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Highlights 

 A review presented based on research studies that used heart sound signals as a
biometric from inception to current status.

 A survey explaining the main common phases used in the PCG biometric systems

 Illustrating the main advantages, disadvantages, classification of the techniques used in
each phase.

 The limitations, challenges, future work of the PCG biometric system are demonstrated
in detail.

Abstract 

This review aims to present a survey of the technologies and methodologies used in the 

phonocardiogram (PCG) biometric systems. The phases used in the PCG which are explored in 

this paper include data acquisition, de-noising, extracting PCG peaks, feature extraction, feature 

reduction, classification, and evaluation. As part of this study, we performed a systematic review 

that summarizes the well-known approaches used in PCG since its inception to the current status. 

Out of 157 manuscripts available in the academic databases from 2006 until 2020, 35 primary 

studies focused on "heart sounds" like a biometric and this is related to the objective of this 

research. Out of those studies, 11 matched the inclusion criteria. The estimation performance of 

these systems is close to an acceptable level in the consideration of PCG as a biometric. The use 

of PCG signals is a promising field. Finally, the limitations and some future works are discussed.  

Keywords: Cardiac sound signals, Biometrics, Authentication,  Machine learning.  

1. Introduction

 The process of identifying the correct person before the release of the secure resources is known 

as authentication. To achieve this a counter configuring unique information is obtained by the 

person. These types of information can be divided into three main types which are knowledge, 
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by using username or password; tokens, focusing on the personal identification number (PIN), 

and based verification [1]. Biometric authentication [2] is an automatic method that identifies or 

verifies the user depending on the measurement of his or her unique physiological traits such as 

face [3], palm[4], iris[5], etc or behavioral traits such as keystrokes dynamics [6], voice [7], 

signature [8]. Physiological biometrics related to natural biological features and behavioral 

biometrics are those traits that are naturally grown to and behavioral biometrics are those which 

are learned.  

The process of recording cardiac vibrations is known as phonocardiography. The control that can 

be made on the flow of the blood is managed by two sets of valves. These sets are the 

atrioventricular and semilunar valves, and the first valve opens to let the blood flow in the heart 

while the second value opens to let the blood flow out of the heart. Those known as the sounds of 

the heart are sometimes called heart sounds or phonocardiogram (PCG). As often noted in the 

literature, PCG or heart sounds biometric is attractive because of the following advantages which 

are not shared with another type of biometrics.  

In Fig. 1 the radar plot presents a comparison between different biometrics using the seven 

parameters of measurements. Those seven measurements are universality, uniqueness, 

permanence, measurability, performance, acceptability, and circumvention. The total score for 

appropriateness is represented by the outermost right of the radar plots. The values of each 

parameter range from 0 (lowest) to 10 (highest). The area of each radar plot can be computed by 

dividing the shape into a set of triangles with the same angles [9]. The area of the plot indicates 

the strength of the biometric techniques. For example, for ECG, DNA, Face, and Iris, score the 

highest in four out of seven measurement categories. In the case of ECG biometric, it has high 

universality, uniqueness, permanence, performance, and Face as a biometric has high 

universality, acceptability, collectability and circumvention, and so on other biometrics. This is 

followed by the Ear, Gait, Fingerprint biometric as they have a maximum of three measurements 

out of seven. After that, Signature and palmprint have a maximum of two measurements out of 

seven. Voice, PCG, and keystrokes have the lowest scores, as voice and PCG have a maximum 

of one favorable measurement out of seven, and keystrokes are the weakest biometric as it scores 

poorly on almost all areas. In comparison, ECG studies the electrical mechanism of the human 

heart which consists of a set of peaks which are P, Q, R, S, and T [10]. Fiducial dependent and 
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independent (non-fiducial) are two types of ECG recognition approaches that can be highlighted 

[11]. 

 

Fig. 1.  Radar plots comparison between physiological and behavioral biometrics on seven variables. 

While the fiducial dependent methods utilize temporal or spatial features within some points in 

the ECG heartbeat, the fiducial independent methods utilize the signal holistically. On the other 

hand, heart sounds are a set of bursts and variations of varying intensity and frequency, and it 

consists of two main sounds which are S1 and S2 when the heart contracts and pumps blood. 

  The PCG signal can be formed through the contribution of blood flow and the opening or 

closing of the valves. Finally, PCG has been lately qualified for heart diagnostics and biometrics. 

PCG and ECG are the main signals that are captured from the heart, and they have their 

biometric modality. In other words, ECG and PCG have high universality, and they have a 

medium value for acceptability. and collectability. ECG has high percentages of distinctiveness, 
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permanence, and performance with a medium level of collectability, but it has a low level of 

circumvention. On the other hand, PCG has an average level of distinctiveness and a low level in 

all the remaining measurements. PCG can be deemed to be accepted as a biometric more than 

other types such as key strokes and Voice traits. We found that data acquisition is based on 

multiple online datasets for PCG as a biometric. 

 The preprocessing depends on six types of filtrations methods down-sampling, low and high 

pass filtering, energy thresholding, normalization; total variation de-noising, and wavelet-based 

de-noising.  While the segmentation is based on four types, for example, framing and 

windowing, autocorrelation, Shannon energy envelop, and zero-crossing rate with short-term 

amplitude. The feature extraction is categorized into five types of domain methods such as time, 

frequency, time-frequency, time scale, and fusion between different features. Finally, the 

classification depends on five types of classifiers defined by statistical, similarity, pattern 

recognition, neural network, and other approaches. The structure of the paper is as follows. 

Section 1 presents the introduction and outlines the background on biometric techniques. 

The contributions, search criteria, and the background on the heart and PCG signals are 

discussed in sections 2, 3, and 4 respectively. Section 5 examines the different approaches 

employed in PCG Signals which include data acquisition, pre-processing, segmentation, feature 

extraction, and classification. Section 6 presents the performance measurements, section 7 shows 

the discussion, open issues, limitations, and future directions, and section 8 illustrates the 

applications and finally, section 9 presents the conclusion discrimination.  

2.  Heart and its Sound Signal 

Four main chambers compose the human heart [12]. These are the right and left atrium and right 

and left ventricle as shown in Fig.2. The heart's right part is much smaller with less myocardium 

in their heart wall. Based on the two circulatory loops' size, there is a variation and difference in 

the main function of the left and right sides. Blood is pumped to the extremities of the human 

body by the heart's left side, while the human heart's right side operates as a pulmonary 

circulation to the lungs [12]. The functionality mechanism generates acoustic signals and 

vibrations that can be gained and obtained over the wall chest. The normal heart sounds are 

defined as "lubb" and "dupp", and they are caused by pushing blood on the valves of the human 

heart as shown in Fig. 3. 
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Fig. 2. Normal Heart Structure. 

 

 

Fig 3. (a) The diastole (S1) and systole (S2) cycle in the heart [14].  

The "lubb" sound is known by S1 and it comes first in the human heartbeat and it is longer than 

that of the two heart sounds. Lubb is generated by closing the AV valves that are located at the 

beginning of the ventricular systole. The "dupp" sound is also known as S2 and it comes next in 

the human heartbeat, and it is a shorter and sharper sound that is resulted from the closing of the 

semilunar valves at the end of the ventricular systole. The pattern of S1-S2 or lubb-dupp is 

repeated in the heart. Some problems or different sounds such as gurgling or liquid rushing in the 

heart may indicate problems in the heart that cause defects in the ventricular or atrial or leakage 

in the valves. Heart sounds can be used in a lot of applications for diagnosis or biometrics. In this 

survey, we will explore the role of heart sounds as a biometric technique, studying its role in the 
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identification and verification processes [13]. Heart sounds can be used as a biometric-based on a 

lot of advantages. The most important merit is that the heart sound can be captured only from a 

living human body, therefore, it is difficult to forge or steal someone's PCG [15, 16]. Heart 

sounds are measured non-invasively in their entirety while being socially acknowledged. It is 

quantifiable and has uniqueness and vulnerability [17]. The heart sounds biometric system's main 

advantage, however, is the high security it provides because the sounds of a person's heart cannot 

be forged. PCG signals have several characteristics which support this. For example, heart 

sounds are one-dimensional signals, and heart sounds are easy to process and have low-

frequency characteristics. 

3. History of PCG Biometric 

Robert Hooke (1635-1703), is deemed to be the first English polymath to determine the power 

potential and the diagnostic of cardiac Auscultation. Afterward, Ren Laennec (1781 -1826) 

discovered the stethoscope in 1816, and it has become a fundamental tool for clinics and other 

usages as it remains to this day.  

 In 2006, Phua et al., [18] introduced the heart acoustic signals as a biometric method in a 

workshop event on multimodal user authentication. In 2007, heart sounds were first used for 

human recognition by Beritelli et al., [19] proposed an intelligent system for 20 participants 

based on z-chirp transform (CZT) for feature extraction, and the Euclidian distance (ED) was 

used for classification as a matching technique. The result of the implemented system showed a 

rejection rate of 5% and a false acceptance of 2.2%.  

In 2008 Phua et al., [20] proposed an experiment based on linear frequency banks cepstral 

(LFBC) to identify individuals based on PCG, and they built an authentication system using two 

classifiers which are GMM ―Gaussian mixture models‖ and VQ ―vector quantization‖. They 

worked on 10 user's achieving an accuracy of 96%.  Beritelli et al., [21] developed an approach 

based on sub-band aggregation for verification. The PCG signal is segmented to obtain S1 and 

S2 from the PCG signal. S1 and S2 are passed to CZT transform separately obtaining sub-band 

selection from S1 and S2. A matching algorithm based on ED was used to compare the test and 

the template and this produced an equal error rate (EER) of 10 % on 70 subjects.   

For the improvement of the accuracy of the human recognition system, Beritelli et al., [22] 2009 

resumed their work in PCG as a biometric. A larger number of subjects consisting of 50 people 
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were the basis of their work. Additionally, 13 Mel frequency cepstral coefficients extracted 

(MFCC) from the basic PCG heart sounds, S1 and S2, were employed. Finally, the First-to-

Second ratio (FSR) was applied for reaching a 9% EER rate. The previous algorithms presented 

in [22] were applied by Beritelli et al., [23] on 40 people. The system revealed a 5% EER, and 

they offered their explanations for the impact of the increase of the test set to 80. However, no 

negative impact because of this was perceived on EER.  

In 2010 Fateman et al., [24, 25] showed a verification and identification system for heart sounds. 

These two main systems worked on 21 subjects, and they used wavelets for filtration of the PCG. 

Moreover, for feature extraction and classification, they employed short-time Fourier transform 

(STFT) and linear discernment analysis (LDA) respectively. The results revealed that the 

identification system reached 100% and 33% EER for the verification system.   Again, Beritelli 

et al., [26] utilized a method that is focused on Gaussian Mixture Models (GMM) for 

classification, and features are extracted from spectral and time domain for improving the 

performance. The results were 13.70% on a dataset of 165 people that outperforms other similar 

approaches. Beritelli et al., [27] implemented two approaches statistical and non-statistical for 

PCG signals as a biometric. The latter approach yields an EER of 29.08% and the former 

approach yields 15.53% based on GMM on 147 subjects. 

