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Abstract
Electronic health records (EHRs), digital collections of pa-
tient healthcare events and observations, are ubiquitous in
medicine and critical to healthcare delivery, operations, and
research. Despite this central role, EHRs are notoriously dif-
ficult to process automatically. Well over half of the informa-
tion stored within EHRs is in the form of unstructured text
(e.g. provider notes, operation reports) and remains largely
untapped for secondary use. Recently, however, newer neural
network and deep learning approaches to Natural Language
Processing (NLP) have made considerable advances, outper-
forming traditional statistical and rule-based systems on a
variety of tasks. In this survey paper, we summarize current
neural NLP methods for EHR applications. We focus on a
broad scope of tasks, namely, classification and prediction,
word embeddings, extraction, generation, and other topics
such as question answering, phenotyping, knowledge graphs,
medical dialogue, multilinguality, interpretability, etc.

CCS Concepts: • General and reference→ Surveys and
overviews; •Computingmethodologies→Natural lan-
guage processing; Machine learning algorithms.

Keywords: natural language processing, neural networks,
EHR, unstructured data

1 Introduction
Electronic health records (EHRs), digital collections of pa-
tient healthcare events and observations, are now ubiquitous
in medicine and critical to healthcare delivery, operations,
and research [45, 51, 73, 92]. Data within EHRs are often
classified based on collection and representation formats
belonging into two classes: structured or unstructured [43].
Structured EHR data consist of heterogeneous sources like

Authors’ address: Irene Li, Jessica Pan, Jeremy Goldwasser, Neha
Verma, Wai Pan Wong; Muhammed Yavuz Nuzumlalı, Benjamin
Rosand, Yixin Li, Matthew Zhang, David Chang; R. Andrew Tay-
lor, Harlan M. Krumholz and Dragomir Radev, {irene.li,jessica.pan,
jeremy.goldwasser,neha.verma,waipan.wong}@yale.edu, {yavuz.nuzumlali,
benjamin.rosand,yixin.li,matthew.zhang,david.chang}@yale.edu, {richard.
taylor,harlan.krumholz,dragomir.radev}@yale.edu.Yale University, New
Haven CT 06511.

diagnoses, medications, and laboratory values in fixed nu-
merical or categorical fields. Unstructured data, in contrast,
refer to free-form text written by healthcare providers, such
as clinical notes and discharge summaries. Unstructured data
represent about 80% of total EHR data, but unfortunately re-
main very difficult to process for secondary use [255]. In this
survey paper, we focus our discussion mainly on unstruc-
tured text data in EHRs and newer neural, deep-learning
based methods used to leverage this type of data.
In recent years, artificial neural networks have dramati-

cally impacted fields such as speech recognition, computer
vision (CV), and natural language processing (NLP) within
medicine and elsewhere [31, 167]. These networks, which
most often are composed of multiple layers in a modeling
strategy known as deep learning, have come to outperform
traditional rule-based and statistical methods on many tasks.
Recognizing the inherent performance advantages and poten-
tial to improve health outcomes by unlocking unstructured
EHR text data, neural NLP methods are attracting great inter-
est among researchers in artificial intelligence for healthcare.

1.1 Challenges and difficulties
In this survey, we focus on neural approaches to analyzing
clinical texts in EHRs. While these data can carry abundant
useful information in healthcare, there also exist significant
challenges and difficulties including:

• Privacy. Due to the extremely sensitive nature of the
information contained in EHRs and the existence of
regulatory laws such as the (US) Health Insurance and
Portability and Accountability Act (HIPAA), mainte-
nance of privacy within analytic pipelines is impera-
tive. [62, 115]. Therefore, often before any downstream
tasks can be performed or any data can be shared with
others, additional privacy-preserving steps must be
taken. Removing identifying information from a large
corpus of EHRs is an expensive process. It is difficult
to automate and requires annotators with domain ex-
pertise.

• Lack of annotations.Many existing machine learning
and deep learning models are supervised and thus
require labeled data for training. Annotating EHR data
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Figure 1. Various tasks covered in this survey.

can be challenging because of the cognitive complexity
of the task and because of the variability in the quality
of data. Neural networks require large amounts of text
on which to train, and unfortunately, useful EHR data
are often in short supply. For some tasks, only qualified
annotators can be recruited to complete annotations.
Even when annotators are available, the quality of the
annotations is sometimes hard to ensure. There may be
disagreement among the annotators which can make
the evaluations more difficult and controversial.

• Interpretability.Deep neural networks are able to achieve
superior results compared with other methods. How-
ever, in many fields, they are often treated as black
boxes [230, 273]. Typically, a neural networkmodel has
a large number of trainable parameters, which causes
severe difficulties for model interpretability. Moreover,
unlike linear models, which are usually more straight-
forward and explainable, neural networks consist of
non-linear layers and complex architectures further
hampering interpretation. Recently, there have been
a few attempts to produce explainable deep neural
networks to increase model transparency [29, 30, 164].

