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Abstract. Regular languages (RL) are the simplest family in Chomsky’s hierar-

chy. Thanks to their simplicity they enjoy various nice algebraic and logic prop-

erties that have been successfully exploited in many application fields. Practically

all of their related problems are decidable, so that they support automatic verifi-

cation algorithms. Also, they can be recognized in real-time.

Context-free languages (CFL) are another major family well-suited to formalize

programming, natural, and many other classes of languages; their increased gen-

erative power w.r.t. RL, however, causes the loss of several closure properties and

of the decidability of important problems; furthermore they need complex pars-

ing algorithms. Thus, various subclasses thereof have been defined with different

goals, spanning from efficient, deterministic parsing to closure properties, logic

characterization and automatic verification techniques.

Among CFL subclasses, so-called structured ones, i.e., those where the typical

tree-structure is visible in the sentences, exhibit many of the algebraic and logic

properties of RL, whereas deterministic CFL have been thoroughly exploited in

compiler construction and other application fields.

After surveying and comparing the main properties of those various language

families, we go back to operator precedence languages (OPL), an old family

through which R. Floyd pioneered deterministic parsing, and we show that they

offer unexpected properties in two fields so far investigated in totally independent

ways: they enable parsing parallelization in a more effective way than traditional

sequential parsers, and exhibit the same algebraic and logic properties so far ob-

tained only for less expressive language families.

Keywords: regular languages, context-free languages, input-driven languages,

visibly pushdown languages, operator-precedence languages, monadic second or-

der logic, closure properties, decidability and automatic verification.

1 Introduction

Regular (RL) and context-free languages (CFL) are by far the most widely studied fam-

ilies of formal languages in the richest literature of the field. In Chomsky’s hierarchy,

they are, respectively, in positions 2 and 3, 0 and 1 being recursively enumerable and

context-sensitive languages.

Thanks to their simplicity, RL enjoy practically all positive properties that have been

defined and studied for formal language families: they are closed under most algebraic

operations, and most of their properties of interest (emptiness, finiteness, containment)

http://arxiv.org/abs/1705.00984v1


2 Dino Mandrioli, Matteo Pradella

are decidable. Thus, they found fundamental applications in many fields of computer

and system science: HW circuit design and minimization, specification and design lan-

guages (equipped with powerful supporting tools), automatic verification of SW proper-

ties, etc. One of their most relevant applications is now model-checking which exploits

the decidability of the containment problem and important characterizations in terms of

mathematical logics [12,23].

On the other hand, the typical linear structure of RL sentences makes them unsuit-

able or only partially suitable for application in fields where the data structure is more

complex, e.g., is tree-like. For instance, in the field of compilation they are well-suited

to drive lexical analysis but not to manage the typical nesting of programming and nat-

ural language features. The classical language family adopted for this type of modeling

and analysis is the context-free one. The increased expressive power of CFL allows

to formalize many syntactic aspects of programming, natural, and various other cate-

gories of languages. Suitable algorithms have been developed on their basis to parse

their sentences, i.e., to build the structure of sentences as syntax-trees.

General CFL, however, lose various of the nice mathematical properties of RL: they

are closed only under some of the algebraic operations, and several decision problems,

typically the inclusion problem, are undecidable; thus, the automatic analysis and syn-

thesis techniques enabled for RL are hardly generalized to CFL. Furthermore, parsing

CFL may become considerably less efficient than recognizing RL: the present most

efficient parsing algorithms of practical use for general CFL have an O(n3) time com-

plexity.

The fundamental subclass of deterministic CFL (DCFL) has been introduced, and

applied to the formalization of programming language syntax, to exploit the fact that

in this case parsing is in O(n). DCFL, however, do not enjoy enough algebraic and

logic properties to extend to this class the successful applications developed for RL:

e.g., although their equivalence is decidable, containment is not; they are closed under

complement but not under union, intersection, concatenation and Kleene ∗.

From this point of view, structured CFL are somewhat in between RL and CFL. In-

tuitively, by structured CFL we mean languages where the structure of the syntax-tree

associated with a given sentence is immediately apparent in the sentence. Parenthesis

languages (PL) introduced in a pioneering paper by McNaughton [39] are the first his-

torical example of such languages. McNaughton showed that they enjoy closure under

Boolean operations (which, together with the decidability of the emptiness problem,

implies decidability of the containment problem) and their generating grammars can be

minimized in a similar way as finite state automata (FSA) are minimized (in fact an

equivalent formalism for parenthesis languages are tree automata [45,13]).

Starting from PL various extensions of this family have been proposed in the liter-

ature, with the main goal of preserving most of the nice properties of RL and PL, yet

increasing their generative power; among them input-driven languages (IDL) [40,48],

later renamed visibly pushdown languages (VPL) [5] have been quite successful: they

are closed under all traditional language operations (and therefore enjoy the consequent

decidability properties). Also, they are characterized in terms of a monadic second or-

der (MSO) logic by means of a natural extension of the classic characterization for RL

originally and independently developed by to Büchi, Elgot, and Trakhtenbrot [9,22,47].
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For these reasons they are a natural candidate for extending model checking techniques

from RL. To achieve such a goal in practice, however, MSO logic is not yet tractable

due to the complexity of its decidability problems; thus, some research is going on to

“pair” IDL with specification languages inspired by temporal logic as it has been done

for RL [1].

On the other hand being IDL structured their parsing problem trivially scales down

to the recognition problem but clearly they are not suitable to formalize languages

whose structure is hidden from the surface sentences as, e.g., typical arithmetic ex-

pressions.

Rather recently, we resumed the study of an old class of languages which was in-

terrupted a long time ago, namely operator precedence languages (OPL). OPL and

their generating grammars (OPG) have been introduced by Floyd [26] to build efficient

deterministic parsers; indeed they generate a large and meaningful subclass of DCFL.

In the past their algebraic properties, typically closure under Boolean operations [16],

have been investigated with the main goal of designing inference algorithms for their

languages [17]. After that, their theoretical investigation has been abandoned because

of the advent of more powerful grammars, mainly LR ones [33,30], that generate all

DCFL (although some deterministic parsers based on OPL’s simple syntax have been

continuously implemented at least for suitable subsets of programming languages [29]).

The renewed interest in OPG and OPL has been ignited by two seemingly unrelated

remarks: on the one hand we realized that they are a proper superclass of IDL and that

all results that have been obtained for them (closures, decidability, logical characteriza-

tion) extend naturally, but not trivially, to OPL; on the other hand new motivation for

their investigation comes from their distinguishing property of local parsability: with

this term we mean that their deterministic parsing can be started and led to completion

from any position of the input string unlike what happens with general deterministic

pushdown automata, which must necessarily operate strictly left-to-right from the be-

ginning of the input. This property has a strong practical impact since it allows for

exploiting modern parallel architectures to obtain a natural speed up in the processing

of large tree-structured data. An automatic tool that generates parallel parsers for these

grammars has already been produced and is freely available. The same local parsability

property can also be exploited to incrementally analyze large structures without being

compelled to reparse them from scratch after any modification thereof.

This renewed interest in OPL has also led to extend their study to ω-languages, i.e.,

those consisting of infinite strings: in this case too the investigation produced results

that perfectly parallel the extension of other families, noticeably RL and IDL, from the

finite string versions to the infinite ones.

In this paper we follow the above “story” since its beginning to these days and,

for the first time, we join within the study of one single language family two different

application domains, namely parallel parsing on the one side, and algebraic and logic

characterization finalized to automatic verification on the other side. To the best of our

knowledge, OPL is the largest family that enjoys all of such properties.

The paper is structured as follows: initially we resume some background on the two

main families of formal languages. Section 2 introduces RL and various formalisms

widely used in the literature to specify them; special attention is given to their logic
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characterization which is probably less known to the wider computer science audience

and is crucial for some fundamental results of this paper. Section 3 introduces CFL in a

parallel way as for regular ones. Then, two sections are devoted to different subclasses

of CFL that allowed to obtain important properties otherwise lacking in the larger orig-

inal family: precisely, Section 4 deals with structured CFL, i.e., those languages whose

tree-shaped structure is in some way immediately apparent from their sentences with

no need to parse them; it shows that for such subclasses of CFL important properties of

RL, otherwise lacking in the larger original family, still hold. Section 5, instead, con-

siders the problem of efficient deterministic parsing for CFL. Finally, Section 6 “puts

everything together” by showing that OPL on the one hand are significantly more ex-

pressive than traditional structured languages, but enjoy the same important properties

as regular and structured CFL and, on the other hand, enable exploiting parallelism in

parsing much more naturally and efficiently than for general deterministic CFL.

Since all results presented in this paper have already appeared in the literature, we

based our presentation more on intuitive explanation and simple examples than on de-

tailed technical constructions and proofs, to which appropriate references are supplied

for the interested reader. However, to guarantee self-containedness, some fundamental

definitions have been necessarily given in full formality. For convenience we do not add

a final ’s’ to acronyms when used as plurals so that, e.g., CFL denotes indifferently a

single language, the language family and all languages in the family.

2 Regular Languages

The family of regular languages (RL) is one of the most important families in computer

science. In the traditional Chomsky’s hierarchy it is the least powerful language family.

Its importance stems from both its simplicity and its rich set of properties.

RL is a very robust family, as it enjoys many properties and practically all of them

are decidable. It is defined through several different devices, both operational and de-

scriptive. Among them we mention Finite State Automata (FSA), which are used for

various applications, not only in computer science, Regular Grammars, Regular Ex-

pressions, often used in computing for describing the lexical elements of programming

languages and in many programming environments for managing program sources, and

various logic classifications that support automatic verification of their properties.

2.1 Regular Grammars and Finite State Automata

Chomsky introduced his seminal hierarchy in 1956. The interested reader may refer to

a manual of formal languages, such as [30,14] for a more complete description.

Grammars are generative rewriting systems, and consist of a set of rewriting rules,

also called productions. Intuitively, a production x → y means that a string x can be

replaced with a string y in the rewriting.

Definition 1. A grammar G is a tuple (VN , Σ, P, S ), where

– VN , called nonterminal alphabet, and Σ, called terminal alphabet, are finite sets of

characters such that VN ∩ Σ = ∅; VN ∪ Σ is named V;
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– P is a finite set of productions or rules having the form V∗VNV∗ → V∗; in a produc-

tion x → y, x is called the left-hand side (abbreviated as lhs), and y the right-hand

side (abbreviated as rhs);

– S ∈ VN is the starting character (or axiom).

The following naming conventions are adopted for letters and strings, unless oth-

erwise specified: lowercase Latin letters at the beginning of the alphabet a, b, . . . de-

note terminal characters; uppercase Latin letters A, B, . . . denote nonterminal charac-

ters; lowercase Latin letters at the end of the alphabet x, y, z . . . denote terminal strings;

lowercase Greek letters α, . . . , ω denote strings over V .

To define the language of a grammar, we need the concept of derivation. Grammars

are a generative device, because with them one always starts with the axiom (usually

the S character), then derives new strings by applying an iterative rewriting as specified

by grammar’s productions, until a string belonging to Σ∗ is obtained. This intuition is

formalized by the following definition.

Definition 2. Consider a grammar G = (VN , Σ, P, S ). A string β is derivable in one step

from a string α, denoted by α⇒G β iff α = α1α2α3, β = α1α
′
2
α3, and α2 → α′

2
∈ P.

The reflective and transitive closure of the relation⇒G is denoted by
∗
⇒G. The language

L(G) generated by G is the set {x ∈ Σ∗ | S
∗
⇒G x}.

Regular languages are defined by restricted grammars, called regular grammars

(also left-(or right-)linear grammars).

Definition 3. A grammar G = (VN , Σ, P, S ), such that P ⊆ {X → Ya | X ∈ VN , Y ∈

VN ∪ {ε}, a ∈ Σ}, is called left-linear. Symmetrically, if its rules have the form X → aY,

G is called right-linear.

A grammar is called regular if it is either left-linear or right-linear. A language is reg-

ular if it is generated by some regular grammar.

Example 1. Consider a right-linear grammar G1 = (VN , Σ, P, S ), where VN = {S , B},

Σ = {a, b}, P = {S → aS , S → aB, S → a, B→ bB, B→ b}.

For simplicity and shortness, it is customary to group together productions with the

same lhs, writing all the corresponding right parts separated by |. In this case, P = {S →

aS | aB | a, B → bB | b}. It is also customary to drop G from the relation ⇒G, if the

grammar is clear from the context.

Here is an example derivation: S ⇒ aS ⇒ aaS ⇒ aaaB ⇒ aaabB ⇒ aaabb.

Hence we see that aaabb ∈ L(G1). By simple reasoning we obtain L(G1) = {a+b∗}.

Probably the most known and used notation to define RL is that of Finite State

Automata. An automaton is a simple operational device, which assumes a state from a

finite set, and its behavior is based on the concept of state transition.

Definition 4. A Finite State Automaton (FSA)A is a tuple (Q, Σ, δ, q0, F), where

– Q is a finite set of states;

– Σ is the input alphabet;

– δ ⊆ Q × Σ × Q is the transition relation;
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– I ⊆ Q is the set of initial states;

– F ⊆ Q is the set of final states.

If I is a singleton and δ is a function, i.e., δ : Q × Σ → Q,A is called deterministic (or

DFSA).

Whereas grammars generate strings through derivations, automata recognize or accept

them through sequences of transitions or runs. In the case of FSA their recognition is

formalized as follows.

Definition 5. Let the FSA A be (Q, Σ, δ, I, F). The transition sequence of A starting

from a state q ∈ Q, reading a string x ∈ Σ∗, and ending in a state q′ is written (q, x, q′) ∈

δ∗ where the relation δ∗ ⊆ Q × Σ∗ × Q is inductively defined as follows:

– (q, ε, q) ∈ δ∗;
– (q, y, q′) ∈ δ∗ ∧ (q′, a, q′′) ∈ δ =⇒ (q, ya, q′′) ∈ δ∗, for q, q′, q′′ ∈ Q, a ∈ Σ, y ∈ Σ∗.

The language accepted byA is defined as: L(A) = {x | ∃q0 ∈ I,∃qF ∈ F : (q0, x, qF) ∈

δ∗}.

Example 2. Figure 1 shows a classical representation of an example automaton, where

Q is {q0, q1}, q0 is marked as initial by the leftmost arrow; F = {q1} and the ball of the

final state has a double line. Transitions are depicted through labeled arrows, e.g. the

arrows connecting q0 to q0 itself and to q1 mean that (q0, a, q0) ∈ δ and (q0, a, q1) ∈ δ.

q0 q1
a

a b

Fig. 1. The FSAA1 recognizing the language L(G1) of Example 1.

It is easy to see that L(A1) = {a+b∗}. E.g., (q0, a, q0) ∈ δ implies (q0, a, q0) ∈ δ∗ and

(q0, a, q1) ∈ δ implies (q0, a, q1) ∈ δ∗; from the same transitions we have {(q0, aa, q0),

(q0, aa, q1), (q0, aaa, q0), (q0, aaa, q1)} ⊆ δ∗; then, (q1, b, q1) ∈ δ and (q0, aaa, q1) ∈ δ∗

imply (q0, aaab, q1) ∈ δ∗; (q1, b, q1) ∈ δ and (q0, aaab, q1) ∈ δ∗ imply (q0, aaabb, q1) ∈

δ∗. Hence, aaabb ∈ L(A1), since q1 ∈ F.

By comparing the grammar of Example 1 with the automaton of Example 2 it is im-

mediate to generalize their equivalence to the whole class RL: for any regular grammar

an equivalent FSA can be built and conversely.

An important result on FSA is that they are determinizable, i.e., given a generic

FSA, it is always possible to define an equivalent DFSA. The main idea is to note that

the power set of a finite set is still finite, so if we have a FSA with a set of states Q, we

can define another automaton with a set of states P(Q) so that the original transition re-

lation can be made a function. More formally, given an FSA (Q, Σ, δ, I, F), a determinis-

tic equivalent automaton isAD = (P(Q), Σ, δD, {I}, FD), where δD

(

q, a,
⋃

q′∈q, (q′ ,a,q′′)∈δ q′′
)

,

q ∈ P(Q), a ∈ Σ, and FD = {Q
′ ⊆ Q | Q′ ∩ F , ∅}.

We illustrate this construction with an example.
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Example 3. The automatonA1 = (Q, Σ, δ, {q0}, F) of Example 2 is not deterministic. A

deterministic equivalent automaton is shown in Figure 2.

{q0} {q0, q1} {q1}
a

a

b

b

Fig. 2. The DFSAA2 recognizing the language L(G1) of Example 1.

RL enjoy many interesting closure properties, for instance they are closed w.r.t. all

Boolean operations (union, intersection, and complement).

As far as complement is concerned, to build up the related automaton, one must start

with a deterministic automaton (if not, we have just shown how to define an equivalent

deterministic automaton). First, we modify the original automaton so that it reads any

possible string – in this way, if the input string is not in the automaton’s language, it

changes its state to an additional “error” state, if needed, so that the function δ is to-

tal. Then, we exchange the role between accepting and non-accepting states, so that a

rejected string becomes part of the language, and vice versa. We illustrate this construc-

tion with our running example.

Example 4. We start with the automaton recognizing L = a+b∗ of Figure 2, since it is

deterministic; we also rename its states, for brevity.

Then, we introduce an error state, called qe, and swap accepting with non-accepting

roles: the resulting automaton is shown in Figure 3. It is easy to see that L(A3) =

¬L(A2) = ¬L(G1).

q0 q1 q2

qe

a

a

b

b

b
b a

a, b

Fig. 3. The DFSAA3 recognizing the complement of language L(G1) of Example 1.

To prove that RL are closed w.r.t. intersection, we start from two FSAA′ = (Q′, Σ,

δ′, I′, F′),A′′ = (Q′′, Σ, δ′′, I′′, F′′), and build a “product” automaton,

Ap = (Q′ × Q′′, Σ, δp, I
′ × I′′, F′ × F′′),
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where (〈q1, q
′
1
〉, a, 〈q2, q

′
2
〉) ∈ δp, iff (q1, a, q2) ∈ δ′, and (q′

1
, a, q′

2
) ∈ δ′′.

Closure w.r.t. union follows from De Morgan’s laws.

Example 5. Let us consider the automaton of Figure 1 and apply the construction for

intersection with the automaton of Figure 4. The resulting automaton is in Figure 5.

q0 q1 q2

b

a a

a, b

Fig. 4. The FSAA4, recognizing language b∗aa {a, b}∗.

q0, q0 q0, q1 q0, q2

q1, q2

a a

a

a a

b

Fig. 5. FSA recognizing (a+b∗) ∩ (b∗aa {a, b}∗), obtained fromA1 andA4.

