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Abstract

Change point detection in social networks is an important element in develop-

ing the understanding of dynamic systems. This complex and growing area of

research has no clear guidelines on what methods to use or in which circum-

stances. This paper critically discusses several possible network metrics to be

used for a change point detection problem and conducts an experimental, com-

parative analysis using the Enron and MIT networks. Bayesian change point

detection analysis is conducted on different global graph metrics (Size, Density,

Average Clustering Coefficient, Average Shortest Path) as well as metrics de-

rived from the Hierarchical and Block models (Entropy, Edge Probability, No.

of Communities, Hierarchy Level Membership). The results produced the pos-

terior probability of a change point at weekly time intervals that were analysed

against ground truth change points using precision and recall measures. Results

suggest that computationally heavy generative models offer only slightly better

results compared to some of the global graph metrics. The simplest metrics

used in the experiments, i.e. nodes and links numbers, are the recommended

choice for detecting overall structural changes.
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1. Introduction

For many years the analysis of complex networks remained a static exercise.

Now research is increasingly viewing networks as dynamic systems, where the

dynamic properties are as important as overall network structure. The compu-

tational capability to study not only large graphs, but a long sequence of large5

graphs over time has led to growing research in the field of detecting, modelling

and predicting changes in complex networks [1, 2, 3, 4, 5, 6, 7]. The focus of this

paper is on the problem of change point detection, which is a form of dynamic

anomaly detection that has a long history of study in traditional time series

datasets [8, 9, 10, 11, 12, 13].10

There are many detection algorithms to find individual anomalies in static

graphs [2]. These focus on the more traditional form of an anomaly that involves

finding one unusual data point or node. The motivation behind this paper stems

from the growing field of research that uses generative models to study change

point detection in dynamic networks [14, 15, 3, 4, 6, 1]. Generative models15

are ways to probabilistically represent network data into sets of communities or

hierarchy. It offers a potentially rich representation that can monitor smaller or

subtle changes happening in sub-sections of a graph.

As a new area of research there is a need to establish the best ways to model

the change point detection problem. There is also a lack of understanding in20

the generative model space of why one type of model should be selected over

another. The aim of our research has therefore been to critically review the

existing approaches and conduct an experimental analysis exploring different

potential network metrics that can be used to detect changes in such complex,

dynamic networks.25

The paper begins with a review of the related work in Section 2 that provides

a discussion on change point detection and the use of generative models in this

research area. This is followed by Section 3 describing the metrics used in
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the experimental analysis. The datasets, experimental set up, the results of

conducted experiments and the related discussions are presented in Section 4.30

Finally, Section 5 provides the conclusions and highlights some identified future

research directions.

2. Related Work

The problem of Change Point Detection (CPD) historically stems from re-

search assessing classical time series data to identify a change in the underlying35

mean or distribution of a given variable. Changes can be identified from calcu-

lations that measure the posterior probability of a change in monitored param-

eters. Such techniques have been successfully applied to many engineering and

control problems to identify faults in systems [8, 13]. The overriding aim for

CPD research, in the field of complex networks, is to identify a point in time40

where the graph exhibits a difference in behaviour. This time point can then

be analysed to uncover an underlying cause.

Change Point Detection in complex networks is often tied to the field of

anomaly detection. Both research areas use similar methods that exploit the

existence of communities in graphs to establish unusual behaviour [2]. As a45

relatively new area of research there is no leading methodology used to conduct

CPD in networks. According to a common methodology for CPD using time

series analysis, the first step should be a preliminary investigation of the best

way to model the problem followed by a selection of the best variables to be

used as change indicators [8].50

From the literature we find that change point and anomaly detection research

will often use generative network models as a way to model the problem on a

complex network. Generative models provide a well-recognised way of finding

community structures or hierarchy in a graph with the additional benefit of using

probabilistic values. Though most CPD studies agree on the use of generative55

models in this research area, they do not agree on any specific one to be clearly

better than the others.
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2.1. The Change Point Detection Problem

In the context of statistical methods employed, Basseville et al. [8] define

three main problem areas in CPD:60

– On-line-detection, where it is required that the change be identified as

soon as possible to near real time. In the context of control problems this is

often the main aim. This would ensure any faults in a monitored system caused

by an unforeseen change can be highlighted instantly. This method, however,

suffers from the issue of false alarms (false positives) where what may appear65

to be a change was only an anomaly.

– Off-line hypothesis testing, where the aim is to maximise the trade off

between correctly identified change points and false alarms. This is often used

as a retrospective analysis. This method has been often used as evidenced in

the literature reviewed in the following sections.70

– Detecting the exact time of a change, which can be used in combi-

nation with the above two approaches but where only one change point is to

be discovered and it is assumed that no other change has taken place within

the analysed section of data. This would be very important to a more time-

sensitive application (on-line analysis) or where the real time detection is not75

important (off-line detection) but the exact moment of change is needed for

further analysis.

2.2. Change Point Detection Methods in Time Series Data

There are well developed methodologies for finding change points in tradi-

tional time series data, where a metric is monitored over a number of time bins80

and evaluated for change. There is a number of methods utilising different data

mining techniques which broadly search for abrupt change in the mean or vari-

ance of the monitored variables/data. One of such methods, which is used in

our experiments, is a Bayesian Change Point (BCP) detection that works under

the assumption that the underlying sequence of time series data can be parti-85

tioned into a sequence of blocks. Within each of these blocks the data exhibits

behaviour described by a set of parameters whose values do not change between
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blocks. BCP techniques often cite the use of product partition models which

are defined based on the assumption that observations within each random par-

tition have independent prior distributions [10]. The number of blocks in the90

data is unknown and is randomly sampled using the Monte-Carlo technique [9].

The main metric to determine the change event is the posterior probability of

change that is equated to an increasing change in a given parameter between the

defined bins [11]. [12] is a popular, more recent study that tackles the change

point problem from an on-line perspective with time series datasets. The work95

is based on the previously mentioned assumption that the sequence can be di-

vided into partitions where the places between the partitions are considered as

potential change points. The on-line algorithm is constantly updating when

new data point is available and after this event the posterior probability of a

change is calculated. If this is not considered to be a point of change the com-100

putation gets added to a ’run length’ which is the time since the last observed

change. The probability of a change increases as the run length increases. The

calculation of the probability only considers data within a run length.