1.2 Related Work
Prior surveys have focused on a variety of deep learning
topics within health informatics, bioinformatics, including
EHRs. An early survey by Miotto et al. [157] summarized
deep learning methods for healthcare and their applications
in clinical imaging, EHRs, genomics, and mobile domains.
The authors reviewed a number of tasks including predict-
ing diseases, modeling phenotypes, and learning representa-
tions of medical concepts, such as diseases and medications.
Some other survey papers, such as [4, 204] described clini-
cal applications that use deep learning techniques including
information extraction, representation learning, outcome
prediction, phenotyping and de-identification. Similarly, a

systematic survey by Xiao et al. [255] targeted five categories:
disease detection/classification, sequential prediction, con-
cept embedding, data augmentation and EHR data privacy.
Kwak and Hui [116] reviewed research applying artificial
intelligence to health informatics. Specifically in the EHR
field, they included the following applications: outcome pre-
diction, computational phenotyping, knowledge extraction,
representation learning, de-identification and medical in-
tervention recommendations. Assale et al. [9] presented a
literature review of how free-text content from electronic
patient records can benefit from recent Natural Language
Processing techniques, selecting four application domains:
data quality, information extraction, sentiment analysis and
predictive models, and automated patient cohort selection.
Another recent survey [251] summarized deep learningmeth-
ods in clinical NLP. The authors reviewed methods such as
deep learning architectures, embeddings and medical knowl-
edge on four groups of clinical NLP tasks: text classification,
named entity recognition, relation extraction, and others.
Joshi et al. [99] discussed textual epidemic intelligence or
the detection of disease outbreaks via medical and informal
(i.e. the Web) text.

1.3 Motivation
While the aforementioned reviews target different applica-
tions or techniques, and vary on the scope of selected topics,
in this survey, we look at a more comprehensive coverage of
applications and tasks, and we include several works with
very recent BERT-based models. Specifically, we summarize
a broad range of existing literature on deep learning methods
with clinical text data. Most of the papers on clinical NLP
discussed achieve performance at or near the state-of-the-art
for their tasks.

We now provide some NLP preliminaries, and then we ex-
plore deep learningmethods on a various tasks: classification,
embeddings, extraction, generation, and other topics includ-
ing question answering, phenotyping, knowledge graphs,
and more. Figure 1 shows the scope of the tasks. Finally, we
also summarize relevant datasets and existing tools.

2 Preliminaries
In this section, we present an overview of important con-
cepts in deep learning and natural language processing. In
particular, we cover commonly used deep learning architec-
tures in NLP, word embeddings, recent Transformer models,
and concepts from transfer learning.

2.1 Basic Architectures
We first summarize some basic network architectures com-
monly used in NLP. We introduce autoencoders, convo-
lutional neural networks, recurrent neural networks, and
sequence-to-sequence models.
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2.1.1 Autoencoders. Autoencoders [113] learn lower di-
mensional representations of a given input, while preserving
salient features. The autoencoder is a neural network that
encodes its input into (typically) fewer dimensions, and then
decodes this representation to reconstruct the original in-
put. In other words, the autoencoder identifies the hidden
semantic features that can be used to represent the input
data.

Several variations of the autoencoder exist. The denoising
autoencoder [232] corrupts each input by randomly setting
some of the input values to zero, but still trains to reconstruct
the uncorrupted sample. Doing so prevents overfitting and
forces the model to more robustly learn the dependencies
between input features.

Another modification, the variational autoencoder (VAE)
[110], learns to represent each sample with a probability dis-
tribution rather than a fixed encoding. This increases model
robustness by accounting for greater variance in the latent
space. And, because a VAE learns a latent state distribution,
its decoder can also generate new samples by randomly sam-
pling encodings from the representation space. Besides, such
a latent state distribution forces the underlying manifold or
topology to be continuous, making it suitable and important
for density-based clustering and topic modeling.

A third variation is the stacked autoencoder [233]. Rather
than a single autoencoder, this model consists of a chain of
successive units. Each autoencoder layer within a stacked
autoencoder inputs and reconstructs the encoding layer from
the previous autoencoder. Stacked denoising autoencoders
are used in a number of NLP applications such as sentiment
analysis [272].

2.1.2 Convolutional Neural Networks. Convolutional
Neural Networks (CNNs) [64, 120, 238] are a classic neural
model based on the human visual cortex. Each layer of a
CNN convolves input matrices with smaller filters whose
parameters are learned by the network. In effect, it will learn
higher and higher level features with each successive layer.
In image processing, it may detect edges in the first layers,
piece together those low-level shapes in subsequent layers,
and so on until it can identify abstract concepts like faces or
specific objects. CNNs can also be applied to common NLP
tasks, such as text classification [109, 274].