An application of a proposed system based on obtaining the cycle-power-frequency-drawing 

combined with the D-S information was given by Tao et al., [28] for the determination of the 

identity verification system depending on PCG signals working on a dataset of 5 – 100 people to 

reach 99% accuracy. Huy et al., [29] Proposed a feature extraction based on 8 feature sets. These 

sets are based on spectral, temporal, harmonic, cepstral, cardiac, rhythmic, and GMM features. 

Then, from these features sets two features, sets were selected, and then they are passed to the 

support vector machine (SVM) for classification. The results of the two feature sets were applied 

to 52 users. The results of the identification of the first experiment reached an accuracy of 80% 

and the second one achieved higher than 90%. 

 The linear prediction cepstral coefficient (LPCC) was applied as a feature extraction method by 

Guo et al., [30]. Then, the hidden markov model (HMM) with wavelet neural network (WNN) 

was used as a classification method for the PCG signals for the verification of the identity of 80 

people. Based on wavelet transform (WT), Jasper et al., [31] gave an analysis of the PCG signals 

in the time-frequency domain. Then, there was an extraction of the Shannon energy envelogram 
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(SEE) as the feature set. Depending on a database of 10 people, the performance was deemed 

acceptable reaching 98.67%. 

In 2011 Cheng Xie Feng [32] developed a PCG identification system applying improved circle 

convolution (ICC) as feature extraction, with the combination of independent sub-band function 

(ISF). The recognition of the PCG depended on S1 and S2 sounds. Each sound was entered 

separately through the feature extraction used to ensure validity. They used the similarity 

distance to verify different human heart sound features. This method was verified using 10 

records of heart sounds and the performance results showed an accuracy of 85.7% in both 

modes. An identification system based on MFCC and VQ was introduced by Zhao et al., [33] for 

both feature extraction and classification respectively. The numbers of subjects used were 30 

subjects achieving 100% accuracy.  

In 2012, a PCG verification system was developed by Cheng Xie Feng [34] which used the 

linear band frequency cepstra (LBFC) as feature extraction and the similarity distance for 

classification. Their proposed system worked on 12 PCG signals reaching an error acceptance 

rate of 1% - 8%, verification rate of 95%, and error rejection rate below 3%. Rasha Wahid et al., 

[35] proposed a verification system based on two main feature extraction methods, the first one 

reached an accuracy of 100%, and the second one reached 85% final accuracy. The classification 

was done using GMM for both feature extraction techniques. Chen W et al., [36] applied wavelet 

and MFCC for the implementation of a PCG biometric system for filtering and feature 

extraction. Afterward, a feature reduction step was taken based on principle component analysis 

(PCA) and a 90% recognition rate was verified by the results. Karmaker et al., [37] used an 

approach based on time and frequency domain. The de-noising phase was done using 

Butterworth low pass filter, and then the segmentation was performed for S1 and S2. In the 

feature extraction phase, the db2 wavelet was applied to extract the detail coefficients. The 

average energy was determined from S1, and the same was done for S2. Finally, the MLP was 

used for classification achieving an accuracy of 96.178%, In 2013, there was a proposed 

biometric system by Zhong L et al., [38] based on PCG signal and with the dependence on GMM 

as a classification combined with cepstral coefficients. MFCC and linear predication cepstral 

coefficients (LPCC) were the kinds of cepstral coefficients used. The system was based on 100 

heart sounds from 50 people to classify the PCG signals. Spadaccini et al., [39] applied an 

identification system based on PCG signals. In the de-noising phase, there was a detection of the 
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S1 and S2 from the endpoints of the PCG signal, and a computing of the (FSR) of the S1 and S2 

sound signal. The structural and statistical systems were the two biometric systems implemented 

and tested. Based on linear frequency cepstral coefficient (LFCC) combined with FSR and the 

GMM, the statistical system was used for classification, while MFCC and FSR were used by the 

structural system for feature extraction and Euclidean distance (ED) for matching. A database of 

206 individuals was used for applying the results which reached 13.66% for the statistical 

system.  

Zhao et al., [40] showed a PCG biometric system working on 40 subjects using marginal 

spectrum analysis algorithm as feature extraction and VQ for classification. The results showed 

an identification rate of 94.4%, and when the number of subjects increased and reached 80 the 

accuracy down sampled to 92%. Girish et al., [41] implemented a method for the identification of 

the PCG signals. The method was based on a low pass filter for de-noising. The segmentation of 

the heart sound was based on thresholding and framing. While the feature extraction was done 

based on the wavelet decomposition and the classification was done using the MLP ANN. The 

results were verified on 10 volunteers reaching an EER of 9.48% and accuracy of 90.52% 

An approach for PCG as a biometric tool was proposed by Tan et al., [42] in 2014 with a set of 

steps. Preprocessing is the first step based on low-pass filtering. The second step is the 

segmentation of the heart sounds S1 and S2 based on the zero crossing rate (ZRC) technique 

followed by short-term amplitude (STA). MFCC was used for extracting features from S1 and 

S2, and the classification was done using a sparse representation classifier (SRC). The approach 

was applied on 15 subjects selected randomly with an accuracy of 85.45% achieved. A system 

was proposed by Abo el zahad et al., [43] for PCG signal identification depending on LFCC, 

MFCC, DWT, and Bark frequency cepstral coefficient (BFCC). Then, conical correlation 

analysis (CCA) was used for applying the fusion between the features, while Bayes rule and 

GMM were used for classification. The work was implemented on 17 participates achieving a 

performance of 99%. The first one who applied the fusion concept in PCG signals was Abo el 

zahad et al, while Swati et al., [44] presented a biometric PCG system with the use of MFCC for 

obtaining features and support vector machine (SVM) as a classifier. The system was applied on 

30 subjects reaching an accuracy of 96%. 

In 2015, S. Bindu et al., [45] worked on an identification system based on pre-processing and 

extracting the heart sounds which are S1 and S2 as features and template matching for 
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classification. Abo el zahad et al., [46, 47] developed a new approach for human verification 

based on heart sounds. The approach is based on wavelet packet cepstral coefficients (WPCC) 

reaching identification accuracy 91.05% and verifying them with 3.2% EER. Discrete wavelet 

decomposition was used for pre-processing and wavelet packet cepstral coefficients for feature 

extraction. LDA and Bayes rule are used for classification. Abo el zahad et al., [48] showed a 

human identification system based on PCG signals using MFCC, LFCC, WPCC, and Non-linear 

filter cepstral coefficient (NLFCC). The classification was done using LDA and Bayes achieving 

an EER of 2.88% and 2.13% on 206 and 21 subjects respectively.  

In 2016, Abo el zahad et al., [49] proposed a new methodology for the individual identification 

based on PCG signal. The basis of this approach was MFCC, linear frequency cepstral 

coefficient (LFCC), modified Mel frequency coefficient (M-MFCC), and WPCC coefficients to 

reach 91.05% identification accuracy. Moreover, they were verified with 3.2% EER on 206 

subjects and 2.68% EER on 21 subjects. Discrete wavelet decomposition was used for pre-

processing and wavelet packet cepstral coefficients for feature extraction. LDA and Bayes rule 

was used for classification. 

In 2017, T. E Chen et al., [50] presented a recognition system for the PCG signals based on some 

acoustic features. Their main work focused on two sets which are the training and the test sets. 

The number of subjects was 16 with 626 heart sounds for the training set, and 6 subjects with 

120 heart sound like a test set. Their feature extraction was based on MFCC and k-mean to 

enhance the features. Finally, the features are fed into five classifiers which are LR, GMM, 

KNN, SVM, and DNN. The experiment resulted that DNN has the highest accuracy of 91.12%. 

In 2018, TG Meitei et al., [51] concentrated on presenting PCG as a biometric as a few sources 

are available in this area deeming it to be nascent, and showed a PCG biometric system. The 

preprocessing stage was based on wavelet and the features were extracted from previous 

researcher's techniques. In the matching phase, ED, GMM, FSR, and VQ methods were 

examined. In 2019, Imran et al., [52] proposed a method for PCG identification for biometric-

based on autoregressive modeling. They applied their methods on 50 subjects taken from a 

publicly available dataset. They used wavelets based on DWT for de-noising, and then they used 

the Hilbert envelope for segmentation. For each PCG beat, AR Burg modeling is applied to 

compute reflection coefficients, and finally, they used bagged decision trees for classification. 

They achieved an accuracy of 86.7%. El-Sayed et al., [53] worked on 60 and 50 subjects from 
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two datasets. Multi-resolution decomposition and multi-resolution reconstruction (MRD-MRR) 

were the basis of their pre-processing. The feature extraction was based on Shannon Energy 

Envelope (SEE) and Multi-Scale wavelet transforms for time-scale. For time-frequency, it was 

based on framing, windowing, and (MFCC, BFCC, and LFCC). The classification was based on 

Random Forest (RF), SVM, ANN, and KNN. RF proved the highest accuracy in the time-

frequency domain analysis, and SVM proved the highest accuracy in the time-scale domain 

analysis. Xiefeng et al., [54] performed their work on 80 heart sounds from 40 subjects. They 

based their proposed model on the decomposition of every single pulse of heart sound into a set 

of intrinsic model functions (IMFs). Then, after segmenting the IMFS, frames are produced. 

These frames are then used for obtaining the multiscale dispersion entropy as the main 

representation of the PCG signal. A combination of logistic regression (LR) and hidden semi-

Markov model (HSMM) was used for extracting the features, and Fisher ratio (FR) was used for 

feature selection. 

 Finally, the proposed method was tested using an (ED) reaching an accuracy of 96.08%. The 

chronological development of PCG as biometric techniques is presented in Fig. 4. 

 
Fig.4. The chronological evolution of PCG as a biometric with a series of milestones that have been covered in this 

field so far from 2006 to the current status. 
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4.   Relevant Work and Main Contribution 

In comparison to other previously published works of literature, our main focus in this review is 

PCG as a biometric. In this paper, we explained the data acquisition, illustrated what is available 

online with several subjects and recordings, and what is not available. Moreover, the de-noising 

techniques in the heart sound as a biometric are explained in detail. The segmentation stage, 

feature extraction, and various segmentation techniques used in PCG as a biometric are studied 

and compared. In addition to this, the advantages and the disadvantages of most of the de-

noising, segmentation, and classification stages used in PCG as a biometric are determined to 

help the researchers to choose suitable techniques. The number of articles and journals studied in 

our review is considerably more than the number of articles used in other review papers on PCG 

as a biometric. The authors that targeted a review for the PCG as a biometric used about 5 papers 

for their survey, while our survey considered 35 papers published in different journals and 

conferences for PCG as biometric, and we used them for discussion and review.  Other papers 

[55] have reviewed the use of PCG and ECG together as a biometric, but it did not concentrate 

on a specific biometric trait or the concerns in both PCG and ECG. The data acquisition and the 

de-noising stages, and the segmentation step were not discussed. Furthermore, the merits and the 

demerits of those methods are not explained in their survey. The main contributions of our 

review are discussed in the following lines: 

1. Presents a survey investigating relevant recent research papers which cover a total of 35 

publications from journals and conference proceeding, from at least seven scientific 

libraries 

2. Complements neglected area and gap information in the earlier reviews, such as 

acquisition, de-noising, segmentation, extracting the most discriminate features, and 

classification.  

3. Thoroughly discusses the advantages and the disadvantages of techniques and methods 

applied in segmentation and preprocessing over others to determine the robust techniques.  

