + 1 −Be−6∆−1} be the set of colours.

Note that ∆ log ∆ ≤ B ≤ ∆(∆−1)
2 , which implies that |C | > 3

4∆. We randomly colour

the graph G according to the following procedure.

(1) For each vertex v, we choose a colour r(v) ∈ C , independently and uniformly at

random.

(2) For each vertex v, if r(v) /∈ {r(u) : u ∈ NG(v)} then the colour r(v) is assigned

to v.

Thus, the procedure yields a partial proper colouring c of G. Set C := Be−6∆−1.

Note that if an uncoloured vertex has degree at most |C | − 1 = ∆ − C, then

we can colour it greedily however its neighbours are coloured. So, we only deal in

the sequel with the set V ′ of uncoloured vertices with at least |C | neighbours. More

precisely, we aim at showing that with positive probability, the obtained colouring is

such that each uncoloured vertex of V ′ at least C colours appearing at least twice

in its neighbourhood. Then, we can finish the colouring of G greedily, since for each

uncoloured vertex the number of available colours will be at least

∆ + 1 − B

e6∆
− ∆ + C = 1 .

For v ∈ V ′, let Ev be the event that fewer than C colours are assigned by c to at

least two neighbours of v. Each event Ev is mutually independent of all the events Eu

where u is at distance at least 4 from v. Hence, each event Ev is mutually independent

of all but at most ∆4 events. Therefore, the Symmetric Lovász Local Lemma yields

the sought conclusion provided that

(28) ∀v ∈ V ′, Pr(Ev) <
1

4∆4
.

Fix an arbitrary vertex v ∈ V ′. Since v has more than ∆ − C neighbours in

G, the vertex v has at least
(
∆
2

)
− C∆ pairs of neighbours. Hence, v has at least

B(1 − e−6) > B
2 pairs of non-adjacent neighbours. Let Ω be a collection of B

2 pairs

of non-adjacent neighbours of v. We consider the random variable Xv defined as the

number of pairs (u, w) ∈ Ω such that

(i) r(u) = r(w);

(ii) r(s) 6= r(u) if s ∈ NG(v) \ {u, w}; and

(iii) r(s) 6= r(u) if s ∈ NG(u) ∪ NG(w), i.e. both u and v are assigned their colour.

Thus, Xv is at most the number of colours appearing at least twice in NG(v). The

probability that a given pair (u, w) ∈ Ω satisfies (i) is 1
|C | . In total, the number

of neighbours of v, u, w in G is at most 3∆. Therefore, given that they satisfy (i),
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the vertices u and w also satisfy (ii) and (iii) with probability at least
(

1 − 1
|C |

)3∆
.

Consequently, by the linearity of Expectation,

E(Xv) ≥B

2
· |C |
|C |2

(
1 − 1

|C |

)3∆

>
B

2|C | exp

(
−3∆

|C |

)

≥2B

∆
· e−6 = 2C ,

where we used that 1 − 1
x > e−x if x ≥ 2 and 3

4∆ < |C | < ∆.

Hence, if Av holds then Xv is smaller than its expected value by more than C.

But we assert that

(29) Pr (E(Xv) − Xv > C) <
1

4∆4
,

which will yield the desired result.

To establish (29), we apply Talagrand’s Inequality. We set X1 to be the number

of colours chosen for at least two vertices in N(v), including both members of at least

one pair in Ω. In other words, a colour i ∈ C is counted by X1 if and only if there

exists a pair (u, w) ∈ Ω such that r(u) = i = r(w). We define X2 to be the number of

colours that

(i) are chosen for both members of at least one pair in Ω; and

(ii) are chosen also for one of their neighbours, or for a third vertex of NG(v).

Note that Xv = X1 − X2. Therefore, by what precedes, if Av holds then either X1 or

X2 differs from its expected value by more than C
2 . Notice that, since |C | > 3

4∆,

E(X2) ≤ E(X1) ≤ |C | · B

2
· 1

|C |2 ≤ 2

3
· B

∆
< e6 · C .

If X1 ≥ s, then there is a set of at most 2s trials whose outcomes certify this,

namely the choices of colours for s pairs of variables. Moreover, changing the outcome

of any random trial can only affect X1 by at most 2, since it can only affect whether

the old colour and the new colour are counted or not. Thus Talagrand’s Inequality

applies and, since 2C < E(X) ≤ E(X1) < e6 · C, we obtain

Pr

(
|X1 − E(X1)| >

C

2

)
≤ 4 exp

(
− C2

e6 · 1024 · C

)

≤ 1

8∆4
,

because B ≥ e12 · 7680 · ∆ log ∆ and hence C > 5 · e6 · 1024 · log ∆.

Similarly, if X2 ≥ s then there is a set of at most 3s trials whose outcomes certify

this fact, namely the choices of colours of s pairs of vertices and, for each of these pairs,

the choice of the (same) colour of a neighbour of a vertex of the pair or of another
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neighbour of v. As previously, changing the outcome of any random trial can only

affect X2 by at most 2. Therefore by Talagrand’s Inequality, if E(X2) ≥ C
2 then

Pr

(
|X2 − E(X2)| >

C

2

)
≤ 4 exp

(
− C2

e6 · 1536 · C

)

≤ 1

8∆4
.

If E(X2) < C
2 , then we consider a binomial random variable that counts each ver-

tex of NG(v) independently with probability C
4|NG(v)| . We let X ′

2 be the sum of this

random variable and X2. Note that C
4 ≤ E(X ′

2) ≤ 3C
4 thanks to the linearity of

Expectation. Moreover, observe that if |X2 − E(X2)| > C
2 then |X ′

2 − E(X ′
2)| > C

4 .

Therefore, by applying Talagrand’s Inequality to X ′
2 with c = 2, r = 3 and t = C

4 ∈
[60c

√
r E(X ′

2),E(X ′
2)], we also deduce in this case that

Pr

(
|X2 − E(X2)| >

C

2

)
≤Pr

(
|X ′

2 − E(X ′
2)| >

C

4

)

≤ 4 exp

(
− C2

4608 · C

)

≤ 1

8∆4
.

Consequently, we infer that Pr (E(Xv) − Xv > C) ≤ 1
4∆−4, as asserted.

The approach just introduced to prove Theorem 6.6 is often used to colour the

sparse vertices of the decomposition obtained by Reed’s Lemma. In the next subsec-

tion, we turn our attention to vertices whose neighbourhood induces a large clique.