2.1.3 RecurrentNeuralNetworks. Recurrent Neural Net-
works (RNNs) [190, 250] process sequential input at discrete
time steps. Because they share the same weights at every
step, they are able to handle variable-length inputs; this prop-
erty makes RNNs very helpful in NLP applications, which
have sequential text input [83, 163, 249]. In the standard
(or “Vanilla”) RNN, each time step has a cell that processes
both the input at that step and the processed input from all
preceding steps. From these inputs, each cell generates an
output that gets passed to the next RNN cell, and another

(optional) output that can be used to make a decision at that
time step.

Vanilla RNNs struggle to learn long-term temporal depen-
dencies because their gradients can grow or decay exponen-
tially over multiple time steps. To solve this issue, the Vanilla
RNN cell can be replaced by a Long Short-Term Memory
(LSTM) cell [81], a Bidirectional Long Short-Term Memory
(BiLSTM) [70] cell or a Gated Recurrent Unit (GRU) cell [35].
These cells have gates that control the flow of information,
making the network better at retaining memory over mul-
tiple time steps. Such RNN-based models have been widely
applied in tasks including text classification [138] and lan-
guage understanding [261].

2.1.4 Sequence-to-sequencemodels. Each cell in an RNN
can produce an output in addition to a hidden state. This
gives them a large amount of flexibility: they can convert one
input to one output, one input to many outputs, many inputs
to one output, or many inputs to many outputs. Sequence-
to-sequence (seq2seq) models are a special kind of many-to-
many RNN, in which the whole input sequence is encoded
before an output sequence is decoded one token at a time
[220]. This presents an encoder-decoder framework resem-
bling that of the autoencoder, but without the objective for
the decoder to output the original input. At each decoder
time step, the seq2seq model generates a token in the output
sequence; that token gets passed as the input token for the
next time-step. This step is repeated until an end-of-sequence
token is decoded. Seq2seq models have been widely used in
generative NLP tasks including machine translation [220]
and summarization [168].

2.2 Word Embeddings
Word embeddings map discrete tokens like words into a
real-valued vector space, taking the word’s semantics into
account. Some of the earliest approaches represented words
as one-hot vectors, with a 1 at the index corresponding to the
word. This naïve method had two major problems. First, it
completely ignored semantics. As an example, “Paris” would
be just as close to “armchair” in representation space as
it would to “France.” Secondly, it was not scaleable, as it
represented each word as a vector over the entire vocabulary.
A very influential method using neural networks to cre-

ate dense semantic word embeddings was word2vec [155].
Word2vec introduced the skip-gram model, which learned
word representations by predicting the surrounding context
of a "center" word. It also introduced the continuous bag-of-
words (CBOW)model, which predicted a "center" word given
its context. Both producedmeaningful word embeddings that
proved excellent at making analogies. Later, Facebook AI pro-
posed FastText [100], which modified word2vec by inputting
n-gram character strings rather than full words. This minor
adjustment significantly sped up training. GloVe [176], is a
similar word embedding model. It learns embeddings from
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global statistical information on the number of times words
co-occur together. Finally, following a similar approach to
word2vec, doc2vec [118] is a model to learn fixed-length
dense embeddings of sentences, paragraphs and documents.

2.3 Language Models
Word2vec, GloVe, and FastText embeddings produce fixed
embeddings for a given word. Such a framework is limiting,
however, because words may have many different meanings
depending on their context. Some more recent models use
RNNs to create such contextualized embeddings. Most of
these are language models – models that predict the prob-
ability of an input sequence by factoring it as product of
conditional probabilities. Each conditional probability is the
probability of a word given the entire sequence that precedes
it. Language models make excellent embedding models be-
cause they learn to represent words based on prior context.

An important model that used a language model to create
word embeddings was ELMo [180]. ELMo, which stands for
Embeddings from Language Models, introduced the idea of
using bidirectional LSTMs to consider a word’s context in
both directions. That way, each embedding factors in every
other word in the input, not just the preceding ones.
A significant breakthrough for language models is the

Transformer model [229]. The Transformer is an encoder-
decoder model that uses a modified attention mechanism
called “self-attention” to represent text in a parallel fashion.
Its novel network architecture trains faster and yields bet-
ter results than traditional seq2seq models with attention.
Rather than using a sequential RNN to encode the input one
token after another, the Transformer processes each input to-
ken at the same time. This parallelization dramatically speeds
up training. But it does not work in isolation; instead, the
self-attention mechanism examines the representations of all
other input tokens when encoding an input. The overall ar-
chitecture is a stack of Transformer encoder layers, the final
result of which gets passed to a stack of Transformer decoder
layers. As with standard seq2seq models, the Transformer
decodes the output one token at a time.