2.3. Generative Network Models and their applications in Change Point Detec-

tion Research105

Generative models are usually found in exploratory network analysis and

modelling where the goal is to identify interesting structural patterns. They are

defined in [16] as a structured probability distribution over entire graphs. In

the case of networks, generative models can be used to either produce graph

simulations, or ways to represent data in the form of community structures.110

The benefits come in large networks as they provide an ability to capture and

group individual nodes without any prior knowledge of group labels.

Generative network models are the most often used in community detection

[17, 18]. We will briefly discuss some research from these areas as a way to

describe the different models, but our primary focus is how they are used in115

change point and anomaly detection problems. We note that there is a clear

difference in using models to detect communities than to detect change. In the
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first case, groups are identified specifically from members of the graph exhibiting

common connective behaviour while a change is identified when groups or nodes

behaviours no longer conform to the group structures. Of course, a number of120

approaches have been proposed to detect dynamics of the communities and

their evolution over time [19], [20], [21], and [22]. Many of the community

detection methods find groups by optimizing selected metric (e.g. modularity

[23] or modularity density [24]) and apply this method to different snapshots of

a network. Finding differences between those metrics from one time window to125

another can be use to detect changes in a complex network.

2.3.1. Stochastic Block Models (SBM)

SBMs are one of the most popular generative network models [25]. Wang

et al. [15] provides an example of how an SBM can be used in a change point

detection. They use the model to infer the communities of the Enron email130

network. They do not use the model directly to detect change, but as a basis to

conduct scan statistics. Scan statistics is a commonly used method in anomaly

detection research, which uses the process of ’scanning’ smaller sections of the

graph to measure the changes compared to recent witnessed behaviour [26].

The problem not addressed in this research, is that although they use dy-135

namic datasets, they use a restrictive application of the SBM representation.

The original B group memberships assigned to nodes at the beginning must

remain fixed throughout the algorithm, and only the probabilities of the mem-

bership matrix are allowed to change over time. We foresee a problem with the

inflexibility to account for major structural change as there may be concept drift140

in the community structure, where an individual vertex or group may change

entirely or an entire block may become obsolete if nodes disappear over time.

Karrer and Newman [25] raise another issue with the inference of SBMs,

finding in many cases the model lacks the ability to encapsulate the important

unique features of different graph datasets leading to radically incorrect struc-145

tural interpretations. They propose an extension to the model that accounts

for the degree distribution in the inference method and find in many cases this
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is a sufficient improvement on commonly used networks. This extension is sup-

ported by other researchers [27] who find in most cases the degree adjusted

model should be preferred to the basic version.150

A recent study [3] has been conducted using change point detection methods

with the degree adjusted block model. These models and associated methods

have been praised due to their ability to produce maximum likelihood estimators

of the different parameters that characterise the model, which can be used to

monitor a change. The ideas for monitoring change are based around considera-155

tions of what aspects of change in these parameters would need to be introduced

for a graph to exhibit a difference in behaviour. The method is based on three

known parameters of an SBM used in [28] for the block model selection prob-

lem. Each of the parameters has the ability to model different types of change.

For instance the degree parameter (θ) reflects a node’s tendency to connect.160

Changes in the degree parameters have the ability to model changes in the in-

teraction rates of the communities. It is later used in our study as one of the

considered global statistics that can measure the overall interaction of the graph

nodes. Changes to the community labels have been discussed, though they have

not been used in the experiments with real-world datasets, only choosing data165

where the community labels are known a priori. This is often not the case in

real-world networks [25].

There have been many more recent developments that have adapted the

SBM to incorporate or to account for different witnessed graph structures and

increasing complexity. We will discuss some of these models in detail and their170

usages in dynamic network research in the next section. The degree adjustment

used in the stochastic block model can easily be, and is often, also applied to

these other block model extensions.

2.3.2. Mixed Membership and Other SBM’s

The major trend in the improvement of anomaly detection in networks is175

to account for the dynamic nature of community behaviours. Rossi et al. [4]

find that accounting for change is key in understanding the dynamics of graph
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structures. They take inspiration for their graph based dynamic anomaly detec-

tion approach from [5], who developed a dynamic and mixed membership SBM

model. Mixed membership models allow for a node to become a member of up180

to all B groups to a different degree represented by a mixed membership vector.

In [4], it has been established that this mixed membership vector is the

most important representation of the changes to the graph over time and a

model is proposed which tracks this behaviour. This study differs from other

CPD methods we reviewed as it focuses more on identifying the time points for185

individual node anomalies rather than any drastic changes in a whole community

structure. Methods taken from [29] are used to establish node roles from the

structural features that go beyond the use of membership probability. In many

respects the ideas are not wholly suitable for our intended experiments as to

identify major events of change we must in principle look at the entire structure.190

However in spite of such differences it does offer interesting extensions on top of

the previous algorithms, such as the model’s ability to estimate future behaviour,

which performs well in tracking the underlying trend of the data.

Another example of SBM accounting for dynamic behaviour is found in [6]

where the layered SBM models are used for modelling complex networks. It is195

shown that networks do not only possess a single type of pairwise interaction,

rather a complete complex system encompasses several layers of interactions

that can also help with interpreting changes in time. This paper formulates

a generative network model of layered networks that can be generalised for

several variants of the SBM incorporating hierarchies, overlapping groups and200

degree-correction in addition to a layered structure.

Peixoto [6] suggests that dynamic networks should be viewed as a special

case where layers start their existence in networks at a specific time based on

the value of the edge co–variants. Nodes are assumed to belong to all layers

but group membership can depend only on the activity of the group at any205

given time. They give the opportunity to increase the complexity of the layered

model, as degree corrections or mixed membership vectors can be separately

specified. They find that the best way to model the structure is in a sequence of
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small time bins (each bin being a layer) similar to the ideas discussed in section

2.2. The interpretations between layers should be grouped together where there210

is similar behaviour, and any large differences between these groupings identify

a change point. They measure the change in activity by the probability density

of an edge being present, which reveals the increases or decreases in activity.