4. Illustrates the important measurements used for identification and verification systems for 

PCG biometric.  

5. Provides a strong reference and lowers the barriers of entry to the field of PCG 

biometrics.  

6. Offers a great range of views and comparison in terms of experimental evaluation, 

classification, and categorization.  

7. Recommends a potential opportunity for enhancement and exploitation.  

8. Demonstrates the applications in which the PCG signals can be applied as a biometric 

technique and how it can be combined with other biometrics techniques to increase 

performance accuracy. 
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5. Processing steps of PCG Biometric System 

The PCG biometric system processes are divided into 3 steps. The first step in which the 

database is created is known as the enrollment stage, where storing the PCG feature set of the 

individual is performed. The authentication stage is the second step in which there is an 

extraction of PCG features, and then a comparison between them and the feature templates that 

exist in the database is conducted to find a similarity known as the identification mode. Then, 

they can be compared with template features of the requested identity which is known as 

verification mode. The authentication and the enrolment modes are shown and explained clearly 

in Fig.5. The green lines show the enrolment phase and the black lines show the authentication 

phase.   

 

 

Fig. 5. Shows the schematic diagram of a generic biometric system.  

5.1  Data Acquisition 

Data Acquisition is one of the most important steps in PCG biometric authentication. Heart 

sounds can be captured from many devices, including mobile phones. One of the main devices in 

capturing the PCG signal is the stethoscope.  There are some sample datasets available online 

containing PCG signals. These datasets can be used in the applied studies to evaluate the 

methods proposed in the research studies discussed for PCG signals as a biometric, and they are 

divided into five categories as shown in Fig. 6. 

In Table 1. Data acquisition in the PCG biometric systems are presented according to the dataset, 

devices used to capture it, records, subjects, Fs, digitization, and studies that have used them. 
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The remaining studies discussed in this manuscript built their dataset and used it for 

identification and verification. 

 

Fig. 6. The datasets used in PCG biometric. 

Table 1. Datasets available for PCG classification 

Datasets Devices Description S/R  FS/DR 

Heart 

Songs 

[56] 

N/A  It includes PCG signals that suffer from 

different types of cardiac pathology [19]. 

 It includes different types of pathologies such 

as mitral regurgitation variation, mitral stenosis, 

mitral regurgitation, innocent systolic murmur, 

and the third second [19] 

S: N/A   

R: N/A 

Fs: 11025 

DR: 16 

General 

Dataset 

[57] 

Thinklabs  

ds32 (Rhythm 

Digital 

Electronic 

Stethoscope)  

 It includes various people with various age 

ranges, and it incorporates pregnant ladies, 

people enduring distinctive heart abnormalities, 

and healthy individuals [35]. 

S: N/A  

R: 80 

Fs: N/A 

DR: N/A 

Bio Sec 

2010 

[58] 

Littmann 

electronic 

stethoscope 

 For each user, six recordings were taken, each 

under the rest condition [24, 25, and 26]. 

 These datasets are saved as an audio file with 

the extension ―.au‖ and aren't accessible for 

free [48, 49]. 

S: 126 

R: 21 

Fs: 8000 

DR: 16 

Heart 

Sounds 

Catania  

(HSCT11) 

2011 

[59] 

ThinkLabs ds 

32 (Rhythm 

Digital 

Electronic 

Stethoscope) 

 These databases were gotten from the clients 

during the acquisition stage the individual was 

in a sitting situation and resting state. 

 The stethoscope was situated close to the 

pulmonary valve. It is considered the largest 

dataset used for PCG as a biometric [39, 40, 43, 

46, 47, 48, 49, and 53]. 

 

S: 412 

 

R:206 

157 male 

49 female 

Fs: 11025 

DR: N/A 

PASCAL 

(CHSC 

2011) 

iStethoscope 

Pro iPhone app 

digital 

 The data are obtained from datasets ―A‖ and 

―B‖ [44, 53]. 

 Dataset ―A‖ is accumulated utilizing the 

S: Dataset A 

178 

Dataset B 

Fs: N/A 

DR: N/A 
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N/A: Not Defined    S: Subjects    R: Records  Fs: Sampling frequency   DR: Digitization Resolution  

 

 

5.2  Pre-processing  

Heart sounds are considered monodimensional signals which have the possibility of being 

processed to some extent. There are many techniques used to work on mono-dimensional signals 

taking into account the structure and the components of the signals. PCG signals are subject to 

noise and artifacts that the external effects introduce. The pre-processing stage has the objective 

of producing a signal with reduced noise. The filtering method maps the input signal into an 

output signal, and this facilitates extracting noise from the input signal. It is possible to further 

divide the noise heart sound signals into many variant types as clear in Fig.7 depending on the 

signal features based on frequency, time, and spectral features. 

 

Fig. 7. The most known types of Noise in the heart sound signals. 

Several de-noising approaches can be used to reduce these noises and improve the quality of the 

PCG signal. They can be divided into five main categories. Those categories are based on down-

-sampling, low pass filtering, energy thresholding, normalization, total variation de-noising 

(TV). Since frequency components of PCG signals are concentrated below 250 Hz. Some 

approaches of down-sampling are applied to obtain a sampling frequency of approximately 

[60] stethoscope 

DigiScope 

iStethoscope Pro iPhone application. 

 Dataset ―B‖ is collected from patients in the 

hospitals using the stethoscope device. 

Dataset A consists of four categories normal, 

murmur, extra heart sound, and artifacts. 

While dataset B has three main different 

classes which are murmur, extra systole, and 

the normal beats. 

656 

R: N/A 
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1KHz. The down-sampling factor used is 11 [46, 47, 48]. Other approaches used analog low pass 

filtering it has a great effect on the heart sounds, and a good low pass filter can filter the noise by 

leaving a large number of samples for further processing. It is designed to eliminate the high-

frequency components in the PCG signal. A sixth-order low butter worth filter with a cut-off 

frequency of 400 Hz and 800 Hz is used in [22,23] respectively. A low butter worth filter with a 

frequency range from 0 to 300 Hz to remove noise components beyond 300 Hz is used by [41]. 

An eight-order elliptical low pass filter is applied to remove noise in the PCG signals [30]. A 5
th

-

order Chebyshev Type I low pass filter with a cut-off frequency of 880 Hz was used by [40]. 

Another approach uses the concept of energy thresholding for de-noising [20, 24, 25, 43, 46, 47, 

48, 49].  It is considered to be an optimal process for de-noising. Normalization is a  pre-

processing phase to achieve accurate heart sound identification. The maximum amplitude taken 

in [30, 39] is 1. An approach is based on a high pass filter It recompenses the part of high 

frequency that were blocked during the production of heart sounds [44]. PCG signals can also be 

filtered using (TVD) as it is considered to be a new technique that proved its performance in the 

PCG signal de-noising [45].  

Other approaches used DWT [47, 48, 52, 53] on the PCG signals for a clear filtration of the 

signal. This approach is conducted by passing the input signal through a series of high and low 

pass filter banks. The output of this filtering is the detailed and the approximation coefficients. 

The de-noising process is executed by applying a thresholding schema for wavelet coefficients. 

The thresholding selection rules are based on rigrsure, sqtwolog, Heursure, and Minimaxi. 

Rigrsure is known as the adaptive threshold selection using the principle of Stein's unbiased risk 

estimate, while sqrtwolog is the fixed form threshold and it is the square root of twice log of the 

length of the signal. Heursure is a variant of rigrsure and sqrtwolog, and minimax is the minimax 

thresholding. The thresholding rescaling values are based on (one, sln, mln). Those rescaling 

values represent the thresholding values, for example, one means no rescaling, sln for rescaling 

based on a single estimation of the noise level using the 1
st
-level coefficients of the 

decomposition structure, and mln is for rescaling done based on level-dependent estimation of 

the noise level. A 5
th

-order DWT is decomposed to five scales and reconstructed using 

coefficient only from the third, fourth, fifth scales with two energy thresholding rules used in 

[24, 25, 43, 48] for de-noising PCG signal. Others are set to zero and reconstructed using Inverse 

DWT (IDWT). Decomposition using DWT 5th level four thresholding estimation rules and three 
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threshold rescaling values are applied for wavelet coefficients. The rigrsure is considered the best 

thresholding selection rule and the sln is considered the best threshold rescaling [46, 47, 48].  

Fig. 8 shows a summary of the most commonly used preprocessing techniques with definition 

and effects on the PCG signal in terms of de-noising. It is shown that some techniques have 

advantages over other techniques.  

 

Fig. 8.  Overview of the most commonly used Pre-processing Techniques for Heart Sounds as a biometric 

Wavelets-based techniques have an irregular shape so they can perfectly reconstruct functions 

with linear and higher-order polynomial while the FFT fails to do this. Therefore wavelet-based 
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techniques can denoise particular signals far better than the conventional filters that are based on 

FFT, for example (low pass filters). Wavelets have more advantages in de-noising the heart 

sound signal mainly because they can deconstruct complex parts in the PCG signals into basics 

signals of finite bandwidth and then reconstruct them again with little information loss. The 

result is a little or no heart sound signal leakage or phase-shifting of the original heart sounds 

signal. There are generally problems in conventional filters about heart sound signal leakage or 

phase-shifting. These problems must be addressed, or at least acknowledged in the de-noised 

signal. Furthermore, the conventional filters work most efficiently in removing out-of-band 

signals. If applied to in-band signals, it will remove the signal of interest. To de-noise the PCG 

signal, an algorithm was implemented based on a multi-resolution decomposition and multi-

resolution reconstruction (MRD-MRR) scheme. The introduction of this algorithm serves to 

separate discontinuous sounds of the lung. It is regarded as a wavelet filtering technique that 

depends on the most important peaks in the time domain having large components over different 

wavelet scales [61]. When the noise and signal spectra overlap, the wavelet functions well in 

removing noise. TV is a de-nosing method in which the output can be obtained using a numerical 

algorithm, unlike the conventional method. TV is the most appropriate method for piece constant 

signals, and it can be modified and extended to be effective for more general signals. Table 2 

shows the pre-processing techniques used for PCG. It shows the parameters used in the pre-

processing approach based on order, cut-off frequency, maximum amplitude, down-sampling 

factor, and others.  

Table 2 Pre-processing Techniques used for PCG biometric. 

Pre-processing 

Approach 

Functionality Parameters 

Energy 

Thresholding 
 De-noising spike noise as the nature of the heart sounds 

experiences impedances caused by movement of the 

stethoscope, spectra of rash noises and heart sounds overlap 

[20]. 

 It is used to eliminate the overlapping noise components and to 

detect the spikes [24, 25, 26] 

 It can be divided into high energy thresholding and low energy 

thresholding. The high energy thresholding suppresses the 

spike, whereas the low energy suppresses the noise component 

[40, 43, 46, 47, 48, 49]. 

N/A 

Low pass Filter  Butterworth: It is used to remove the high-frequency 

components and to obtain the heart sounds that can be used in 

the next phase which are obtaining the features and to extract 

two different sets of biometric indexes [22, 23, 37, 41]. 

 

6
th

 order Butterworth 

filter  [22,23] 

The cutoff frequency of 

400 Hz [22] 

The cutoff frequency of 

800 Hz [23] 
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Butterworth filter from 

0 – 300 Hz  [37,41] 

 Elliptic filter: It filters the PCG signals focusing on the low-

frequency parts, and it removes the interference that appears in 

the shape of spikes that falls in the higher frequency part. [30]. 