Severalmodels based on the Transformer have transformed
the NLP landscape in the years following its release. Ope-
nAI’s Generative Pretrained Transformer (GPT) [183] was
the firstmodel to createword embeddingswith Transformers.
GPT, along with its subsequent versions GPT-2 and GPT-3,
is a stack of Transformer decoders. All three work as lan-
guage models, as the decoder outputs one successive token
given all previous decoded tokens at each time step. With
this framework, they are able to pretrain on vast amounts
of unstructured text in an unsupervised manner. Then, once
pretrained, the GPT models can be adapted for a variety of
tasks such as question answering and summarization.

Bidirectional Encoder Representations from Transformers
[53], or BERT, is another major breakthrough model based

on the Transformer model. It combines the benefits of bidi-
rectional training found in the ELMo model [180] with the
Transformer architecture, producing stellar results on dozens
of NLP tasks. BERT, like ELMo and the OpenAI GPTs, is a
languagemodel that is pretrained on raw text and can be fine-
tuned for many different tasks. However, unlike a standard
language model, which predicts a word given the sequence
of preceding words, BERT masks input words at random and
trains to predict the masked words. The architecture of this
“masked language model” is merely a stack of Transformer
encoders. At the time of its publication in late 2018, it had
already achieved state-of-the-art performance on 11 NLP
tasks.

Several important variants of BERT followed that are also
commonly used in NLP work. RoBERTa [140] is a model that
uses the same architecture as BERT butwith adjustments that
improve performance. For example, RoBERTa trains on more
data for a longer period of time. It also dynamically adjusts
the masking scheme and trains on longer sequences. T5 [185]
and BART [125] are models that adapt BERT to be better
suited for text generation. Both of them add a Transformer
decoder to the BERT encoder, decoding the original input
one word at a time. They also have a more elaborate masking
mechanism that includes blanks andmasks of longer spans of
text. Some other Transformer/BERT variation models focus
on dealing with long documents, such as Transformer-XL
[47] and Longformer [15]. In practice, clinical notes that
contain thousands of tokens may take advantage of these
models.

2.4 Transfer Learning
Transfer learning has more recently shown immense useful-
ness in NLP [162, 193, 194]. Language models in particular
are often used for transfer learning via pretraining. Their im-
portance can be attributed to two causes: one, they train to de-
velop an intuitive understanding of semantics and grammar,
and two, they are unsupervised models that train on raw text
data–a resource that is in wide supply. Models can pretrain
on gigantic corpora like the entirety of English Wikipedia.
Once pretrained, network architectures for language models
like ELMo and BERT can be easily adapted for classification
tasks like spam detection, sequence tagging tasks like named
entity recognition, generative tasks like abstractive summa-
rization, and many others [165, 180]. The recent success of
many pretrained models over existing benchmarks cements
the status of transfer learning as an indispensable tool in
contemporary NLP. In particular, EHR data can be scarce at
times due to restrictions involving privacy and annotation
availability, making transfer learning a frequently employed
and important technique within the space of NLP for textual
EHR data.
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Figure 2. Medical text classification using CNN. Adapted
from the original paper. [88]

3 Classification and Prediction
Text classification and prediction tasks in EHRs are critical
to quickly processing thousands of large texts for clinical
decision support, research, and process optimization. In this
section, we cover several main subtasks, including general
medical text classification, segmentation, and word sense
disambiguation, as well as selected specialized subtasks for
EHRs such as medical coding, outcome prediction, and de-
identification.

3.1 Medical Text Classification
Significant prior work has been done in the text classification
for medical texts and clinical notes. These works rely on tra-
ditional and classical methods like support vector machines
(SVMs) and k-nearest neighbor (kNN). Marafino et al. [148]
developed an SVM classifier that was able to identify a range
of diagnoses and procedures in the intensive care unit (ICU).
Including n-gram features was found to further improve per-
formance. In Khachidze et al. [104], SVMs and kNNs were
comparatively applied to classify small instrumental diagnos-
tics records in Georgian. After de-identification and simple
preprocessing like tokenization and lemmatization, they per-
formed feature selection and applied the classifiers. Results
show that among three classes Ultrasonography, X-ray and
Endoscopy, SVM outperform kNNs by around 4-5% on the
F1 score and 2-4% on the accuracy.
In recent years, deep models like CNNs have attracted

attention and achieved very competitive results on classifi-
cation tasks. One of the early attempts was by Hughes et
al. [88], who applied a CNN to classify clinical text at the
sentence level. The model structure has four convolutional
layers after the sentence embedding input, and at the end, a
fully-connected layer is applied to predict the sentence labels.
They compared their method with a variety of traditional
machine learningmethods and various sentence embeddings,
including logistic regression, doc2vec embeddings [118], and