The result is a time series sequence of metrics that can then be analysed.

2.3.3. Hierarchical Graph Models215

Hierarchical graph models were introduced in [30] and developed further

in [31], where the models were used for link prediction. In these studies the

hierarchical structure of a graph takes the appearance of a dendrogram, which

tries to explain the witnessed behaviour of communities in networks. Higher

levels are groups or communities that then split into sub-groups until we reach220

the lowest levels of individual nodes.

Clauset et al. [31] use the hierarchical structure in the link prediction prob-

lem which produces successful results in some cases compared to other popular

methods such as a degree product or shortest path [32]. Their conclusion for its

success as a predictor is based on the models flexibility to fit to a wide range of225

network structure types. They find that often group structure models do well

at portraying assortative relationships, where groups contain dense connections

with few edges between them but struggle when communities have more complex

relationships. The inclusion of hierarchy can easily portray more ’dissortative’

structures and combinations of both through the relationship portrayal in parent230

nodes as you move further up the tree.

A unique paper in the field of CPD in complex networks is the study by Peel

and Clauset [1], who establish a method close to traditional on-line CPD in time

series research. They use a Generalised version of the Hierarchical Random

Graph Model (GHRGM) which creates a similar probabilistic dendrogram of235

the original network structure established in [30]. The main difference between

the model employed here is the relaxing of the requirement that the model must

produce a full binary tree. Where in the previous structure all nodes must have
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only two children, in the generalised model a parent can have any number of

connections and therefore has the ability to show a model more likened to a240

block group or community structure.

The method for CPD uses a hypothesis test comparing the interpreted model

at a time point within a given window to a null hypothesis model which uses

previously witnessed data. They use a sum of edge connection probability for all

nodes in the current dataset, finding change points occur when the shape of the245

estimated probability distribution over a network changes significantly. Peel [1]

finds that the Bayesian approach enables the model to learn behaviour adapting

to subtle changes as the network evolves. The model is successful when applied

to real world networks, where they identify many change points in the Enron

graph that can be linked to noted events in the time period. Comparing to the250

study [15], where block models were used with a combination of scan statistics,

we can see that the adaptation to changes in the structure are a clear benefit

as they identify many more change points in a time period that is linked well

known external events.

Hierarchical models can be considered distinct models in their own right255

however they are often combined with the SBM to create a more complex ex-

pressive structure but have seen no evidence of the use of this combined version

of the model for change point detection or anomaly detection problems.

2.3.4. Critical Review of Generative Network Models

We have discussed benefits of the generative models in CPD and other re-260

search topics through their ability to portray important structural features rele-

vant to the problem space. Here, we address challenges that are often highlighted

in the literature related to choosing and inferring generative model structures.

Jacobs and Clauset [16] claim that the model selection for generative-network

models remain an open challenge not only in the context of our change point265

topic, but in the usage of models as a whole. For instance the decision of when

to use an SBM with or without degree adjustment is still debated. They find

many proposed methods to decide between models do not always work, and that
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failure may be due to inappropriate assumptions made.

Peixoto [27] addresses the problem that more complex models are more270

favoured by some statistical performance tests due to the over-fitting. They

propose a method that aims to choose the best model fit while minimising

the amount of parameters needed to be estimated. This method produces an

entropy figure that can be used to measure description length of the model fit

to the data. A lower entropy figure would signify that the model is better fit for275

the data. It is also found using this entropy measure that often more complex

block models (e.g. with overlapping MM groups) are better only in a small

number of cases. On the other hand, the previously mentioned block models

with a degree correction are almost always favoured. They conclude it might be

the case that individual node properties are equally important as group/block280

connection properties in the case of network formation.

In [16] authors relate the problem of model selection to that witnessed in

general clustering algorithms. [33] suggests that the choice of clustering algo-

rithms need not be chosen solely on the results of a significance test but is also

related to the end use of the clustering application. [1] discuss the ability for285

their algorithm using the HRG model to be replaced by any other probabilistic

model structure. They also offer the view that the HRG is very suitable in the

CPD problem domain due to the previously mentioned benefits of adaptability

to all kinds of complex network structures. By comparing the performance of

two different types of models we might be able to discover if there are proper-290

ties in the networks or in the problem space that make certain types of models

better than others.

In some cases in change point or anomaly research there is a failure to

address the reasoning behind the model selection compared to the other possible

interpretations available. This may possibly be due to the still early stages295

of such research and authors are searching for general solutions rather than

problem specific applications. This presents an opportunity to measure the

suitability of generative models when applied to different real world problems.

By conducting controlled change point detection experiments on different types
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of real world network datasets modelled with different generative models we may300

find conclusions on the matter if choice of model effects the ability to identify

changes in dynamic graphs.

2.4. Summary of the literature

When analysing changes, an obvious first step would be a review of metrics

that give an overall understanding of the graph behaviours like some of those305

used in our experimental analysis. Previous research suggests [34] that metrics,

such as density and clustering coefficient, tend to be stable over time. It would

be interesting to view how these metrics perform in a change point setting

compared to the complex topology metrics that can be extracted with generative

models. It might be the case that overall properties offer too broad a view, and310

are not able to account for the more subtle changes in group dynamics that

generative models have been praised for.

The previous research reviewed in section 2.3.4 has highlighted some con-

cerns when working with generative network models, which need to be overcome

to effectively use them. One of the key issues is their computational complexity315

which combined with the requirements of dynamic analysis of large, complex

networks may render them infeasible to apply. It should be noted that the

global network statistics discussed, among others, in [34] are much more com-

putationally efficient. Additionally there is no preferred method for choosing

between generative models in a change point detection problem which we have320

attempted to address in our study.