6.2. Where Friends Solve Conflicts

When using Reed’s Lemma, it is important to be able to colour both vertices whose

neighbourhood induces a sparse graph—i.e. with relatively few edges—and vertices

whose neighbourhood induces a clique. The former case is usually achieved using the

tools introduced in Subsection 6.1. Let us now see in more details an example of the

latter case.

We consider a setting appearing in a recent proof about the channel assignment

problem, more precisely concerning L(p, 1)-labellings of graphs [82, 83].

In the channel assignment problem, transmitters at various nodes within a geo-

graphic territory must be assigned channels or frequencies in such a way as to avoid

interferences. A model for the channel assignment problem developed wherein chan-

nels or frequencies are represented with integers, “close” transmitters must be as-

signed different integers and “very close” transmitters must be assigned integers that

differ by at least 2. This quantification led to the definition of an L(p, q)-labelling

of a graph G = (V,E) as a function f from the vertex set to the integers such that

|f(x) − f(y)| ≥ p if dist(x, y) = 1 and |f(x) − f(y)| ≥ q if dist(x, y) = 2, where

dist(x, y) is the distance between the two vertices x and y in the graph G. The notion

of L(2, 1)-labelling first appeared in 1992 [71]. Since then, a large number of articles
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has been published devoted to the study of L(p, q)-labellings. We refer the reader to

the surveys of Calamoneri [31] and Yeh [195].

Generalisations of L(p, q)-labellings in which for each i ≥ 1, a minimum gap of pi

is required for channels assigned to vertices at distance i, have also been studied (see for

example the recent survey of Griggs and Krá ’l [70], and consult also [15, 113, 114, 118]).

In the context of the channel assignment problem, the main goal is to minimise

the number of channels used. Hence, we are interested in the span of an L(p, q)-

labelling f , which is the difference between the largest and the smallest labels of f .

The λp,q-number of G is λp,q(G), the minimum span over all L(p, q)-labellings of G.

In general, determining the λp,q-number of a graph is NP-hard [65]. In their seminal

paper, Griggs and Yeh [71] observed that a greedy algorithm yields λ2,1(G) ≤ ∆2+2∆,

where ∆ is the maximum degree of the graph G. Moreover, they conjectured that this

upper bound can be decreased to ∆2.

Conjecture 6.7 (Griggs and Yeh, 1992). For every ∆ ≥ 2 and every graph G of

maximum degree ∆,

λ2,1(G) ≤ ∆2 .

The bound offered by the conjecture, if true, would be tight. Jonas [96] improved

slightly on Griggs and Yeh’s upper bound by showing that every graph of maximum

degree ∆ admits an L(2, 1)-labelling with span at most ∆2 + 2∆ − 4. Subsequently,

Chang and Kuo [35] provided the upper bound ∆2+∆ which remained the best general

upper bound for about a decade. Krá ’l and Škrekovski [115] brought this upper bound

down by 1 as the corollary of a more general result. And, using the algorithm of Chang

and Kuo [35], Gonçalves [32] decreased this bound by 1 again, thereby obtaining the

upper bound ∆2 + ∆− 2. As for planar graphs, Conjecture 6.7 is still open for ∆ = 3,

but is known to be true for other values of ∆. For ∆ ≥ 7 it follows from a result of

van den Heuvel and McGuinness [87], and Bella et al. [19] proved it for the remaining

cases (for planar graphs).

The following approximate version of the generalisation of Conjecture 6.7 to

L(p, 1)-labelling was proved recently [82, 83].

Theorem 6.8 (Havet, Reed, and Sereni, 2007). For any fixed integer p, there ex-

ists a constant Cp such that for every integer ∆ and every graph of maximum degree

∆,

λp,1(G) ≤ ∆2 + Cp .

This result is obtained by combining the bound given by a greedy labelling (when ∆ is

small) with the next theorem which, in particular, settles Conjecture 6.7 for sufficiently

large ∆.

Theorem 6.9 (Havet, Reed, and Sereni, 2007). For any fixed integer p, there is a

∆p such that for every graph G of maximum degree ∆ ≥ ∆p,

λp,1(G) ≤ ∆2 .
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The proof of this theorem makes intensive use of the probabilistic method. The Lovász

Local Lemma is applied many times, and so are the concentration bounds presented

so far. The proof also relies on structural results and techniques (such as Lemma 6.1).

Random colouring procedures are designed to obtain an L(p, 1)-labelling of a (sup-

posed) minimal (in terms of the number of vertices) counter-example to the theorem,

thereby giving the sought contradiction. The vertices are coloured in three steps. The

first one concerns sparse vertices and is close to what we saw in Subsection 6.1. The

last step concerns big cliques, and this is the point we now focus on.

We define a formal setting close to the one appearing in the third step of the proof

of Theorem 6.9. The goal is to illustrate an approach to extend a partial colouring

to big cliques of a graph (i.e. of size close to the maximum degree), provided that

the partial colouring fulfils some conditions. We do not pretend that these extra

conditions are easy to obtain. On the contrary, this is one of the main challenges in

the proof of Theorem 6.9. Its solution is provided in part by structural arguments

(by building and randomly colouring a different graph than the original in the first

step of the proof), and next by an iterative quasi-random procedure, where the Lovász

Local Lemma is applied at each iteration (this is an application of the so-called naive

colouring procedure). The analysis of this procedure is too long and technical to be

presented in this survey.

Let G = (V,E) be a graph. We assume that the maximum degree ∆ of G is large

enough to fulfil the inequalities asserted in the sequel. Let K = {A1, A2, . . . , Aℓ} be

a set of vertex-disjoint cliques of G, each being of size at least ∆ − c∆3/4 for a fixed

positive real number c. We assume that each vertex of the clique has at most
√

∆

neighbours outside the clique. Those neighbours are referred to as external neighbours.

Hence, at most ∆3/2 edges leave each given clique of K .

We assume that there is a partial proper k-colouring of the vertices outside the

cliques of K , and we want to extend it to the whole graph G. We hence suppose that

k is at least the size of the biggest clique of K . We assume that the colouring has the

following property. For each clique A ∈ K and each colour j, the number of vertices

of A with a neighbour outside A coloured j is at most 4
5∆.