bag-of-words features. Results from Hughes et al. and others
have proved that deep models including word embeddings
and CNN models are competitive with and can actually out-
perform TF-IDF (Term Frequency - Inverse Document Fre-
quency) and topic modeling features [88, 244]. In a similar
way, Yao et al. [262] introduced an approach to combine
rule-based features and knowledge-guided deep learning
techniques for supervised classification of diseases using
clinical texts. When labeled data for supervised learning is
insufficient, it is also possible to use weak supervision with
pre-trained word embeddings [244]. Applying pre-trained
models like BERT and BioBERT [121] for classification is
another alternative [149].
Besides the previously mentioned generalized medical

text classification tasks, other work focuses on specific ap-
plications in the medical domain. For example, recent works
have been focused on identifying the chief complaint, or
motivation, for medical visits. The chief complaint is about
the patient’s medical history, current symptoms, and reason
for visit. It is often encoded within the EHR in the form of
free-text descriptions. This is essential for the development
of automatic patient triage systems, and the data itself is
helpful in various predictive tasks. The model proposed by
Valmianski et al. [227] attempts a one-vs-rest classification of
chief complaints in the EHR, comparing BERT-based models
with a TF-IDF baseline model. Although the TF-IDF model
outperformed the BERT-based models here, the authors sus-
pect that this result is in part due to the short length of the
median text entry; the TF-IDF model robustness remains
questionable. Chang et al. [28] have also worked on apply-
ing a pre-trained BERT model to chief complaint extraction.
They derived contextual embeddings to predict provider-
assigned labels, focusing more specifically on emergency
department chief complaints. They evaluated LSTM, ELMo
and BERT and found that LSTM and ELMo achieved nearly
the same performance with an average accuracy of 0.82 and
0.822, while BERT achieved 0.844.
Sepsis detection is another important classification task.

Sepsis is a clinical condition defined as life-threatening organ
dysfunction caused by infection [207]. The patient’s outcome
is critically dependent on early detection and intervention,
but symptoms are often missed because of shared similarities
with other conditions. The requisite data for such diagnoses
and predictions already exist in patient EHRs, so Futoma
et al. [65] developed an RNN classifier to detect sepsis in
EHRs. They framed the problem as a multivariate time se-
ries classification problem. By using a multitask Gaussian
process (MGP) and feeding into an RNN, they were able to
make substantial improvements over baselines and clinical
benchmarks with significantly higher precision. Specifically,
compared with vanilla RNN, the model improved by 0.1 on
the precision; compared with non-deep learning methods,
the model improved the precision by 0.3-0.4.
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Figure 3. Architecture diagram for the neural attention seg-
mentation model. [10]

3.2 Segmentation
Segmentation is the task of finding boundaries between sec-
tions of a text, and it serves an important role in preprocess-
ing documents. The application of automatic segmentation
in clinical documents is vital, as most EHRs of any length
are either explicitly or implicitly segmented. In EHRs, topic
segmentation aims to segment a document into topically sim-
ilar parts; it is also known as text segmentation or discourse
segmentation. Typically, text segmentation is formulated as
a sentence classification task by either classifying each sen-
tence into a correct category [8], or deciding if the evaluated
sentence is a border sentence of its section [10].

There have beenmany attempts to use traditional machine
learning methods to perform segmentation. One work by
Apostolova et al. [8] proposed a model for segmentation of
biomedical documents. Using a hand-crafted training dataset
of segmented clinical notes, they proposed an SVM to classify
each sentence into a section, taking formatting and contex-
tual features into account. Li et al. [130] also tried to take
advantage of the format, noting that sections of a clinical
note tended to follow a similar sequential pattern, and used a
HiddenMarkov Model (HMM) on a labeled dataset of clinical
notes to infer the section labels. Later, Tepper et al. [223],
targeting the same formatting patterns, instead favored iden-
tifying likelier EHR section sequences by using beam search
and a maximum entropy approach.

Recently, a few works have attempted to utilize deep mod-
els for segmenting medical texts. Word embeddings have
been investigated to improve the segmentation for medical
textbook chapters [10, 103]. Jatiya et al. [10] applied attention
mechanism for a neural segmentation model. They formu-
lated segmentation as a binary classification task to decide if
a sentence in the text is the beginning of a section. For each
sentence, they used CNNs to create sentence embeddings for
both the sentence in question and its context sentences on
each side. The middle sentence attends to these sentence em-
beddings to create context vectors, and these representations
are then merged and used for binary classification.