8
th

 order elliptical filter 

[30] 

 Chebyshev filter: It can be used to remove the noise located in 

the background of the heart sounds, and it also eliminates the 

sounds that have a frequency greater than the cut-off one[42]. 

Chebyshev filter-type I- 

5
th

 order with Cutoff-

frequency at 880 Hz 

[42] 

High Pass Filter  It leads to a higher frequency which increases the energy of the 

signal [44]. 

- 

Normalization   It confines the PCG signal inside a fixed range (1 to - 1)  

[38, 39]. 

Maximum amplitude is 

1 [39] 

Down-sampling   It can be applied to decrease the sampling frequency and 

eventually band limit the content of the frequency in the heart 

sound signal [46, 47, and 48]. 

Down-sampling factor 

= 11  

TVD  It preserves the edges of the signal used for pre-processing and 

it is very flexible with Spike-like, piecewise-constant signals 

[45]. 

- 

DWT  The primary target utilizing the DWT for de-noising is to 

cancel high and low-frequency noise components. 

 It also removes other interferences that affect the heart sounds, 

for example, lung sounds, body movement, and other kinds of 

surrounding sounds. 

 DWT can be utilized to hold a large portion of the PCG signal 

energy as it is concentrated inside its scales. Additionally, it is 

beneficial for unwanted signal removal due to the non-

stationary feature of the signal and the grouping of the PCG 

signal frequency in 15-200Hz. 

5
th

 order DWT into 5 

scales reconstructed 

from 3
rd

,4
th

  and 5
th

  

scales + Two  

5
th

 order DWT into 6 

scales obtained from 

3
rd

,4
th

, 5
th

  and 6
th

  

scales and retained 

based on energy- 

threshold other scales 

are set to zero and 

reconstructed using 

Inverse DWT (IDWT) 

[46,47,49] 

Decomposition using 

DWT 5
th

 level 

4 Thresholding 

estimation rules 

 3 Threshold rescaling 

values  [40] 

 

5.3 Segmentation 

 

In this study, we have surveyed the segmentation techniques employed for heart sounds, 

especially normal heart sounds for biometric systems. In this section, we present a comparison 

including many published segmentation techniques for S1 and S2. Table 3 reveals the 

segmentation algorithms and techniques developed for the segmentation of S1 and S2 from the 
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PCG signal. It is shown that most of the segmentation techniques used are based on framing and 

then windowing with different values for the frameshift (fs) and frame length (fl). The framing 

process is done by extracting the signal energy information to obtain a more detailed profile of 

the energy tend. The windowing step can be performed using different functions such as 

hamming, hanning, and rectangular. Some approaches [20, 24, 25, 26, 35, 43] depend on 

framing, and implemented short-time discrete Fourier transform (STDFT) with fl of 256 ms or 

512samples at a sampling rate of 2 kHz).  It is also deduced that the non-over-lapping 

windowing should be the most optimal. However, the samples are very short over-lapping should 

be used. Some approaches perform framing and windowing depending on a hamming window 

with a length of 256m for frame [46, 47, 48]. These two steps aim for avoiding difficulties in the 

transactions of the heart sound signals and for increasing the signal smoothing. Moreover, the 

PCG signal is fairly stationary and this means that it is possible to examine the heart sound 

signals over a short time. As a result, the signals can be analyzed in small time segments.    

Some authors applied framing with an fl = 256ms and fs = 64ms as an optimal framing [38]. 

They tried different types of windowing and showed that the hamming window gave the highest 

CCR. Other approaches were based on dividing the PCG signal into frames. Some authors 

applied framing with an fl = 256ms and fs = 64ms as an optimal framing [38]. They tried 

different types of windowing and showed that the hamming window gave the highest CCR. 

Other approaches were based on dividing the PCG signal into frames. Then an autocorrelation 

function was applied for ordering and determining the variant periodic participles of the energy 

signal [19, 21, 22, 28, 29, 39]. Multiplication of the frame values by a hamming window was 

performed for minimizing the discontinuation disruption at the start and the end of each frame. 

This leads to the estimation of the power spectral density and the determination of the sound that 

has the greater energy. Furthermore, the bounds of these sounds are identified in terms of 

samples in an audio track from cardiac auscultation. Some segmentation approaches were based 

on the Shannon energy operator [23,50] with 0.02s segments and 0.01s segment overlapping. 

This approach was used to identify the quality of the sound lobes in the heart sounds and to 

extract the signal envelope.  

Wavelets were used for the segmentation of the PCG signal sounds [36]. They found that s1 and 

s2 consist of three main kinds of sub-wavelets which are four peaks, twin-peak, four-peak 

wavelets. S1 consists of seven twin-peak, 1 four-peak, 5 three-peak subwavelets. While S2 
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involves 9 twin-peaks, 1 three-peak, and 3 four-peak subwavelet. The main decomposition 

depends on DWT. The main aim of the DWT is to obtain the coefficients in detail of the PCG 

sounds, and it can represent the personal features of the PCG signals as a whole.  

Finally, a segmentation approach was based on framing with an fl of 5 m and applying ZCR and 

STA algorithms to detect S1 and S2 from the PCG signal [42]. Fig.9 shows the advantages and 

the disadvantages of the segmentation techniques used in the PCG as a biometric for framing and 

windowing, autocorrelation, Shannon energy envelope, and zero-crossing and short-term 

amplitude. 

Table 3 Segmentation Techniques used for PCG biometric. 

Segmentation 

Approach 

Functionality Parameters 

Framing and 

windowing 

based on an Auto 

Correlation function   

 To estimate the power spectral density 

   To determine which sound has a greater energy 

 It identifies the boundaries of the heart sound signal, in terms of 

some samples in the PCG signal trace obtained from the heart 

auscultation. 

 The main aim of this framing is to create independence between 

samples and to perform an accurate estimate. 

 It helps in finding the variance of each segment and to increase the 

effect of the segment parts S1 and S2 and enhance them  [19, 21, 22, 

28, 29, 39],   

Frame length = 15 

ms 

Frame shift = 5 ms  

Framing based on 

STDFT 
 To make independence between samples, it is required to precisely 

estimate the framing characteristics [20, 24, 25, 26, 36, and 43]. 

Frame length  = 

256 ms 

Shannon energy 

operator 

 

 To identify the boundaries of all sound lobes in the heart sounds 

[23]. 

 To extract the signal envelope [47]. 

 This technique includes the intensity of the heart sound signal, and it 

also reduces the impact of low intensity of the PCG signals [53]. 

0.02s segments 

0.01s segment 

overlapping  

DWT Wavelet   To synthesize a set of simulated heart sounds [36] - 

Framing and 

windowing based on 

hamming window  

 For avoiding the problems with the transactions of the signal and 

aides in the smoothing of the signal [46, 47, 48, 49]. 

Frame length = 

256 ms 

Framing and 

windowing  based on 

Hamming window  

 The consequent feature extraction depends on each frame formed 

[38, 52]. 

The length of the 

frame is ―256 ms‖ 

And the frame is 

shifted by ―64 

ms‖. 

Framing and 

applying ZCR and 

STA algorithms  

 To increase the effectiveness of the segment part S1 and S2 

 To detect S1 and S2 from the PCG signal. 

 This method can be applied to determine the silent parts in the audio 

signals, and it is very useful in detecting the audio from the 

background noise during the start and endpoints.   [42]. 

Frame length = 

5ms 
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Fig. 9. Illustrates  the  advantages and disadvantages of methods  utilized  in PCG as a biometric 

5.4   Feature Extraction and Reduction  

The process of characterizing the attributes similar to all the features belonging to a certain type 

is called feature extraction. Feature extraction mainly aims to search for features that can reach 

optimal or near-optimal results regarding certain performance measures [62]. Table 4 provides a 

detailed explanation of major feature extraction methods. 
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There are different feature extraction methods used in heart sounds as a biometric. These 

approaches can be based on time, frequency, time, and frequency feature as shown in Fig.10. 

Time-domain features refer to the analysis of the PCG signal with respect to time. In the time 

domain, the signal samples are known for all real numbers. Time domain features are based on 

signal energy envelope, first second ratio (FSR), log-attack time, temporal increase, signal 

strength, zero crossing rate (ZCR).  

 Signal energy envelope: This method extract features based on the normalization of PCG 

signal after filtering. The first step is computing the magnitude of the normalized signal 

and computing the Shannon entropy of the positively valued signal. This is followed by 

adaptive thresholding of the Shannon entropy sequence, and finally, the signal is 

smoothed for the production of the time and domain features [30, 45]. 

 First second ratio (FSR): It is a feature based on which obtains the ratio between S1 and 

S2. It is used in addition to features produced to determine whether two heart sounds 

sequence belong to the same person. In [26] FSR was introduced as a time-domain 

feature based on the ratio of the power S1 over S2. This achieves a higher performance 

as discussed in [22, 23, 24, 25, 26, and 27]. 

 Log-Attack Time (LAT): LAT is an algorithm of the time duration between the point 

where the PCG starts to the point it reaches a stable part [29]. 

 Temporal Increase: It is a feature that represents the change with respect to time. The 

temporal increase means a large number of unique frames are repeated after each other 

[29]. 

 Signal Strength: It is the physical energy or generated energy from the PCG signal [29]. 

 Zero-Crossing rate: It is the rate of significant change along with the PCG signal. It is 

the rate at which the signal changes from positive to negative or back [29]. 

Frequency domain features can be classified into two groups Chirp Z-transform (CZT), discrete 

cosine transform (DCT). 

 CZT: One of the fast Fourier transform (FFT) techniques that aim to compute the 

discrete Fourier transform (DFT) of different arbitrary sizes is known as chirp Z-

transform (CZT). The main advantage of this algorithm is that it does not require a 

power of two numbers of samples. This can be achieved by representing the DFT as a 
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convolution. It was also used due to the energy of S1 and S2 is vitally concentrated 

around frequencies less than 300 Hz. 

 DCT: It is a frequency domain algorithm used in most of the studies for feature reduction 

and generates features with lower dimensionality for classification. It was used as a 

reduction tool in the following studies [20, 35, 40, 46, 47, 48, and 49]. 

Time-frequency domain features consist of several different types of characteristics such as 

harmonic, spectrum, and cepstral features [63]. The Cepstral features are divided into 7 groups 

discussed as follows: 

 Mel Frequency Cepstral Coefficients (MFCC): They are features based on customary 

filters that have a triangular shape that is represented equally on the Mel scale. [22] 

applied MFCC as the first feature and a filter bank of 7 filters, [23, 33, and 44] used 24 

filters built from bandpass filters ranging from 0 to 750 Hz [22] and from 0 to 4000 Hz 

[23]. Using a filter can achieve higher performance by widening the band and it is related 

to a low-pass filter. 13 coefficients are produced and for each heart sound 182 feature 

vectors are produced. [44] used MFCC and DCT for reduction.[50] used MFCC and K-

means to cluster the acoustic features of the PCG segment. The magnitude of the spectral 

coefficients is passed to MFCC. MFCC coefficients are based on LDA for dimensionality 

reduction [24, 25]. [36] Implemented MFCC for feature extraction and PCA for 

dimensionality reduction. [38] used MFCC to extract representative features. [39] showed 

a structural approach based on MFCC and FSR for feature extraction. Other studies also 

used MFCC [29, 42, 45, 46, 48, 49, 53] in comparison with other feature extraction 

methods.  