Another fundamental property of RL is that their emptiness problem, i.e. whether or

not L = ∅, is decidable. This in turn is an immediate consequence of the so-called

pumping lemma which, informally, states that, due to the finiteness of the state space,

the behavior of any FSA must eventually be periodic. More formally, this property is

stated as follows:

Lemma 1. Let A be a FSA; for every string x ∈ L(A), with |x| > |Q|, there exists a

factorization x = ywz such that x = ywnz ∈ L(G) for every n ≥ 0.

As a consequence of this lemma, if in a regular language there exists a sentence of

any length, then there exists also a string of length ≤ |Q|, hence the decidability of the

emptiness problem and, in turn, of the containment problem (is L(A1) ⊆ L(A2)?) and

of the equivalence problem, thanks to the closure w.r.t. Boolean operations. The lemma

can also be exploited to show that no FSA can recognize L = {anbn | n ≥ 0}.

Other notable closures, not of major interest in this paper, are w.r.t. concatenation,

Kleene ∗, string homomorphism, and inverse string homomorphism; FSA are minimiz-

able, i.e. given a FSA, there is an algorithm to build an equivalent automaton with the

minimum possible number of states.
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2.2 Logic characterization

From the very beginning of formal language and automata theory the investigation of

the relations between defining a language through some kind of abstract machine and

through a logic formalism has produced challenging theoretical problems and impor-

tant applications in system design and verification. A well-known example of such an

application is the classical Hoare’s method to prove the correctness of a Pascal-like pro-

gram w.r.t. a specification stated as a pair of pre- and post-conditions expressed through

a first-order theory [32].

Such a verification problem is undecidable if the involved formalisms have the com-

putational power of Turing machines but may become decidable for less powerful for-

malisms as in the important case of RL. In particular, Büchi, in his seminal work [9],

provided a complete characterization of regular languages in terms of a suitable logic, so

that the decidability properties of this class of languages could be exploited to achieve

automatic verification; later on, in fact a major breakthrough in this field has been ob-

tained thanks to advent of model checking. The logic proposed by Büchi to characterize

regular languages is a Monadic Second Order (MSO) one that is interpreted over the

natural numbers representing the position of a character in the string: the string is ac-

cepted by a FSA iff it satisfies a sentence in the corresponding logic. The basic elements

of the logic defined by Büchi are summarized here:

– First-order variables, denoted as lowercase letters at the end of the alphabet, x,

y, . . . are interpreted over the natural numbers N (these variables are written in

boldface to avoid confusion with strings);

– Second-order variables, denoted as uppercase letters at the end of the alphabet,

written in boldface, X, Y, . . . are interpreted over the power set of natural numbers

P(N);

– For a given input alphabet Σ, the monadic predicate a(·) is defined for each a ∈ Σ:

a(x) evaluates to true in a string iff the character at position x is a;

– The successor predicate is denoted by succ, i.e. succ(x, y) means that y = x + 1.

– The well-formed formulas are defined by the following syntax:

ϕ := a(x) | x ∈ X | succ(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x(ϕ) | ∃X(ϕ).

– They are interpreted in the natural way. Furthermore the usual predefined abbre-

viations are introduced to denote the remaining propositional connectives, uni-

versal quantifiers, arithmetic relations (=,,, <, >), sums and subtractions between

first order variables and numeric constants. E.g. x = y is an abbreviation for

∀X(x ∈ X ⇐⇒ y ∈ X); x = z − 2 stands for ∃y(succ(z, y) ∧ succ(y, x))

– A sentence is a closed formula of the MSO logic; also, the notation w |= ϕ denotes

that string w satisfies sentence ϕ. For a given sentence ϕ, the language L(ϕ) is

defined as 3

L(ϕ) = {w ∈ Σ+ | w |= ϕ}.

3 When specifying languages by means of logic formulas, the empty string must be excluded

because formulas refer to string positions.
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For instance formula ∀x, y(a(x)∧ succ(x, y)⇒ b(y)) defines the language of strings

where every occurrence of character a is immediately followed by an occurrence of b.

Büchi’s seminal result is synthesized by the following theorem.

Theorem 1. A language L is regular iff there exists a sentence ϕ in the above MSO

logic such that L = L(ϕ).

The proof of the theorem is constructive, i.e., it provides an algorithmic procedure

that, for a given FSA builds an equivalent sentence in the logic, and conversely; next

we offer an intuitive explanation of the construction, referring the reader to, e.g., [46]

for a complete and detailed proof.

From FSA to MSO logic

The key idea of the construction consists in representing each state q of the automaton as

a second order variable Xq, which is the set of all string’s positions where the machine

is in state q. Without lack of generality we assume the automaton to be deterministic,

and that Q = {0, 1, . . . ,m}, with 0 initial, for some m. Then we encode the definition

of the FSA recognizing L as the conjunction of several clauses each one representing a

part of the FSA definition:

– The transition δ(qi, a) = q j is formalized by ∀x, y(x ∈ Xi ∧ a(x)∧ succ(x, y)⇒ y ∈

X j).

– The fact that the machine starts in state 0 is represented as ∃z(∄x(succ(x, z)) ∧ z ∈

X0).

– Being the automaton deterministic, for each pair of distinct second order variables

Xi and X j we need the subformula ∄y(y ∈ Xi ∧ y ∈ X j).

– Acceptance by the automanton, i.e. δ(qi, a) ∈ F, is formalized by: ∃y(∄x(succ(y, x))∧

y ∈ Xi ∧ a(y)).

– Finally the whole language L is the set of strings that satisfy the global sentence

∃X0, X1, . . . Xm(ϕ), where ϕ is the conjunction of all the above clauses.

At this point it is not difficult to show that the set of strings satisfying the above

global formula is exactly L.

From MSO logic to FSA

The construction in the opposite sense has been proposed in various versions in the

literature. Here we summarize its main steps along the lines of [46]. First, the MSO

sentence is translated into a standard form using only second-order variables, the ⊆

predicate, and variables Wa, for each a ∈ Σ, denoting the set of all the positions of the

word containing the character a. Moreover, we use Succ, which has the same meaning

of succ, but, syntactically, has second order variable arguments that are singletons. This

simpler, equivalent logic, is defined by the following syntax:

ϕ := X ⊆Wa | X ⊆ Y | Succ(X,Y) | ¬ϕ | ϕ ∨ ϕ | ∃X(ϕ).
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As before, we also use the standard abbreviations, e.g. ∧, ∀, =. To translate first order

variables to second order variables we need to state that a (second order) variable is

a singleton. Hence we introduce the abbreviation: Sing(X) for ∃Y(Y ⊆ X ∧ Y , X ∧

∄Z(Z ⊆ X∧Z , Y∧Z , X)). Then, Succ(X,Y) is defined only for X and Y singletons.

The following step entails the inductive construction of the equivalent automaton.

This is built by associating a single automaton to each elementary subformula and by

composing them according to the structure of the global formula. This inductive ap-

proach requires to use open formulas. Hence, we are going to consider words on the

alphabet Σ × {0, 1}k, so that X1, X2, . . . Xk are the free variables used in the formula;

1 in the, say, j-th component means that the considered position belongs to X j, 0 vice

versa. For instance, if w = (a, 0, 1)(a, 0, 0)(b, 1, 0), then w |= X2 ⊆ Wa, w |= X1 ⊆ Wb,

with X1 and X2 singletons.

Formula transformation

1. First order variables are translated in the following way: ∃x(ϕ(x)) becomes

∃X(Sing(X) ∧ ϕ′(X)), where ϕ′ is the translation of ϕ, and X is a fresh variable.

2. Subformulas having the form a(x), succ(x, y) are translated into X ⊆Wa, Succ(X,Y),

respectively.

3. The other parts remain the same.

Inductive construction of the automaton We assume for simplicity that Σ = {a, b},

and that k = 2, i.e. two variables are used in the formula. Moreover we use the shortcut

symbol ◦ to mean all possible values.

q0

(◦, 0, 0)

(◦, 0, 1)

(◦, 1, 1) q0

(a, 0, ◦)

(◦, 0, ◦)

(a, 1, ◦) q0 q1 q2

(◦, 0, 0)

(◦, 1, 0) (◦, 0, 1)

(◦, 0, 0)

(a) (b) (c)

Fig. 6. Automata for the construction from MSO logic to FSA.

– The formula X1 ⊆ X2 is translated into an automaton that checks that there are

1’s for the X1 component only in positions where there are also 1’s for the X2

component (Figure 6 (a)).

– The formula X1 ⊆Wa is analogous: the automaton checks that positions marked by

1 in the X1 component must have symbol a (Figure 6 (b)).

– The formula Succ(X1, X2) considers two singletons, and checks that the 1 for com-

ponent X1 is immediately followed by a 1 for component X2 (Figure 6 (c)).

– Formulas inductively built with ¬ and ∨ are covered by the closure of regular lan-

guages w.r.t. complement and union, respectively.
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– For ∃, we use the closure under alphabet projection: we start with an automaton

with input alphabet, say, Σ × {0, 1}2, for the formula ϕ(X1, X2); we need to de-

fine an automaton for the formula ∃X1(ϕ(X1, X2)). But in this case the alphabet is

Σ × {0, 1}, where the last component represents the only free remaining variable,

i.e. X2.

The automatonA∃ is built by starting from the one for ϕ(X1, X2), and changing the

transition labels from (a, 0, 0) and (a, 1, 0) to (a, 0); (a, 0, 1) and (a, 1, 1) to (a, 1),

and those with b analogously. The main idea is that this last automaton nondeter-

ministically “guesses” the quantified component (i.e. X1) when reading its input,

and the resulting word w ∈ (Σ × {0, 1}2)∗ is such that w |= ϕ(X1, X2). Thus, A∃
recognizes ∃X1(ϕ(X1, X2)).

We refer the reader to the available literature for a full proof of equivalence between

the logic formula and the constructed automaton. Here we illustrate the rationale of the

above construction through the following example.

Example 6. Consider the language L = {a, b}∗aa{a, b}∗: it consists of the strings satis-

fying the formula:

ϕL = ∃x∃y(succ(x, y) ∧ a(x) ∧ a(y)).

As seen before, first we translate this formula into a version using only second order

variables: ϕ′
L
= ∃X,Y(Sing(X) ∧ Sing(Y) ∧ Succ(X,Y) ∧ X ⊆Wa ∧ Y ⊆Wa).

Here are the automata for Sing(X) and Sing(Y):

q0 q1

(◦, 0, ◦)

(◦, 1, ◦)

(◦, 0, ◦)

q′
0

q′
1

(◦, ◦, 0)

(◦, ◦, 1)

(◦, ◦, 0)

The above automata could also be obtained by expanding the definition of Sing and then

projecting the quantified variables. By intersecting the automata for Sing(X), Sing(Y),

Succ(X,Y) we obtain an automaton which is identical to the one we defined for trans-

lating formula Succ(X1, X2), where here X takes the role of X1 and Y of X2. Combining

it with those for X ⊆ Wa and Y ⊆ Wa produces:

q′′
0

q′′
1

q′′
2

(a, 0, 0)

(b, 0, 0)

(a, 1, 0) (a, 0, 1)

(a, 0, 0)

(b, 0, 0)

Finally, by projecting on the quantified variables X and Y we obtain the automaton

for L.

q′′
0

q′′
1

q′′
2

a, b

a a

a, b
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The logical characterization of a class of languages, together with the decidability

of the containment problem, is the main door towards automatic verification techniques:

suppose in fact to have a logic formalism L recursively equivalent to an automaton fam-

ily A; then, one can use a language LL in L to specify the requirements of a given system

and an abstract machineA in A to implement the desired system: the correctness of the

design defined by A w.r.t. to the requirements stated by LL is therefore formalized by

L(A) ⊆ LL, i.e., all behaviors realized by the machine are also satisfying the require-

ments. This is just the case with FSA and MSO logic for RL; in practice, however,

the decision algorithms based on the above MSO logic have been proved of intractable

complexity; thus, the great success of model-checking as the fundamental technique for

automatic verification has been obtained by resorting to less powerful, typically tempo-

ral, logics which compensated the limited loss of generality by a complexity considered,

and empirically verified in many practical experiments, as more tractable, despite a the-

oretical PSPACE-completeness [23].

3 Context-free Languages

Context-free languages (CFL), with their generating context-free grammars (CFG) and

recognizing pushdown automata (PDA), are, together with RL, the most important

chapter in the literature of formal languages. CFG have been introduced by Noam

Chomsky in the 1950s as a formalism to capture the syntax of natural languages. Inde-

pendently, essentially the same formalism has been developed to formalize the syntax

of the first high level programming language, FORTRAN; in fact it is also referred to

as Backus-Naur form (BNF) honoring the chief scientists of the team that developed

FORTRAN and its first compiler. It is certainly no surprise that the same formalism

has been exploited to describe the syntactic aspects of both natural and high level pro-

gramming languages, since the latter ones have exactly the purpose to make algorithm

specification not only machine executable but also similar to human description.

The distinguishing feature of both natural and programming languages is that com-

plex sentences can be built by combining simpler ones in an a priori unlimited hier-

archy: for instance a conditional sentence is the composition of a clause specifying a

condition with one or two sub-sentences specifying what to do if the condition holds,

and possibly what else to do if it does not hold. Such a typical nesting of sentences

suggests a natural representation of their structure in the form of a tree shape. The

possibility of giving a sentence a tree structure which hints at its semantics is a sharp

departure from the rigid linear structure of regular languages. As an example, consider

a simple arithmetic expression consisting of a sequence of operands with either a + or

a ∗ within any pair of them, as in 2 + 3 ∗ 2 + 1 ∗ 4. Sentences of this type can be easily

generated by, e.g., the following regular grammar:

S → 1 | 2 | . . .0 | 1A | 2A | . . .0A

A→ +S | ∗S

However, if we compute the value of the above expression by following the linear struc-

ture given to it by the grammar either by associating the sum and the multiply operations

to the left or to the right we would obtain, respectively, 44 or 20 which is not the way we



14 Dino Mandrioli, Matteo Pradella

learned to compute the value of the expression at school. On the contrary, we first com-

pute the multiply operations and then the sum of the three partial results, thus obtaining

12; this, again, suggests to associate the semantics of the sentence –in this case the value

of the expression– with a syntactic structure that is more appropriately represented by

a tree, as suggested in Figure 7, than by a flat sequence of symbols.

Add

2 + Add

Mult

3 ∗ 2

+ Mult

1 ∗ 4

Fig. 7. A tree structure that shows the precedence of multiplication over addition in

arithmetic expressions.

CFG are more powerful than regular ones in that not only they assign in a natural

way a tree structure to their sentences but also the class of languages they generate

strictly includes RL (see Section 3.2). CFG are defined as a special case of Chomsky’s

general ones in the following way.

Definition 6. A grammar G = (VN , Σ, P, S ) is context-free iff the lhs of all its produc-

tions is a single nonterminal.

Among all derivations associated with CFG it is often useful to distinguish the leftmost

and rightmost ones:

Definition 7. A CFG derivation S
∗
⇒G x is a leftmost, denoted as S

l
⇒G x (resp.

rightmost, denoted as S
r
⇒G x) one iff all of its immediate derivation steps are of the

form xAβ⇒G xαβ (resp. βAx⇒G βαx), with x ∈ Σ∗, A ∈ VN , β, α ∈ V∗.

In other words in a leftmost derivation, at every step the leftmost nonterminal character

is the lhs of the applied rule. It is immediate to verify that for every derivation of a CFG

there are an equivalent leftmost and an equivalent rightmost one, i.e., derivations that

produce the same terminal string.4

Example 7. The following CF grammar GAE1 generates the same numerical arithmetic

expressions as above but assigns them the appropriate structure exemplified in Figure 7.

In fact there is an obvious correspondence between grammar derivations and the trees

whose root is the axiom and for every internal node, labeled by a nonterminal, its chil-

dren are, in order, the rhs of a production whose lhs is the label of the father. In partic-

ular, a leftmost (resp. rightmost) derivation corresponds to a left (resp. right), top-down

4 This property does not hold for more general classes of grammars.
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traversal of the tree; symmetrically a left bottom-up tree traversal produces the mirror

image of a rightmost derivation. The tree that represents the derivation of a sentence x

by a CFG is named syntax-tree or syntactic tree of x. Notice that in the following, for

the sake of simplicity, in arithmetic expressions we will make use of a unique terminal

symbol e to denote any numerical value.

GAE1 : S → E | T | F

E → E + T | T ∗ F | e

T → T ∗ F | e

F → e

It is an easy exercise augmenting the above grammar to let it generate more gen-

eral arithmetic expressions including more arithmetic operators, parenthesized sub-

expressions, symbolic operands besides numerical ones, etc.

Consider now the following slight modification GAE2 of GAE1:

GAE2 : S → E | T | F

E → E ∗ T | T + F | e

T → T + F | e

F → e

GAE1 and GAE2 are equivalent in that they generate the same language; however,

GAE2 assigns to the string 2+3∗2+1∗4 the tree represented in Figure 8: if we executed

the operations of the string in the order suggested by the tree –first the lower ones so

that their result is used as an operand for the higher ones– then we would obtain the

value 60 which is not the “right one” 12.

S

E

E

E

T

2

+ F

3

∗ T

T

2

+ F

1

∗ T

4

Fig. 8. A tree that reverts the traditional precedence between arithmetic operators.

Last, the grammar:

GAEamb : S → S ∗ S | S + S | e

is equivalent to GAE2 and GAE1 as well, but it can generate the same string by means

of different left derivations which correspond to the traversal of the syntax-trees of Fig-

ure 7, of Figure 8, and even more. In such a case we say that the grammar is ambiguous

in that it associates different syntax-trees to the same sentence.
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The above examples, inspired by the intuition of arithmetic expressions, further em-

phasize the strong connection between the structure given to a sentence by the syntax-

tree and the semantics of the sentence: as it is the case with natural languages too, an

ambiguous sentence may exhibit different meanings.

The examples also show that, whereas a sentence of a regular language has a fixed

–either right or left-linear structure, CFL sentences have a tree structure which in gen-

eral, is not immediately “visible” by looking at the sentence, which is the frontier of its

associated tree. As a consequence, in the case of CFL analyzing a sentence is often not

only a matter of deciding whether it belongs to a given language, but in many cases it is

also necessary to build the syntax-tree(s) associated with it: its structure often drives the

evaluation of its semantics as intuitively shown in the examples of arithmetic expres-

sions and systematically applied in all major applications of CFL, including designing

their compilers. The activity of jointly accepting or rejecting a sentence and, in case of

acceptance, building its associated syntax-tree(s) is usually called parsing.

3.1 Pushdown automata as parsers

It is well known that a typical data structure to build and visit trees is the stack or

pushdown store. Thus, it is no surprise that the abstract machines adopted in formal

language theory to analyze CFL are pushdown automata, i.e., devices supplied with a

finite state control augmented with a LIFO auxiliary memory. Among the many versions

of such automata proposed in the literature to parse CFL or subfamilies thereof we

report here a classical one.