3.3 Word Sense Disambiguation
Word Sense Disambiguation (WSD) is used to assign the
correct meaning to an ambiguous word given its context. In
the medical domain, EHRs often contain many ambiguous
terms that require specific domain knowledge. For example,
the word “ice” may refer to frozen water, methamphetamine
(an addictive substance), or caspase-1 (a type of enzyme)
[245].

TheWSD task has been approached with supervised learn-
ing, semi-supervised learning and knowledge-driven meth-
ods [63, 136, 252]. These approaches show that massive high-
quality annotated training data are essential to achieve a
desirable WSD system performance. This is especially true
for medical WSD, where only experts with substantial back-
ground knowledge can provide high-quality annotations. In
addition to improving the clarity of the text, WSD can also
help in downstream tasks like machine translation, informa-
tion extraction, and question answering [27, 186, 279].

Some early works have applied machine learning models
like SVMs, Naïve Bayes, and decision trees to tackle WSD
[24, 123, 256]. There exist of attempts for applying neural
methods for WSD. The deepBioWSD model [179] is a rep-
resentative work. First, they utilized the Unified Medical
Language System (UMLS) sense embeddings; these embed-
dings are then applied to initialize a single bidirectional long
short-termmemory network (BiLSTM), which is then trained
to do sense prediction for any ambiguous term. Among some
selected baseline models including LSTM, SVM and BiLSTM,
the deepBioWSD outperformed in biomedical text WSD and
achieved 96.82% for macro accuracy, while the others are be-
low or around 95%. Other works investigated similar neural
network structures, like multi-layer LSTMs [21], BiLSTMs
with self-attention [268] and more. Results show that with
deeper or attention layers, these models can outperform ba-
sic neural network models by around 2-4% on the average
testing accuracy.
The task of medical term abbreviation disambiguation is

a special case of WSD. This task can also assist other down-
stream NLP tasks like sentence classification, named entity
recognition, and relation extraction [94]. In clinical notes, it
is quite common for physicians, nurses or doctors to apply
medical term abbreviations to represent drug names, disease
names and other words. Depending on the medical specialty
and contents of the EHR, these abbreviations can have a wide
range of possible choices [98, 252]. For example, there exist
at least 5 possible word senses for the term MR, including
magnetic resonance, mitral regurgitation, mental retarda-
tion, medical record and the general English word Mister
(Mr.) [128]. Medical term abbreviation is getting increasingly
important as meaningful and standardized notes is helpful
for both patients and doctors 1.

1https://www.opennotes.org/

https://www.opennotes.org/
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Figure 4. An example for abbreviation disambiguation,
adapted from the original work. [128]

Figure 5. The topic-attention model for abbreviation disam-
biguation. [128]

Some efforts have been made for abbreviation disambigua-
tion on clinical notes. Traditional methods like decision trees
were applied for acronym disambiguation in Spanish EHRs
[192]. Xu and Stetson [258] were the first to apply clustering
techniques in building word sense inventories of abbrevia-
tions in clinical text. Later on, efforts were made to utilize
word embeddings for abbreviation disambiguation. A work
by Wu et al. [253] examined three methods for word em-
beddings from unlabeled clinical corpus: surrounding based
embedding, left-right surrounding based embedding andmax
surrounding based embedding. The word embeddings are
treated as additional features to aWSD system which applies
Support Vector Machines.
Beyond word embeddings, more complex deep architec-

tures have also been investigated. In a recent paper, Joopudi
and Dandala [98] proposed a CNN model that encodes rep-
resentations of clinical notes and predicts the meaning of
an abbreviation using classification techniques. Moreover, a
neural topic-attention model was applied to learn improved
contextualized sentence representations for medical term ab-
breviation disambiguation [128]. In this work, a latent Dirich-
let allocation (LDA) model was leveraged to learn topic em-
beddings, and then contextualized word embeddings (ELMo)
were applied to conduct a topic-aware sentence vector for
classification. Adams et al. [2] introduced another deep latent
variable model, called Latent Meaning Cells (LMC), for clini-
cal acronym expansion, focusing on utilizing local context
and document meta-data for contextualized representation.

Figure 6. A multimodal model architecture for ICD code
prediction. [259]