A crucial fact to exploit to colour cliques of size near the maximum degree is that

they have few edges linking them to the rest of the graph. Thus, a possible approach is

to properly colour each of them one by one, randomly and independently of each other,

and of the rest of the graph. The obtained colouring has conflicts, since a vertex in a

clique may well have an external neighbour with the same colour as itself. However,

we are able to keep the number of conflicts small (i.e. we can show that, with positive

probability, the obtained colouring of G does not create too many conflicts). All the

conflicts are solved simultaneously by swapping the colours of some vertices. More

precisely, each badly coloured vertex of a clique of K chooses, inside its clique, a

vertex called a friend. Friends are defined so that, when simultaneously swapping the

colour of each badly coloured vertex with the one of its friend, the resulting colouring

is proper. The existence of a colouring such that each badly coloured vertex has a

friend is obtained by analysing our colouring procedure. Let us now see this precisely.
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Phase 1. For each clique A ∈ K , we choose uniformly at random a subset of |A|
colours among the whole set of colours. Those choices are made independently one

of each other. Then, we assign a random permutation of those colours to the vertices

of A. Again, the choices for different cliques are made independently. This yields a

proper colouring of each clique of K . We let TempA be the set of vertices of A with

an external neighbour of the same colour.

Lemma 6.10. With positive probability, the following hold.

(i) |Tempi | ≤ 3
√

∆ for each i ∈ {1, 2, . . . , ℓ}; and

(ii) for each clique Ai ∈ K and each colour j, at most ∆9/10 vertices of Ai have a

neighbour in ∪k 6=iAk coloured j.

Proof . We use the Symmetric Lovász Local Lemma. For every index i ∈
{1, 2, . . . , ℓ}, we let E1(i) be the event that |Tempi | is greater than 3

√
∆. For each

index i ∈ {1, 2, . . . , ℓ} and each colour j, we define E2(i, j) to be the event that condi-

tion (ii) is not fulfilled. Each event is mutually independent of all the events involving

cliques at distance greater than 2, so each event is mutually independent of all but at

most ∆5 other events. According to the Lovász Local Lemma, it is enough to show

that each event has probability at most ∆−6, since ∆5 × ∆−6 < 1
4 .

Our first goal is to upper bound Pr(E1(i)). We may assume that both the colour

assignments for all cliques other than Ai, and the choice of the |Ai| colours to be used

on Ai have already been made. Thus it only remains to choose a random permutation

of those |Ai| colours onto the vertices of Ai. Since every vertex v ∈ Ai has at most√
∆ external neighbours, the probability that v ∈ Tempi is at most

√
∆

|Ai| . So we deduce

that E(|Tempi |) ≤
√

∆. We define a binomial random variable B that counts each

vertex of A independently with probability
√

∆
|Ai| . We set X := |Tempi | + B. By the

linearity of Expectation,

√
∆ ≤ E(X) = E(|Tempi |) +

√
∆ ≤ 2

√
∆ .

Moreover, if |Tempi | > 3
√

∆ then |Tempi | − E(|Tempi |) > 2
√

∆, and hence X −
E(X) >

√
∆. We now apply McDiarmid’s Inequality to show that X is concentrated.

Note that if |Tempi | ≥ s, then the colours to 2s vertices (that is, s members of Tempi

and one neighbour for each) certify this fact. Moreover, switching the colours of two

vertices in Ai may only affect whether those two vertices are in Tempi. So we may ap-

ply McDiarmid’s Inequality to X with c = 2 = r and t =
√

∆ ∈
[
60c
√

r E(X),E(X)
]
.

We deduce that the probability that the event E1(i) holds is at most

Pr
(
|X − E(X)| >

√
∆
)

< 4 exp

(
− ∆

32 · 8 · 2
√

∆

)

< ∆−6 .

We now upper bound Pr(E2(i, j)). Recall that the vertices of Ai are assigned

pairwise distinct colours. Every vertex v ∈ Ai has at most
√

∆ external neighbours.

We let S(v) be the set of all external neighbours of v in ∪kAk. Hence |S(v)| ≤
√

∆.



50 JEAN-SÉBASTIEN SERENI

Note that each vertex of ∪k 6=iAk is in at most
√

∆ sets S(v) for v ∈ Ai. We want to

show that the probability that the number of sets S(v), for v ∈ Ai, containing a vertex

coloured j is greater than ∆9/10 is at most ∆−6. In other words, we aim at proving

that

Pr
(
|{v ∈ Ai : S(v) contains a vertex coloured j}| > ∆9/10

)
< ∆−6 .

Each vertex of a set S(v) is assigned the colour j with probability at most

max
A∈K

1

|A| ≤ ∆−9/10 ,

because min |Ai| ≥ ∆ − c∆3/4 by our assumptions. Moreover, for any set M ⊆
∪v∈Ai

S(v),

Pr (all the vertices of M are coloured j) ≤ ∆−9|M |/10 ,

since the choices of colours and colour assignments are made independently for different

cliques.

Let us partition the vertices of the sets S(v) regarding the number of sets to

which they belong: for s ∈ {1, 2, 3, 4}, let Ts be the vertices of ∪v∈Ai
S(v) that belong

to between ∆(s−1)/8 and ∆s/8 sets. Further, let Es be the event that at least 1
4∆9/10

sets S(v) contain a vertex coloured j. Note that if more than ∆9/10 sets S(v) contains

a vertex coloured j, then at least one of the events Ei holds.

Since | ∪v∈Ai
S(v)| ≤ ∆3/2, we deduce that |Ts| ≤ ∆3/2

∆(s−1)/8 . Moreover, if Es holds

then at least 1
4∆9/10−s/8 vertices of Ts are coloured j. Therefore,

Pr(Ei) ≤
(

∆3/2/∆(s−1)/8

1
4∆9/10−s/8

)
·
(

∆−9/10
) 1

4
∆9/10−s/8

≤
(

e∆3/2/∆(s−1)/8

1
4∆9/10−s/8 · ∆9/10

) 1

4
∆9/10−s/8

by Stirling’s Formula

≤
(

4e

∆1/10

) 1

4
∆9/10−s/8

.

Since 1
4∆9/10−s/8 ≥ 1

4∆1/10, the probability that Ei holds is at most 1
4 exp

(
−∆1/10

)
,

which is less than 1
4∆−6. Thus the probability that at least one of the events Ei holds

is at most ∆−6. The sought conclusion follows.

Phase 2. We consider a colouring γ satisfying the conditions of Lemma 6.10. For

each index i ∈ {1, 2, . . . , ℓ} and each vertex v ∈ Tempi, we let Swappablev be the set

of vertices u such that

(a) u ∈ Ai \ Tempi;

(b) γ(u) does not appear on an external neighbour of v; and

(c) γ(v) does not appear on an external neighbour of u.

Lemma 6.11. For every v ∈ Tempi, the set Swappablev contains at least ∆
10 vertices.
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Proof . Let us upper bound the number of vertices that are not in Swappablev.