Definition 8. A pushdown automaton (PDA)A is a tuple (Σ,Q, Γ, δ, q0, Z0, F) where

– Σ is the finite terminal alphabet;

– Q is the finite set of states;

– Γ is the finite stack alphabet;

– δ ⊆F Q×Γ× (Σ∪{ε})×Q×Γ∗ is the transition relation, where the notation A ⊆F B

means that A is a finite subset of B;

– I ⊆ Q is the set of initial states;

– Z0 ∈ Γ is the initial stack symbol;

– F ⊆ Q is the set of final or accepting states.

A PDAA is deterministic (DPDA) iff

– I is a singleton;

– δ is a function δ : Q × Γ × (Σ ∪ {ε})→ Q × Γ∗;

– ∀(q, A) if δ(q, A, a) is defined for some a, then δ(q, A, ε) is not defined; in other

words, for any pair (q, A) the automaton may perform either an ε-move or a reading

move but not both of them.

A configuration of a PDA is a triple (x, q, γ) where x is the string to be analyzed, q

is the current state of the automaton, and γ is the content of the stack.

The transition relation between two configurations c1 p−− c2 holds iff c1 = (x1, q1, γ1),

c2 = (x2, q2, γ2) and, either:



Generalizing input-driven languages: theoretical and practical benefits 17

– x1 = ay, x2 = y, γ1 = Aβ, γ2 = αβ, and (q1, A, a, q2, α) ∈ δ, or

– x1 = x2, γ1 = Aβ, γ2 = αβ, and (q1, A, ε, q2, α) ∈ δ.

A string x is accepted by a PDA A iff c0 = (x, q0, Z0)
∗
p−− (ε, qF , γ) for some q0 ∈ I,

qF ∈ F, and γ ∈ Γ∗. The language accepted or recognized by A is the set L(A) of all

strings accepted byA.

A transition of the second type above, i.e. where no input character is consumed because

the applied transition relation is of type (q1, A, ε, q2, α) is called an ε-move.

PDA as defined above are recursively equivalent to CFG, i.e, for any given CFG

G a PDA A can effectively be built such that L(A) = L(G) and conversely. DPDA

define deterministic CFL (DCFL). Example 8 illustrates informally the rationale of this

correspondence by presenting a PDA equivalent to grammar GAE1. It also provides a

hint on how a PDA recognizing a CFL can be augmented as a pushdown transducer

which also builds the syntax-tree of the input sentence (if accepted).

Example 8. Consider the following PDAA:

Q = {q0, q1, qF}, Γ = {E, T, F,+, ∗, e, Z0},

δ = {(q0, Z0, ε, q1, EZ0), (q0, Z0, ε, q1, TZ0), (q0, Z0, ε, q1, FZ0)}∪

{(q1, E, ε, q1, E + T ), (q1, E, ε, q1, T ∗ F), (q1, E, ε, q1, e)}∪

{(q1, T, ε, q1, T ∗ F), (q1, T, ε, q1, e)} ∪ {(q1, F, ε, q1, e)}∪

{(q1,+,+, q1, ε), (q1, ∗, ∗, q1, ε), (q1, e, e, q1, ε)}∪

{(q1, Z0, ε, qF , ε)}.

A accepts, e.g., the input string e + e ∗ e through the following sequence of config-

uration transitions

(e+e∗e, q0, Z0) p−− (e+e∗e, q1, EZ0) p−− (e+e∗e, q1, E+TZ0) p−− (e+e∗e, q1, e+

TZ0) p−− (+e ∗ e, q1,+TZ0) p−− (e ∗ e, q1, TZ0) p−− (e ∗ e, q1, T ∗ FZ0) p−− (e ∗ e, q1, e ∗

FZ0) p−− (∗e, q1, ∗FZ0) p−− (e, q1, FZ0) p−− (e, q1, eZ0) p−− (ε, q1, Z0) p−− (ε, qF , ε)

In factA has been naturally derived from the original grammar, GAE1 in this case,

in such a way that its transitions perfectly parallel a grammar’s leftmost derivation: at

any step if the top of the stack stores a nonterminal it is nondeterministically replaced

by the corresponding rhs of a production of which it is the lhs, in such a way that the

leftmost character of the rhs is put on top of the stack; if it is a terminal it is compared

with the current input symbol and, if they match the stack is popped and the reading

head advances. Notice however, that, being A nondeterministic, there are also several

sequences of transitions beginning with the same c0 that do not accept the input.

Strictly speaking the above automaton is not a real parser for the corresponding

grammar since it simply accepts all and only the strings generated thereby. However,

it is quite easy to make it a complete parser by adding a few translation components:

precisely, a pushdown transducer is a pushdown automaton provided with an output

alphabet O which augments the range of δ in such a way that at every transition the

transducer appends to the output, initially empty, a string in O∗; the output string (strings

in case of nondeterminism) produced at the end of the computation applied to the input

x is the translation τ(x) produced by the transducer.

For instance, it is not difficult to build a full parser for grammar GAE1 by adding

to the automaton of Example 8 an output alphabet consisting of labels that uniquely

identify G’s productions: for every transition of the automaton that has been built in
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one-to-one correspondence with G’s production set it suffices to augment δ by adding

as output component of each triple the label of the corresponding production. Assume

that productions E → E + T | T ∗ F are labeled 1, 2, respectively; then δ is enriched

accordingly with {(q0, E, ε, q0, T + E, 1), (q0, E, ε, q0, F ∗ T, 2), ...} ⊆ δ. Conversely,

transitions that simply verify that the element on top of the stack coincides with the

current input character do not output anything. Clearly, the transducer built in this way

from the original grammar for any string of the language delivers an output that corre-

sponds to a top-down, leftmost visit of the syntax-tree(s) of the input string where any

internal node is the label of the production used by the grammar to expand it. Thus, we

can assume (nondeterministic) transducers as general parsers for CFG; if the original

grammar is ambiguous the corresponding transducer produces several translations for

the same input.

3.2 A comparative analysis of CFL and RL properties

CFG and PDA are more powerful formalisms than the corresponding regular ones. Such

a greater power allows for their application in larger fields such as formalizing the

syntax and semantics of programming languages and many other tree-structured data.

The greater power of the CFL family than the RL one abides not only in the structure of

their sentences but even in sets of sentences that constitute their languages. For instance,

the language L1 = {a
nbn | n ≥ 0} is easily recognized by a PDA but no FSA can

accept it due its finite memory formalized by the state space Q, whereas, intuitively,

an unbounded memory is necessary to count the number of a’s to be able to compare

their number with that of the following b’s; this claim can be easily proved formally by

exploiting the fundamental pumping Lemma 1.

Not surprisingly, however, such an increased power of CFL w.r.t. RL comes at a

price in terms of loss of various properties and of increased complexity of related anal-

ysis algorithms. Herewith we briefly examine which properties of RL still hold for CFL

and which ones are lost.

The original pumping lemma for regular languages can be naturally extended to a

more general version holding for CFL:

Lemma 2. Let G be a CFG; there is a constant k, recursively computable as a function

of G, such that, for every string x ∈ L(G), with |x| > k, there exists a factorization

x = yw1zw2u such that x = ywn
1
zwn

2
u ∈ L(G) for every n ≥ 0.

A first important and natural consequence of the CF version of the pumping lemma

is that the emptiness problem for CFL is still decidable; this can be easily shown in a

parallel way as for regular languages. Another application of the lemma analogous to

that used for RL can show that various languages, such as, e.g., L2 = {a
nbncn | n ≥ 0}

are not CF.

On the opposite side the fundamental effective equivalence between deterministic

and nondeterministic FSA does not hold for PDA. A formal proof of this statement can

be found in most texts on formal language theory, e.g. in [30]; here we only offer an

intuitive explanation based on a simple counterexample. Consider the language L =

{wwR | w ∈ {a, b}∗}, where wR denotes the mirror image of w. It is quite easy to build

a nondeterministic PDA that accepts L: initially it pushes the read symbols onto the
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stack up to a point when it nondeterministaclly changes state and, from that point on it

compares the symbol on top of the stack with the read one: if it reaches the end of the

input and empties the stack at the same time, through a series of successful comparisons,

then that particular computation accepts the input string; of course there will also be

many other computations that fail due to a wrong guess about the middle of the input

string. It is also intuitively apparent that there is no way to decide deterministically

where is the middle of the input sentence unless a device other than a PDA is adopted,

e.g., a Turing machine.

This substantial difference in recognition power between general PDA and DPDAs

has several consequences on the properties of the class of languages they accept, resp.

CFL and DCFL. Here we list the most important ones:

– CFL are closed w.r.t. union but not w.r.t. complement and intersection. In fact clo-

sure w.r.t. union is easily shown by building, for two languages L1, L2 two corre-

sponding grammars G1 and G2 with disjoint nonterminal alphabets; then simply

adding a new axiom S and two productions S → S 1 | S 2, we obtain a grammar that

generates all and only the strings in L1 ∪ L2.

On the other hand consider again the above language L2, which is not a CFL: it is

the intersection of L3 = {a
nbnc∗ | n ≥ 0} with L4 = {a

∗bncn | n ≥ 0} which are

clearly both DCFL. By De Morgan’s laws, CFL are not closed w.r.t. complement

as well.

– DCFL are closed under complement but neither under union nor under intersec-

tion. Closure under complement can be obtained by exploiting determinism and

switching F and Q \ F in a similar way as done for FSA, provided that a suitable

normal form of the original DPDA is built before applying the switch of the ac-

cepting states. We refer the reader to the more specialized literature, e.g., [30], for

the technicalities of the necessary normal form. The previous counterexample also

shows the non-closure of DCFL w.r.t. intersection and therefore w.r.t. union, again

thanks to De Morgan’s laws.

– CFL are closed under concatenation, Kleene ∗, reversal or mirror image, homomor-

phism, whereas DCFL are not closed under anyone of these operations. We justify

only the claim about homomorphism since the other operations are of minor inter-

est for the purpose of this paper. Given an alphabet homomorphism h : Σ1 → Σ∗
2

with its natural extension h : Σ∗
1
→ Σ∗

2
, it is immediate, for a grammar G, to build

a G′ such that L(G′) = h(L(G)): it suffices to replace every occurrence of an ele-

ment a ∈ Σ1 in G’s definition by h(a), including the particular case h(a) = ε. On

the other side consider the language L = {wcwR | w ∈ {a, b}∗}: it is immediate to

build a DPDA recognizing it thanks to the new c character which marks the cen-

ter of the input string, but it has already been shown that h(L), with h defined as

h(a) = a, h(b) = b, h(c) = ε, cannot be recognized by any DPDA.

– The lack of the above closure properties for both CFL and DCFL, prevents their

natural exploitation to obtain decidability of the inclusion property; in fact this

problem has been proved to be undecidable in both cases [30].5

5 As side remark, the equivalence problem is undecidable for general CFL and has been proved

to be decidable for DCFL after remaining open for a fairly long time [44].
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3.3 Logic characterization

The lack of the above closure properties also hampers a natural extension of the logic

characterization of regular languages to CFL: in particular the classic inductive con-

struction outlined in Section 2.2 strongly hinges on the correspondence between logical

connectives and Boolean operations on sub-languages. Furthermore, the linear structure

of RL allows any move of a FSA to depend only on the current state which is associated

with a position x of the input string and on the input symbol located at position x + 1;

on the contrary the typical nested structure of CFL sentences imposes that the move of

the PDA may depend on information stored in the stack, which in turn may depend on

information read from the input much earlier than the current move.

Despite these difficulties some interesting results concerning a logic characteriza-

tion of CFL have been obtained. In particular it is worth mentioning the characterization

proposed in [35]. The key idea is to enrich the syntax of the second order logic with a

matching relation symbol M which takes as arguments two string position symbols x

and y: a matching relation interpreting M must satisfy the following axioms:

– M(x, y)⇒ x < y: y always follows x;
– M(x, y) ⇒ ∄z(z , x ∧ z , y ∧ (M(x, z) ∨ M(z, y) ∨ M(z, x) ∨ M(y, z))): M is

one-to-one;
– ∀x, y, z,w((M(x, y) ∧ M(z,w) ∧ x < z < y) ⇒ x < w < y): M is nested, i.e., if we

represent graphically M(x, y) as an edge from x to y such edges cannot cross.

The matching relation is then used to represent the tree structure(s) associated with

a CF language sentence: for instance consider the (ambiguous) grammar Gamb

Gamb : S → A1 | A2

A1 → aaA1bb | aabb

A2 → aA3b

A3 → aA2b | ab

Gamb induces a natural matching relation between the positions of characters in

its strings. For instance Figure 9 shows the two relations associated with the string

aaaabbbb.

a a a a b b b b

Fig. 9. Two matching relations for aaaabbbb, one is depicted above and the other below

the string.

More generally we could state that for a grammar G and a sentence x = a1a2...an ∈

L(G) with ∀k, ak ∈ Σ, (i, j) ∈ M iff S
∗
⇒G a1a2...ai−1Aa j+1...an

∗
⇒G a1a2...an. It is im-
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mediate to verify, however, that such a definition in general does not guarantee the above

axioms for the matching relation: think e.g., to the previous grammar GAE1 which gen-

erates arithmetic expressions. For this reason [35] adopts the so-called double Greibach

normal form (DGNF) which is an effective but non-trivial transformation of a generic

CFG into an equivalent one where the first and last characters of any production are ter-

minal.6 It is now immediate to verify that a grammar in DGNF does produce a matching

relation on its strings that satisfies all of its axioms.
Thanks to the new relation and the corresponding symbol [35] defines a second or-

der logic CFL that characterizes CFL: the sentences of CFL are first-order formulas
prefixed by a single existential quantifier applied to the second order variable M repre-
senting the matching relation. Thus, intuitively, a CFL sentence such as ∃M(φ) where
M occurs free in φ and φ has no free occurrences of first-order variables is satisfied iff
there is a structure defined by a suitable matching relation such that the positions that
satisfy the occurrences of M in φ also satisfy the whole φ. For instance the sentence

∃M, z





∄x(succ(z, x)) ∧ M(0, z)∧

∀x, y(M(x, y)⇒ a(x) ∧ b(y))∧

∃y∀x

(

(0 ≤ x < y⇒ a(x))∧

(x ≥ y ≥ z⇒ b(x))

)

∧





∀x, y

(

M(x, y)⇒
(x > 0⇒ M(x − 1, y + 1))∧

(x < y − 2⇒ M(x + 1, y − 1)))

)

∨

∀x, y





M(x, y)⇒

(x > 1 ⇒ M(x − 2, y + 2)∧

¬M(x − 1, y + 1))∧

(x < y − 4⇒ M(x + 2, y − 2)∧

¬M(x + 1, y − 1))













is satisfied by all and only the strings of L(Gamb) with both the M relations depicted in

Figure 9.

After having defined the above logic, [35] proved its equivalence with CFL in a

fairly natural way but with a few non-trivial technicalities: with an oversimplification,

from a given CFG in DGNF a corresponding logic formula is built inductively in such

a way that M(x, y) holds between the positions of leftmost and rightmost leaves of

any subtree of a grammar’s syntax-tree; conversely, from a given logic formula a tree-

language, i.e., a set of trees, is built such that the frontiers of its trees are the sentences

of a CFL. However, as the authors themselves admit, this result has a minor potential

for practical applications due to the lack of closure under complementation. The need

to resort to the DGNF puts severe constraints on the structures that can be associated

with the strings, a priori excluding, e.g., linear structures typical of RL; nonetheless the

introduction of the M relation opened the way for further important developments as

we will show in the next sections.

3.4 Parsing

PDA are the natural abstract machines to recognize CFL as well as FSA are for RL; we

have also seen that augmenting PDA with a suitable output device makes them push-

6 To be more precise, the normal form introduced in [35] is further specialized, but for our

introductory purposes it is sufficient to consider any DGNF.
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down transducers (PDT) which can be used as parsers, i.e. to build the syntax-tree(s)

associated with a given string of the language. Unlike the case of RL, however, DPDA

are not able to recognize all CFL. Thus, if we want to recognize or parse a generic CFL,

in principle we must simulate all possible computations of a nondeterministic PDA (or

PDT); this approach clearly raises a critical complexity issue. For instance, consider

the analysis of any string in Σ∗ by the PDA accepting L = {wwR | w ∈ {a, b}∗}: in

the worst case at each move the automaton “splits” its computation in two branches by

guessing whether it reached the middle of the input sentence or not; in the first case the

computation proceeds deterministically to verify that from that point on the input is the

mirror image of what has been read so far, whereas the other branch of the computation

proceeds still waiting for the middle of the string and splitting again and again at each

step. Thus, the total number of different computations equals the length of the input

string, say n, and each of them has in turn an O(n) length; therefore, simulating the

behavior of such a nondeterministic machine by means of a deterministic algorithm to

check whether at least one of its possible computations accepts the input has an O(n2)

total complexity.

The above example can be generalized in the following way: on the one hand we

have

Statement 1 Every CFL can be recognized in real-time, i.e. in a number of moves equal

to the length of the input sentence, by a, possibly nondeterministic, PDA.

One way to prove the statement is articulated in two steps:

1) First, an original CFG generating L is transformed into the Greibach normal form

(GNF)7:

Definition 9. A CFG is in Greibach normal form [30] iff the rhs of all its productions

belongs to ΣV∗
N

.

The procedure given in [28] to transform any CF grammar into the normal form essen-

tially is based on transforming any left recursion, i.e. a derivation such as A
∗
⇒ Aα into

an equivalent right one B
∗
⇒ αB.

2) Starting from a grammar in GNF the procedure to build an equivalent PDA therefrom

can be “optimized” by:

– restricting Γ to VN only;

– when a symbol A is on top of the stack, a single move reads the next input symbol,

say a, and replaces A in the stack with the string α of the rhs of a production

A→ aα, if any (otherwise the string is rejected).

Notice that such an automaton is real-time since there are no more ε-moves but, of

course, it may still be nondeterministic. If the grammar in GNF is such that there are

no two distinct productions of the type A → aα, A → aβ, then the automaton built in

this way is a real-time DPDA that is able to build leftmost derivations of the grammar.

In Section 5.1 we will go back to the issue of building deterministic parsers for CFL.