3.4 Medical Coding
The medical coding task attempts to map text from EHR to
International Classification of Diseases (ICD) codes [198].
These codes represent different diagnoses, and they are used
in clinical treatment, medical billing, and statistics collec-
tions. ICD codes can help physicians quickly determine
which diseases are involved and reach clinical decisions in
a more timely manner, but are also tediously specific and
detailed. For example, diabetes alone has over two dozen dif-
ferent codes. Human coders struggle to manage the scale and
complexity of the processes and often make costly mistakes.
Many attempts have been made to improve ICD coding using
rule-based methods [61] and machine learning algorithms
like Bayesian Ridge Regression [135], SVMs [112, 178], and
more.
Many earlier deep learning-based methods have focused

on applying CNNs, LSTMs and LSTMs with attention by
formulating this task as a document classification task [12,
203, 259]. A representative model with explainability is Con-
volutional Attention for Multi-Label classification (CAML)
by Mullenbach et al. [164]. It is a CNN-based model with
attention. The model first aggregates information from the
entire document using a CNN. After that, attention mech-
anism is applied to select the most relevant segments from
the document which trigger ICD code prediction, provid-
ing explanations in the process. Xu et al. [259] proposed a
multimodal framework which considers unstructured texts,
semi-structured texts, and tabular data when predicting an
ICD code. A CNN is applied for modeling the unstructured
texts. Then a deep learning model which contains a character
level-CNN and a BiLSTM is applied for the semi-structured
text. Finally a decision tree is applied for the tabular data.
By assembling these models, the system is able to make
ICD code predictions. Focusing on features extracted from
discharge summary notes in MIMIC-III, a widely used, al-
beit limited, EHR dataset, Huang et al. [85] conduct a study
on multi-label ICD-9 code classification. They tested 1) a
CNN-based classification model with word2vec document
representations for each discharge summary, 2) a standard
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LSTM-based model, and 3) a GRU-based model on the se-
quential discharge summary text. They conducted two main
classification tasks: predicting the top 10 and top 50 of ICD-9
codes. First, on the top 10 codes, compared to several baseline
methods, including logistic regression, random forest, and
feed-forward networks, RNN-based methods showed greater
performance in prediction. However, on the top 50 codes,
logistic regression outperformed the proposed deep method,
leaving room for improvement in deep-learning methods for
multi-label ICD-9 coding.

Recent improvements in pre-trained languagemodels have
greatly helped automatic medical coding. Singh et al. [208]
implemented a BERT model to predict ICD-9 codes from
unstructured clinical text as a multi-label classification task.
They pre-trained the BERT model the MIMIC-III dataset, al-
lowing this model to learn the medical data context with less
computation and preprocessing than other methods. Results
show that this model significantly out-performs existing
literature, performing better as the classifier handles more
diagnosis and procedure codes.
Medical coding suffers from a severe data imbalance be-

tween the most and least popular codes because some codes
are used much more frequently than others. Vu et al. [236]
attempt to solve this by proposing an attention-based model,
which is able to adapt to the varied interdependence and
lengths of text fragments. The labelling attention model con-
sists of four layers: a pre-trained embedding layer, a bidi-
rectional LSTM, an attention layer for label-specific weight
vectors, and label-specific binary classifiers. They then ex-
tended the label attention model into a hierarchical joint
learning mechanism called JointLAAT to handle the data
imbalance for rare codes.

Another challenge in medical coding is capturing higher-
level information from clinical encounters. Each encounter
can have multiple associated documents, and coding is of-
ten done at this level rather than on individual documents.
Shing et al. [205] proposed an encounter-level document at-
tention network (ELDAN), which was made of three parts: a
document-level encoder that turns sparse document features
into dense document features, a document-level attention
layer, and an encounter-level encoder. They treated the prob-
lem as multiple one-vs-all binary classification problems,
and the model outperforms the baseline without the need to
train on document-level annotations.

3.5 Medical Outcome Prediction
Prediction of medical outcomes (e.g. length of stay, progres-
sion to heart failure, death) is challenging but existing avail-
able information such as providers notes and imaging re-
ports can help. We highlight representative deep learning
approaches that utilize structured EHR data for this task,
then introduce how unstructured text could help.

Doctor AI [36] is an early attempt that predicts new diag-
noses and medications for a patient’s subsequent visit. The

researchers used an RNN because its sequential architecture
lends itself to modeling the temporal nature of a patient’s
healthcare trajectory. The input at each time-step is a raw
representation of a single patient visit, incorporating relevant
diseases, medication, and procedure codes. The hidden state
serves as a representation of the patient’s medical history at
that point in time. In a similar temporally-based prediction
task, Suresh et al. [218] used LSTM and CNN-based mod-
els for forward-facing predictions of ICU intervention tasks,
including ventilation, using vasopressors, and using fluid
boluses. The data is split into 6 hour chunks, where patient
data is recorded, as well as the status of the interventions
being taken. After a 6 hour gap period, a 4 hour prediction
period is allocated to test the model and predict which in-
terventions were taken during this period. They report high
AUC (area under curve) scores on LSTM and CNN-based
models compared to a linear regression base model, with an
improvement of to 0.24 AUC.