The main reason behind the choice of generative models in change point

detection is their effective way of representing communities in a probabilistic

manner. The parameters produced by SBM’s can be effectively monitored for

changes. These for instance include edge connectivity matrices and overall num-325

ber of blocks. However, we found that the datasets that are often used have

community labels already known or alternatively remain fixed during the anal-

ysis. Leaving labels fixed over dynamic graphs may be too restrictive to learn

about change points if major concept drifts happen in the analysed period. The
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complexity of SBMs particularly for the more developed extensions reviewed in330

sections 2.3.2 and 2.3.3, have a tendency to over-fit, and this should be analysed.

The method established in [1] is one of the more developed CPD techniques

for a generative model providing a clear methodology based on traditional time

series Bayesian change point analysis. It also avoids the problem often found

in block model research and does not force any fixed labels on to nodes. The335

analysed metric for change, the sum of all edge probabilities will therefore be

used in our analysis.

Many of the traditional change point detection techniques were utilised and

adopted for the change analysis in networks. Due to the difference in data

structure there is a potential loss of important information by transferring the340

network structure (rich representation) into a single metric (simplistic represen-

tation of a complex phenomena). However, as in this study we are interested

in extending our knowledge into which of many possible graph metrics are the

most suitable for modelling changes in networks and particularly the change

point detection task, the identified approaches used in time series analysis have345

been found to be appropriate to our goals.

3. Selected metrics for change point detection

This section presents the selected network statistical indicators and genera-

tive models’ parameters that have been used in the experimental analysis. The

justification for selection together with a brief descriptions are provided below.350

Summary of those metrics, together with formulas used to calculate them, is

presented in Table 1.

3.1. Network Properties to Analyse the Network Structure

The used global metrics related to the network structure are:

– Network Size (N): is the number of active nodes during the given time355

period. This was used to give an indication if there is any shift in overall network

size and point to any potential major shifts in groups (or blocks) that could be
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uncovered in generative models. For instance in the case of many disappearing

nodes, this could have a direct effect on group dynamics.

– Average Clustering Coefficient (ACC): The clustering coefficient360

gives an indication of how closely connected a graph is. It could be assumed

when applying this to change point detection that a shift in the clustering coeffi-

cient would indicate a change in the dynamics of the graph. The global method

explained in [35] is used to calculate this metric.

– Density (D): The network density is a metric that represents the ratio of365

the number of edges in the graph to the total number of potential connections.

So, similarly to the network size, changes in number of edges may indicate

evolution of communities.

– Average Shortest Path (ASP): The average shortest path measures

the smallest number of connections between all potential pairs of nodes in the370

graph. This again gives an idea of the connectivity of the graph and the closeness

of groups ([35]).

3.2. Generative Network Models & Parameters for the Analysis of Network

Structures

Although there have been a number of successful approaches in the area375

of change point detection in complex networks that model the problem using

variations of Stochastic Block or Hierarchical Block Models, no comparative

study was performed to determine why one should be preferred over another.

For this reason this research utilised two variations of block models to allow for

comparison of the techniques. The selected models are:380

* The degree adjusted Stochastic Block Model (SBM). For the SBM

inference the primary task after group creation is to create the membership

matrix, which is the inferred sum of edge-counts between and within groups.

Please note that in the literature a representation of the block matrix that is

more commonly used is the probability that two nodes in different groups will385

connect [6]. However, the implementation used in our experiments employed

edge-counts as opposed to probability, and has been found to be equally rep-
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resentative to the probabilistic method. The membership matrix is estimated

once group assignments have been equated and is randomly sampled and pro-

duced with the MCMC algorithm. For a degree adjusted model this includes390

the additional parameter K on to each vertex, which is the degree sequence

of a node. This provides a restriction on group memberships by applying an

average degree target that each group must obey. This has the effect of ensuring

high-degree nodes are more likely connected to low degree nodes in a group.

* The variation on the Generalised Hierarchical Random Graph395

(HRG) model. In the model used for the experiments each layer in the nested

structure is a distinct block model. The nodes in the higher levels represent the

multiple groups in the lower levels, and their connections. As in Peels model

[1], this is more flexible to a hierarchical random graph, as all nodes are present

in the structure and no restrictions are placed on the number of children a400

parent node can have. Please note that the model is again, like with the block

model, not probabilistically inferred like in Peels method, but the connectivity

is determined by an edge count.

Parameters extracted from the above two types of generative models to be

analysed in the CPD setting and a brief discussion of why they were included405

are described below.

– Entropy (S): is used to measure the description length of the model,

given the current data structure. It has been developed as a way to choose

between different model structures [36]. Entropy’s value is extracted for each

time point and could reveal a change in the complexity of the model as the graph410

structure changes. It is derived from the size of network and any increases

in the count of edges or nodes will affect the entropy figure. Other effecting

values are the number of blocks and connectivity matrix, the more complex

the decided graph structure, e.g. a larger number of blocks with ’dissortative’

connection probabilities (edge counts) would assume a larger description length415

and therefore a larger entropy value.

– No. of Blocks (B): The number of blocks (B) in a network dataset refers

to the number of communities established by the inference methods using the
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Table 1: Measures for change point detection used in the experiments

Metric Formula

Network Properties

Network Size N

Average Clustering Coefficient ACC = 1
N

∑N
i=1

2Mi

ki(ki−1)

Density D = 2E
N(N−1)

Average Shortest Path ASP =
∑

s,t∈N
d(s,t)

N(N−1)

Notation: N – no. of nodes; Mi – no. of connections between

neighbours of node i; ki – degree of node i; E – number of edges

Generative Network Models Parameters

Entropy S = − ln P (G|θ) − ln P (θ)

Number of Blocks B

Edge Probabilities γ =
∑

lnP (Gt|Tt, θ)

Hierarchy Layer Membership HLM =
∑

L × B

Notation: G – graph; θ – the model parameters of membership matrix

made up of B number of blocks and E number of edges between them;

Gt – graph at time point t; Tt – model used at time t (block or hierarchical

structure); L - layer figure
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recorded connectivity patterns [37]. The number of blocks is randomly sampled

and calculated by determining the best fit using the additional model parameters420

(the connectivity matrix). The number of groups is likely to change over time

and major changes from the previously observed behaviour. For example a

huge increase in block numbers could signal an increasingly random network or

a more dense network structure.