7 The previous DGNF is clearly a “symmetric variant” of the original GNF but is not due to the

same author and serves different purposes.
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Statement 1, on the other hand, leaves us with the natural question: “provided that

purely nondeterministic machines are not physically available and at most can be ap-

proximated by parallel machines which however cannot exhibit an unbounded paral-

lelism, how can we come up with some deterministic parsing algorithm for general CFL

and which complexity can exhibit such an algorithm?”. In general it is well-known that

simulating a nondetermistic device with complexity8 f (n) by means of a deterministic

algorithm may expose to the risk of even an exponential complexity O(2 f (n)). For this

reason on the one hand many applications, e.g., compiler construction, have restricted

their interest to the subfamily of DCFL; on the other hand intense research has been

devoted to design efficient deterministic parsing algorithms for general CFL by depart-

ing from the approach of simulating PDA. The case of parsing DCFL will be examined

in Section 5; parsing general CFL, instead is of minor interest in this paper, thus we

simply mention the two most famous and efficient of such algorithms, namely the one

due to Cocke, Kasami, and Younger, usually referred to as CKY and described, e.g., in

[30], and the one by Early reported in [14]; they both have an O(n3) time complexity.9

To summarize, in this section we have seen that CFL are considerably more general

than RL but, on the one side they require parsing algorithms to assign a given sentence

an appropriate (tree-shaped and usually not immediately visible) structure and, on the

other side, they lose several closure and decidability properties typical of the simpler

RL. Not surprisingly, therefore, much, largely unrelated, research has been devoted to

face both such challenges; in both cases major successes have been obtained by intro-

ducing suitable subclasses of the general language family: on the one hand parsing can

be accomplished for DCFL much more efficiently than for nondeterministic ones (fur-

thermore in many cases, such as e.g, for programming languages, nondeterminism and

even ambiguity are features that are better to avoid than to pursue); on the other hand

various subclasses of CFL have been defined that retain some or most of the proper-

ties of RL yet increasing their generative power. In the next sections we resume, in the

reverse order, the major results obtained on both sides, so far within different research

areas and by means of different subfamilies of CFL. As anticipated in the introduction,

however, we will see in the following sections that one of such families allows for major

improvements on both sides.

4 Structured context-free languages

RL sentences have a fixed, right or left, linear structure; CFL sentences have a more

general tree-structure, of which the linear one is a particular case, which normally is

not immediately visible in the sentence and, in case of ambiguity, it may even happen

that the same sentence has several structures. R. McNaughton, in his seminal paper

[39], was probably the first one to have the intuition that, if we “embed the sentence

structure in the sentence itself” in some sense making it visible from the frontier of the

8 As usual we assume as the complexity of a nondeterministic machine the length of the shortest

computation that accepts the input or of the longest one if the string is rejected.
9 We also mention (from [30]) that in the literature there exists a variation of the CKY algorithm

due to Valiant that is completely based on matrix multiplication and therefore has the same

asymptotic complexity of this basic problem, at the present state of the art O(n2.37).
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syntax-tree (as it happens implicitly with RL since their structure is fixed a priori), then

many important properties of RL still hold for such special class of CFL.

Informally, we name such CFL structured or visible structure CFL. The first formal

definition of this class given by McNaughton is that of parenthesis languages, where

each subtree of the syntax-tree has a frontier embraced by a pair of parentheses; perhaps

the most widely known case of such a language, at least in the field of programming

languages is the case of LISP. Subsequently several other equivalent or similar defini-

tions of structured languages, have been proposed in the literature; not surprisingly, an

important role in this field is played by tree-languages and their related recognizing ma-

chines, tree-automata. Next we browse through a selection of such language families

and their properties, starting from the seminal one by McNaughton.

4.1 Parenthesis grammars and languages

Definition 10. For a given terminal alphabet Σ let [, ] be two symbols < Σ. A parenthe-

sis grammar (PG) with alphabet Σ ∪ {[, ]} is a CFG whose productions are of the type

A→ [α], with α ∈ V∗.

It is immediate to build a parenthesis grammar naturally associated with any CFG: for

instance the following PG is derived from the GAE1 of Example 7:

GAE[] : S → [E] | [T ] | [F]

E → [E + T ] | [T ∗ F] | [e]

T → [T ∗ F] | [e]

F → [e]

It is also immediate to realize that, whereas GAE1 does not make immediately visible

in the sentence e + e ∗ e that e ∗ e is the frontier of a subtree of the whole syntax-tree,

GAE[] generates [[[e]+[[e]∗[e]]]] (but not [[[[e]+[e]]∗[e]]]), thus making the structure

of the syntax-tree immediately visible in its parenthesized frontier.

Sometimes it is convenient, when building a PG from a normal one, to omit paren-

theses in the rhs of renaming rules, i.e., rules whose rhs reduces to a single nonterminal,

since such rules clearly do not significantly affect the shape of the syntax-tree. In the

above example such a convention would avoid the useless outermost pair of parenthe-

ses.

Given that the trees associated with sentences generated by PG are isomorphic to

the sentences, the parsing problem for such languages disappears and scales down to a

simpler recognition problem as it happens for RL. Thus, rather than using the full power

of general PDA for such a job, tree-automata have been proposed in the literature as a

recognition device equivalent to PG as well as FSA are equivalent to regular grammars.

Intuitively, a tree-automaton (TA) traverses either top-down or bottom-up a labeled tree

to decide whether to accept it or not, thus it is a tree-recognizer or tree-acceptor.

4.2 Tree Automata

Here we give an introductory view of the tree automata formalism: our formal defini-

tion is inspired by the traditional ones, e.g., in [45,13] but with minor adaptations for
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convenience and homogeneity with the notation adopted in this paper; to avoid possi-

ble terminological confusion with other literature on tree-automata we give a different

name to such automata.

Definition 11. A stencil of a terminal alphabet Σ is a string in (Σ ∪ {N})∗. A stencil or

tree alphabet is a finite set of stencils. The number of occurrences of the symbol N in a

stencil st is called the stencil’s arity and is denoted n(st).

Definition 12. A top-down stencil automaton is a tuple (Q, S TΣ , ∆, I), where

– Q is a finite set of states

– S TΣ is a finite set of stencils of Σ; S TΣ,n denotes the subset of S TΣ of the stencils

with arity n

– ∆ is a collection of relations {δn ⊆ Q × S T(Σ,n) × Qn}

– I ⊆ Q is the set of initial states.

A top-down stencil automaton is deterministic iff

– For each n, δn is a function δn : Q × S T(Σ,n) → Qn

– I is a singleton

Definition 13. A tree on a given pair (S TΣ , Q) is a tree whose internal nodes are la-

beled by elements of Q, leaves are labeled by elements of Σ, and the homomorphism

h(q) = N, with q ∈ Q projects all strings of children of any node of the tree into an

element of S TΣ
A tree on a pair (S TΣ , Q) is accepted by a top-down stencil automaton A =

(Q, S TΣ , ∆, I) iff

– the root is labeled by an element ∈ I

– each pair (q f , α) where q f is the label of a father node, α is the string of its children

in (Σ ∪ Q)∗ is such that (q f , h(α), q1, ..., qn) ∈ δn, where n is the arity of h(α) and

q1, ..., qn are the states ocurring in α, in the same order.

It is immediate to state a one-to-one, effective correspondence between parenthesis

grammars and top-down stencil automata; in doing so it may be convenient to pre-

liminarily eliminate from the grammar renaming rules [30] which do not have a real

meaning in terms of sentence structure; such a normal form also requires that, instead

of having just one axiom with possible renaming rules with it as lhs, S is a subset of VN

and there is a one-to-one correspondence between S and I.

Example 9. The following stencil automatonA = (Q, S TΣ , ∆, I) recognizes the syntax-

trees of the grammar GAE1 whose structure, up to the labeling of the internal nodes, is

also described by the sentences of the parenthesis grammar GAE[].

– Q = {E, T, F}

– S TΣ = {e,N + N,N ∗ N}

– ∆ = {(E, e), (T, e), (F, e), (T,N ∗ N, T, F), (E,N ∗ N, T, F), (E,N + N, E, T )}

– I = {E, T, F}
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If we compare the automata of Examples 8 and 9 we notice that both of them, resp.,

build and recognize the syntax-trees generated by grammar GAE1 in top-down order;

precisely, the computations of the automaton of Example 8 follow a leftmost derivation

of the grammar, whereas the automaton of Example 9 simply states a partial order in the

application of the δ relation going from father nodes to children. In both cases, however,

it may be convenient to use automata that work in a symmetric way, i.e., resp. build

or traverse the syntax-trees bottom up. Two important cases of bottom up parsers are

described in Sections 5.2 and 6.2; here instead we introduce bottom-up stencil automata

and compare them with the top-down ones.

Definition 14. A bottom-up stencil automaton is a tuple (Q, S TΣ , ∆, F), where Q and

S TΣ are as in Definition 12,

– ∆ is a collection of relations {δn ⊆ Qn × S T(Σ,n) × Q}

– F ⊆ Q is the subset of Q’s final states.

The automaton is deterministic iff for each n, δn is a function δn : Qn × S T(Σ,n) → Q.

A tree on a pair (S TΣ , Q) is accepted by a bottom-up stencil automaton A =

(Q, S TΣ , ∆, F) iff

– each pair (α, q f ) where q f is the label of a father node, α is the string of its children

in (Σ ∪ Q)∗ is such that (q1, ..., qn, h(α), q f ) ∈ δn, where n is the arity of h(α) and

q1, ..., qn are the states ocurring in α, in the same order;

– the root is labeled by an element ∈ F.

Structured CFL, of which parenthesis languages are a first major example, enjoy some

properties that hold for RL but are lost by general CFL. In particular, we mention their

closure under Boolean operations, which has several major benefits, including the de-

cidability of the containment problem. They key milestones that allowed McNaughton

to prove this closure are:

– The possibility to apply all operations within a structure universe, i.e., to a universe

of syntax-trees rather than to the “flat” Σ∗; in the case of parenthesis languages the

natural universe associated with a given set of stencils is generated by the corre-

sponding stencil grammar, i.e. the grammar with the only nonterminal N and one

production for every stencil.

– The possibility of building a normal form of any parenthesis grammar with no re-

peated rhs, i.e., such that for every rhs there is only one production rewriting it.

Such a construction has been defined by McNaughton by referring directly to the

grammars but can be explained even more intuitively by noticing that, if we trans-

form a bottom-up stencil automaton into a parenthesis grammar and conversely,

the grammar has no repeated rhs iff the automaton is deterministic. In both cases

the procedure to obtain such a normal form is a natural extension of the basic one

applied to FSA and is based on defining a new set of states (resp. nonterminals) that

is the power set of the original one; for instance, suppose that a grammar contains

two rules A → [ab] and B → [ab]; then they are “collapsed” into the unique one

AB → [ab]; then the procedure is iterated by replacing both A and B by the new

nonterminal AB in every rhs where they occur and so on until no new nonterminal is
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generated. It is then an easy exercise to prove the equivalence between the original

grammar (resp. automaton) and the new one by means of a natural induction.

It is important to emphasize, however, that such a way to determinize a nondeter-

ministic bottom-up stencil automaton does not work in the case of the top-down

version of these automata: deterministic top-down tree (or stencil) automata in fact

have been proven to be less powerful than their bottom-up counterpart. We refer

the reader to a more specific literature, e.g. [13], for a proof of this claim; here we

simply anticipate that something similar occurs for the parsing of DCFL.

On the basis of these two fundamental properties deriving effective closure w.r.t. Boolean

operations within a given universe of stencils is a natural extension of the operations al-

ready outlined for RL (notice that RL are a special case of structured languages whose

stencils are only linear, i.e., of the type aN, a (or Na, a) for a ∈ Σ).

– The complement language w.r.t. the universe of syntax-trees associated with a given

set of stencils is obtained by

• Adding a new conventional state qerr to a deterministic bottom up stencil au-

tomaton and completing each δn with it on the whole domain Qn × S T(Σ,n) in

the same way as for RL.

• Complementing the set of accepting states.

– The intersection between two languages sharing the same set of stencils is obtained

by building a new set of states that is the cartesian product of the original ones and

extending the δ function in the usual way.

As usual, an immediate corollary of these closure properties is the decidability of the

containment problem for two languages belonging to the same universe.

We just mention another important result that is obtained as an extension of its

version that holds for RL, namely, the possibility of minimizing the grammar gener-

ating a parenthesis language (resp. the automaton recognizing a tree language), w.r.t.

the number of necessary nonterminals (resp. states); this type of results, however, is not

in the scope of this paper; thus we refer the interested reader to the original paper by

McNaughton or other subsequent literature.

On the basis of the important results obtained by McNaughton in his seminal paper,

many other families of CFL have been defined in several decades of literature with the

general goal of extending (at least some of the) closure and decidability properties, and

logic characterizations that make RL such a “nice” class despite its limits in terms of

generative power. Most of such families maintain the key property of being “structured”

in some generalized sense w.r.t. parenthesis languages. In the following section we in-

troduce so called input-driven languages, also known as visibly pushdown languages

which received much attention in recent literature and exhibit a fairly complete set of

properties imported from RL.

4.3 Input-driven or visibly pushdown languages

The concept of input-driven CF language has been introduced in [40] in the context of

building efficient recognition algorithms for DCFL: according to [40] a DPDA is input-

driven if the decision of the automaton whether to execute a push move, i.e. a move
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where a new symbol is stored on top of the stack, or a pop move, i.e. a move where

the symbol on top of the stack is removed therefrom, or a move where the symbol on

top of the stack is only updated, depends exclusively on the current input symbol rather

than on the current state and the symbol on top of the stack as in the general case.

Later, several equivalent definitions of the same type of pushdown automata, whether

deterministic or not, have been proposed in the literature; among them, here we choose

an early one proposed in [4], which better fits with the notation adopted in this paper

than the later one in [5].

Definition 15. Let the input alphabetΣ be partitioned into three disjoint alphabets,Σ =

Σc∪Σr∪Σi, named, respectively, the call alphabet, return alphabet, internal alphabet. A

visibly pushdown automaton (VPA) over (Σc, Σr, Σi) is a tuple (Q, I, Γ, Z0, δ, F), where

– Q is a finite set of states;

– I ⊆ Q is the set of initial states;

– F ⊆ Q is the set of final or accepting states;

– Γ is the finite stack alphabet;

– Z0 ∈ Γ is the special bottom stack symbol;

– δ is the transition relation, partitioned into three disjoint subrelations:

• Call move: δc ⊆ Q × Σc × Q × (Γ \ {Z0}),

• Return move: δr ⊆ Q × Σr × Γ × Q,

• Internal move: δi ⊆ Q × Σi × Q.

A VPA is deterministic iff I is a singleton, and δc, δr, δi are functions:

δc : Q × Σc → Q × (Γ \ {Z0}), δr : Q × Σr × Γ → Q, δi : Q × Σi → Q.

The automaton configuration, the transition relation between two configurations, the

acceptance of an input string, and the language recognized by the automaton are then

defined in the usual way: for instance if the automaton reads a symbol a in Σc while is

in the state q and has C on top of the stack, it pushes onto the stack a new symbol D

and moves to state q′ provided that (q, a, q′,D) belongs to δc; notice that in this way the

special symbol Z0 can occur only at the bottom of the stack, during the computation. A

language over an alphabet Σ = Σc ∪ Σr ∪ Σi recognized by some VPA is called a visibly

pushdown language (VPL).

The following remarks help put IDL alias VPL in perspective with other families of

CFL.

– Once PDA are defined in a standard form, with respect to the general one given in

Definition 8 where their moves either push a new symbol onto the stack or remove

it therefrom or leave the stack unaffected, the two definitions of IDL and VPL are

equivalent. Both names for this class of languages are adequate: on the one side,

the attribute input-driven emphasizes that the automaton move is determined exclu-

sively on the basis of the current input symbol10; on the other side we can consider

VPL as structured languages since the structure of their sentences is immediately

visible thanks to the partitioning of Σ.

10 We will see, however, that the same term can be interpreted in a more general way leading to

larger classes of languages.
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– VPL generalize McNaughton’s parenthesis languages:

open parentheses are a special case of Σc and closed ones of Σr; further generality is

obtained by the possibility of performing an unbounded number of internal moves,

actually “purely finite state” moves between two matching call and return moves

and by the fact that VPA can accept unmatched return symbols at the beginning of

a sentence as well as unmatched calls at its end; a motivation for the introduction of

such a generality is offered by the need of modeling systems where a computation

containing a sequence of procedure calls is suddenly interrupted by a special event

such as an exception or an interrupt.

– Being VPL essentially structured languages, their corresponding automata are just

recognizers rather than real parsers.

– VPL are real-time languages; in fact VPA read one input symbol for each move.

We have mentioned that this property can be obtained for nondeterministic PDA

recognizing any CFL but not for deterministic ones.

VPL have obtained much attention since they represent a major step in the path

aimed at extending many, if not all, of the important properties of RL to structured

CFL. They are closed w.r.t. all major language operations, namely the Boolean ones,

concatenation, Kleene ∗ and others; this also implies the decidability of the contain-

ment problem, which, together with the characterization in terms of a MSO logic, again

extending the result originally stated for RL, opens the door to applications in the field

of automatic verification.

A key step to achieve such important results is the possibility of effectively deter-

minizing nondeterministic VPA. The basic idea is similar to the classic one that works

for RL, i.e, to replace the uncertainty on the current state of a nondeterministic automa-

ton with the subset of Q containing all such possible states (see Example 3). Unlike the

case of FSA however, when the automaton executes a return move it is necessary to

“match” the current state with the one that was entered at the time of the corresponding

call; to do so the key idea is to “pair” the set of states nondeterministically reached at

the time of a return move with those that were entered at the time of the correspond-

ing call; intuitively, the latter ones are memorized and propagated through the stack,

whose alphabet is enriched with pairs of set states. As a result at the moment of the

return it is possible to check whether some of the states memorized at the time of the

call “match” with some of the states that can be currently held by the nondeterministic

original automaton.

We do not go into the technical details of this construction, referring the reader to

[4] for them; we just mention that, unlike the case of RL, the price to be paid in terms

of size of the automaton to obtain a deterministic version from a nondetermistic one is

2O(s2), where s is the size of the original state set. In [5] the authors also proved that such

a gap is unavoidable since there are VPL that are recognized by a nondeterminitic VPA

with a state set of cardinality s but are not recognized by any deterministic VPA with

less than 2s2

states. In Section 6.1 we will provide a similar proof of determinization for

a more general class of automata.

Once a procedure to obtain a deterministic VPA from a nondeterministic one is

available, closure w.r.t. Boolean operations follows quite naturally through the usual

path already adopted for RL and parenthesis languages. Closure under other major lan-
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guage operations such as concatenation and Kleene ∗ is also obtained without major

difficulties but we do not report on it since those operations are not of major interest for

this paper. Rather, we wish here to go back to the issue of logical characterization.

The logic characterization of visibly pushdown languages We have seen in Section

3.3 that attempts to provide a logic characterization of general CFL produced only par-

tial results due to the lack of closure properties and to the fact that CFL do not have

an a priori fixed structure; in fact the characterization offered by [35] and reported here

requires an existential quantification w.r.t. relation M that represents the structure of

a string. Resorting to structured languages such as VPL instead allowed for a fairly

natural generalization of the classical Büchi’s result for RL.