By Lemma 6.10(i), at most 3
√

∆ vertices of Ai violate condition (a) and at most
√

∆

vertices violate condition (b) by the definition of Ai. According to our assumption

on the original partial colouring, the number of vertices of Ai violating condition (c)

because of a neighbour not in ∪k 6=iAk is at most 4
5∆. Finally, the number of vertices

violating conditions (c) because of a colour assigned during Phase 1 is at most ∆9/10

thanks to Lemma 6.10(ii). Therefore, we deduce that the size of Swappablev is at

least

|Ai| −
4

5
∆ − ∆9/10 − 4

√
∆ ≥ 1

10
∆ ,

as |Ai| ≥ ∆ − c∆3/4 by hypothesis.

For each clique Ai ∈ K and each vertex v ∈ Tempi, we choose 100 uniformly

random members of Swappablev. These vertices are called candidates of v.

Definition 6.12. A candidate u of v is unkind if either

(a) u is a candidate for some other vertex;

(b) v has an external neighbour w that has a candidate w′ with the same colour as

u;

(c) v has an external neighbour w that is a candidate for a vertex w′ with γ(w′) =

γ(u);

(d) u has an external neighbour w that has a candidate w′ with the same colour as

v; or

(e) u has an external neighbour w that is a candidate for a vertex w′ with the same

colour as v.

A candidate of v is kind if it is not unkind.

Lemma 6.13. With positive probability, for each i ∈ {1, 2, . . . , ℓ} every vertex of

Tempi has a kind candidate.

We choose candidates satisfying the preceding lemma. For each vertex v ∈
∪ℓ

i=1 Tempi, we swap the colour of v and one of its kind candidates. The obtained

colouring is the desired one. So to finish our proof, it remains to prove Lemma 6.13.

Proof of Lemma 6.13. For every vertex v in some Tempi, let E1(v) be the event

that v does not have a kind candidate. Each event is mutually independent of all

the events involving cliques at distance greater than 2. So each event is mutually

independent of all but at most ∆5 other events. We prove that the probability of each

event is at most ∆−6. Then, the conclusion follows from the Symmetric Lovász Local

Lemma, since ∆−6 · ∆5 < 1
4 .

Observe that the probability that a particular vertex of Swappablev is chosen is

100/|Swappablev |, which is at most 1000∆−1.

We wish to upper bound Pr(E1(v)) for an arbitrary vertex v ∈ Tempi, so we can

assume that all the vertices but v have already chosen candidates. Recall that the
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vertex v has at most
√

∆ external neighbours, each having at most 100 candidates.

By Lemma 6.10(i), the number of vertices that satisfy condition (a) of Definition 6.12

is at most 300
√

∆. Since each colour appears on at most one member of Swappablev,

we deduce that the number of vertices satisfying one of the conditions (b) and (c) is

at most 101
√

∆.

We now deal with the remaining two conditions, starting with condition (d). The

number of vertices of Ai that satisfy condition (d) is at most the number of edges with

an endvertex in Ai and an endvertex in Ak with k 6= i, and such that the external

endvertex has chosen a candidate with the colour of v. For each vertex w ∈ ∪k 6=iAk,

we let Nw be the number of neighbours of w in Ai. So, Nw ≤
√

∆. Note that∑
Nw ≤ ∆3/2 since at most ∆3/2 edges leave the clique Ai. We define the random

variable Fw to be Nw if w has a candidate with the colour of v, and 0 otherwise. Thus,

the number of vertices of Ai that satisfy condition (d) is at most the sum σ of the

variables Fw for w ∈ ∪k 6=iAk. We aim at showing that

(30) Pr
(
σ > 2∆3/5

)
<

1

4
∆−6 .

Since each vertex in some set Tempk chooses its candidates independently, the variables

Fw are independent. Set s :=
⌈
log2

(√
∆
)⌉

. For each r ∈ {0, 1, . . . , s}, let Sr be the

set of vertices w of ∪k 6=iAk such that 2r−1 < Nw ≤ 2r. So

σ ≤
s∑

r=0

∑

w∈Sr

Fw ≤
s∑

r=0

2rσr

where σr := |{w ∈ Sr : Fw 6= 0}|. Consequently, to prove (30) it suffices to show that

for every index r ∈ {0, 1, . . . , s},

Pr (σr > t) <
∆−6

4 (s + 1)

where

t :=
2∆3/5

2r (s + 1)
.

Fix an index r. Note that |Sr| < 21−r∆3/2 since at most ∆3/2 edges leave Ai. As

the variables Fw are independent, the probability that σr is more than t is no more

than the probability that the binomial random variable Bin(n, p) with n := 21−r∆3/2

and p := 1000∆−1 is more than t. Therefore, we deduce from Chernoff’s Bound that

Pr (σr > t) ≤ Pr

(
Bin(n, p) − np >

t

2

)

< 2 exp

(
t

2
−
(

np +
t

2

)
ln

(
1 +

t

2np

))

<
∆−6

4 (s + 1)
,

as wanted.
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We now consider condition (e) using a similar approach. A vertex u of Ai satisfies

condition (e) if it has an external neighbour that was chosen as a candidate for a vertex

with the same colour as v. We actually consider the number of edges with an endvertex

in Ai and the other in some Ak with k 6= i, and such that the endvertex not in Ai

is a candidate for a vertex with the same colour as v. We express this as the sum of

several random variables.

Recall that Nw is the number of neighbours of w in Ai, for every w ∈ ∪k 6=iAk.

So, Nw ≤
√

∆. We define Xw to be Nw if w is a candidate for a vertex with the colour

of v, and 0 otherwise. Thus, the probability that Xw = Nw is at most 1000∆−1. The

number of vertices of Ai satisfying condition (e) is at most the sum τ of the variables

Xw for w ∈ ∪k 6=iAk. Our aim is to show that

(31) Pr
(
τ > 2∆3/5

)
<

1

4
∆−6 .

Recall that

Sr = {w ∈ ∪k 6=iAk : 2r−1 < Nw ≤ 2r}
for every r ∈ {0, 1, . . . , s}. Hence,

τ ≤
s∑

r=0

∑

w∈Sr

Xw ≤
s∑

r=0

2rτr

where τr := |{w ∈ Sr : Xw 6= 0}|. Consequently, to prove (31) it suffices to show that

for every index r ∈ {0, 1, . . . , s},

(32) Pr (τr > t) <
∆−6

4 (s + 1)

where

t :=
2∆3/5

2r (s + 1)
.