– Edge Probabilities (γ): Edge probability is the likelihood that two in-425

dividual actors in the network will connect. For a block model this is based on

the connectivity matrix and in the case of hierarchical models this is determined

through the hierarchy levels. Hierarchical models have most often been used in

edge prediction methods [31]. This probability is utilised in [1] to determine

change points in their on-line algorithm by calculating the sum of the probabil-430

ities of all the current pairs in a time window, normalised by the sum of edge

probabilities given the historical data.

– Hierarchy Layer Memberships (HLM): The HRG model has a pa-

rameter, which is calculated based on a number of layers in the hierarchy and

number of groups within each layer. To determine how many groups are at each435

level, a separate block model is run on each layer. This structure could also be

monitored over the time period in a similar way to the number of blocks in an

SBM. HLM allows us to capture any changes in the blocks and layer structural

complexity.

4. Experimental Analysis440

4.1. Datasets & Data Preparation

The experiment was conducted on two different datasets that are often used

in network change point and anomaly detection research. Networks extracted

from those datasets are: (i) MIT reality mining social proximity network [38]

and (ii) Enron email network [39]. In order to analyse the dynamics of selected445

graph metrics and parameters of generative models both networks were split

into time windows. When choosing size of time window there is a risk that the
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change may not be fully developed if the time window is too small. On the other

hand, a change can be completely overlooked if too large a window is selected.

To be comparable with other studies (e.g. [1]) the datasets were split up into450

weekly time windows.

4.1.1. MIT Reality Mining Network

MIT reality mining social proximity network was first collated and described

in [38]. This dataset contains data from 100 students and staff using blue tooth

to study the social patterns of interaction over the course of nine months. This455

dataset has a number of known groups, such as freshmen or staff, however

we choose to use the modelling search technique to establish groups outside

of these pre-defined labels. The known events in this dataset correspond to

common events in most school terms, such as exam periods, Christmas and

spring breaks. Figure 1 shows the change points in MIT network (nine in total)460

against which the selected metrics are tested during the experiments. As an

example, in Figure 1, the line represents the changes in ASP over time.

4.1.2. Enron Email Network

The second dataset used was the Enron Email Network [39]. The network is

created from a collection of emails in the Enron company from 1999–2002 which465

contains over 600,000 emails from the inbox of 151 different users. Relationship

edges represent an email being sent to or from different accounts. This dataset

is often used to detect anomalies due to a number of events that happened

that eventually led to the company filing for bankruptcy. Due to computational

constrains, we used a smaller portion of the dataset, including years 2000–470

2002. We have estabished a set of events that includes e.g. major company

announcements, stock price increase, mass redundancies and CEO changes that

were available at [40]. A chart showing these events (31 in total) plotted against

the number of active nodes in the graph during the corresponding week is shown

in Figure 2.475
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Figure 1: ASP over time in MIT network; also showing change point labels

Figure 2: Active Nodes over Time Enron Dataset Jan 2000–June 2002: Including Change

Point Labels
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4.2. Experimental Set Up

Both datasets were cleaned and divided into time windows of size one week.

The following steps were repeated for each of the time windows:

• Create graph representation of the data for windows t: Gt.

• Extract Global Metrics from Gt: number of active nodes (size of the net-480

work), average clustering coefficient (ACC), density, average shortest path

(ASP).

• Create Generative Model Mt = P (G|θ) of Graph Gt using MCMC sam-

pling algorithm (for both SBM and HRG).

• Extract the Generative Metrics from the Mt of each model. This includes:485

Entropy, Sum of Edge Probability, No. of Blocks, and Hierarchy Layer

Membership (Layers).

Results obtained using this procedure were analysed. First, the enumerated

metrics were discussed and correlation between them investigated. The second

part of analysis aimed at evaluating the ability of those metrics to measure490

change. After the metrics were collected at pre-established time points using the

above process, the results produced a dataset of all given metrics. The next step

was to establish a way to determine if these metrics provide a good indication

of changes during these time points. The validation part of the method needed

to compare the extracted results against the ground truth known events. In495

order to establish which changes were detected by the network metrics, first

a Bayesian change point analysis was performed on each graph metric using

Bayesian off-line change point detection [41]. This technique was chosen as it

provides an output values between 0 and 1 rather than the restrictive change or

no change labels that other change point methods use. By using the probability500

output, it allowed us to use our own threshold. A time period was classified as

a change point if the posterior probability value was greater than the average

posterior probability in the dataset for a given metric. This was then compared
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to a binary sequence representation of known events (where 1 indicates an event,

0 no event).505

The performance of all the explored metrics; Size, Density, ACC, ASP,

Entropy, Sum of Edge Probability, Number of Blocks and Hierarchy Measure

against the known external change points is calculated using the Precision and

Recall approach [42]. A point was classified as a true positive if the posterior

probability is above specified threshold and a ground truth event has occurred510

within a varying time period of +/- 0 to +/- 2 weeks. Those results show

the top performing metrics and allow to establish which metrics are related to

change. Additionally, the computational time of the experiment is analysed. It

is an important consideration as it provides a view on whether the notoriously

time heavy generative models offer more value to the results obtained by using515

traditional global statistics which are comparatively much easier to calculate.