The key steps to obtain this goal are [5]:

– Using the same relation M introduced in [35],11 adding its symbol as a basic pred-

icate to the MSO logic’s syntax given in Section 2.2 for RL, and extending its

interpretation in the natural way. This turns out to be simpler and more effective in

the case of structured languages since, being such languages a priori unambiguous

(the structure of the sentence is the sentence itself), there is only one such relation

among the string positions and therefore there is no need to quantify it. Furthermore

the relation is obviously one-to-one with a harmless exception due to the existence

of unmatched closed parentheses at the beginning of the sentence and unmatched

open ones at the end: in such cases conventional relations M(−∞, x), M(x,+∞) are

stated.
– Repeating exactly the same path used for RL both in the construction of an automa-

ton from a logic formula and in the converse one. This only requires the managing

of the new M relation in both constructions; precisely:
In the construction from the MSO formula to VPA, the elementary automaton as-

sociated with the atomic formula M(X,Y), where X and Y are the usual singleton

second order variables for any pair of first order variables x and y, is represented

by the diagram of Figure 10 where, like in the same construction for RL, ◦ stands

for any value of Σ for which the transition can be defined according to the alphabet

partitioning, so that the automaton is deterministic, the second component of the

triple corresponds to X, and the third to Y.12

In the construction from the VPA to the MSO formula, besides variables Xi for

encoding states, we also need variables to encode the stack. We introduce variables

CA and RA, for A ∈ Γ, to encode, respectively, the set of positions in which a call

pushes A onto the stack, and in which a return pops A from the stack.
The following formula states that every pair (x, y) in M must belong, respectively,

to exactly one CA and exactly one RA:

∀x, y (M(x, y)⇒
∨

A∈Γ x ∈ CA ∧ y ∈ RA)∧

∀x
∧

A∈Γ





x ∈ CA ⇒ ¬
∨

B,A x ∈ CB

∧

x ∈ RA ⇒ ¬
∨

B,A x ∈ RB




.

11 Renamed nesting relation and denoted as{ or ν in later literature.
12 We use here the following notation for depicting VPA: a label a/B stands for a push move,

a, B for a pop move, and a alone for an internal move.
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q0 q1 q2

(◦, 0, 0)

(◦, 0, 0), A

(◦, 0, 0)/A

(◦, 1, 0)/B

(◦, 0, 0)

(◦, 0, 1), B

(◦, 0, 0), A

(◦, 0, 0)/A

(◦, 0, 0)

(◦, 0, 0), A

(◦, 0, 0)/A

Fig. 10. VPA associated with M(X,Y) atomic formula.

The following subformulas express the conditions for call and return transitions,

respectively. They are added to the ones already described in Section 2.2 (without

loss of generality, we assume that the original VPA is deterministic). Subformulas

for internal transitions are almost identical to those for FSA.

∀x, y
∧

0≤i≤m

∧

A∈Γ

∧

a∈Σ





x ∈ Xi ∧ succ(x, y)∧

a(y) ∧ δc(i, a) = ( j, A)

⇒

y ∈ CA ∧ y ∈ X j





∀x, y, z
∧

0≤i≤m

∧

A∈Γ

∧

a∈Σ





y ∈ Xi ∧ succ(y, z)∧

M(x, z) ∧ z ∈ RA ∧ a(z)

⇒

z ∈ X j ∧ j = δr(i, a, A)





.

Example 10. Consider the alphabet Σ = (Σc = {a}, Σr = {b}, Σi = ∅) and the VPA

depicted in Figure 11.

0 1 2 3
a/B

a/A

b, A

b, B

b, A

b, B

Fig. 11. A VPA recognizing {anbn | n > 0}.

The MSO formula ∃X0, X1, X2, X3,CA,CB, RA, RB(ϕA ∧ ϕM) is built on the basis
of such an automaton, where ϕM is the conjunction of the formulas defined above, and
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ϕA is:
∃z(∄x(succ(x, z)) ∧ z ∈ X0)∧

∃y(∄x(succ(y, x)) ∧ y ∈ X3)∧

∀x, y (x ∈ X0 ∧ succ(x, y) ∧ a(y)⇒ y ∈ CB ∧ y ∈ X1)∧

∀x, y (x ∈ X1 ∧ succ(x, y) ∧ a(y)⇒ y ∈ CA ∧ y ∈ X1)∧

∀x, y, z (y ∈ X1 ∧ succ(y, z) ∧ M(x, z) ∧ z ∈ RA ∧ b(z)⇒ z ∈ X2)∧

∀x, y, z (y ∈ X2 ∧ succ(y, z) ∧ M(x, z) ∧ z ∈ RA ∧ b(z)⇒ z ∈ X2)∧

∀x, y, z (y ∈ X2 ∧ succ(y, z) ∧ M(x, z) ∧ z ∈ RB ∧ b(z)⇒ z ∈ X3)∧

∀x, y, z (y ∈ X1 ∧ succ(y, z) ∧ M(x, z) ∧ z ∈ RB ∧ b(z)⇒ z ∈ X3) .

Other studies aimed at exploiting less complex but also less powerful logics, such

as first-order and temporal ones to support a more practical automatic verification of

VPL [1] as it happened with great success with model-checking for RL; algorithmic

model-checking, however, is not the main focus of this paper and we do not go deeper

into this issue.

4.4 Other structured context-free languages

As we said, early work on parenthesis languages and tree-automata ignited many at-

tempts to enlarge those classes of languages and to investigate their properties. Among

them VPL have received much attention in the literature and in this paper, probably

thanks to the completeness of the obtained results –closure properties and logic char-

acterization. To give an idea of the vastness of this panorama and of the connected

problems, and to help comparison among them, in this section we briefly mention a few

more of such families with no attempt for exhaustiveness.

Balanced grammars Balanced grammars (BG) have been proposed in [7] as a first

approach to model mark-up languages such as XML by exploiting suitable extensions

of parenthesis grammars. Basically a (BG) has a partitioned alphabet exactly in the

same way as VPL; on the other hand any production of a BG has the form A → aαb

where a ∈ Σc, b ∈ Σr, and α is a regular expression13 over VN ∪ Σi.

Since it is well-known that the use of regular expressions in the rhs of CF grammars

can be replaced by a suitable expansion by using exclusively “normal” rules, we can

immediately conclude that balanced languages, i.e. those generated by BG, are a proper

subclass of VPL (e.g. they do not admit unmatched elements of Σc and Σr). Furthermore

they are not closed under concatenation and Kleene ∗ [7]; we are not aware of any logic

characterization of these languages.

Height-deterministic languages Height-deterministic languages, introduced in [41],

are a more recent and fairly general way of describing CFL in terms of their structure. In

a nutshell the hidden structure of a sentence is made explicit by making ε-moves visible,

in that the original Σ alphabet is enriched as Σ ∪ {ε}; if the original input string in Σ∗

13 A regular expression over a given alphabet V is built on the basis of alphabet’s elements by ap-

plying union, concatenation, and Kleene ∗ symbols; it is well-known that the class of languages

definable by means of regular expressions is RL.
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is transformed into one over Σ ∪ {ε} by inserting an explicit ε wherever a recognizing

automaton executes an ε-move, we obtain a linear representation of the syntax-tree of

the original sentence, so that the automaton can be used as a real parser. We illustrate

such an approach by means of the following example.

Example 11. Consider the language L = L1 ∪ L2, with L1 = {a
nbnc∗ | n ≥ 0}, L2 =

{a∗bncn | n ≥ 0} which is well-know to be inherently ambiguous since a string such

as anbncn can be parsed both according to L1’s structure and according to L2’s one. A

possible nondeterministic PDAA recognizing L could act as follows:

– A pushes all a’s until it reaches the first b; at this point it makes a nondeterministic

choice:

• in one case it makes a “pause”, i.e., an ε-move and enters a new state, say q1;

• in the other case it directly enters a different state, say q2 with no “pause”;

– from now on its behavior is deterministic; precisely:

• in q1 it checks that the number of b’s equals the number of a’s and then accepts

any number of c’s;

• in q2 it pushes the b’s to verify that their number equals that of the c’s.

Thus, the two different behaviors ofAwhen analyzing a string of the type anbncn would

result into two different strings in the extended alphabet Σ ∪ {ε}14, namely anεbncn and

anbncn; it is now simple, if needed, to state a one-to-one correspondence between strings

augmented with explicit ε and the different syntax-trees associated with the original

input: in this example, anεbncn corresponds to the structure of Figure 12 (a) and anbncn

to that of Figure 12 (b). It is also easy to build other nondeterministic PDA recognizing

L that “produce” different strings associated with different structures.

a

a ε b

b

c

c a

a

b

b c

c

(a) (b)

Fig. 12. Different structures for anεbncn (a) and anbncn (b), for n = 2.

Once the input string structures are made visible by introducing the explicit ε char-

acter, the characteristics of PDA, of their subclasses, and of the language subfamilies

they recognize, are investigated by referring to the heights of their stack. Precisely:

14 This could be done explicitly by means of a nondeterministic transducer that outputs a special

marker in correspondence of an ε-move, but we stick to the original [41] formalization where

automata are used exclusively as acceptors without resorting to formalized transducers.
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– Any PDA is put into a normalized form, where

• the δ relation is complete, i.e., it is defined in such a way that for every input

string, whether accepted or not, the automaton scans the whole string:

∀x∃c(c0 = (x, q0, Z0)
∗
p−− c = (ε, q, γ));

• every element of δ is exclusively in one of the forms: (q, A, o, q′, AB), or (q, A, o,

q′, A), or (q, A, o, q′, ε), where o ∈ (Σ ∪ {ε}) ;

• for every q ∈ Q all elements of δ having q as the first component either have

o ∈ Σ or o = ε, but not both of them.

– For any normalizedA and word w ∈ (Σ∪{ε})∗,N(A,w) denotes the set of all stack

heights reached byA after scanning w.

– A is said height-deterministic (HPDA) iff ∀w ∈ (Σ ∪ {ε})∗, |N(A,w)| = 1.

– The family of height-deterministic PDA is named HPDA; similarly, HDPDA de-

notes the family of deterministic height-deterministic PDA, and HRDPDA that

of deterministic, real-time (i.e., those that do not perform any ε-move) height-

deterministic PDA. The same acronyms with a final L replacing the A denote the

corresponding families of languages.

It is immediate to realize (Lemma 1 of [41]) that every PDA admits an equivalent nor-

malized one. Example 11 provides an intuitive explanation that every PDA admits an

equivalent HPDA (Theorem 1 of [41]); thus HPDL = CFL; also, any (normalized)

DPDA is, by definition an HPDA and therefore a deterministic HPDA; thus HDPDL

= DCFL. Finally, since every deterministic VPA is already in normalized form and is

a real-time machine, VPL ⊂ HRDPDL: the strict inclusion follows from the fact that

L = {anban} cannot be recognized by a VPA since the same character a should belong

both to Σc and to Σr.

Coupling the extension of the alphabet from Σ to Σ ∪ {ε} with the set N(A,w)

allows us to consider HPDL as a generalized kind of structured languages. As an in-

tuitive explanation, let us go back to Example 11 and consider the two behaviors of

A when parsing the string aabbcc once it has been “split” into aabbcc and aaεbbcc;

the stack heights N(A,w) for all their prefixes are, respectively: (1, 2, 3, 4, 3, 2) and

(1, 2, 2, 1, 0, 0, 0) (if we do not count the bottom of the stack Z0). In general, it is not dif-

ficult to associate every sequence of stack lengths during the parsing of an input string

(in (Σ ∪ {ε})∗!) with the syntax-tree visited by the HPDA.

As a consequence, the following fundamental definition of synchronization between

HPDA can be interpreted as a form of structural equivalence.

Definition 16. Two HPDA A and B are synchronized, denoted as A ∼ B, iff ∀w ∈

(Σ ∪ {ε})∗,N(A,w) = N(B,w).

It is immediate to realize that synchronization is an equivalence relation and there-

fore to associate an equivalence class [A]∼ with every HPDA; we also denote as A-

HDPL the class of languages recognized by automata in [A]∼. Then, in [41] the authors

show that:

– For every deterministic HPDAA the classA-HDPL is a Boolean algebra.15

15 If the automaton is not deterministic only closures under union and intersection hold.
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– Real-time HPDA can be determinized (with a complexity of the same order as for

VPA), so that the class of real-time HPDL coincides with HRDPDL.

On the other hand neither HRDPDL nor HDPDL are closed under concatenation

and Kleene ∗ [15] so that the gain obtained in terms of generative power w.r.t. VPL has

a price in terms of closure properties. We are not aware of logic characterizations for

this class of structured languages.

Let us also mention that other classes of structured languages based on some notion

of synchronization have been studied in the literature; in particular [41] compare their

class with those of [25] and [11]. Finally, we acknowledge that our survey does not

consider some logic characterization of tree or even graph languages which refer either

to very specific families (such as, e.g. star-free tree languages [42]) and/or to an alphabet

of basic elements, e.g., arcs connecting tree or graph nodes [10], which departs from

the general framework of string (structured) languages.

5 Parsing context-free languages deterministically

We have seen in Section 3.4 that general CFL, having a hidden and sometimes am-

biguous structure, need not only recognizing mechanisms but more complex parsing

algorithms that, besides deciding whether a string belongs to the language or not, also

produce the syntax-tree(s) formalizing its structure and possibly driving its semantics;

parsing is the core of any compiler or interpreter. We noticed that not all CFL can be

recognized –and therefore parsed– by DPDA: whereas any CFL can be recognized by

a nondeterministic PDA that operates in real-time, the best deterministic algorithms to

parse general CFL, such as CKY and Early’s ones have a O(n3) complexity, which is

considered not acceptable in many fields such as programming language compilation.

For this and other reasons many application fields restrict their attention to DCFL;

DPDA can be easily built, with no loss of generality, in such a way that they can operate

in linear time, whether as pure recognizers or as parsers and language translators: it is

sufficient, for any DPDA, to effectively transform it into an equivalent loop-free one,

i.e. an automaton that does not perform more than a constant number, say k, of ε-moves

before reading a character from the input or popping some element from the stack (see,

e.g., [30]). In such a way the whole input x is analyzed in at most h · |x| moves, where h

is a function of k and the maximum length of the string that the automaton can push on

the stack in a single move. Notice, however, that in general it is not possible to obtain

a DPDA that recognizes its language in real-time. Consider, for instance, the language

L = {ambncndm | m, n ≥ 1} ∪ {amb+edm | m ≥ 1}: intuitively, a DPDA recognizing L

must first push the as onto the stack; then, it must also store on the stack the subsequent

bs since it must be ready to compare their number with the following cs, if any; after

reading the bs, however, if it reads the e it must necessarily pop all bs by means of n

ε-moves before starting the comparison between the as and the ds.

Given that, in general, it is undecidable to state whether a CFL is deterministic or

not [31], the problem of automatically building a deterministic automaton, if any, from

a given CFG is not trivial and deserved much research. In this section we will briefly

recall two major approaches to the problem of deterministic parsing. We do not go deep

into their technicalities, however, because the families of languages they can analyze are
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not of much interest from the point of view of algebraic and logical characterizations.

It is Section 6, instead, where we introduce a class of languages that allows for highly

efficient deterministic parsing and exhibits practically all desirable algebraic and logical

properties.

5.1 Top-down deterministic parsing

In Section 3.4 we introduced the GNF for CFG and observed that, if in such grammars

there are no two distinct productions of the type A → aα, A → aβ, then the automaton

built therefrom is deterministic. The above particular case has been generalized leading

to the definition of LL grammars, so called because they allow to build deterministic

parsers that scan the input Left-to-right and produce the Leftmost derivation thereof.

Intuitively, an LL(k) grammar is such that, for any leftmost derivation

S #k ∗
⇒ xAα#k

it is possible to decide deterministically which production to apply to rewrite nontermi-

nal A by “looking ahead” at most k terminal characters of the input string that follows

x.16 Normally, the practical application of LL parsing is restricted to the case k = 1 to

avoid memorizing and searching too large tables. In general this choice allows to cover

a large portion of programming language syntax even if it is well-known that not all

DCFL can be generated by LL grammars. For instance no LL grammar can generate

the deterministic language {anbn | n ≥ 1} ∪ {ancn | n ≥ 1} since the decision on whether

to join the a’s with the b’s or with the c’s clearly requires an unbounded look-ahead.

Example 12. The following grammar is a simple transformation of GAE1 in LL form;

notice that the original left recursion E ⇒ E + T has been replaced by a right one

E
∗
⇒ T + E and similarly for nonterminal T .

GAELL : S → E#

E → T E′

E′ → +E | ε

T → FT ′

T ′ → ∗T | ε

F → e.

5.2 Bottom-up deterministic parsing

So far the PDA that we used to recognize or parse CFL are working in a top-down

manner by trying to build leftmost derivation(s) that produce the input string starting

from grammar’s axiom. We also mentioned, however, that trees can be traversed also

in a bottom-up way; a typical way of doing so is visiting them in leftmost post-order,

i.e. scanning their frontier left-to right and, as soon as a string of children is identi-

fied, writing them followed by their father, then proceeding recursively until the root

16 The “tail” of k # characters is a simple trick to allow for the look ahead when the reading head

of the automaton is close to the end of the input.
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is reached. For instance such a visit of the syntax-tree by which GAE1 generates the

string e + e ∗ e is eE + eT ∗ eFT ES which is the reverse of the rightmost derivation

S ⇒ E ⇒ E + T ⇒ E + T ∗ F ⇒ E + T ∗ e⇒ E + e ∗ e⇒ e + e ∗ e.

Although Definition 8 introduces PDA in such a way that they are naturally oriented

towards building leftmost derivations, it is not difficult to let them work in a bottom-up

fashion: the automaton starts reading the input left-to-right and pushes the read char-

acter on top of the stack (formally, since at every transition the character on top of the

stack is replaced by a string, it rewrites the existing symbol and adds the read char-

acter over it); as soon as –by means of its finite memory control device– it realizes

that a whole rhs is on top of the stack it replaces it by the corresponding lhs (again,

to be fully consistent with Definition 8, this operation should not be formalized as a

single transition but could be designed as a sort of “macro-move” consisting of several

micro-steps that remove one character per step and whose last one also pushes the lhs

character).17 This type of operating by a PDA is called shift-reduce parsing since it

consists in shifting characters from the input to the stack and reducing them from a rhs

to the corresponding lhs.

Not surprisingly, the “normal” behavior of such a bottom-up parser is, once again,

nondeterministic: in our example once the rhs e is identified, the automaton must apply a

reduction either to F or to T or to E. Even more critical is the choice that the automaton

must take after having read the substring e+e and having (if it did the correct reductions)

E + T on top of the stack: in this case the string could be the rhs of the rule E → E + T ,

and in that case the automaton should reduce it to E but the T on the top could also be

the beginning of another rhs, i.e., T ∗ F, and in such a case the automaton should go

further by shifting more characters before doing any reduction; this is just the opposite

situation of what happens with VPL, where the current input symbol allows the machine

to decide how to progress.