Let us fix an index r. Observe that τr is at most 100
∑

k 6=i Z
k
r where each Zk

r is

a 0–1 random variable, which is 1 if there is a vertex of Sr ∩ Ak that is a candidate

for a vertex with the same colour as v, and 0 otherwise. In particular, Zk
r = 1 with

probability at most 1000|Sr ∩ Ak|∆−1. Moreover, if τr > t then
∑

k 6=i Z
k
r > t

100 . Let

Rr := 21−r · ∆3/2. By our assumptions, for every k 6= i the size of Sr ∩ Ak is at most

Mr := min (∆, Rr). We set

Tm := {k 6= i : 2m−1 < |Sr ∩ Ak| ≤ 2m}
for every integer m ∈ {0, 1, . . . , ⌈log2(Mr)⌉}. Hence, |Tm| ≤ 22−m−r · ∆3/2, and

τr ≤ 100

⌈log2(Mr)⌉∑

m=0

∑

k∈Tm

Zk
r .

To prove (32), it suffices to show that

(33) ∀m ∈ {0, 1, . . . , ⌈log2(Mr)⌉}, Pr




∑

k∈Tm

Zk
r > t′



 <
∆−6

4(s + 1) (⌈log Mr⌉ + 1)
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where

t′ :=
t

100 · (⌈log2(Mr)⌉ + 1)
.

Let us fix an index m. The variables Zk
r for k ∈ Tm are independent 0–1 random

variables, each being 1 with probability at most 2m · 1000∆−1. Observe that if 2m ≥
∆/1000, then |Tm| ≤ 4 · 103 · 2−r

√
∆ ≤ t′ and hence (33) holds. Thus, we assume

in the sequel that 2m ≤ ∆/1000. We define Ym to be the sum of 22−m−r · ∆3/2

independent 0–1 random variables, each being 1 with probability 2m ·1000∆−1. Thus,∑
k∈Tm

Zk
r ≤ Ym. The expected value of Ym is

E(Ym) = 4000 · 2−r
√

∆ < ∆4/7 .

We deduce from Chernoff’s Bound that

Pr

(
Ym − E(Ym) >

t′

2

)
<2 exp

(
t′

2
−
(
E(Ym) +

t′

2

)
· ln

(
1 +

t′

2 E(Ym)

))

<
∆−5

4 (s + 1) (⌈log2 (Mr)⌉ + 1)
.

This yields (33), and thus (32), which in turn implies (31), as desired.

Therefore, with probability at least 1 − 1
2∆−6 the number of unkind members of

Swappablev is at most

4∆3/5 + 300
√

∆ + 101
√

∆ < ∆3/4.

In this case, the probability that no candidate is kind is at most

(
∆3/4

∆/10

)100

<
1

2
∆−6.

Consequently, the probability that E1(v) holds is at most 1
2∆−6 + 1

2∆−6 = ∆−6, as

desired. This concludes the proof.

To prove Theorem 6.9, a more general setting than the one of L(p, 1)-labellings

was actually considered. Being more general, the setting used is also more flexible. It

allowed the authors to use techniques inspired from usual graph colouring.

We conclude this section about Reed’s Lemma with an important conjecture of

Reed, for the study of which he developed Lemma 6.1. As mentioned in Subsection 1.1,

ω(G) ≤ χ(G) ≤ ∆ + 1 for any graph G of maximum degree ∆. Reed [157] conjectured

that the ceiling of the average of those two quantities is an upper bound for the

chromatic number.

Conjecture 6.14 (Reed, 1998). For every graph G of maximum degree ∆,

χ(G) ≤
⌈

1

2
· ω(G) +

1

2
· (∆ + 1)

⌉
.

Reed [157] proved the following.
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Theorem 6.15 (Reed, 1998). There exists a positive constant a such that for every

graph G

χ(G) ≤ ⌈a · ω(G) + (1 − a) · (∆ + 1)⌉ ,

where ∆ is the maximum degree of G.

As for particular classes of graphs, the result of Johansson [95] mentioned in Sub-

section 5.2 implies Conjecture 6.14 restricted to triangle-free graphs (i.e. ω(G) = 2)

with large enough maximum degree. Reed [157] observed that the matching theory

can be used to prove the conjecture for graphs with a universal vertex—a vertex

is universal if it is adjacent to all the other vertices. King, Reed, and Vetta [109]

proved Conjecture 6.14 restricted to line graphs. This was later improved by King

and Reed [108], who showed that quasi-line graphs satisfy the conjecture—a quasi-line

graph is a graph in which every neighbourhood can be covered by two cliques, so that

any line graph is a quasi-line graph. (Since the maximum degree of a quasi-line graph

G is at most 2ω(G)−2, this last result is stronger than the bound χ(G) ≤ 3
2 ·ω(G) for

every quasi-line graph G, obtained by Chudnovsky and Ovetsky [38].) Rabern [154]

proved that every graph G on n vertices satisfies Conjecture 6.14 provided that

∆ ≥ n+2−α(G)−
√

n + 5 − α(G), where ∆ is the maximum degree of G (recall that

α(G) is the independence number of G).

7. Fourier Analysis

We end this paper with techniques whose flavour slightly differs from what was

presented so far. During the last twenty years, Fourier analysis has been used to study

Boolean functions in combinatorics and computer science [5, 60, 62, 104, 120]. It is

often convenient to interpret the information obtained about the Fourier transform

of a (Boolean) function by probabilistic means, which permits the use of the first

moment method. As an illustration, we present a result of Alon, Dinur, Friedgut, and

Sudakov [3]. It deals with the size of independent sets in weak products of complete

graphs, and hence is related to the usual notion of graph colouring. Before that, we

give the definitions and theorems that we need.

7.1. Some Background

Harmonic analysis is a tool to study spaces of functions taking values in the complex

field C. It takes its simplest form when the functions are from a finite Abelian group.

In this context, it has many applications in combinatorics. The reader is referred to

the monograph by Terras [179] for a gentle introduction and an in-depth exposition.

Basic and advanced exposition on harmonic analysis can also be found in lecture notes

provided on mit Open Course Ware [33].

For our purposes, it suffices to consider a fixed group G := Zn
r with r ≥ 2. Since

C is a field, CG is a vectorial-space of dimension |G|. A basis is {δS : S ∈ G} where

δS(x) is 1 if x = S and 0 otherwise.
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A natural Hermitian form of CG is given by

∀f, g : G → C, 〈f, g〉 :=
1

|G|
∑

S∈G

f(S)g(S) ,

where z is the conjugate of the complex number z. Endowing CG with this product

turns it into a Hilbert space L2(G). The associated norm is given by

‖f‖2 :=
√
〈f, f〉 =

(
1

|G|
∑

S∈G

|f(S)|2
)1/2

,

and more generally the p-norm is defined by

‖f‖p :=
√
〈f, f〉 =

(
1

|G|
∑

S∈G

|f(S)|p
)1/p

.