4.3. Descriptive Statistics and Correlation Matrices

Metrics calculated for each time window were firstly analysed with the use of

descriptive statistics. The analysis is supported by a correlation matrix between

all the metrics. We then move onto a review of the performance of each metric520

in the context of a change point detection setting. This was measured using

the Precision and Recall rates calculated from the posterior probability of a

change in the distribution of the network metrics, against a set of classified

known events. We also consider the computational cost incurred when using

generative models.525

4.3.1. Results

As described in the Experimental Setup section, each of the chosen metrics

(Size, Density, ACC, ASP, Entropy, Sum of Edge Probability, Number of Blocks

and Hierarchy Measure) was extracted from a network snapshot at weekly in-

tervals for the two datasets (MIT and Enron). This created a collection of time530

series data which were analysed using descriptive statistics (Tables 2 and 4).
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Table 2: Descriptive Statistics: MIT Network

Statistic Mean St. Dev. Min Max

No. Nodes 61.56 18.72 8 85

No. Edges 416.09 271.40 8 941

Density 0.20 0.06 0.12 0.30

ACC 0.51 0.08 0.33 0.60

ASP 2.01 0.30 1.27 2.64

SBM: Blocks 32.15 15.78 3 59

SBM: Entropy 8,016.33 5,668.24 185.95 18,294.35

SBM:
∑

Probs. −482.65 308.19 −1,155.71 −14.34

HRG: Levels 506.09 308.64 50 1,017

HRG: Entropy 4,754.34 2,887.94 158.51 10,320.35

HRG:
∑

Probs. −466.26 294.62 −1,059.19 −9.17

Table 3: Descriptive Statistics: Correlation Matrix of MIT Network Metrics

H
R

G
:∑

P
ro

b

H
R

G
:E

n
tr

o
p
y

H
R

G
:L

a
y
er

s

N
o
.

N
o
d
es

N
o
.

E
d
g
es

D
en

si
ty

A
C

C

A
S
P

E
v
en

ts

HRG:
∑

Prob 1 -0.984 -0.960 -0.889 -0.993 -0.484 -0.666 0.107 -0.141

HRG:Entropy -0.984 1 0.970 0.871 0.991 0.498 0.664 -0.100 0.156

HRG:Layers -0.960 0.970 1 0.864 0.967 0.468 0.630 -0.078 0.086

No. Nodes -0.889 0.871 0.864 1 0.874 0.079 0.552 0.151 0.137

No. Edges -0.993 0.991 0.967 0.874 1 0.508 0.682 -0.106 0.157

Density -0.484 0.498 0.468 0.079 0.508 1 0.501 -0.475 0.215

ACC -0.666 0.664 0.630 0.552 0.682 0.501 1 -0.022 0.231

ASP 0.107 -0.100 -0.078 0.151 -0.106 -0.475 -0.022 1 -0.193

Events -0.141 0.156 0.086 0.137 0.157 0.215 0.231 -0.193 1

22



Table 2, shows a summary of the metrics for the MIT dataset, and Table

3 shows a correlation matrix of these metrics. The descriptive statistics show

that MIT is a highly connected graph. The average number of blocks extracted

over the time period was relatively high compared to the number of nodes in535

the network, suggesting that the graph is made up of mostly small communities.

The ASP is small and the ACC measure on average is 0.506 which suggests a

highly connected small-world like network.

The Correlation matrix for MIT metrics reveals two different groups of met-

rics. Firstly generative models and network size indicators (no. of nodes and540

edges) which are all very well correlated. The second group, the remaining

global metrics, have little to no linear relationship with the first group or each

other. Looking at the descriptive statistics (Table 2) one can see that compa-

rably the global graph metrics have a lower standard deviation (std) then the

others which suggest a more stable trend over time.545

Table 4: Descriptive Statistics: Enron Data

Statistic Mean St. Dev. Min Max

No. Nodes 3,068.773 2,031.773 27 10,157

No. Edges 5,228.833 3,963.222 31 20,148

Density 0.003 0.009 0.0004 0.088

ACC 0.131 0.039 0.042 0.246

ASP 1.361 0.131 1.136 1.760

SBM:Blocks 18.826 11.340 1 56

SBM: Entropy 46,405.460 35,329.750 367.955 187,670.200

SBM:
∑

Probs. 23,755.490 19,122.730 190.397 94,406.040

HRG:Layers 318.598 292.994 5 1,466

HRG: Entropy 45,206.980 34,046.610 367.955 179,330.500

HRG:
∑

Probs. 23,144.730 18,515.700 190.397 91,508.410

Table 4, shows a summary of the metrics for the Enron dataset, and Table

5 shows a correlation matrix of these metrics. The descriptive statistics show

that the Enron network is a sparse structure, reflected in the average number

23



Table 5: Enron: Correlation Matrix
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∑

Prob 1 -0.978 -0.884 -0.974 -0.983 0.310 -0.048 0.639

SBM: Entropy -0.978 1 0.928 0.988 0.994 -0.323 0.043 -0.658

SBM: Blocks -0.884 0.928 1 0.922 0.921 -0.358 0.079 -0.664

No. Nodes -0.974 0.988 0.922 1 0.987 -0.365 0.013 -0.673

No. Edges -0.983 0.994 0.921 0.987 1 -0.325 0.091 -0.658

Density 0.310 -0.323 -0.358 -0.365 -0.325 1 -0.136 0.167

ACC -0.048 0.043 0.079 0.013 0.091 -0.136 1 -0.006

ASP 0.639 -0.658 -0.664 -0.673 -0.658 0.167 -0.006 1

of blocks for this dataset relative to the number of nodes. The average number

of active nodes is over 3,000 but the number of communities is only 19, which550

means that the graph contains a small number of large groups. The peak in

group size is also aligned with peaks in the number of nodes, edges and all other

generative models metrics. This peak is around the time that Enron begins

shredding information and eventually files for bankruptcy. The two entropy

measures for the HRG and the SBM have very similar values (see Table 4. The555

HRG entropy figure is slightly lower and would suggest that this model is a

better fit for the dataset.

The Correlation matrix shows that the generative models and metric size

indicators are all correlated, and the global metrics have little or no correlation

with any other metrics with the exception of the ASP that has a higher linear560

correlation (above 0.6) with the generative models metrics. The log descriptive

statistics (Table 4) shows that this second group of metrics has a much lower

std from the mean than the generative and size metrics, which suggest a more

stable trend over time.
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4.3.2. Discussion565

Despite the clear differences in the networks structures, in terms of size,

community structure and density there are many common characteristics. The

complexity measures for the generative models, Entropy and the No. Blocks (or

layers for the Hierarchical Model), revealed that the generative model structure

experienced many changes over time. The block labels are often kept fixed570

during dynamic network analysis. However, the results support the view that

fixing group labels may put unwanted restrictions on the models. The Entropy

metric was originally developed in [6] to help decide between model adaptations,

so we can also conclude from Tables 2 and 4 that according to this theory the

Hierarchical Model is the preferred model for both datasets. This agrees with575

the literature that the HRG has the ability to provide a better fit for more

complex dissortative relationships that are most often the case in real world

graphs.