In fact, the previous type of nondeterminism, i.e., the choice whether to reduce e

to E or T or F, could be resolved as we did with structured languages, by eliminating

repeated rhs through a classical power set construction. In this case, instead, the automa-

ton must build by itself the unknown structure and this may imply a lack of knowledge

about having reached or not a complete rhs. “Determinizing” bottom-up parsers has

been an intense research activity during the 1960’s, as well as for their top-down coun-

terpart. In Section 6 we thoroughly examine one of the earliest practical deterministic

bottom-up parsers and the class of languages they can recognize, namely Floyd’s opera-

tor precedence languages. The study of these languages, however, has been abandoned

after a while due to advent of a more powerful class of grammars –the LR ones, defined

and investigated by Knuth [33], whose parsers proceed Left-to-right as well as the LL

ones but produce (the reverse of) Rightmost derivations. LR grammars in fact, unlike

LL and operator precedence ones, generate all DCFL.

17 A formal definition of PDA operating in the above way is given, e.g., in [41] and reported in

Section 4.4
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6 Operator precedence languages

Operator precedence grammars (OPG) have been introduced by R. Floyd in his pio-

neering paper [26] with the goal of building efficient, deterministic, bottom-up parsers

for programming languages. In doing so he was inspired by the hidden structure of

arithmetic expressions which suggests to “give precedence” to, i.e, to execute first mul-

tiplicative operations w.r.t. the additive ones, as we illustrated through Example 7. Es-

sentially, the goal of deterministic bottom-up parsing is to unambiguously decide when

a complete rhs has been identified so that we can proceed with replacing it with the

unique corresponding lhs with no risk to apply some roll-back if another possible re-

duction was the right one. Floyd achieved such a goal by suitably extending the notion

of precedence between arithmetic operators to all grammar terminals, in such a way

that a complete rhs is enclosed within a pair (yields-precedence, takes-precedence).

OPG obtained a considerable success thanks to their simplicity and to the efficiency of

the parsers obtained therefrom; incidentally, some independent studies also uncovered

interesting algebraic properties ([16]) which have been exploited in the field of gram-

mar inference ([17]). As we anticipated in the introduction, however, the study of these

grammars has been dismissed essentially because of the advent of other classes, such

as the LR ones, which can generate all DCFL; OPG instead do not have such power

as we will see soon, although they are able to cover most syntactic features of normal

programming languages, and parsers based on OPG are still in practical use (see, e.g.,

[29]).

Only recently we renewed our interest in this class of grammars and languages for

two different reasons that are the object of this survey. On the one side in fact, OPL,

despite being apparently not structured, since they require and have been motivated

by parsing, have shown rather surprising relations with various families of structured

languages; as a consequence it has been possible to extend to them all the language

properties investigated in the previous sections. On the other side, OPG enable par-

allelizing their parsing in a natural and efficient way, unlike what happens with other

parsers which are compelled to operate in a strict left-to-right fashion, thus obtaining

considerable speed-up thanks to the wide availability of modern parallel HW architec-

tures.

Therefore, after having resumed the basic definitions and properties of OPG and

their languages, we show, in Section 6.1, that they considerably increase the generative

power of structured languages but, unlike the whole class of DCFL, they still enjoy all

algebraic and logic properties that we investigated for such smaller classes. In Section

6.2 we show how parallel parsing is much better supported by this class of grammars

than by the presently used ones.

Definition 17. A grammar rule is in operator form if its rhs has no adjacent nontermi-

nals; an operator grammar (OG) contains only such rules.

Notice that the grammars considered in Example 7 are OG. Furthermore any CF gram-

mar can be recursively transformed into an equivalent OG one [30].

Next, we introduce the notion of precedence relations between elements of Σ: we

say that a is equal in precedence to b iff the two characters occur consecutively, or at
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most with one nonterminal in between, in some rhs of the grammar; in fact, when eval-

uating the relations between terminal characters for OPG, nonterminals are inessential,

or “transparent”. a yields precedence to b iff a can occur at the immediate left of a

subtree whose leftmost terminal character is b (again whether there is a nonterminal

character at the left of b or not is inessential). Symmetrically, a takes precedence over

b iff a occurs as the rightmost terminal character of a subtree and b is its following

terminal character. These concepts are formally defined as follows.

Definition 18. For an OG G and a nonterminal A, the left and right terminal sets are

LG(A) = {a ∈ Σ | A
∗
⇒ Baα}

RG(A) = {a ∈ Σ | A
∗
⇒ αaB} where B ∈ VN ∪ {ε}.

The grammar name G will be omitted unless necessary to prevent confusion.

For an OG G, let α, β range over (VN ∪ Σ)∗ and a, b ∈ Σ. The three binary operator

precedence (OP) relations are defined as follows:

– equal in precedence: a � b ⇐⇒

∃A→ αaBbβ, B ∈ VN ∪ {ε},

– takes precedence: a ⋗ b ⇐⇒

∃A→ αDbβ,D ∈ VN and a ∈ RG(D),

– yields precedence: a ⋖ b ⇐⇒

∃A→ αaDβ,D ∈ VN and b ∈ LG(D).

For an OG G, the operator precedence matrix (OPM) M = OPM(G) is a |Σ| × |Σ| array

that, for each ordered pair (a, b), stores the set Mab of OP relations holding between a

and b.

For the grammar GAE1 of Example 7 the left and right terminal sets of nonterminals

E, T and F are, respectively:

L(E) = {+, ∗, e}, L(T ) = {∗, e}, L(F) = {e}, R(E) = {+, ∗, e}, R(T ) = {∗, e}, and

R(F) = {e}.

+ ∗ e

+ ⋗ ⋖ ⋖

∗ ⋗ ⋗ ⋖

e ⋗ ⋗

Fig. 13. The OPM of the GAE1 of Example 7.

Figure 13 displays the OPM associated with the grammar of GAE1 of Example 7

where, for an ordered pair (a, b), a is one of the symbols shown in the first column of

the matrix and b one of those occurring in its first row. Notice that, unlike the usual

arithmetic relations denoted by similar symbols, the above precedence relations do not

enjoy any of the transitive, symmetric, reflexive properties.
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Definition 19. An OG G is an operator precedence or Floyd grammar (OPG) iff M =

OPM(G) is a conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1. An operator precedence lan-

guage (OPL) is a language generated by an OPG.

An OPG is in Fischer normal form (FNF) iff it is invertible, i.e., no two rules have

the same rhs, has no empty rules, i.e., rules whose rhs is ε, except possibly S → ε, and

no renaming rules, i.e, rules whose rhs is a single nonterminal, except possibly those

whose lhs is S .

For every OPG an equivalent one in FNF can effectively be built [24,30]. A FNF gram-

mar (manually) derived from GAE1 of Example 7 is GAEFNF :

S → E | T | F

E → E + T | E + F | T + T | F + F | F + T | T + F

T → T ∗ F | F ∗ F

F → e

We can now see how the precedence relations of an OPG can drive the deterministic

parsing of its sentences: consider again the sentence e + e ∗ e; add to its boundaries

the conventional symbol # which implicitly yields precedence to any terminal character

and to which every terminal character takes precedence, and evaluate the precedence

relations between pairs of consecutive symbols; they are displayed below:

# ⋖ e ⋗ + ⋖ e ⋗ ∗ ⋖ e ⋗ #.

The three occurrences of e enclosed within the pair (⋖,⋗), are the rhs of production F →

e; thanks to the fact that the grammar is in FNF there is no doubt on its corresponding

lhs; therefore they can be reduced to F. Notice that such a reduction could be applied in

any order, possibly even in parallel; this feature will be exploited later in Section 6.2 but

for the time being let us consider a traditional bottom-up parser proceeding rigorously

left-to-right. Thus, the first reduction produces the string F + e∗e; if we now recompute

the precedence relations on the new string, due to the “transparency” of nonterminals,

we obtain # ⋖ F + ⋖ e ⋗ ∗ ⋖ e ⋗ #.

At this point the next rhs to be reduced is the second occurrence of e; after a third

similar reduction the original string and the corresponding precedence relations, are

reduced to # ⋖ F + ⋖ F ∗ F ⋗ # where the (only) next rhs to be reduced in F ∗ F.

Notice that there is no doubt on whether the first nonterminal F should be part of a

rhs beginning with F or of another one ending with F, such as # ⋖ F + F ⋖ ∗ F ⋗ #. In

fact, if the rhs to be reduced were just ∗F, its corresponding lhs would be a nonterminal

adjacent to the F at its left, thus contradicting the hypothesis of the grammar being

an OG. At this point the bottom-up shift-reduce algorithm continues deterministically

until the axiom is reached and a syntax-tree of the original sentence –represented by the

mirror image of the rightmost derivation– is built.

This first introduction to OPG allows us to draw some early important properties

thereof:

– In some sense OPL are input-driven even if they do not match exactly the definition

of these languages: in fact, the decision of whether to apply a push operation (at the
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beginning of a rhs) or a shift one (while scanning a rhs) or a pop one (at the end of

a rhs) depends only on terminal characters but not on a single one, as a look-ahead

of one more terminal character is needed.18

– The above characteristic is also a major reason why OPL, though allowing for effi-

cient deterministic parsing of various practical programming languages [29,18,26],

do not cover the whole family DCFL; consider in fact the language L = {0anbn |

n ≥ 0} ∪ {1anb2n | n ≥ 0}: a DPDA can easily “remember” the first character in its

state; then push all the a’s onto the stack and, when it reaches the bs decide whether

to scan one or two bs for every a depending on its memory of the first read char-

acter. On the contrary, it is clear that any grammar generating L would necessarily

exhibit some precedence conflict.19

– We like to consider OPL as structured languages in a generalized sense since, once

the OPM is given, the structure of their sentences is immediately defined and uni-

vocally determinable as it happens. e.g., with VPL once the alphabet is partitioned

into call, return, and internal alphabet. However, we would be reluctant to label

OPL as visible since there is a major difference between parenthesis-like terminals

which make the language sentence isomorphic to its syntax-tree, and precedence

relations which help building the tree but are computed only during the parsing. In-

deed, not all of them are immediately visible in the original sentence: e.g., in some

cases such as in the above sentence #⋖F +⋖ F ∗F ⋗# precedence relations are not

even matched so that they can be assimilated to real parentheses only when they

mark a complete rhs. In summary, we would consider that OPL are structured (by

the OPM) as well as PL (by explicit parentheses), VPL (by alphabet partitioning),

and other families of languages; however, we would intuitively label them at most

as “semi-visible” since making their structure visible requires some partial parsing,

though not necessarily a complete recognition.

6.1 Algebraic and logic properties of operator precedence languages

OPL enjoy all algebraic and logic properties that have been illustrated in the previous

sections for much less powerful families of structured languages.

As a first step we introduce the notion of a chain as a formal description of the

intuitive concept of “semi-visible structure”. To illustrate the following definitions and

properties we will continue to make use of examples inspired by arithmetic expres-

sions but we will enrich such expressions with, possibly nested, explicit parentheses

as the visible part of their structure. For instance the following grammar GAEP is a

natural enrichment of previous GAE1 to generate arithmetic expressions that involve

parenthesized subexpressions (we use the slightly modified symbols ’L’ and ’M’ to avoid

18 As it happens in other deterministic parsers such as LL or LR ones (see Section 5).
19 The above L is instead LL (see Section 5.1); on the contrary, the language {anbn | n ≥ 1} ∪

{ancn | n ≥ 1} is OPL but not LL; thus, OPL and LL languages are uncomparable.
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overloading with other uses of parentheses).

GAEP : S → E | T | F

E → E + T | T ∗ F | e | LEM
T → T ∗ F | e | LEM
F → e | LEM

Definition 20 (Operator precedence alphabet). An operator precedence (OP) alpha-

bet is a pair (Σ, M) where Σ is an alphabet and M is a conflict-free operator precedence

matrix, i.e. a |Σ ∪ {#}|2 array that associates at most one of the operator precedence re-

lations: �, ⋖ or ⋗ with each ordered pair (a, b). As stated above the delimiter # yields

precedence to other terminals and other terminals take precedence over it (with the

special case # � # for the final reduction of renaming rules.) Since such relations are

stated once and forever, we do not explicitly display them in OPM figures.

If Mab = {◦}, with ◦ ∈ {⋖,�,⋗} ,we write a ◦b. For u, v ∈ Σ∗ we write u ◦ v if u = xa

and v = by with a ◦ b.

Definition 21 (Chains). Let (Σ, M) be a precedence alphabet.

– A simple chain is a word a0a1a2 . . . anan+1, written as a0 [a1a2 . . .an]an+1 , such that:

a0, an+1 ∈ Σ ∪ {#}, ai ∈ Σ for every i : 1 ≤ i ≤ n, Ma0an+1
, ∅, and a0 ⋖ a1 �

a2 . . . an−1 � an ⋗ an+1.

– A composed chain is a word a0x0a1x1a2 . . . anxnan+1, with xi ∈ Σ
∗, where a0 [a1a2 . . .

an]an+1 is a simple chain, and either xi = ε or ai [xi]
ai+1 is a chain (simple or

composed), for every i : 0 ≤ i ≤ n. Such a composed chain will be written as
a0 [x0a1x1a2 . . .anxn]an+1 .

– The body of a chain a[x]b, simple or composed, is the word x.

Example 13. Figure 14 (a) depicts the OPM(GAEP), whereas Figure 14 (b) represents

the “semi-visible” structure induced by the operator precedence alphabet of grammar

GAEP for the expression #e + e ∗ Le + eM#: #[x0 + x1]#, +
[
y0 ∗ y1

]#, ∗
[
Lw0M

]#, L[z0 + z1]M

are composed chains and #[e]+, +[e]∗, L[e]+, +[e]M are simple chains.

Definition 22 (Compatible word). A word w over (Σ, M) is compatible with M iff the

two following conditions hold:

– For each pair of letters c, d, consecutive in w, Mcd , ∅;

– for each substring x of #w# such that x = a0x0a1x1a2 . . . anxnan+1, if a0 ⋖ a1 �

a2 . . . an−1 � an ⋗ an+1 and, for every 0 ≤ i ≤ n, either xi = ε or ai [xi]
ai+1 is a chain

(simple or composed), then Ma0an+1
, ∅.

For instance, the word e + e ∗ Le + eM is compatible with the operator precedence

alphabet of grammar GAEP, whereas e + e ∗ Le + eMLe + eM is not.

Thus, given an OP alphabet, the set of possible chains over Σ∗ represents the uni-

verse of possible structured strings compatible with the given OPM.
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+ ∗ L M e

+ ⋗ ⋖ ⋖ ⋗ ⋖

∗ ⋗ ⋗ ⋖ ⋗ ⋖

L ⋖ ⋖ ⋖ � ⋖
M ⋗ ⋗ ⋗

e ⋗ ⋗ ⋗

#

x0

e

+ x1

y0

e

∗ y1

L w0

z0

e

+ z1

e

M

#

(a) (b)

Fig. 14. OPM of grammar GAEP (a) and structure of the chains in the expression #e +

e ∗ Le + eM# (b).

Operator precedence automata Despite abstract machines being the classical way to

formalize recognition and parsing algorithms for any family of formal languages, and

despite OPL having been invented just with the purpose of supporting deterministic

parsing, their theoretical investigation has been abandoned before a family of automata

completely equivalent to their generative grammars appeared in the literature. Only

recently, when the numerous still unexplored benefits obtainable from this family ap-

peared clear to us, we filled up this hole with the herewith resumed definition ([37]).

The formal model presented in this paper is a “traditional” left-to-right automaton, al-

though, as we already anticipated and will thoroughly exploit in the next Section 6.2 a

distinguishing feature of OPL is that their parsing can be started in arbitrary positions

with no harm nor loss of efficiency. This choice is explained by the need to extend and

to compare results already reported for other language families. The original slightly

more complicated version of this model was introduced in [38].

Definition 23 (Operator precedence automaton). An operator precedence automaton

(OPA) is a tupleA = (Σ, M,Q, I, F, δ) where:

– (Σ, M) is an operator precedence alphabet,

– Q is a set of states (disjoint from Σ),

– I ⊆ Q is the set of initial states,

– F ⊆ Q is the set of final states,

– δ ⊆ Q × (Σ ∪ Q) × Q is the transition relation, which is the union of three disjoint

relations:

δshift ⊆ Q × Σ × Q, δpush ⊆ Q × Σ × Q, δpop ⊆ Q × Q × Q.

An OPA is deterministic iff

– I is a singleton

– All three components of δ are functions:

δshift : Q × Σ → Q, δpush : Q × Σ → Q, δpop : Q × Q→ Q.
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We represent an OPA by a graph with Q as the set of vertices and Σ ∪ Q as the

set of edge labelings. The edges of the graph are denoted by different shapes of arrows

to distinguish the three types of transitions: there is an edge from state q to state p

labeled by a ∈ Σ denoted by a dashed (respectively, normal) arrow iff (q, a, p) ∈ δshift

(respectively, ∈ δpush) and there is an edge from state q to state p labeled by r ∈ Q and

denoted by a double arrow iff (q, r, p) ∈ δpop.

To define the semantics of the automaton, we need some new notations.

We use letters p, q, pi, qi, . . . to denote states in Q. Let Γ be Σ × Q and let Γ′ =

Γ ∪ {Z0} be the stack alphabet; we denote symbols in Γ′ as [a, q] or Z0. We set

symbol([a, q]) = a, symbol(Z0) = #, and state([a, q]) = q. Given a string Π =

πn . . . π2π1Z0, with πi ∈ Γ , n ≥ 0, we set symbol(Π) = symbol(πn), including the

particular case symbol(Z0) = #.

As usual, a configuration of an OPA is a triple c = 〈w, q, Π〉, where w ∈ Σ∗#,

q ∈ Q, and Π ∈ Γ∗Z0.

A computation or run of the automaton is a finite sequence of moves or transitions

c1 p−− c2; there are three kinds of moves, depending on the precedence relation between

the symbol on top of the stack and the next symbol to read:

push move: if symbol(Π)⋖ a then 〈ax, p, Π〉 p−− 〈x, q, [a, p]Π〉, with (p, a, q) ∈ δpush;

shift move: if a � b then 〈bx, q, [a, p]Π〉 p−− 〈x, r, [b, p]Π〉, with (q, b, r) ∈ δshift;

pop move: if a ⋗ b then 〈bx, q, [a, p]Π〉 p−− 〈bx, r, Π〉, with (q, p, r) ∈ δpop.

Observe that shift and pop moves are never performed when the stack contains only

Z0.

Push and shift moves update the current state of the automaton according to the

transition relations δpush and δshift, respectively: push moves put a new element on top of

the stack consisting of the input symbol together with the current state of the automaton,

whereas shift moves update the top element of the stack by changing its input symbol

only. Pop moves remove the element on top of the stack, and update the state of the

automaton according to δpop on the basis of the pair of states consisting of the current

state of the automaton and the state of the removed stack symbol; notice that in this

moves the input symbol is used only to establish the ⋗ relation and it remains available

for the following move.

The language accepted by the automaton is defined as:

L(A) =

{

x | 〈x#, qI , Z0〉
∗
p−− 〈#, qF , Z0〉, qI ∈ I, qF ∈ F

}

.