 Modified Mel Frequency Cepstral Coefficients (M-MFCC): It is based on MFCC and 

it aims to increase the non-linearity of the triangular filter banks. It introduces a 

parameter called α < 700 to increase the non-linearity of the triangular filters in the 

frequency below 250 Hz in the range of the heart sounds frequency. M-MFCC showed 

the highest performance over different feature extraction Techniques such as MFCC, 

LFCC, WPCC, and it was used by [49]. 

 Bark Frequency Cepstral Coefficients (BFCC): They are features that are based on a 

set of triangular features that are equally spaced on the bark scale to generate bark 
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coefficients. It was used by [42, 53] to test its performance as a feature extraction to 

others. 

 Linear Frequency Cepstral coefficients (LFCC): They are features based on a set of 

triangular features that are equally spaced on the linear scale to generate linear 

coefficients. It was used by the studies presented in [29, 43, 46, 48, 49, and 53] and its 

performance was not better than MFCC and Bark. It was also introduced as a statistical 

approach based on LFCC and FSR and it was better in performance compared to MFCC 

with FSR [39]. 

 Non-Linear Frequency Cepstral Coefficients (NLFCC): They are features based on 

LFCC as it focuses on the increase of the non-linearity in the linear scale from 0 to 250 

Hz as most of the energy is concentrated from 0 to 250 Hz. NLFCC is the nonlinearity of 

the Mel-frequency scale, and it rises for frequencies exceeds 1000 Hz, The Mel-scale is 

considered linear under this value. This modification was made by [48] and it was higher 

than MFCC, LFCC, and WPCC in performance.  

 Linear Frequency Band Cepstral Coefficients (LFBC): The concentration of the heart 

sound spectrum is within the range of 20–150 Hz. To capture more information of the 

signal spectrum, full resolution is necessary for such a narrow band. To distinguish the 

heart sound feature from the standard MFCC, it was known as the LFBC feature set. This 

set was used by [20] and DCT for dimensionality reduction of the feature produced from 

LFBC. 

 Linear Predictive Cepstral Coefficients (LPCC): They are features produced by 

estimating the n+ 1 sample using a linear combination of its previous n samples. These 

are known as predictor coefficients. They are from the smoothed Auto-Regressive power 

spectrum instead of the period gram estimate of the power spectrum [30, 38]. 

 Heart Sounds Linear Band Frequency Coefficients (HS-LBFC): In the PCG signals, 

we need to include more data in the spectrum of the signal, and the signals that are 

narrowband need to be concentrated on. In the process of obtaining the MFCC 

coefficients, the energy of the Mel filter group is required. According to the natural 

properties of the logarithm, it has a rapidly increasing large slope in the low-frequency 

sections. So, a piece-wise function is used to replace the log function. In this case, the 

signal attenuation in the low-frequency sections will be more appropriate [35].  



26 

 

 Other features are based on harmonic features such as Harmonicity, Harmonic 

attenuation, Harmonic Spectral Deviation, Harmonic Energy Ratio shown in [29] study. 

Applied in [29] study, there are some rhythmic features based on the bass, max, 

aggressiveness, gravity, addition and low-frequency domination, and modulation 

spectrogram, while other features are based on spectrum features. The bases of such 

spectral features are spectral attenuation, spectral roll-off, spectral centroid, spectral 

flatness measurement (SFM), spectral divergence, spectral kurtosis, spectral skewness, 

tonality, spectral range, s-transform, and Hilbert Spectrum [64]. 

One of the feature extraction techniques that was used is the Hilbert spectrum in [40]. It uses 

EEMD for each frame in the heart sounds to get the intrinsic mode functions (IMFs). Hilbert 

spectrum used hung-transform (HT) to each IMF as it determines the instantaneous frequency. It 

also shows the amplitude in a 3D plot with respect to time. It can reveal the heart sound physical 

properties in a time-frequency plane. A marginal spectrum is produced based on applying a 

Hilbert spectrum in a three-dimensional form for each frame, and it is obtained in the integral 

form of the time domain.  

The reduction of the features is done using DCT and amplitude normalization.  

Time-Scale domain features can be classified into three types. Those types are discrete wavelet 

transform (DWT), improved circle convolution (ICC), and wavelet packet cepstral coefficient 

(WPCC).  

 DWT: The study [31] used DWT [65- 69] to extract features from the PCG signal and 

decompose it to level 6 using db5. The coefficients produced are all the details from level 

1 to 6 and the 4
th

 and 5
th

 levels approximation and then finally they are introduced to SEE 

as features. Another study was based on the DWT to generate features. The extracted S1 

and S2 are sent to wavelet db2 level 2 decomposition. The detail coefficients D2 are 

divided into N = 20 windows and the energy is calculated for each window. The final 

feature-length is 40. Where the first 20 is feature extracted from S1 and next 20 is feature 

extracted from S2 [36].  

 MT-DWT: The study [53] used DWT to obtain coefficients. Those coefficients are 

introduced to multi-Scale features such as Energy, Entropy, Standard deviation, and 

wavelength.  The decomposition was made to level 11 producing 44 feature samples.  
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 ICC: ICC was used as a feature extraction method in the study [32]. The ICC works by 

using a different resolution to perform successive approximations about the heart sound 

signal based on wavelet packets to divide the PCG into layers by the (ICC). Then an 

independent sub-band function is used to analyze the independent components of these 

layers. 

 Wavelet Packet Cepstral Coefficient (WPCC): A study introduced WPCC [46, 47, 48, 

49] as a feature extraction method based on the time scale domain. Unlike the DWT that 

decomposes the signal's lower frequency part, WPD decomposes both the details and the 

approximation coefficients to obtain a good resolution and representation of the signal. In 

those studies that used WPD different wavelet functions and different linear and non-

linear filter banks were tested. After PCG decomposition using WPD, the energy of each 

filter output is calculated. Finally, it takes the logarithm and applies the DCT to filters 

energy to obtain WPCC features. It proved to produce a better performance in MFCC, 

BFCC, and LFCC but not better than M-MFCC and N-LFCC. 

Fusion between features: Some features were combined to generate features based on the fusion 

and they are divided into two groups.  

 Discrete Wavelet Mel Frequency Cepstral Coefficient (DW-MFCC): A fusion 

between the features of DW and MFCC and it proved to have a better performance 

compared to each of MFCC, BFCC, and LFCC alone [43]. 

 Conical Correlation Analysis (CCA): A fusion between features was introduced using 

CCA to produce different features based on serial and parallel strategies. In serial and 

parallel strategy MFCC+DW-MFCC was the highest performance than any combination 

using CCA. Overall the parallel strategy achieved higher performance than the serial 

strategy [43]. 

Some features were produced from tools used in the feature extraction of the speaker recognition 

but handled with parameters to generate features from the heart sounds. A tool called Sfbcep and 

is a part of the Sprout suite provided by an ALIZE/ SpkDet as an open source for speaker 

identification. It has a lot of features and facilities as it can perform cepstral analysis using filter 

bank on the signal, and it allows changing several parameters of the filter bank by obtaining the 

difference between heart sounds and speech features. It produces 3 feature sets (A, B, C) with the 

difference in the number of cepstra and the existence of first and second-order derivative 
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features. This tool was used by [26, 27] and they showed that set C was the highest performance 

based on set C.  

 

Fig. 10. An overview of the feature extraction approaches utilized in the PCG as a biometric.  

Table 4 Feature extraction approaches utilized for PCG biometric 

Authors Types of Features  Approach 

Beritelli et al. [19] 

Beritelli et al. [21] 

Frequency analysis CZT 

Phua et al. [20] Spectrum  Linear frequency bands cepstral  (LFBC), (DCT) 

Beritelli et al. 

[22,23] 

Zhao et al., [33] 

Swati et al., [44] 

T.E Chen et al. [50] 

Time-Frequency based on Cepstral 

features  

MFCC + FSR 

Fateman et al. [24,25] Time Frequency based on Cepstral 

features  

MFCC + LDA 

Beritelli et al., [26] 

Beritelli et al., [27] 
Time Frequency based on 

Cepstral features  

Feature extracted using 

MFCC + FSR, BFCC + FSR and LFCC + FSR 

Tao et al., [28] Mixed features Cycle - power-frequency  

Huy et al., [29] Time domain, Time-Frequency, 

Frequency domain features  

6 feature sets 

Temporal, Spectral, Cepstral, 

 Harmonic, Rhythmic, GMM 

Guo et al., [30] Time-Frequency based on 

Cepstral features  

linear prediction cepstrum coefficient (LPCC) 

Jasper et al., [31] Time Scale  domain features based 

on DWT 

Discrete wavelet transform (Db5), Shannon 

Energy Envelope (SEE) 
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5.5   Classification 

Classification is a process that finds the optimal class that is nearest to the classified pattern. The 

classifiers used in heart sounds as a biometric is classified into 4 types. Type one is based on 

similarity methods like Euclidian, nearest, and similarity distances. Some studies applied 

Euclidean distance to measure the spectra of two signals. Considering the spectra as N-

dimensional vectors, the distances concerning segmented heart sound spectra extracted from the 

heart sounds of different people yield higher values than those with spectra alone 

[23,26,27,28,29,31,39]. Others used the nearest distance to compare anonymous PCG input 

samples against the whole templates stored in the database. Once the entered template matches 

the input heart sound signal based on the nearest distance, it will be preserved to be the user 

identified [27]. Other authors classified the PCG signals using similarity distance as it requires a 

Cheng Xie Feng et al. [32] Time-Scale  domain based on ICC Improved circle convolution (ICC) 

Independent sub-Band function 

Cheng Xie Fenget al. [34] Time-Frequency domain based on 

Cepstral features 

HS-LBFC 

Rasha Wahid et al. [35] Time-Frequency domain based on 

Cepstral  and spectral features  

2 feature extraction algorithms 

MFCC + DCT 

Spectral Magnitude + DCT 

Chen W et al. [36] Time-Frequency domain based on 

Cepstral  

MFCC, PCA 

Zhong L et al. [38] Time-Frequency domain based on 

Cepstral  

MFCC 

LFCC 

Spadaccini  et al., [39] Time-Frequency domain based on 

Cepstral  

MFCC/FSR  

LFCC/FSR 

Zhao et al., [40]   Time-Frequency domain based on 

Spectrum  

Ensemble Empirical Mode Decomposition 

(EEMD) based on Hilbert Spectrum 

Girish et al., [41] Time Scale features  Wavelet decomposition  

Using db2 level = 2 

Abo el zahad  et al., [43] Time and Frequency  

Domain 

+ Fusion between different domains 

MFCC, LFCC, BFCC, DW-MFCC Discrete 

wavelet- (MFCC), CCA for fusion. 