Note that G endowed with the discrete topology can be viewed as a discrete probability

space: for a function f : G → C, we set
∫
G f(x) dx := 1

|G|
∑

S∈G f(S).

For each element S ∈ G, we let Si be the ith coordinate of S. Let 0 := (0, 0, . . . , 0),

1 := (1, 1, . . . , 1), and |S| := {i ∈ {1, 2, . . . , n} : Si 6= 0} for S ∈ G. The set {δS : S ∈
G} forms an orthogonal basis of

(
CG, 〈·, ·〉

)
. We now define another basis of CG by

considering the characters of G. Information on a function f ∈ CG is usually obtained

by comparing its decompositions on the two basis.

A character of G is an homomorphism µ : G → C×, where C× is the multiplicative

group on C \ {0}. By Lagrange’s Theorem, µ|G| ≡ 1. Actually, the set of characters

of G is a group, written Ĝ and called the dual group of G. Since G is a finite Abelian

group, it is isomorphic to its dual, i.e. Ĝ = Zn
r . More precisely, the dual of a cyclic

group Zr is the group of rth-roots of unity. The dual of the direct product of two finite

Abelian groups H and K is isomorphic to the direct product Ĥ×K̂. The isomorphism

is given by

f : Ĥ × K̂ −→ Ĥ × K

(µ, µ′) 7−→ f(µ, µ′) : H × K −→ C×

(h, k) 7−→ µ(h) · µ(k) .

In particular, G has |G| characters, and we write them µS for S ∈ G. Hence, µS+T =

µS · µT and µ−S = µ−1
S = µS . Although we do not really need it, we can explicit µS

as follows.

∀T ∈ Zn
r , µS(T ) = exp



2πi

r
·

n∑

j=1

Sj · Tj



 .

The set of characters of G form an orthonormal basis of
(
CG, 〈·, ·〉

)
, since the

roots of unity sum to 0 and µ0 ≡ 1. Consequently, every function f : G → C has a

unique expansion of the form
∑

S∈G f̂(S)µS where

f̂(S) := 〈f, µS〉 =
1

|G|
∑

T∈G

f(T ) · µS(T ) .
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This expansion is called the Fourier transform of f , and
{

f̂(S) : S ∈ G
}

are the

Fourier coefficients of f . We note that the Fourier transform is usually defined as a

function from Ĝ to C. However, in our setting it is equivalent via the (non-canonical)

isomorphism between G and Ĝ.

From the orthonormality of the basis, we directly infer Parseval’s Equality, i.e.

∀f : G → C, ‖f‖2
2 =

∑

S∈G

∑

T∈G

f̂(S)f̂(T )〈µS , µT 〉

=
∑

S∈G

∣∣∣f̂(S)
∣∣∣
2

.(34)

Many applications of Fourier analysis to Boolean functions use the Bonami-Becker

Inequality [23, 17], which deals with functions from {0, 1}n to C. Alon et al. [3] proved

the following two lemmas, which are tailored for applications using Fourier analysis of

Zn
r . We omit their proofs in this survey.

Lemma 7.1 (Alon, Dinur, Friedgut, and Sudakov, 2004). Let f : Zn
r → {0, 1} be a

function such that

∀S ∈ G, |S| > 1 ⇒ f̂(S) = 0 .

Then either f is constant or it depends on precisely one coordinate.

Lemma 7.2 (Alon, Dinur, Friedgut, and Sudakov, 2004). For every r ≥ 2, there

exists K > 0 such that the following holds for every ε > 0. Let f : Zn
r → C be a

function such that

f̂(0) = α =
∑

S∈G

|f̂(S)|2 and
∑

S∈G
|S|>1

∣∣∣f̂(S)
∣∣∣
2

= ε .

Then, there exists a function g : Zn
r → {0, 1} depending on at most one coordinate

and such that

‖f − g‖2
2 <

K

α − α2 − ε
· ε .

7.2. Independent Sets

The weak product of two graphs G = (V,E) and H = (V ′, E′) is the graph G × H

with vertex-set V ×V ′ and an edge between two vertices (g1, h1) and (g2, h2) whenever

g1g2 ∈ E and h1h2 ∈ E′. The weak product is also called the direct or categorical

product.

We are interested in the nth weak power Kn
r of the complete graph Kr on r

vertices. (Note that the power symbol used in Subsection 2.2 was associated to a

different kind of graph product.)

The graph Kn
r can be equivalently defined as follows. The vertex set of Kr

n is Zn
r

and there is an edge between two vertices v = (v1, v2, . . . , vn) and u = (u1, u2, . . . , un)

if vi 6= ui for each i ∈ {1, 2, . . . , n}.

The chromatic number of Kn
r is r, since we can duplicate any r-colouring of Kr.

Are there other r-colourings? To answer, let us investigate the maximum independent
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sets of Kn
r . One can partition the graph Kn

r into disjoint cliques of size r, thereby

showing that every independent set has size at most rn−1. We do not provide details,

as this will be proved in another way later. For each i ∈ {1, 2, . . . , n} and each k ∈ Zr,

the set {(v1, v2, . . . , vn) ∈ Zn
r : vi = k} is an independent set of Kr

n of size rn−1. The

next theorem states that they are the only maximum independent sets of Kn
r .

Theorem 7.3. Let G = Kn
r with r ≥ 3. Let I be an independent set of size rn−1.

Then there exists a coordinate i ∈ {1, 2, . . . , n} and an integer k ∈ Zr such that

I = {v : vi = k} .

Consequently, the only r-colourings of G are those induced by colourings of one of the

factors Kr.

This theorem was first proved in a stronger form by Greenwell and Lovász [68], and,

independently, by Müller [143, 144]. Their motivation was a conjecture of Nešetřil [149]

asserting the existence of graphs of arbitrarily high chromatic number and arbitrarily

high girth, which moreover admit only one optimal colouring (up to permutations

of colours). The first case, i.e. that of triangle-free graphs, had been settled by

Nešetřil [149].

The proof of Alon et al. [3] of Theorem 7.3 is different than the previously known

ones. It allowed them to also obtain the next “stability” result. For two sets I and J ,

the symmetric difference of I and J is the set

I △ J := (I \ J) ∪ (J \ I) .