Example 14. The OPA depicted in Figure 15 accepts the language of arithmetic expres-

sions generated by grammar GAEP. The same figure also shows the syntax-tree of the

sentence e + e ∗ Le + eM and an accepting computation on this input.

Notice the similarity of the above definition of OPA with that of VPA (Definition

15) and with the normalized form for PDA given in Section 4.4.

Showing the equivalence between OPG and OPAs, though somewhat intuitive, re-

quires to overtake a few non-trivial technical difficulties, mainly in the path from OPG

to OPAs. Here we offer just an informal description of the rationale of the two construc-

tions and an illustrating example; the full proof of the equivalence between OPG and

OPA can be found in [37].
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q0 q1

q2 q3

e

L

q0, q1

+, ∗

e
L

q0, q1, q2, q3

+, ∗

M

E

E

e

+ T

T

e

∗ F

L E

E

e

+ T

e

M

input state stack

e + e ∗ Le + eM# q0 Z0

+e ∗ Le + eM# q1 [e, q0]Z0

+e ∗ Le + eM# q1 Z0

e ∗ Le + eM# q0 [+, q1]Z0

∗Le + eM# q1 [e, q0][+, q1]Z0

∗Le + eM# q1 [+, q1]Z0

Le + eM# q0 [∗, q1][+, q1]Z0

e + eM# q2 [L, q0][∗, q1][+, q1]Z0

+eM# q3 [e, q2][L, q0][∗, q1][+, q1]Z0

+eM# q3 [L, q0][∗, q1][+, q1]Z0

eM# q2 [+, q3][L, q0][∗, q1][+, q1]Z0

M# q3 [e, q2][+, q3][L, q0][∗, q1][+, q1]Z0

M# q3 [+, q3][L, q0][∗, q1][+, q1]Z0

M# q3 [L, q0][∗, q1][+, q1]Z0

# q3 [M, q0][∗, q1][+, q1]Z0

# q3 [∗, q1][+, q1]Z0

# q3 [+, q1]Z0

# q3 Z0

Fig. 15. Automaton and example of computation for the language of Example 14. Recall

that shift, push and pop transitions are denoted by dashed, normal and double arrows,

respectively.
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For convenience and with no loss of generality, let G be an OPG with no empty

rules, except possibly S → ε, and no renaming rules, except possibly those whose lhs

is S , an OPA A equivalent to G is built in such a way that a successful computation

thereof corresponds to building bottom-up the mirror image of a rightmost derivation of

G:A performs a push transition when it reads the first terminal of a new rhs; it performs

a shift transition when it reads a terminal symbol inside a rhs, i.e. a leaf with some left

sibling leaf; it performs a pop transition when it completes the recognition of a rhs,

then it guesses (nondeterministically, if there are several rules with the same rhs) the

nonterminal at the lhs.

Each state ofA contains two pieces of information: the first component represents

the prefix of the rhs under construction, whereas the second component is used to re-

cover the rhs previously under construction (see Figure 16) whenever all rhs’s nested

below have been completed. Without going into the details of the construction and the

. . .

β
B

. . .

A

α

. . .

β
A

α

Fig. 16. When parsing α, the prefix previously under construction is β.

formal equivalence proof between G and A, we further illustrate the rationale of the

construction through the following Example.

Example 15. Consider again grammar GAEP. Figure 17 shows the first part of an ac-

cepting computation of the automaton derived therefrom. Consider, for instance, step

3 of the computation: at this point the automaton has already reduced (nondeterminis-

tically) the first e to E and has pushed the following + onto the stack, paired with the

state from which it was coming; thus, its new state is 〈E+, ε〉; at step 6, instead, the state

is 〈T∗, E+〉 because at this point the automaton has built the T∗ part of the current rhs

and remembers that the prefix of the suspended rhs is E+. Notice that the computation

partially shown in Figure 17 is equal to that of Figure 15 up to a renaming of the states;

in fact the shape of syntax-trees and consequently the sequence of push, shift and pop

moves in OPL depends only on the OPM, not on the visited states.

The converse construction from OPAs to OPG is somewhat simpler; in essence,

from a given OPA A = (Σ, M,Q, I, F, δ) a grammar G is built whose nonterminals are

4-tuples (a, q, p, b) ∈ Σ × Q × Q × Σ, written as 〈a p, qb〉. G’s rules are built on the basis

ofA’s chains as follows (particular cases are omitted for simplicity):
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step input state stack

0 e + e ∗ Le + eM# 〈ε, ε〉 Z0

1 +e ∗ Le + eM# 〈e, ε〉 [e, 〈ε, ε〉]Z0

2 +e ∗ Le + eM# 〈E, ε〉 Z0

3 e ∗ Le + eM# 〈E+, ε〉 [+, 〈E, ε〉]Z0

4 ∗Le + eM# 〈e, ε〉 [e, 〈E+, ε〉][+, 〈E, ε〉]Z0

5 ∗Le + eM# 〈T,E+〉 [+, 〈E, ε〉]Z0

6 Le + eM# 〈T∗, E+〉 [∗, 〈T,E+〉][+, 〈E, ε〉]Z0

Fig. 17. Partial accepting computation of the automaton built from grammar GAEP.

– for every simple chain a0 [a1a2 . . .an]an+1 , if there is a sequence of A’s transitions

that, while reading the body of the chain starting from q0 leavesA in qn+1, include

the rule

〈a0 q0, qn+1
an+1〉 −→ a1a2 . . . an

– for every composed chain a0 [x0a1x1a2 . . . anxn]an+1 , add the rule

〈a0 q0, qn+1
an+1〉 −→ Λ0a1Λ1a2 . . . anΛn

if there is a sequence of A’s transitions that, while reading the body of the chain

starting from q0 leaves A in qn+1, and, for every i = 0, 1, . . . , n, Λi = ε if xi = ε,

otherwise Λi = 〈
ai qi, q

′
i
ai+1〉 if xi , ε and there is a path leading from qi to q′

i
when

traversing xi.

Since the size of G’s nonterminal alphabet is bounded, the above procedure eventually

terminates when no new rules are added to P.20

We have seen that a fundamental issue to state the properties of most abstract ma-

chines is their determinizability: in the cases examined so far we have realized that

the positive basic result holding for RL extends to the various versions of structured

CFL, though at the expenses of more intricate constructions and size complexity of the

deterministic versions obtained from the nondeterministic ones, but not to the general

CF family. Having OPL been born just with the motivation of supporting deterministic

parsing, and being they structured as well, it is not surprising to find that for any non-

deterministic OPA with s states an equivalent deterministic one can be built with 2O(s2)

states, as it happens for the analogous construction for VPL: in [37] besides giving a

detailed construction for the above result, it is also noticed that the construction of an

OPA from an OPG is such that, if the OPG is in FNF, then the obtained automaton is

already deterministic since the grammar has no repeated rhs. As a consequence, pro-

ducing a deterministic OPA from an OPG by first putting the OPG into FNF produces

an automaton of an exponentially smaller size than the other way around.

20 The above claim can be easily proved if the OPM has no circularities in the � relation, since

this implies an upper bound to the length of P’s rhs; in the (seldom) case where this hypothesis

is not verified other ones can be exploited (see [37] for a more detailed analysis.)
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Operator precedence vs other structured languages A distinguishing feature of OPL

is that, on the one side they have been defined to support deterministic parsing, i.e., the

construction of the syntax-tree of any sentence which is not immediately visible in

the sentence itself but, on the other side, they can still be considered as structured in

the sense that their syntax-trees are univocally determined once an OPM is fixed, as it

happens when we enclose grammar’s rhs within parentheses or we split the terminal

alphabet into Σc ∪Σr ∪Σi. It is therefore natural to compare their generative power with

that of other structured languages.

On this respect, the main result of this section is that OPL strictly include VPL,

which in turn strictly include parenthesis languages and the languages generated by

balanced grammars (discussed in Section 4.4).

This result was originally proved in [15]. To give an intuitive explanation of this

claim consider the following remarks:

– Sequences ∈ Σ∗
i

can be assimilated to regular “sublanguages” with a linear struc-

ture; if we conventionally assign to them a left-linear structure, this can be obtained

through an OPM where every character, but those in Σc, takes precedence over all

elements in Σi; by stating instead that all elements of Σc yield precedence to the el-

ements in Σi we obtain that after every call the OPA pushes and pops all subsequent

elements of Σi, as an FSA would do without using the stack.

– All elements of Σr produce a pop from the stack of the corresponding element of

Σc, if any; thus we obtain the same effect by letting them take precedence over all

other terminal characters.

– A VPA performs a push onto its stack when (and only when) it reads an element

of Σc, whereas an OPA pushes the elements to which some other element yields

precedence; thus, it is natural to state that whenever on top of the stack there is a

call symbol, possibly after having visited a subtree whose result is stored as the

state component in the top of the stack together with the terminal symbol, such

a symbol yields precedence to the following call (roughly, open parentheses yield

precedence to other open parentheses and closed parentheses take precedence over

other closed parentheses).

– Once the whole subsequence embraced by two matching call and return is scanned

and possibly reduced, the two terminals are faced, with the possible occurrence

of an irrelevant nonterminal in between, and therefore the call must be equal in

precedence to the return.

– Finally, the usual convention that # yields precedence to everything and everything

takes precedence over # enables the managing of possible unmatched returns at the

beginning of the sentence and unmatched calls at its end.

In summary, for every VPA A with a given partitioned alphabet Σ, an OPM such as

the one displayed in Figure 18 and an OPA A′ defined thereon can be built such that

L(A′) = L(A).

In [15] it is also shown the converse property, i.e., that whenever an OPM is such that

the terminal alphabet can be partitioned into three disjoint sets Σc, Σr,Σi such that the

OPM has the shape of Figure 18, any OPL defined on such an OPM is also a VPL. Strict

inclusion of VPL within OPL follows form the fact that VPL are real-time whereas OPL
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Σc Σr Σi

Σc ⋖ =̇ ⋖

Σr ⋗ ⋗ ⋗

Σi ⋗ ⋗ ⋗

Legend

Σc denotes “calls”

Σr denotes “returns”

Σi denotes internal characters

Fig. 18. A partitioned matrix, where Σc, Σr ,Σi are set of terminal characters. A prece-

dence relation in position Σα, Σβ means that relation holds between all symbols of Σα
and all those of Σβ.

include also non-real-time languages (see Section 5); there are also real-time OPL21

such as

L = {bncn | n ≥ 1} ∪ { f ndn | n ≥ 1} ∪ {en( f b)n | n ≥ 1}

that are not VPL. In fact, strings of type bncn impose that b is a call and c a return; for

similar reasons, f must be a call and d a return. Strings of type en( f b)n impose that at

least one of b and f must be a return, a contradiction for a VP alphabet. In conclusion

we have the following result:

Theorem 2. VPL are the subfamily of OPL whose OPM is a partitioned matrix, i.e., a

matrix whose structure is depicted in Figure 18.

As a corollary OPL also strictly include balanced languages and parenthesis lan-

guages. OPL are instead uncomparable with HRDPDL: we have already seen that the

language L1 = {a
nban} is an HRDPDL but it is neither a VPL nor an OPL since

it necessarily requires a conflict a ⋖ a and a ⋗ a; conversely, the previous language

L2 = {a
mbncndm | m, n ≥ 1} ∪ {amb+edm | m ≥ 1} can be recognized by an OPA but by

no HRDPDA (see Section 5).

The increased power of OPL over other structured languages goes far beyond the

mathematical containment properties and opens several application scenarios that are

hardly accessible by “traditional” structured languages. The field of programming lan-

guages was the original motivation and source of inspiration for the introduction of

OPL; arithmetic expressions, used throughout this paper as running examples, are just

a small but meaningful subset of such languages and we have emphasized from the be-

ginning that their partially hidden structure cannot be “forced” to the linearity of RL,

nor can always be made explicit by the insertion of parentheses.

VPL too have been presented as an extension of parenthesis languages with the mo-

tivation that not always calls, e.g. procedure calls, can be matched by corresponding

returns: a sudden closure, e.g. due to an exception or an interrupt or an unexpected end

may leave an open chain of suspended calls. Such a situation, however, may need a gen-

eralization that cannot be formalized by the VPL formalism, since in VPL unmatched

21 When we say that an OPL L is real-time we mean, as usual, that there is an abstract machine,

in particular a DPDA, recognizing it that performs exactly |x| moves for every input string x;

this is not to say that an OPA accepting L operates in real-time, since OPA’s pop moves are

defined as ε moves.
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calls can occur only at the end of a string.22 Imagine, for instance, that the occurrence of

an interrupt while serving a chain of calls imposes to abort the chain to serve immedi-

ately the interrupt; after serving the interrupt, however, the normal system behavior may

be resumed with new calls and corresponding returns even if some previous calls have

been lost due to the need to serve the interrupt with high priority. Various, more or less

sophisticated, policies can be designed to manage such systems and can be adequately

formalized as OPL. The next example describes a first simple case of this type; other

more sophisticated examples of the same type and further ones inspired by different

application fields can be found in [37].

Example 16 (Managing interrupts). Consider a software system that is designed to

serve requests issued by different users but subject to interrupts. Precisely, assume that

the system manages “normal operations” according to a traditional LIFO policy, and

may receive and serve some interrupts denoted as int.

We model its behavior by introducing an alphabet with two pairs of calls and re-

turns: call and ret denote the call to, and return from, a normal procedure; int, and serve

denote the occurrence of an interrupt and its serving, respectively. The occurrence of

an interrupt provokes discarding possible pending calls not already matched by cor-

responding rets; furthermore when an interrupt is pending, i.e., not yet served, calls

to normal procedures are not accepted and consequently corresponding returns cannot

occur; interrupts however, can accumulate and are served themselves along a LIFO pol-

icy. Once all pending interrupts have been served the system can accept new calls and

manage them normally.

Figure 19 (a) shows an OPM that assigns to sequences on the above alphabet a struc-

ture compatible with the described priorities. Then, a suitable OPA can specify further

constraints on such sequences; for instance the automaton of Figure 19 (b) restricts

the set of sequences compatible with the matrix by imposing that all int are eventually

served and the computation ends with no pending calls; furthermore unmatched serve

and ret are forbidden. E.g., the string call.call.ret.int.serve.call.ret is accepted through

the sequence of states q0

call
−→ q1

call
−→ q1

ret
−→ q1

q1

=⇒ q1

q0

=⇒ q0

int
−→ q2

serve
− → q2

q0

=⇒

q0

call
−→ q1

ret
−→ q1

q0

=⇒ q0; on the contrary, a sequence beginning with call.serve would

not be accepted.

Closure and decidability properties Structured languages with compatible structures

often enjoy many closure properties typical of RL; noticeably, families of structured

languages are often Boolean algebras. The intuitive notion of compatible structure is

formally defined for each family of structured languages; for instance two VPL have

compatible structure iff their tri-partition of Σ is the same; two height-deterministic

PDA languages (HPDL) have compatible structure if they are synchronized. In the case

of OPL, the notion of structural compatibility is naturally formalized through the OPM.

22 Recently, such a weakness of VPL has been acknowledged in [3] where the authors introduced

colored VPL to cope with the above problem; the extended family, however, still does not reach

the power of OPL ([3]).
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call ret int serve

call ⋖ =̇ ⋗ ⋗

ret ⋗ ⋗ ⋗ ⋗

int ⋖ �

serve ⋗ ⋗ ⋗ ⋗

q0

q2 q1

int call

int

serve

q2

q0

call

ret

q1

q0

(a) (b)

Fig. 19. OPM (a) and automaton (b) for the language of Example 16.

Definition 24. Given two OPM M1 and M2, we define set inclusion and union:

M1 ⊆ M2 if ∀a, b : (M1)ab ⊆ (M2)ab

M = M1 ∪ M2 if ∀a, b : Mab = (M1)ab ∪ (M2)ab.

Two matrices are compatible if their union is conflict-free. A matrix is total (or

complete) if it contains no empty cell.

The following theorem has been proved originally in [16] by exploiting some stan-

dard forms of OPG that have been applied to grammar inference problems [17].

Theorem 3. For any conflict-free OPM M the OPL whose OPM is contained in M are

a Boolean algebra. In particular, if M is complete, the top language of its associated

algebra is Σ∗ with the structure defined by M.

Notice however, that the same result could be proved in a simpler and fairly standard

way by exploiting OPA and their traditional composition rules (which pass through

determinization to achieve closure under complement). As usual in such cases, thanks

to the decidablity of the emptiness problem for general CFL, a major consequence of

Boolean closures is the following corollary.

Corollary 1. The inclusion problem between OPL with compatible OPM is decidable.

Closure under concatenation and Kleene ∗ has been proved more recently in [15];

whereas such closures are normally easily proved or disproved for many families of

languages, the technicalities to achieve this result are not trivial for OPL; however we

do not go into their description since closure or non-closure w.r.t. these operations is

not of major interest in this paper.
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Logic characterization Achieving a logic characterization of OPL has probably been

the most difficult job in the recent revisit of these languages and posed new challenges

w.r.t. the analogous path previously followed for RL and then for CFL [35] and VPL [5].

In fact we have seen that moving from linear languages such as RL to tree-shaped ones

such as CFL led to the introduction of the relation M between the positions of leftmost

and rightmost leaves of any subtree (generated by a grammar in DGNF); the obtained

characterization in terms of first-order formulas existentially quantified w.r.t. the M

relation (which is a representation of the sentence structure) however, was suffering

from the lack of closure under complementation of CFL [35]; the same relation instead

proved more effective for VPL thanks to the fact that they are structured and enjoy all

necessary closures.

To the best of our knowledge, however, all previous characterizations of formal lan-

guages in terms of logics that refer to string positions (for instance, there is significant

literature on the characterization of various subclasses of RL in terms of first-order or

temporal logics, see, e.g., [23]) have been given for real-time languages. This feature is

the key that allows, in the exploitation of MSO logic, to state a natural correspondence

between automaton’s state qi and second-order variable Xi in such a way that the value

of Xi is the set of positions where the state visited by the automaton is qi.

OPL instead include also DCFL that are not real-time and, as a consequence, there

are positions where the recognizing OPA traverses different configurations with dif-

ferent states. As a further consequence, the M relation adopted for CFL and VPL is

not anymore a one-to-one relation since the same position may be the position of the

left/rightmost leaf of several subtrees of the whole syntax-tree; this makes formulas

such as the key ones given in Section 4.3 meaningless.