S. Bindu et al., [45] Time Domain  Shannon energy envelope 

Abo el zahad et al., [46, 47] Time-frequency domain 

Time Scale domain  

Wavelet packet cepstral coefficient (WPCC) 

LDA  

Abo el zahad et al., [48] Time-frequency domain 

Time Scale domain  

MFCC, LFCC, WPCC, NLFCC, and LDA 

Abo el zahad et al., [49] Time-frequency domain 

Time Scale domain   

MFCC, LFCC, WPCC, MFCC Modified Mel-

scaled filter banks, LDA 

El-Sayed et al., [53] Time-frequency domain  

Time Scale domain 

MFCC, BFCC, LFCC and MS_DWT 
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signal to compare with which as the minimum accumulative distance with the verified signal in 

the database of the heart sounds. They used dynamic time wrapping directly [28, 30].   

Some approaches were based on statistical classifiers. One of them is VQ with the main idea of 

wrapping up a huge number of cepstral data into a group of code data. For the reduction of 

quantization error, a training of VQ is usually conducted with LBG [70]. This method has the 

main advantage of achieving. 

A relatively high identification rate with very short test signals. Sometimes, LVG is used for 

training VQ for a direct definition of the classification borders between classes by the nearest-

neighbor rule. Performance of LVG was higher than LBG but, more costly. VQ gives the highest 

performance and lowest computational time [20, 33, and 40]. Some studies used GMM as a 

classification method [20, 24, 25, 27, 35, and 39]. GMM is considered the generalization of the 

VQ. Contrary to LBQ-VQ, the GMM technique is a stochastic model with a probabilistic 

matching pattern, since the results are in conditional probability observation taking into 

consideration the model or measure of the likelihood. The use of the GMM is for the 

classification stage and it constitutes a compromise between the performance and computational 

time. Furthermore, it offers the data as a weighted sum of Gaussian distributions with variance, 

mean, and weight. K-means are used for the calculation of the initial means and weights are 

calculated. The classification decision is based on Bayes theory. GMM is utilized in most of the 

PCG as biometric studies. Other studies used LDA, which is a special case of discriminant 

analysis that assumes that all the classes have the same covariance. LDA gives the poorest 

performance and highest computational time. The classifier decision is performed using the 

optimum Bayes decision rule which maximizes the posterior probability or its logarithm. Other 

approaches used multi-class SVM [71- 73] as a classifier to separate the PCG features. SVM is a 

discriminative classifier formally defined by separating a hyperplane. SVM works using different 

kernel functions (linear, quadratic, polynomial…..etc). SVM didn't show a good performance in 

some studies [48] but give a great reduction of error and a good accuracy in other studies [33, 

48]. 

 

Table 5 Classification Techniques used for PCG biometric 

Approach Classifier Authors Results 

Similarity Euclidean 

distance 

Beritelli and Serrano [19] 

F. Beritelli  [21] 

FRR = 5.2%  FAR = 2.2% 

EER= 9% 
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 Beritelli  and Spadaccini  [22] 

Beritelli  and Spadaccini  [23] 

Fateman et al.[24, 25] 

Tao et al.          [28] 

Spadaccini et al.[39] 

El-Sayed et al. [53] 

EER= 9% 

EER= 5% 

A = 100% 

A = 99% 

EER = 36.86% 

KNN and showed the lowest 

performance accuracy in the classifiers 

used 

Nearest 

Distance 

Beritelli et al., [26] A = 98.67% 

Similarity 

Distance 

Tao et al.[28] 

Guo et al. [30] 

A= 85.7%, EAR < 7%, RER < 10% 

A= 95%,  EAR= 1%-8%,    RER < 3% 

Statistical VQ 

 

Phua et al. [18] 

X. Cheng [34] 

Z. Zhao,  et al. [40] 

 

A= 93.58% 

A = 100% 

CRR = 94.15% 

CRR = 84.93% 

GMM Phua et al. [18] 

Fateman et al. [24, 25] 

Beritelli et al.  [26] 

Rasha Wahid et al.[35] 

Spadaccini et al.[39] 

A= 96.01% 

EER= 13.70% 

EER= 15.53% 

A = 85% 

  LDA + 

 Bayes 

Abo el zahad et al. [43] 

Abo el zahad et al. [46] Abo el 

zahad et al. [47] 

Abo el zahad et al. [48] 

Abo el zahad et al. [49] 

A = 99.5% 

A= 91.5%        EER = 3.2% 

A =  90.79%    ERR =2.88% 

A  = 92.71%    EER = 2.13% 

A = 90.05%    EER = 3.2% 

A =  92.82%    ERR = 2.66 % 

A = 98.57%    EER = 1.83 % 

Machine 

Learning 

Multi-Class 

SVM 

Huy et al.  [29] 

Swati et al. [40] 

Abo el zahad et al. [48] 

 

El-Sayed et al. [53] 

Reduction of 4% for all EER 

A = 96% SVM 

SVM and it didn’t show a good 

Performance in verification 

A = 100% 

Random 

Forest 

El-Sayed et al. [53] RF proved to have a high accuracy 

performance in Time-frequency 

domain features 

Neural 

Network 

 

 HMM, 

WNN 

 

Guo et al.[30] 

 

Zhong L et al.  [38] 

Chen W et al. [37] 

El-Sayed et al. [53] 

T.E Chen et al. [50] 

HMM is higher than GMM and the 

hybrid has a higher rate. 

HMM higher than GMM 

MLP-      

ANN 

A= 90.53%   EER = 9.48% 

A = 100%  

A= 91% 

      DNN 

Other 

Approaches 

KSRC Tan et al., [42] A = 85.45% 
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Fig. 11.  and the disadvantages of the classification techniques used in PCG as a biometric   

Some other techniques are used to form decision boundaries to obtain a certain error criterion. 

These techniques depend on neural network classifiers [74, 76]. Some studies used HMM to train 

the time sequence of the heart sounds and to compute the output score. Then, the score was used 

as an input and it made n nonlinear mapping by WNN to acquire the classification information 

[30, 38]. They proved that HMM-WNN is better in performance than GMM. Due to its 

simplicity and quick processing, MLP-ANN was considered a very popular classifier and was 

used by other studies. In addition, for the classification of speech and heart sounds recognition, 

MLP ANN is considered the preferred choice [36]. 

DNN is a strong trend recently used in classification. A study applied DNN with some hidden 

layers to strengthen the classification or the regression capability, and the standard back-

propagation was applied to compute the parameters in DNN Model. It proved to be more 

efficient than other classifiers [50].  

Aside from the methods of classification mentioned earlier, KSRC was applied as a non-

parametric learning method in one of the studies. This method can perform a direct assignment 
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of a class label to a test sample depending on a dictionary that is composed of training samples. 

Then, for changing the sample distribution, there is an application of the kernel tricks to the 

classifier. Furthermore, an application of mapping in the kernel feature space of high dimension 

into linear separable is conducted for a variation in the linear non-separable samples [42]. Table 

5 presents the studies that investigated the classifiers which used in PCG as a biometric and the 

accuracy achieved from each classifier. Fig.11 Illustrates the most used classification techniques 

based on similarity, statistical, machine learning, and other approaches. It shows their advantages 

and their disadvantages and the reference of the paper used the classifier as well as its pros and 

cons based on the accuracy achieved.  

6 Performance Measures 

Testing the performance of any biometric system includes an open-set or a closed-set type. In the 

closet-set testing, the individuals enrolled are expected to have the ability to access the system, 

although this can hardly be guaranteed practically. The open-set testing has a focus on the 

presence of unknown subjects. 

Its application is possible through plotting the probability distributions of consistent matching 

scores to the allowed individual and the impostor. Heart sounds biometric identity can be 

determined based on two main systems: identification and verification. A biometric identity 

identification model can be viewed by a set of feature vectors which are used to verify the 

nearest match in the database templates if the obtained distance to the nearest template is low.  

A biometric identification system generates an error in the identification if the assigned class 

vector is not the true one. The biometric system that is used for identification can also use the 

Cumulative Match curve (CMC), and it draws the cumulative recognition rate as a mathematical 

function for ranking the recognition. When the closed-set testing is applied, there are no 

distributions of the score found to be evaluated.  In the heart sound biometric system Correct 

Recognition rate (CRR) is the most common metric used for identification. A biometric identity 

verification system functions as a binary classifier. The systems that work using binary 

classification compare the matched score with a given threshold. The threshold is determined 

based on the context of the specified system. According to the chosen threshold, the accuracy is 

nearly linked. 

Two main likely errors can be made using the binary classifier. The first error is the False Match 

error and it is a kind of error that happens when a method accepts an entity claims a match if the 
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template matches with the template stored in the model. The second type of error is false non-

match which is an error that rejects the entity claim even if the template matches with the 

template stored in the model. Depending on how the biometric systems operate, the importance 

of the error in the operational context varies. For instance in environments that depend on high 

security. False match error can be critical, while false non-match error could be tolerated. A 

threshold-independent approach is also needed to measure the performance of the heart sound 

identification models. A major problem with this is that we cannot know the applications in 

advance. The commonly used error performance in verification is Equal Error Rate (EER), False 

Match rate (FMR), and False Non-Match Rate (FNMR) as shown in Fig. 12. 

 

Fig. 12.  The most commonly used performance measure in heart sounds as a biometric. 

One of the ways used to evaluate the performance of the PCG biometric system is to plot the 

detection error tradeoff (DEF) curve. This curve is a relation between the FMR against FNMR. 

DET curves study the performance of the low FMR or FNMR introduced to the PCG biometric 

system.  This curve is considered to be a relation between security and usability. On one hand, 

when the FMR is low for a specific system it means that it is highly secure, therefore it can result 

in a great number of non-matches.  This kind of system may ask the user to try more than one 

authentication step. On the other hand, when the FNMR is low for the specific biometric system 

it means that the system will be more permissive and tolerant. This will result in a lot of false 

match errors and more unauthorized users to be accepted. To determine the correct choice 
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between the two measures and the level of security that is intermediate is deemed to be 

application dependent. Table 6 presents the results of each study in the last ten decades. The 

table presents the year and the author of the paper, data sets used, pre-processing, segmentation 

techniques, feature extraction, classification methods, and the results. It presents the work 

display in the last ten years in the PCG signal as a biometric.  

Fig. 13. Shows the effective parameters that affect the heart sounds biometric performance. It is 

characterized by 6 main causes which are: (data capturing, filtering, segmentation, feature 

gathering classification, and measurements evaluations) and 24 secondary causes divided into (2 

for data acquisition), (5 for pre-processing), (6 for segmentation), (5 for feature extraction), (4 

for classification) and (2 for measurements).  

The process of placing the main causes in the upper zone of the lower zone of the fishbone was 

made according to some conditioning, meaning that each phase in the fishbone depends on the 

previous one for example; feature extraction or segmentation depends on its previous phase 

which is pre-processing and data acquisition and so on. The same principal tried to be respected 

for the secondary causes. For example for the segmentation to be performed it depends on its 6 

secondary causes and the same for the main causes. The result of those causes will lead to 

achieving our goal or using PCG as a biometric. 