It is also apparent from Tables 2 and 4 that the HRG and SBM have very

similar average and range of values for both Entropy and Probability Sum In-580

dicators. The correlation tables find that the HRG and SBM edge probabilities

are highly correlated with each other (see Table 6 for correlation between gener-

ative metrics). The SBM and HRG entropy have a correlation of 1, suggesting

that the sampling algorithm produces representative samples. The three gener-

ative metrics (for both the SBM and the HRG) are highly correlated with the585

number of edges in the graphs for both datasets. The reason for this is probably

that all of the metrics heavily rely on the number of edges in their parameter

estimation.

In [43] authors show that global graph metrics often remain stable over time.

Our results agree strongly with this conclusion, as looking at Table 4 two of our590

global metrics (ASP and ACC) have the lowest std figures by far in comparison

to the other metrics. The exception to this is the Density metric, however this

figure is stable throughout the time and was only subject to variance at the

beginning and end of the experimental time period. The correlation Tables
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Table 6: Enron: Generative Model Metrics Correlation Matrix
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−0.872 0.896 1 −0.870 0.900 0.905
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Layer

complexity

0.987 −0.979 −0.870 1 −0.978 −0.884

HRG: En-

tropy

−0.982 1.000 0.900 −0.978 1 0.928
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∑

of

Edge Prob.

−0.896 0.927 0.905 −0.884 0.928 1
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Table 7: MIT: Total Identified Change Points

Metric No. Change Points Threshold

Nodes 7 0.159

Edges 8 0.106

Density 7 0.147

ACC 7 0.081

ASP 7 0.083

SBM: No. Blocks 9 0.236

SBM:Entropy 6 0.169

SBM:
∑

Probability 9 0.102

HRG: Layers 7 0.153

HRG: Entropy 10 0.129

HRG:
∑

Probability 9 0.094

3 and 5 also reveal that our global graph metrics (ASP, ACC and Density)595

have a smaller degree of relationship to the other metrics, as the correlation

between them tend to be below 0.5. In the MIT dataset the ACC has a stronger

relationship (above 0.6) with the generative model metrics and number of edges.

In the Enron correlation matrix the ASP shows a stronger relationship with the

size and generative metrics of (again) above 0.6.600

This section gave us a general understanding of the trends over time for each

calculated metric suggesting that they may be useful to measure change. For

instance many of the metrics for the MIT dataset drop (or peak in the case

of the Sum of Edge probabilities) during the Christmas period. In the Enron

graph a similar peak happens during the Mid Sep-Mid Oct 2001, in the weeks605

prior to Enron filing for bankruptcy.

4.4. Analysed Metrics as Indicators of Change

4.4.1. Results

The validation results for each metric are shown in Tables 8 and 10. Firstly

focusing on the MIT results in Table 8, the best performing metric was the610

HRG:
∑

P with a Precision score of 0.55, and one of the highest Recall of 0.625.

It is the best in terms of accuracy when the window size is 0. Once the window
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Table 8: MIT:Precision (P) & Recall (R) Results ((n) = window size)

Metrics P R P(1) R(1) P(2) R(2)

Nodes 0.29 0.25 0.86 0.27 1 0.26

Edges 0.37 0.37 1 0.36 1 0.30

Density 0.29 0.25 0.71 0.23 0.86 0.22

ACC 0.29 0.25 0.71 0.23 0.71 0.18

ASP 0.14 0.12 0.86 0.27 0.86 0.22

SBM: Blocks 0.22 0.25 0.78 0.32 0.78 0.26

SBM:Entropy 0.33 0.25 0.83 0.23 0.83 0.18

SBM:
∑

Prob 0.33 0.37 1 0.41 1 0.33

HRG: Layers 0.29 0.25 0.86 0.27 0.86 0.22

HRG: Entropy 0.30 0.37 0.80 0.36 0.90 0.33

HRG:
∑

Prob 0.56 0.62 1 0.41 1 0.33

size is increased to +/- 1 the Precision and Recall scores improve. Both measures

of the probability sum are able to capture all the change point values. A notable

top performing metric is also the number of edges that is able to capture all615

the change points correctly within a window size of +/-1 week. The other

generative model metrics, ACC, ASP and density all have similar results in

terms of Precision. For the largest window size, many of these metrics are not

able to improve their Precision scores from the window size of +/-1 week. The

Recall figure is low for the remaining metrics, as expected due to the impact of620

the window size. However, it can improve even with a large window, suggesting

that the gains in true positives rates outweigh the increase in false negatives.

From the mapping of change point probability over time (Figure 3) for each

metric, one can see that the biggest change point discovered was around the

week of Christmas. The other change points correctly identified are difficult625

to see in Figure 3, as they were of a much lower probability but still above

the threshold (which was set at above the average probability for the metric

displayed in Table 7). The total number of detected change points by different

metrics is shown in Table 7. The HRG entropy has identified the most change

points, more than the total number of events (which was 9). The SBM entropy630

metric identified only 6 change points, the lowest of all results and this also
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Figure 3: MIT: Posterior Probability of A Change Over Time for all Metrics. All y axes have

ranges between 0 and 1.

resulted in a low recall figure.