The following key ideas helped overtaking the above difficulties:

– A new relation µ replaces the original M adopted in [35] and [5]; µ is based on

the look-ahead-look-back mechanism which drives the (generalized) input-driven

parsing of OPL based on precedence relations: thus, whereas in M(x, y) x, y denote

the positions of the extreme leaves of a subtree, in µ(x, y) they denote the position

of the context of the same subtree, i.e., respectively, of the character that yields

precedence to the subtree’s leftmost leaf, and of the one over which the subtree’s

rightmost leaf takes precedence. The new µ relation is not one-to-one as well, but,

unlike the original M, its parameters x, y are not “consumed” by a pop transition

of the automaton and remain available to be used in further automaton transitions

of any type. In other words, µ holds between the positions 0 and n + 1 of every

chain (see Definition 21). For instance, Figure 20 displays the µ relation, graph-

ically denoted by arrows, holding for the sentence e + e ∗ Le + eM generated by

grammar GAEP: we have µ(0, 2), µ(2, 4), µ(5, 7), µ(7, 9), µ(5, 9), µ(4, 10), µ(2, 10),

and µ(0, 10). Such pairs correspond to contexts where a reduce operation is exe-

cuted during the parsing of the string (they are listed according to their execution

order).

In general µ(x, y) implies y > x + 1, and a position x may be in relation µ with

more than one position and vice versa. Moreover, if w is compatible with M, then

µ(0, |w| + 1).
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# e + e ∗ L e + e M #

0 1 2 3 4 5 6 7 8 9 10

Fig. 20. The string e + e ∗ Le + eM, with positions and relation µ.

Example 17. The following sentence of the MSO logic enriched with the µ relation

defines, within the universe of strings compatible with the OPM of Figure 14(a),

the language where parentheses are used only when they are needed (i.e. to give

precedence to + over ∗).

∀x∀y





µ(x, y) ∧ L(x + 1)∧M(y − 1)

⇒

(∗(x) ∨ ∗(y))∧

∃z





x + 1 < z < y − 1 ∧ +(z) ∧

¬∃u∃v





x + 1 < u < z ∧ L(u)∧

z < v < y − 1 ∧ M(v)∧

µ(u − 1, v + 1)













– Since in every position there may be several states held by the automaton while vis-

iting that position, instead of associating just one second-order variable to each state

of the automaton we define three different sets of second-order variables, namely,

A0,A1, . . . ,AN , B0,B1, . . . ,BN and C0,C1, . . . ,CN . Set Ai contains those positions

of word w where state qi may be assumed after a shift or push transition, i.e. after a

transition that “consumes” an input symbol. Sets Bi and Ci encode a pop transition

concluding the reading of the body of a chain a[w0a1w1 . . . alwl]
al+1 in a state qi: set

Bi contains the position of symbol a that precedes the corresponding push, whereas

Ci contains the position of al, which is the symbol on top of the stack when the

automaton performs the pop move relative to the whole chain.

Figure 21 presents such sets for the example automaton of Figure 15, with the

same input as in Figure 20. Notice that each position, except the last one, belongs

to exactly one Ai, whereas it may belong to several Bi and at most one Ci.

We can now outline how an OPA can be derived from an MSO logic formula making

use of the new symbol µ and conversely.

From MSO formula to OPA The construction from MSO logic to OPA essentially

follows the lines given originally by Büchi, and reported in Section 2.2: once the orig-

inal alphabet has been enriched and the formula has been put in the canonical form in

the same way as described in Section 2.2, we only need to define a suitable automaton

fragment to be associated with the new atomic formula µ(Xi, X j); then, the construc-

tion of the global automaton corresponding to the global formula proceeds in the usual

inductive way.
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B3 C3

B3 C3

B3 C3

B3 C3

B1 C1 B1 C1 B3 C3 B3 C3

A0 A1 A0 A1 A0 A2 A3 A2 A3 A3

# e + e ∗ L e + e M #

0 1 2 3 4 5 6 7 8 9 10

Fig. 21. The string of Figure 20 with Bi, Ai, and Ci evidenced for the automaton of

Figure 15. Pop moves of the automaton are represented by linked pairs Bi, Ci.

q0 q1 q2 q3 qF
(◦, 0, 0)

(◦, 1, 0)

(◦, 1, 0)

q1

(◦, 0, 0)

(◦, 0, 0)

q0 q2

(◦, 0, 0)

(◦, 0, 0)

(◦, 0, 1)

(◦, 0, 1)

q0 (◦, 0, 0)

(◦, 0, 0)

q0, q3, qF

Fig. 22. OPA for atomic formula µ(X,Y).
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Figure 22 represents the OPA for atomic formula ψ = µ(X,Y). As before, labels are

triples belonging to Σ×{0, 1}2, where the first component encodes a character a ∈ Σ, the

second the positions belonging to X (with 1) or not (with 0), while the third component

is for Y. The symbol ◦ is used as a shortcut for any value in Σ compatible with the

OPM, so that the resulting automaton is deterministic.

The semantics of µ requires for µ(X,Y) that there must be a chain a[w2]b in the

input word, where a is the symbol at the only position in X, and b is the symbol at

the only position in Y. By definition of chain, this means that a must be read, hence

in the position represented by X the automaton performs either a push or a shift move

(see Figure 22, from state q0 to q1), as pop moves do not consume input. After that, the

automaton must read w2. In order to process the chain a[w2]b, reading w2 must start with

a push move (from state q1 to state q2), and it must end with one or more pop moves,

before reading b (i.e. the only position in Y – going from state q3 to qF ).

This means that the automaton, after a generic sequence of moves corresponding to

visiting an irrelevant (for µ(X,Y)) portion of the syntax-tree, when reading the symbol

at position X performs either a push or a shift move, depending on whether X is the

position of a leftmost leaf of the tree or not. Then it visits the subsequent subtree ending

with a pop labeled q1; at this point, if it reads the symbol at position Y, it accepts

anything else that follows the examined fragment.

It is interesting to compare the diagram of Figure 22 with those of Figure 6 (c) and

of Figure 10: the first one, referring to RL, uses two consecutive moves; the second

one, referring to VPL, may perform an unbounded number of internal moves and of

matching call-return pairs between the call-return pair in positions x,y; the OPA does

the same as the VPA but needs a pair of extra moves to take into account the look-

ahead-look-back implied by precedence relations.

From the OPAA to the MSO formula In this case the overall structure of the logic

formula is the same as in the previous cases for RL and VPL, i.e., an existential quan-

tification over second-order variables, which represent states through sets of positions

within the string, of a global formula that formalizes a) the constraints imposed by au-

tomaton’s transitions, b) the fact that in position 0 the automaton must be in an initial

state, and c) that at the end of the string it must be in an accepting state. The com-

plete formalization of the δ transition relation as a collection of formulas relating the

various variables Ai, Bi,Ci, however, is much more involved than in the two previous

cases. Here we only provide a few meaningful examples of such formulas, just to give

the essential ideas of how they have been built; their complete set can be found in [37]

together with the equivalence proof. Without loss of generality we assume that the OPA

is deterministic.

Preliminarily, we introduce some notation to make the following formulas more

understandable:

– When considering a chain a[w]b we assume w = w0a1w1 . . . aℓwℓ, with a[a1a2 . . . aℓ]
b

being a simple chain (any wg may be empty). We denote by sg the position of sym-

bol ag, for g = 1, 2, . . . , ℓ and set a0 = a, s0 = 0, aℓ+1 = b, and sℓ+1 = |w| + 1.

– x ⋖ y states that the symbol in position x yields precedence to the one in position y

and similarly for the other precedence relations
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– The fundamental abbreviation

Tree(x, z, v, y) := µ(x, y) ∧





(x + 1 = z ∨ µ(x, z))∧

¬∃t(z < t < y ∧ µ(x, t))∧

(v + 1 = y ∨ µ(v, y))∧

¬∃t(x < t < v ∧ µ(t, y))





is satisfied, for every chain a[w]b embraced within positions x and y by a (unique,

maximal) z such that µ(x, z), if w0 , ε, z = x + 1 if instead w0 = ε; symmetrically

for y and v. In particular, if w is the body of a simple chain, then µ(0, ℓ + 1) and

Tree(0, 1, ℓ, ℓ+1) are satisfied; if it is the body of a composed chain, then µ(0, |w|+1)

and Tree(0, s1, sℓ, sℓ+1) are satisfied. If w0 = ε then s1 = 1, and if wℓ = ε then

sℓ = |w|. In the example of Figure 20 relations Tree(2, 3, 3, 4), Tree(2, 4, 4, 10),

Tree(4, 5, 9, 10), Tree(5, 7, 7, 9) are satisfied, among others.

– The shortcut Qi(x, y) is used to represent that A is in state qi when at position

x and the next position to read, possibly after scanning a chain, is y. Since the

automaton is not real time, we must distinguish between push and shift moves (case

Succi(x, y)), and pop moves (case Nexti(x, y)).

Succk(x, y) := x + 1 = y ∧ x ∈ Ak

Nextk(x, y) := µ(x, y) ∧ x ∈ Bk∧

∃z, v (Tree(x, z, v, y) ∧ v ∈ Ck)

Qi(x, y) := Succi(x, y) ∨ Nexti(x, y).

E.g., with reference to Figures 20 and 21, Succ2(5, 6), Next3(5, 9), and Next3(5, 7)

hold.

We can now show a meaningful sample of the various formulas that code the au-

tomaton’s transition relation.

– The following formula states that if A is in position x and state qi and performs a

push transition by reading the character in position y, it goes to state qk according

to the transition relation δ.

ϕpush f w := ∀x, y

N∧

i=0

N∧

k=0

∧

c∈Σ





x ⋖ y ∧ c(y) ∧ Qi(x, y)∧

δpush(qi, c) = qk

⇒ y ∈ Ak





Notice that the original formula given in Section 2.2 for RL can be seen as a partic-

ular case of the above one.
– Conversely, if A is in state qk after a push starting from position x and reading

character c, in that position it must have been in a state qi such that δ(qi, c) = qk:

ϕpush bw := ∀x, y

N∧

k=0

∧

c∈Σ





x ⋖ y ∧ c(y) ∧ y ∈ Ak∧

(x + 1 = y ∨ µ(x, y))

⇒
∨N

i=0

(

Qi(x, y) ∧ δpush(qi, c) = qk

)





– The formulas coding the shift transitions are similar to the previous ones and there-

fore omitted.
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– To define ϕδpop
we introduce the shortcut Treei, j(x, z, v, y), which represents the fact

thatA is ready to perform a pop transition from state qi having on top of the stack

state q j; such pop transition corresponds to the reduction of the portion of string

between positions x and y (excluded).

Treei, j(x, z, v, y) := Tree(x, z, v, y) ∧ Qi(v, y) ∧ Q j(x, z).

Formula ϕδpop
is thus defined as the conjunction of three formulas. As before, the

forward (abbreviated with the subscript f w) formula gives the sufficient condition
for two positions to be in the sets Bk and Ck, when performing a pop move, and the
backward formulas state symmetric necessary conditions.

ϕpop f w := ∀x, z, v, y

N∧

i=0

N∧

j=0

N∧

k=0





Treei, j(x, z, v, y)∧

δpop(qi, q j) = qk

⇒

x ∈ Bk ∧ v ∈ Ck





ϕpop bwB := ∀x

N∧

k=0





x ∈ Bk ⇒

∃y, z, v
∨N

i=0

∨N
j=0 Treei, j(x, z, v, y)∧

δpop(qi, q j) = qk





ϕpop bwC := ∀v

N∧

k=0





v ∈ Ck ⇒

∃x, y, z
∨N

i=0

∨N
j=0 Treei, j(x, z, v, y)∧

δpop(qi, q j) = qk





6.2 Local parsability for parallel parsers

Let us now go back to the original motivation that inspired R. Floyd when he invented

the OPG family, namely supporting efficient, deterministic parsing. In the introduc-

tory part of this section we noticed that the mechanism of precedence relations isolates

grammar’s rhs from their context so that they can be reduced to the corresponding lhs

independently from each other. This fact guarantees that, in whichever order such re-

ductions are applied, at the end a complete grammar derivation will be built; such a

derivation corresponds to a visit of the syntax-tree, not necessarily leftmost or right-

most, and its construction has no risk of applying any back-track as it happens instead

in nondeterministic parsing. We call this property local parsability property, which in-

tuitively can be defined as the possibility of applying deterministically a bottom-up,

shift-reduce parsing algorithm by inspecting only an a priori bounded portion of any

string containing a rhs. Various formal definitions of this concept have been given in

the literature, the first one probably being the one proposed by Floyd himself in [27]; a

fairly general definition of local parsability and a proof that OPG enjoy it can be found

in [6].

Local parsability, however, has the drawback that it loses chances of deterministic

parsing when the information on how to proceed with the parsing is arbitrarily far from

the current position of the parser. We therefore have a trade-off between the size of

the family of recognizable languages, which in the case of LR grammars is the whole

DCFL class (see Section 5.2), and the constraint of proceeding rigorously left-to-right

for the parser. So far this trade-off has been normally solved in favor of the generality in

the absence of serious counterparts in favor of the other option. We argue however, that
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the massive advent of parallel processing, even in the case of small architectures such as

those of tablets and smartphones, could dramatically change the present state of affairs.

On the one side parallelizing parsers such as LL or LR ones requires reintroducing a

kind of nondeterministic guess on the state of the parser in a given position, which in

most cases voids the benefits of exploiting parallel processors (see [6] for an analysis of

previous literature on various attempts to develop parallel parsers); on the contrary, OPL

are from the beginning oriented toward parallel analysis whereas their previous use in

compilation shows that they can be applied to a wide variety of practical languages, and

further more as suggested by other examples given here and in [37].

Next we show how we exploited the local parsability property of OPG to realize

a complete and general parallel parser for these grammars. A first consequence of the

basic property is the following statement.

Statement 2 For every substring aδb of γaδbη ∈ V∗ derivable from S , there exists

a unique string α, called the irreducible string, deriving δ such that S
∗
⇒ γaαbη

∗
⇒

γaδbη, and the precedence relations between the consecutive terminals of aαb do not

contain the pattern ⋖ (�)∗ ⋗. Therefore there exists a factorization aαb = ζθ into two

possibly empty factors such that the left factor does not contain ⋖ and the right factor

does not contain ⋗.

On the basis of the above statement, the original parsing algorithm is generalized in

such a way that it may receive as input a portion of a string, not necessarily enclosed

within the delimiters #, and produces as output two stacks, one that stores the substring

ζ and one that stores θ as defined in Statement 2, and a partial derivation of aαb = ζθ
∗
⇒

a δ b . For instance, with reference to the grammar GAEFNF , which is a FNF of GAE1,

if we supply to such a generalized parser the partial string +e ∗ e ∗ e + e we obtain

ζ = +T+, θ = e and +T+
∗
⇒ +e ∗ e ∗ e+ since + ⋗ + and + ⋖ e. We call SL and SR the

two stacks produced by this partial parsing.

At this point it is fairly easy to let several such generalized parsers work in parallel:

– Suppose to use k parallel processors, also called workers; then split the input into

k chunks; given that an OP parser needs a look-ahead-look-back of one character,

the chunks must overlap by one character for each consecutive pair. For instance,

the global input string #e+ e+ e ∗ e ∗ e+ ∗e+ e#, with k = 3 could be split as shown

below:

#

1
︷︸︸︷

e + e +

2
︷          ︸︸          ︷

e ∗ e ∗ e + e

3
︷   ︸︸   ︷

∗ e + e #

where the unmarked symbols + and e are shared by the adjacent segments. The

splitting can be applied arbitrarily, although in practice it seems natural to use seg-

ments of approximately equal length and/or to apply some heuristic criterion (for

instance, if possible one should avoid particular cases where only ⋖ or ⋗ relations

occur in a single chunk so that the parser could not produce any reduction).

– Each chunk is submitted to one of the workers which produces a partial result in the

form of the pair (SL,SR) (notice that some of those partial stacks may be empty).

– The partial results are concatenated into a new string ∈ V∗ and the process is iter-

ated until a short enough single chunk is processed and the original input string is
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accepted or rejected. In practice it may be convenient to build the new segments to

be supplied to the workers by facing an SR with the following SL so that the like-

lihood of applying many new reductions in the next pass is increased. For instance

the ζ = +T+ part produced by the parsing of the second chunk could be paired

with the SR = #E+ part obtained from the parsing of the first chunk, producing the

string #E + T+ to be supplied to a worker for the new iteration. Some experience

shows that quite often optimal results in terms of speed-up are obtained with 2, at

most 3 passes of parallel parsing.

[6] describes in detail PAPAGENO, a PArallel PArser GENeratOr built on the basis

of the above algorithmic schema. It has been applied to several real-life data definition,

or programming, languages including JSON, XML, and Lua and different HW archi-

tectures. The paper also reports on the experimental results in terms of the obtained

speed-up compared with standard sequential parser generators as Bison. PAPAGENO is

freely available at https://github.com/PAPAGENO-devels/papagenounder GNU

license.

7 Concluding remarks

The main goal of this paper has been to show that an old-fashioned and almost aban-

doned family of formal languages indeed offers considerable new benefits in apparently

unrelated application fields of high interest in modern applications, i.e., automatic prop-

erty verification and parallelization. In the first field OPL significantly extend the gen-

erative power of the successful class of VPL still maintaining all of their properties: to

the best of our knowledge, OPL are the largest class of languages closed under all major

language operations and provided with a complete classification in terms of MSO logic.

Various other results about this class of languages have been obtained or are under

development, which have not been included in this paper for length limits. We mention

here just the most relevant or promising ones with appropriate references for further

reading.

– The theory of OPL for languages of finite length strings has been extended in [37]

to so called ω-languages, i.e. languages of infinite length strings: the obtained re-

sults perfectly parallel those originally obtained by Büchi and others for RL and

subsequently extended to other families, noticeably VPL [5]; in particular, ω-OPL

lose determinizability in case of Büchi acceptance criterion as it happens for RL

and VPL.

– Some investigation is going on to devise more tractable automatic verification al-

gorithms than those allowed by the full characterization of these languages in terms

of MSO logic. On this respect, the state of the art is admittedly still far from the

success obtained with model checking exploiting various forms of temporal logics

for FSA and several extensions thereof such as, e.g., timed automata [2]. Some in-

teresting preliminary results have been obtained for VPL by [1] and for a subclass

of OPL in [36].

– The local parsability property can be exploited not only to build parallel parsers but

also to make them incremental, in such a way that when a large piece of text or

https://github.com/PAPAGENO-devels/papageno
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software code is locally modified its analysis should not be redone from scratch but

only the affected part of the syntax-tree is “plugged” in the original one with con-

siderable saving; furthermore incremental and/or parallel parsing can be naturally

paired with incremental and/or parallel semantic processing, e.g. realized through

the classic schema of attribute evaluation [34,14]. Some early results on incremen-

tal software verification by exploiting the locality property are reported in [8]. We

also mention ongoing work on parallel XML-based query processing.

– A seminal paper by Schützemberger [43] introduced the concept of weighted lan-

guages as RL where each word is given a weight in a given algebra which may

represent some “attribute” of the word such as importance or probability. Later,

these weighted languages too have been characterized in terms of MSO logic [20]

and such a characterization has also been extended to VPL [21] and ω-VPL [19].

Our two research groups are both confident that those results can also be extended

to weighted OPL and are starting a joint investigation on this promising approach.
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