 

Table 6. Survey of the most common techniques used in the PCG Identification 

 
Year & 

Authors 

DataSet Pre-

processing 

Segmentation Feature extraction Classification  Results 

2007 

Beritelli 

et al., 

[19] 

Heart 

songs 

20 people 

- Autocorelation and 

hamming window 

z-chirp CZT ED FRR = 5.0% and 

FAR = 2.2% 

2008 

Phua et 

al., [20] 

10 people 

1000 HS 

Energy 

thresholding 

Framing based on 

STFT 

FL = 256, FS = 256 

LFBC VQ 

GMM 

GMM was higher 

than VQ with 60 

reachs 96% 

2008 

Beritelli 

et al., 

[21] 

70 people - Autocorelation and 

hamming window 

z-chirp CZT applied on 

each sub-bands (S1-S2) 

ED EER = 9% 

2009 

Beritelli 

et al., 

[22] 

50 people Low pass 

filter 

Autocorelation and 

hamming window 

13 cofficients from 

MFCC + FSR 

ED EER < 9% 

ERR = 8.70% 

2009 

Beritelli 

et al., 

[23] 

40 people 

 

Low pass 

filter 

Autocorrelation and 

hamming window 

13 coefficients from 

MFCC + FSR 

ED 

 

 

EER = 5% 

 

2010 21 Wavelets Framing based MFCC + ED The A = 100% 
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Fateman 

et al. 

 [24, 25] 

subjects using db5 onSTFT 

FL = 

250,500,1000ms 

LDA Distance 

Threshold = 

6,8,10 

2010 

Beritelli 

et al., 

[26] 

165 

People 

- - A Tool called Sfbcep that 

performs filter-bank 

cepstral analysis 

GMM EER = 13.70% 

2010 

Beritelli 

et al., 

[27] 

147 

People 

- - A Tool called Sfbcep that 

performs filter-bank 

cepstral analysis 

GMM ERR = 15.53% 

2010 

Tao et al., 

[28] 

 

5-100 

people 

- Autocorrelation and 

hamming window 

Fusion between cycle, 

power, frequency, and 

drawing features 

Similarity 

distance 

A Close to 99% 

2010 

Huy et 

al., [29] 

52 users 

 

- Autocorrelation and 

hamming window 

8 feature sets + RFE for 

feature selection + 

First 

experiment: 

using  8 feature 

sets + SVM 

without 

selection. 

Second 

experiment: 

using  8 feature 

sets + SVM 

with RFE 

selection 

Two experiments 

were applied  1st 

experiment A was 

over 80% for 

GMM and LFCC 

features 

2nd experiment A 

was over 90% for 

GMM features 

2010 

Guo et 

al., [30] 

160 heart 

sounds 

from 80 

subjects 

- - LPCC WNN+ 

HMM 

 

Better than GMM 

 

2010 

Jasper et 

al., [31] 

10 

 

Low pass 

filter 

- DWT decomposition + 

selecting appropriate 

bands + Shannon energy 

Template 

matching 

98.67% with 

Shannon energy 

77.33% without 

Shannon energy 

2011 

Cheng 

Xie et al., 

[32] 

10 - - ICC + Independed sub-

band function 

Similiarty 

distance 

A = 85.7%, EAR 

< 7%, 

RER < 10% 

2011 

Zhao et 

al., [33] 

30 

 

Normalization hamming window MFCC VQ A= 100% 

2012 

Cheng 

Xie [34] 

300 heart 

sounds 

 

- Wavelet Family LBFC Similarity 

distance 

Verification: 12 

Heart sounds 

signal for train, 12 

Heartsounds 

signals for test A 

= 100% 

Identificaiton: 

EAR < 1-8%,    

  ERR < 3%, A = 

99% 

2012 

Rasha 

Wahid et 

80 heart 

sound 

samples 

- FFT using 

hamming window 

FL = 256 ms 

FEAL1: MFCC + DCT 

FEAL2 : Spectral   

magnitude + DCT 

GMM FEAL1 : A = 

100% for 7 

samples  FEAL2 : 
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al., [35] STFT   

FL = 256 ms 

A = 100% for 6 

samples 

2012 

Chen W 

et al. [36] 

- Wavelet 

transform 

- MFCC 

PCA 

- A could reach 

90% 

2012 

Karmakar 

et al. [37] 

- Low pass 

filter 

- Wavelet and windowed 

2nd level coefficients 

MLP 96.178% 

2013 

Zhong L 

et al., 

[38] 

100 heart 

sounds 

From 50 

people 

Wavelet 

transform 

- LPCC 

MFCC 

 

GMM LFCC is more 

suitable than 

MFCC 

 

2013 

Spadacci

ni et al., 

[39] 

HSCT-11 

206 

people 

Low pass 

filter 

Cross-correlation 

windowing 

Computing the 

variance of each 

segment 

Structural system : 

MFCC + FSR 

Statistical System: 

LFCC + FSR 

Structural 

system: 

Template 

matching 

Statistical 

System: 

GMM 

Structural system 

ERR = 36.86% 

Statistical system 

ERR = 13.66% 

2013 

Zhao et 

al., [40] 

40 

Subjects 

280 heart 

sounds 

DWT using 

db5 family 

 

Hamming 

Hanning 

Rectangular 

Hamming was the 

best 

FS (Fourier Spectrum) 

MS (Marginal Spectrum) 

VQ For FS  A= 

84.93% 

For MS  A = 

94.16% 

2013 

Girish et 

al., [14] 

10 

4000 PCG 

Samples 

Normalization 

Low pass 

filter 

Autocorrelation + 

segmentation using 

thresholding 

LFBCC 

Wavelet decomposition 

using db2 

MLP-ANN LFBCC with  A = 

89.68% 

Wavelet with A = 

90.52% 

2014 

Tan et al., 

[42] 

15 

Subjects 

Low pass 

filter 

ZCR+STA  

―zero-crossing 

rate and short-term 

amplitude‖. 

MFCC 

DCT 

KSRC 

SVM 

KNN 

SRC 

A = 85.45% 

A = 84.87% 

A= 84.57% 

A = 78.78% 

2014 

Abo el 

zahad et 

al., [43] 

HSCT-11 

17  

Subjects 

 

DWT using 

db5 

+ 

Thresholding 

of wavelet 

coefficients 

Hamming window 

 

MFCC, BFCC, LFCC, 

DW-MFCC + Fusion 

between them using CCA 

LDA + GMM 

with kmeans 

with a 

decision-based 

Bayes theory 

 

A= 

94.4%,A=94.325

%,A=93.7% 

A=95.12%, A of 

parallel fusion was 

the best between 

MFCC+DW-

MFCC features A 

= 99.5% 

2014 

Swati et 

al.,  [44] 

30 

subjects 

High pass 

filter 

Framing using 

Hamming window 

MFCC 

DCT 

SVM A = 96% 

2015 

S. Bindu 

et al., 

[45] 

- TVD - Signal Energy envelope Template 

matching 

- 

2015 

Abo el 

zahad 

 et al., 

[46,47] 

HSCT-11 

206  

people 

DWT using 

db5 and 4 

thresholding 

techniques  

Framing using 

hamming window 

FS = 1000ms, 

 FS =500ms 

WPCC using linear and 

non-linear filters + LDA  

Based on different 

wavelets the best was a 

demy 

Bayes The best accuracy 

achieved using 

WPCC with non-

linear filtering 

reaching  

A= 91.05% 
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2016 

Abo el 

zahad 

et al., 

[48] 

HSCT-11 

206 

people 

Bio-Sec 

21 people 

DWT using 

db5 and 4 

thresholding 

techniques 

Framing using 

hamming window 

FS = 1000ms, 

 FS =500ms 

MFCC,LFCC,NLFCC,W

PCC 

+ LDA 

Based on different 

wavelets the best was 

demy 

Bayes HSCT-11 

database A = 

91.61%, A=91.15, 

A=92.51 and 

90.26% 

Bio-Sec database  

A=97.31%,  

 A= 96.94%,A = 

97.02% 

andA=98.05% 

2016 

Abo el 

zahad 

et al., 

[49] 

HSCT-11 

206 

people 

Bio-Sec 

21 people 

DWT using 

db5 and 4 

thresholding 

techniques 

Framing using 

hamming window 

FS = 1000ms, 

 FS =500ms 

MFCC,LFCC,MMFCC,

WPCC 

+ LDA 

Based on different 

wavelets the best was 

demy 

Bayes HSCT-11 

database A = 

91.15%, A=91.61, 

A=92.82 and 

90.26% 

Bio-Sec database 

A=96.94%, 

A= 97.31%,A = 

98.57% and 

A=97.02% 

2017 

T.E Chen 

et al. [50] 

16 people  

Total of 

616 HS 

-  Heart sound 

activity detection 

based on SEE 

MFCC + kmeans DNN, 

 KNN, 

 LR 

SVM  

GMM  

A= 91.12% 

A= 78.11% 

 A= 87.57% 

A= 90.53% 

A=86.98% 

2018 

TG 

Meitei et 

al., [51] 

- Wavelets - - ED, GMM, 

FSR, and VQ 

- 

2019 

Fahad et 

al. [52] 

50 DWT Hilbert modeling AR burg modeling Bagged 

decision Tree 
A= 86.7% 

2019 

El-

dahshan 

et al. [53]  

60 from 

HSCTI 

50 from 

PASCAL 

MRD-MRR Framing and 

windowing, 

Shannon energy 

envelope 

MS_DWT RF 

ANN 

SVM 

KNN 

A = 100% using 

SVM with (Db9) 

on 60 Subjects 

A = 100% using 

ANN with  

(Db10) on 50 

Subjects 

2020 

Cheng, X 

et al. [54] 

80 HS 

from 40 

subjects 

- IMF + multiscale 

dispersion entropy  

LR 

HSMM + FR for 

reduction  

ED 96.08% 

 

7 Discussion, Limitations, and Challenges  

There have been contributions from diverse research papers to the field of automated verification 

and identification of the PCG signals as a biometric recorded in heart sound form. In this 

examination, 29 publications that focus on heart sounds as a biometric are taken into 

consideration. This literature was published during the years from 2006 until 2020. The yearly 
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distribution of 35 articles (13 journals, 20 conferences, and 2 theses) together with the repetition 

of the keywords (biometric and heart sound) in the title of the paper is shown in table 7.  

Table 7. shows the number of manuscripts used to review PCG as a biometric 

Year No. of  

Paper 

Journals 

No. of  

Paper 

Conferences 

No. of 

Thesis  

Total No. of 

publications 

Keyword 

Biometric Heart 

Sound 

2006 - 1 - 1 - 1 

2007 1 - - 1 1 - 

2008 1 1 - 2 1 1 

2009 - 2 - 2 - 1 

2010 - 7 1 8 5 6 

2011 1 2 - 3 1 3 

2012 2 - 1 3 - 1 

2013 1 2 - 3 3 3 

2014 1 1 - 2 3 1 

2015 1 2 - 3 4 2 

2016 2 1 - 3 3 1 

2017 1 - - 1 - - 

2018 1 - - 1 2 1 

2019 1 1 - 2 - - 

Total 13 20 2 35 23 21 

 

The data acquisition phase is considered an important step in the phases of PCG authentication. 

From the survey, not many datasets were presented due to the limitations in the number of them 

in the applications of PCG biometric. We recommend the researchers publish their datasets 

online to encourage the development of different techniques. 
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The pre-processing phase is a critical step in the process of the PCG signal as a biometric. 

Therefore, almost all of the filtering methods mentioned in the study and their combinations can 

be performed to increase the performances. Studies about the filtering techniques focused on 

down-sampling, low-pass filtering, energy-thresholding, normalization, total variation de-

noising, and wavelets. The filter type can change depending on the type of noise in the PCG 

signal. Studies showed several techniques used in the segmentation phase. Those techniques are 

based on framing and windowing, auto-correlation, Shannon energy envelope, and zero-crossing 

rate with short-term amplitude. The studies showed that this step is very important for detecting 

the heart sounds in the PCG signal before extracting any features. The segmentation technique 

should be chosen based on the appropriate context and with the relevant advantages and 

disadvantages. The focus should also be placed on the concentration of S1 and S2 and without 

removing any important information from the PCG signal.   