The Enron’s Precision and Recall results (Table 10) are more balanced than

for the MIT dataset. None of the metrics performed much better than the

others. There is a clear distinction between the performance of Global metrics635

(excluding the size indicators) and the Generative Models. The best metric for

precision was the number of Nodes, however only 35% of the total change points

have been identified. When the window size was increased to +/-1 there was

some improvement (to over 60%) for the Number of Nodes, Edges, SBM:Entropy

and HRG:Probability. For this dataset density was the worst performing metric,640

followed by the ACC and ASP, even when the window size is increased to the

highest level (+/-2 weeks). The Recall rates are all equally bad for any given

metric. The Enron dataset had a lot more change points to be identified, which

are quite evenly spread out. The change points are also not cyclical known

behaviours but one off events that are difficult to tie down to exact dates and645

times. Considering this the metrics perform very well and identify many of the

events and changes in a relatively small window of +/-1 week. When reviewing

the change points against the ground truth events in Figure 4, one can see there
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Table 9: Enron: Total Identified Change Points

Metric No. Change Points Threshold

Nodes 29 0.148

Edges 32 0.17

Density 20 0.138

ACC 29 0.07

ASP 32 0.09

SBM: No. Blocks 32 0.168

SBM:Entropy 28 0.175

SBM:
∑

Probability 27 0.16

HRG: Layers 35 0.232

HRG: Entropy 27 0.171

HRG:
∑

Probability 32 0.182

Table 10: Enron: Precision (P) & Recall (R) Results ((n) = window size)

Metric P(0) R(0) P(1) R(1) P(2) R(2)

Nodes 0.34 0.36 0.62 0.27 0.82 0.28

Edges 0.31 0.36 0.62 0.30 0.84 0.31

Density 0.10 0.07 0.25 0.08 0.30 0.07

ACC 0.21 0.21 0.48 0.21 0.62 0.21

ASP 0.22 0.25 0.47 0.23 0.59 0.22

SBM: Blocks 0.22 0.25 0.56 0.27 0.81 0.30

SBM:Entropy 0.29 0.29 0.61 0.26 0.82 0.27

SBM:
∑

Prob 0.30 0.29 0.56 0.23 0.85 0.27

HRG: Layers 0.23 0.29 0.60 0.32 0.89 0.36

HRG: Entropy 0.26 0.25 0.59 0.24 0.81 0.26

HRG:
∑

Prob 0.31 0.36 0.62 0.30 0.81 0.30
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Figure 4: Enron: Posterior Probability of A Change Over Time for all Metrics. All y axes

have ranges between 0 and 1.

are many change points of high probability. There are some change points that

none of the metrics capture during Feb to Jul 2001.650

4.4.2. Discussion

In the case of the Enron dataset the HRG performed better in terms of

both Precision and Recall when the window is small. But when the window

increases in size, the SBM metrics have higher Precision, therefore indicating

they were a better representation of the ground truth. Looking at an overall655

number of change points for Enron one can see the HRG had a higher number

of total change points (on average), which could indicate that this model can

better detect small underlying changes. As just because points are not in the

pre-defined list, it does not mean conclusively that a change did not occur. For

the MIT dataset, the HRG resulted in the best scores. It may be interesting660

to explore this result further, to discover what features present in this dataset

could be an indicator that it is suited to change point analysis. Testing this

metric on other similar datasets, either in subject or density structure, could

test if this model works well for this type of data. We were unable to conduct
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this study due to a lack of computational resources. There is also a lack of665

dynamic datasets of a reasonable size and with known events.

One of the clear conclusions is that the number of edges and nodes gave

more than adequate results for both datasets compared to the computationally

expensive generative models. The total time taken to produce Hierarchical

graph metrics for the Enron datasets was 6.4 days, with run times varying from670

30–68 minutes per model whereas counting Number of Nodes and Edges takes

seconds. Both Nodes and Edges are heavily correlated with all the generative

model metrics and have the ability to portray the structural change just as well

in the case of the Enron dataset. When it comes to portraying many changes

the generative models were able to discover more change points in total for675

the Enron data structure, however the difference was minimal. For the MIT

dataset all changes were captured with only a small window of error by the no.

of nodes and edges. When thinking about the structural changes that would

go on over a school term, this would mostly consist of people going home for

winter and summer, that would correspond to a change in these two metrics.680

Major changes to the community structure would probably be more applicable

to the Enron graph which had few very large communities. This may be the

reason why more changes were identified by the community centric generative

model metrics.

5. Conclusions and Future Work685

The aim for this research was to determine what available metrics and com-

monly used descriptive statistics are best at revealing changes in complex net-

works. The metrics (see Section 3) were extracted from weekly time windows

of two network datasets (MIT and Enron). These datasets are both commonly

used in change point detection studies and are of different characteristics and690

sizes.

Comparing the results between two models (Stochastic Block Model and

Hierarchical Block Model) reveal that all the generative metrics followed a sim-
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ilar trend over time. Both the SBM and HRG metrics were strongly correlated

to the size metrics in the graph, and their entropy figures had been perfectly695

correlated with each other. The hierarchical model did appear slightly more

sensitive to change as the metrics on average identified more change points than

the SBM. Also the average entropy figure for the HRG provided a better fit

on both datasets used in the experiment. The major downside to this model,

however, is that it is computationally heavy.700

Despite the successful results from the generative models, the computational

time taken to create them became a pointless effort when reviewing the results.

The final results showed the simplest metrics, number of edges and nodes

in the network, in most cases performed just as well at detecting changes as

the generative model metrics across both datasets. It can also be concluded705

that Density, ACC and ASP were all poor detectors of changes, as they have a

tendency to remain stable over time. They identified many changes overall, but

these were often not related to the ground truth change points.

The generative model metrics are inferred from the number of nodes and

edges, so it makes sense that they correlate so strongly and produce similar710

results. The results conclude that the hierarchical block structure offered only

slightly better representations of structural change for the two datasets. When

considering the computational effort there is no reason that generative models

should be preferred over the simple node or edge count if the primary aim is to

discover or monitor global structural change points, especially in larg networks.715

This research has pointed to a number of areas that could be further ex-

panded. One area would be changing the time granularity, to assess if a smaller

time granularity could change the results, e.g. using daily interaction rates. This

would be interesting for the Enron graph, around events of particular notoriety

(such as the point at which they file for bankruptcy). The natural extension720

would be to repeat the experiment on more datasets. As this would help test

the reliability of the number of edges and nodes as change point indicators. It

would be insightful to see if any data with similar properties give similar results.

This then has the potential to produce an on-line algorithm that could detect
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shifts in these measures. We also briefly discussed the idea of exploring more725

types of block models, namely the mixed membership SBMs. However, in the

light of the findings and the minimal difference in performance of the two model

structures tested, it would not be the highest priority.
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