Theorem 7.4 (Alon, Dinur, Friedgut, and Sudakov, 2004). For every r ≥ 3, there

exists a constant M such that for any ε > 0 the following holds. If J is an independent

set of Kn
r of size rn−1 − εrn, then there exists an independent set I of size rn−1 such

that

|J △ I| < Mε · rn .

This last theorem states that, for constant r and arbitrary n, any independent set of

Kn
r of size close to the maximum is close to some independent set of maximum size.

Let us note that Theorem 7.4 was recently improved by Ghandehari and Hatami [66],

who showed that the theorem is actually true for arbitrary r and n. Their proof also

uses Fourier analysis of Zn
r .

Let us use the Fourier transform to study indicator functions of independent sets.

The following lemma provides useful information about such an indicator, and its

proof consists of routine calculations. Given a set I ⊆ Zn
r , the indicator function of

I is the mapping f : Zn
r → {0, 1} such that f(x) = 1 if and only if x ∈ I. We set

D := (Z \ {0})n and d := |D| = (r − 1)n.

Lemma 7.5. Let I be an independent set of G := Kn
r , and let f : Zn

r → {0, 1} be its

indicator function. Then

∑

S∈G

∣∣∣f̂(S)
∣∣∣
2
( −1

r − 1

)|S|
= 0 .
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Proof . For τ ∈ D, we set fτ (x) := f(x + τ). Let

A(f) :=
1

d

∑

τ∈D

fτ .

Note that NG(S) = {S + τ : τ ∈ D} for every S ∈ G. So, as I is an independent set,

f and A(f) are orthogonal, i.e. 〈f, A(f)〉 = 0.

Let us compute the Fourier coefficients of A(f) in terms of those of f . We assert

that

Â(f)(S) = f̂(S)

( −1

r − 1

)|S|
.

Indeed,

Â(f)(S) =
1

rn

∑

T∈Zn
r

1

d

∑

τ∈D

f(T + τ)µS(T ) =
1

d

∑

τ∈D

1

rn

∑

T∈Zn
r

f(T + τ)µS(T )

=
1

d

∑

τ∈D

1

rn

∑

T∈Zn
r

f(T )µS(T ) · µS(τ) =
1

d
f̂(S)

∑

τ∈D

µS(τ)

=
1

d
f̂(S)

∑

τ∈D

n∏

j=1

µSj
(τj) =

1

d
f̂(S)

n∏

j=1

r−1∑

k=1

µSj
(k)

=
1

d
f̂(S)

∏

j:Sj=0

(r − 1)
∏

j:Sj 6=0

(−1) = f̂(S)

( −1

r − 1

)|S|
,

since d = (r − 1)n.

Therefore, by the orthogonality of f and A(f), we infer that

0 =
∑

S∈G

f̂(S)Â(f)(S) =
∑

S∈G

∣∣∣f̂(S)
∣∣∣
2
( −1

r − 1

)|S|
.

We are now ready to prove Theorems 7.3 and 7.4.

Proof of Theorems 7.3 and 7.4. Let α := |I|
rn . So ‖f‖2

2 = α, and hence Parseval’s

Equality implies that
∑

S∈Zn
r

∣∣∣f̂(S)
∣∣∣
2

= α .

Moreover, note that

f̂(0) =
1

rn

∑

T∈Zn
r

f(T ) = α .

Consequently,

(35)
∑

S∈Zn
r \{0}

∣∣∣f̂(S)
∣∣∣
2

= α − α2 .
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By Lemma 7.5,

(36)
∑

S∈Zn
r \{0}

∣∣∣f̂(S)
∣∣∣
2
( −1

r − 1

)|S|
= −α2 .

We now exploit the information given by (35) and (36) by probabilistic means.

Let T be a random variable taking values in Zn
r \ {0} with

∀S ∈ Zn
r \ {0}, Pr(T = S) =

∣∣∣f̂(S)
∣∣∣
2

α − α2
.

Let X(T ) :=
(

−1
r−1

)|T |
. Thus, by (36),

E(X) =
∑

S∈Zn
r \{0}

Pr(T = S) · X(T ) =
α2

α2 − α
=

α

α − 1
.

Observe also that for all T , it holds that X(T ) ≥ −1
r−1 with equality if and only if

|T | = 1. We consider three cases regarding the value of α.

1. α > 1
r . Then E(X) < −1

r−1 , a contradiction. This in particular implies that Kn
r does

not have an independent set of size larger than rn−1.

2. α = 1
r . Then E(X) = −1

r−1 and hence X(T ) = −1
r−1 for all T . So,

∣∣∣f̂(S)
∣∣∣
2

= 0 unless

|S| = 1. Consequently, by Lemma 7.1, since f is not constant, we deduce that f is the

indicator function of a set of the form {v ∈ Zn
r : vj = k} for some integers j and k, as

wanted. This ends the proof of Theorem 7.3.

3. α = 1
r − ε. Notice that for every S with |S| > 1,

X(S) ≥ −1

(r − 1)3
>

−1

r − 1
.

Let Y := X + 1
r−1 , so Y ≥ 0. Further, when Y > 0 then Y ≥ −1

(r−1)3 + 1
r−1 = r(r−2)

(r−1)3 .

Therefore, Markov’s Inequality yields that

(37) Pr(Y > 0) ≤ E(Y ) · (r − 1)3

r(r − 2)
.

Since α = 1
r − ε, it follows from the definition of Y and the linearity of Expectation

that

E(Y ) =
εr2

(r + rε − 1)(r − 1)
.

Thus, as r ≥ 3, we deduce from (37) that

Pr(Y > 0) ≤ εr

r + rε − 1
· (r − 1)2

r − 2
≤ εr · (r − 1)

r − 2
≤ 2εr .



RANDOMLY COLOURING GRAPHS (A COMBINATORIAL VIEW) 61

Recall that Y > 0 if and only if |S| > 1, so that

Pr(Y > 0) = Pr(T = S for some S ∈ G with |S| > 1) =
∑

S∈G
|S|>1

|f̂(S)|2
α − α2

.

It follows that
∑

S∈G
|S|>1

∣∣∣f̂(S)
∣∣∣
2

= (α − α2) Pr(Y > 0) ≤ 2ε .

Therefore, by Lemma 7.2, there is a function g depending on at most one coordinate

such that ‖f − g‖2 < 2Kε
α−α2−ε . This ends the proof of Theorem 7.4.

A recent paper by Dinur, Friedgut, and Regev [44] provides further study of

independent sets in weak powers of connected non-bipartite graphs. The approach also

uses Fourier analysis, combined with spectral techniques and the Invariance Principle

of Mossel, O’Donnell, and Oleszkiewicz [141].