Although researchers have proposed different types of feature extraction for PCG signals, there 

is no one size fits all. The feature extraction in the studies was based on the time, frequency, 

time, and frequency domain features. We recommend using time-frequency features, frequency, 

and then the time domain respectively in the efficiency. Some studies fused between frequency 

and time-frequency features and achieved high accuracy on a large number of subjects.  

 
 

      Fig. 13.  Fishbone diagram with the parameters that affect the heart sounds as a biometric   

         There are many different conditions to decide the feature extraction techniques to be used, 

for example, the de-noising, processing time expectations, classification, and the dimensionality 

of the feature space. So, one should choose what features to be used by applying all these factors. 
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To overcome this problem feature transformation or selection should be applied as it is deemed 

to be a salient step. The process transforms the original features space into a lower-

dimensionality sub-space some feature selection methods focus on producing the optimal 

solution, while others might give suboptimal results. So there is a tradeoff between the 

processing time and the optimality. Different success measures for PCG as a biometric and 

classification based on identification and verification. For identification, CRR can be used, and 

for verification, common methods include EER, FMR, FAR, EAR, FNMR, FRR, and RER. EER 

is considered to be the most often used measurement among all these measures in verification. 

However, most of the researchers prefer to present their results with more than one measurement 

due to the non-stationary nature of the PCG signal.   

There are different challenges and limitations in the use of heart sounds as a biometric. Some 

are discussed as below:  

1- The efficient segmentation of the essential PCG S1 and S2 sounds is one of the main tasks of 

phonocardiography. The detection and classification of the heart sound signal automatically 

constitute the challenge in the heart sound signal. The techniques used in the segmentation 

process of PCG signals do not give an accurate accuracy of extracting S1 and S2 from heart 

sound signals [77]. The classification of the heart sounds for the individuals as a biometric in 

the identification or verification phase did not reach satisfying accuracy.    

2- It is possible to evaluate and compare different feature extraction techniques. To increase the 

system's performance, especially in the case of fusion with ECG, the techniques of feature 

selection and fusion can be adopted [10-78]. Furthermore, multimodal biometrics can be used 

and combined with PCG to improve the strength of the biometric system [79].  There are 

merits and downsides for each type of biometric. Hence, multi-model biometric fusion is 

introduced to improve identification performance. It is deemed that this model is a new 

application of information fusion. Information fusion can be defined as a mixture between 

different data sources for the generation of one format or taking an accurate decision. This 

model is considered to be a new application of information fusion. Three variant levels can 

be used for carrying out the fusion between ECG and PCG: Data-level, feature-level, and 

decision-level fusion. A study has investigated the multimodal biometric system's 

performance in the identification mode [24]. The evaluation is tested using data collected 

from ECG and PCG signals of 21 subjects. The results showed a recognition rate of 98.4%. 

Hence, it is proved that fusion between them has gained higher accuracy than each biometric 

alone. 
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3-  In the feature extraction phase, most of the research committees applied wavelet-based 

methods and cepstral coefficient over other features. Wavelet proved its ability to provide 

accurate results in extraction during the PCG analysis as a biometric [80-83]. A valid 

example is the wavelets can define the local change in the heart sound cycle. Moreover, the 

high-frequency components need to be examined in the PCG signal, and wavelets proved to 

be more localized at the higher parts of frequency, therefore, wavelets proved to be better 

than FFT [84, 85]. In contrast, it is difficult for wavelets to experience a local event that 

occurs at the local frequency range. On the contrary, Cepstral coefficients are not efficient in 

the case of the existence of additive noise, therefore, it is common to perform a normalization 

operation to the values of the PCG signals to decrease the presence of this noise. 

4- The ability of EMD and empirical wavelet transform (EWT) is proven in overcoming the 

non-adaptability of the wavelets. Their performance in feature extraction leads to better 

results. Some further studies work on obtaining a group of well-defined and accepted features 

for the heart sound based on their clinical and statistical significance.  

5- ANN is a traditional and popular classifier that is used for the classification of many different 

PCG signals as a biometric, but the ANN suffers from a lot of difficulties such as the 

problem of over-fitting, the increase in the complexity because of the redundancy in the 

features and the hidden noises. Research communities should explore the performance of the 

hybridization and fusion between classifiers and adding some meta-heuristic techniques for 

optimal decisions [86].  

6- This study also discusses that three main variant classification concepts. The first concept is 

based on similarity. The second concept is based on a probabilistic or statistical approach. 

The third concept is based on the construction of decision boundaries by optimizing certain 

error criteria. There is a need to apply other classification approaches to the heart sound 

features and show their performances [55]. 

7- A challenging research topic in the field of biometrics is using PCG signals for biometry. 

Several works have been presented so far on this topic by the academic community. 

However, the problem with most of them is that the evaluation is conducted on small 

databases. Thus, the results obtained are difficult to be generalized. Only one large database 

is used for PCG as a biometric [58]. Upon the availability of larger databases of heart sounds 

for the scientific research communities, future research will need to address a lot of issues 

and challenges [87– 90]. 
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8- For more conventional biometrics (fingerprint, face), heart sounds disorders cannot be 

considered a damaging factor in some cases. They can only cause limitations in the PCG 

biometrics methods. A range of disorders can emerge, from isolated irregularity to severe 

conditions where immediate medical assistance is required [91-93]. 

A move toward deep learning techniques is evident in the incline in the pattern recognition 

fields. There is a lot of specialties involved. Handcrafting feature extraction method is 

specifically avoided by locating discriminating regularities in the raw data. It has a good 

performance with large and diverse datasets. Furthermore, the performance is also good in 

practical settings because a lot of data with large variations are produced by the clinical 

routine. Another main point to be considered is that our survey yielded only 29 papers. To be 

specific, one paper discussed deep learning as a future work and its effect on the accuracy of 

authentication of the individual using heart sounds. In several pattern recognition domains, 

deep learning has become the state of art. Likewise, may also be useful in PCG recognition 

[94-96].    

9- The identification performance is very low for larger datasets. This will entail matching 

algorithms that will be fine-adjusted with a suitable feature set that can be properly identified 

via the combination of elements from both frequency and time domains. Then, there will be 

an assessment of the mid-term and long-term reliability of heart sound signals, where the 

variations in the heart acoustic signal as biometric as time progresses will be analyzed. It is 

expected from the community to exert effort in developing systems and algorithms for the 

heart- sounds biometry. Furthermore, common databases need to be created for evaluating 

different research approaches over a shared dataset. These databases will allow their 

performances to be compared to refine them over time. Methods and approaches that might 

be deployed in real-life scenarios also need to be developed [97].   

10- Some changes must be made on the databases that are collected for the PCG biometric 

because most of them are gathered at the same time, therefore, the results will not be accurate 

for the stability of the heart sound signals over time. This poses a challenge in obtaining the 

characteristic of permanence as it is considered to be one of the most important features of a 

biometric trait. That is why a new different dataset should be contrasted with a great time 

duration between the testing and training heart sounds recordings. In addition to this, the 

datasets are gathered under rest conditions, and the research communities in the future should 

focus on capturing heart sound under variant physical activities. Many other factors can 
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affect the performance of the heart sound biometric verification systems such as age, gender, 

and heart rate, and it needs more methods and study to match these factors [98]. 

11- Some practical issues like ad-hoc sensors with embedded matching algorithms and 

computational efficiency must be addressed. This can be achieved using algorithms more 

sophisticated and different self-determining feedback as this will give a positive evaluation of 

the notion. This will lead to the advancement of PCG biometry and it can act as an alternative 

or supportive solution to many biometrics methods [99 – 100]. 

12- ECG signals can be captured when single session and multi-session data, and most of the 

ECG data obtained are based on single-session from public repositories, clinical sources, or 

using custom free-living protocols. The databases available for heart sounds are obtained at 

the same session, and there are no datasets available for PCG signals captured at multi-

session data. More studies need to be performed to determine whether if a single or multi-

session is better for authentication [101].  

13- Lastly, one main limitation started to be apparent in the last two years. The available datasets 

for PCG as a biometric online started to be not accessible on the servers. Also, the research 

papers about PCG as a biometric in the last two years started to become sparse.   

 

8 Application Fields for PCG as a Biometric 

PCG signals as a biometric can be used in several applications. It is significant to correctly and 

efficiently identify the user in many applications used within the defense, security, finance, 

airport, hospitals, and personal identity industries. The features of the PCG signals allow the 

improvement of different and motivating applications, where nonstop authentication is a critical 

factor. There are valid examples of that such as electronic trading platforms in which more 

security and permanent authentication are required, the gaming industry in which the PCG sensor 

can be used to verify the players in a multi-player mode, the auto industry for car-sharing 

programs and fleet management applications. Moreover, PCG signals can be used to detect 

abnormality and heart defects [102-106], heartbeat detection [107-110], and emotion recognition 

[111]. 

9 Conclusions 

With the advancement of computer intelligence and machine learning, biometrics attracts more 

attention as a means of authentication as it is used in many different applications. It has become 

one of the major research areas in security traits and verification. There are different types of 
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biometrics and we focused on a behavior biometric namely the use of heart sounds due to its 

advantages. In this paper, we provide an intensive review and survey of research on heart sounds 

described in the work. The steps of processing the heart sound signal as a biometric are 

organized into data acquisition, filtering, segmentation, feature extraction, and classification and 

evaluation. In the data acquisition, we discussed the most commonly used datasets in our survey 

and it is shown there are limited datasets available for the heart sounds. Also, the presented 

datasets do not discern between the ages, gender, and size. The techniques used in pre-processing 

based on the survey were categorized into down-sampling, low-pass filtering, energy-

thresholding, normalization, total variation de-noising, and wavelets. It is concluded from the 

survey that the wavelets and total variation de-noising are much better than the conventional 

filters in de-noising the heart sound signal. This is because it is considered to be non-stationary 

signals especially total variation de-noising that can be generalized for general signals. 

From the survey, the techniques used in the segmentation were based on framing and 

windowing, auto-correlation, Shannon energy envelope, and zero-crossing rate with short-term 

amplitude. Each technique has its advantages and disadvantages. Therefore the selection of the 

segmentation method depends on what types of features are needed after segmentation. In the 

feature extraction stage, we reviewed all the techniques used in heart sounds as a biometric. 

Those techniques were divided into three domains, time-domain features, frequency domain 

features, and both time and frequency domain features. It is observed from the survey that fusion 

between those feature domains with a large number of subjects achieves the lowest EER and 

FAR. 

The final stage is a classification based on verification and identification of the individual using a 

heart sounds signal. From the survey, most of the classification techniques were based on 

similarity, statistical, pattern recognition approaches and we have also considered the traditional 

classifiers. There are some improved classifiers such as the DNN approach and SRC that are 

discussed in two papers in the survey. Those classifiers can improve the performance and 

increase the accuracy of the heart sound biometric system. The challenge remains that there is a 

need to provide a generalized heart sound biometric system regardless of data size and quality.  
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