Concluding Remarks

An Apology of Naiveness: The Naive Colouring Method

The naive colouring method is actually a powerful tool. Recall a general approach we

used several times, for instance to colour sparse graphs in Subsection 6.1. We colour

uniformly at random the vertices, independently one of each other. Then, vertices cre-

ating conflicts are uncoloured. As was already hinted at—and maybe surprisingly—

iterating this simple procedure gives considerably more power. It was first introduced

by Kahn [99] to prove that the list-colouring conjecture is asymptotically correct—

which is a very strong result that dramatically improved the upper bounds known at

that time. The idea is to randomly build a colouring (or, more generally, a combina-

torial object), in several steps (the number of steps may well depend on a parameter,

e.g. the maximum degree of the graph). After each iteration, one particular colouring

is chosen. Its existence is proved by showing that it occurs at the end of the iteration

with positive probability—for instance, by using the Lovász Local Lemma. Thus, the

colouring is built via a series of extensions of previously built colourings. Each partial

colouring fulfils some particular properties, and its existence is obtained by the prob-

abilistic method. Then, the last iteration is usually slightly different from the general

procedure, allowing us to finish the desired colouring thanks to the properties of the

partial colouring obtained so far. Iterating random procedures is a powerful tool, but

unfortunately proofs using it are too long and technical to be presented here. The

reader is referred to the papers already cited [82, 83, 99, 139].

We note that the general method (not necessarily for colourings), is often called

the guided method, the incremental method, the pseudo-random method, the semi-

random method, or the Rödl Nibble. It has been successfully used many times [6, 59,

98, 99, 153, 161].
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Hard-core Distributions

Hard-core distributions have been successfully used by Kahn [100, 101] to prove the

following strong result.

Theorem 7.6 (Kahn, 2000). For multigraphs G,

χf (L (G)) ≃ ch′(G) as χf (L (G)) → ∞.

They also are a key ingredient in an important result of Havet, van den Heuvel,

McDiarmid and Reed [84, 85] that the list chromatic number of every planar graph of

sufficiently large maximum degree ∆ is at most 3
2∆ (1 + o(1)).

Let us just say a few words on hard-core distributions, and refer to the book of

Molloy and Reed [140, Chapter 22] for a good exposition and further references on

their use, for instance in statistical physics.

In the three cited papers, independent sets of line graphs, i.e. matching of graphs,

play an important role. The goal is to show that certain properties hold in the neigh-

bourhood of a vertex, regardless of what the matching is far away from this vertex.

In other words, we would like to be able to condition on the matching far away from

a vertex. Let M (G) be the set of all the matchings of the graph G. A probability

distribution p on the matchings of G is hard-core if it is obtained by associating a

positive real λ(e) to each edge e of G so that for every matching M ∈ M (G),

p(M) =

∏
e∈M λ(e)∑

T∈M (G)

∏
e∈T λ(e)

.

Thus, the probability that a matching M is chosen is proportional to
∏

e∈M λ(e). The

real numbers λ(e) are the activities of p.

An important property of hard-core distributions is that they allow us to select

random matchings by choosing one edge at a time. A proof of the following lemma

can be found in the book of Molloy and Reed [140, Lemma 22.4].

Lemma 7.7. Let e = uv be an edge of a graph G and let M be a matching chosen

according to a hard-core distribution on M (G). Let M1 and M2 be matchings of

G− e and G−{u, v} chosen using the hard-core distribution with the same activities,

respectively. Then,

for every N ∈ M (G − e), Pr(M1 = N) = Pr(M = N |e /∈ M) ,

and

for every N ∈ M (G − {u, v}), Pr(M2 = N) = Pr(M = N + e|e ∈ M) .

Edmonds’ characterisation of the matching polytope [45] can be used to prove the ex-

istence of hard-core distributions on matchings with certain independence properties.

They thereby become a useful tool in conjunction with the Lovász Local Lemma.

Algorithmic Angle

The essence of the probabilistic method is to ensure the existence of an object, by

showing that it occurs with positive probability in an appropriate probabilistic space.
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However, it is also interesting to be able to construct those objects whose existence

was proved by the probabilistic method. In particular, a lot of efforts have been made

during the last twenty years towards algorithmic versions of the Lovász Local Lemma.

Beck [16], Alon [1] and many others developed efficient algorithmic versions of the

Lovász Local Lemma. Molloy and Reed [137, 138] designed a method allowing us

to obtain efficient algorithms from virtually any application of the Symmetric Lovász

Local Lemma. Recently, Srinivasan [175] obtained further nice improvements on this

topic, in particular regarding the running-time of the algorithms.

Some More Topics

Needless to say, there are many tools (e.g. Janson’s Inequality, Suen’s Lemma,

Azuma’s Inequality) that were neither presented nor mentioned here. We end this

survey by pointing out two related fields where the probabilistic method yields strik-

ing results, namely Ramsey theory and hypergraph colouring. We refer the reader to

papers and lecture notes by Spencer [172, 174], and more generally to the book by

Alon and Spencer [11] for a good account on those.

A natural field as for probabilistic techniques, which we have not dealt with, is

that of random graphs. We conclude by pointing out two specific references on random

graphs, namely the book by Janson,  Luczak, and Ruciński [93] and the monograph of

Bollobás [22].

Acknowledgements. The author thanks Professor Jaroslav Nešetřil for his continu-

ous support and his communicative enthusiasm regarding this survey.
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116. D. Krá ’l, J.-S. Sereni, and M. Stiebitz. A new lower bound on the number of perfect matchings
in cubic graphs. Submitted for publication.

117. J. Lawrence. Covering the vertex set of a graph with subgraphs of smaller degree. Discrete
Math., 21(1):61–68, 1978.

118. D. D.-F. Liu and X. Zhu. Multilevel distance labelings for paths and cycles. SIAM J. Discrete
Math., 19(3):610–621 (electronic), 2005.

119. L. Lovász. On chromatic number of finite set-systems. Acta Math. Acad. Sci. Hungar., 19:59–67,
1968.

120. L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7, 1979.

121. L. Lovász and M. D. Plummer. Matching theory, volume 121 of North-Holland Mathematics
Studies. North-Holland Publishing Co., Amsterdam, 1986. Annals of Discrete Mathematics, 29.

122. G. Lugosi. Concentration-of-measure inequalities. Lecture notes. URL:

http://www.econ.upf.edu/˜lugosi/anu.pdf.
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