Electronic health records tend to have irregular intervals
between observations, as clinical events are often sudden
occurrences. DeepCare [181] is an end-to-end neural net-
work that addresses the episodic nature and irregularity of
EHRs, validated on mental health and diabetes datasets. It
reads medical records, stores illness history, infers current
health status and predicts future medical outcomes. Each
care episode is represented by a vector; the relationship be-
tween them is modeled with a modified LSTM that accounts
for irregularities in time, admission methods, diagnoses, and
interventions. DeepCare aggregates the patient’s medical
history using multi-scale temporal pooling, then predicts
the probability of specific medical outcomes. Lyu et al. [144]
further explored medical time series, choosing to investi-
gate unsupervised representation learning methods. and A
seq2seq model was applied as a forecaster. They found that
the forecasting seq2seq model performed best, and particu-
larly that an integrated attention mechanism can improve
clinical predictions, with a mean squared error of 0.098 with
attention compared to 0.119 without.

Recently, Zhang et al. [275] proposed MetaPred, a transfer-
learning framework to assess clinical risk for low-resource
clinical disease data, to address the limited number of sets of
labeled data samples. MetaPred was trained on related risk
prediction tasks to learn how good predictors are learned,
and this meta-learned model can be fine-tuned or applied on
the target disease data. With CNN and RNN as base predic-
tors, MetaPred outperformed fully supervised models in clas-
sifying mild cognitive impairment, Alzheimer’s, and Parkin-
son’s as measured by AUCROC and F1 score. On average,
MetaPred improves about 0.3464 on AUCROC and 0.4521 on
F1.
In a task closely related to outcome prediction, Hsu et al.

[84] addressed the predictive power of the variety of unstruc-
tured notes within EHRs. Because some unstructured notes
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include heavy copying from the structured fields, they inves-
tigated how important unstructured notes are for prediction
tasks, and evaluated which parts of notes are the most im-
portant. Using MIMIC-III, they considered readmission pre-
diction and in-hospital mortality prediction to determine the
value of unstructured notes. They found that unstructured
notes are useful in select situations (e.g. readmission), but
provide negligible additional value in others (e.g. mortality
prediction). However, trained a small group of well-selected
sentences, as chosen by value functions considering length,
fractions of medical terms, etc., the model outperformed the
entire set of notes for downstream prediction tasks.

3.6 De-identification
De-identification is the task of removing patient sensitive
information and preserving clinical meaning in EHR data. De-
identification of PHI (protected healthcare information) in
EHR clinical notes is a critical step to protect patient privacy
before sharing or publishing datasets for secondary research
purposes. The Health Insurance Portability and Accountabil-
ity Act (HIPAA) includes 18 different types of PHI 2 including
names, locations, and phone numbers. Several shared tasks
have been organized to promote de-identification of clini-
cal text in the NLP community [216, 217, 226]. Given the
large amount of EHR data needed, manual de-identification
is not feasible because of the amount of time it requires.
Rule-based de-identification studies mainly depend on dic-
tionary pattern matching and regular expressions [217], but
these methods usually require complex algorithms and can-
not handle unexpected cases such as typos or infrequent
abbreviations.

Today, it is common to utilize automatic de-identification
approaches that apply named entity recognition (NER) meth-
ods. Some other automatic de-identification tools use hybrid
methods which combine rule-based methods and machine
learning based NER methods [217] to achieve good perfor-
mance, reaching as high as 0.9360 micro-averaged F1 on the
2014 i2b2/UTHealth de-identification shared task. However,
these methods still have difficulties when applied to data
in languages other than English, or when used in different
clinical domains.
Early de-identification systems for patient records based

on neural networks include LSTMs or LSTM-CRF (condi-
tional random field) models [52, 260]. These systems con-
sisted mainly of four components: an embedding layer, a
label prediction bidirectional LSTM layer, a CRF layer and a
label-sequence optimization layer. They marginally outper-
formed CRF-based approaches (i.e., improves 0.01 on the F1
score), demonstrating that the CRF model is still a competi-
tive baseline.

Some studies additionally found that the embedding layer
has a large impact on the model performance. Wu et al.

2https://www.hhs.gov/hipaa/index.html

[254] showed that an RNN model integrated with medical
knowledge from UMLS outperformed a baseline RNN model.
A study by Tang et al. [221] compared several embeddings,
including common models like CBOW, Skip-Gram[155], and
GloVe[176], and contextual embeddings like BERT and ELMo,
using the representative method of BiLSTM-CRF. The BERT
embedding had better overall performance than any other
evaluated embedding method.

While previous works focused on English texts, there have
been many efforts toward de-identification in non-English
medical texts, where datasets are even more limited. Ka-
jiyama et al. [101] applied rule-based, CRF, and LSTM-based
methods to three Japanese EHR datasets. They observed
that LSTM outperformed CRF by 40% on F1 score on the
MedNLP-1 dataset (Japanese EHRs), and about 7% on a mix-
ture of dummy EHR and MedNLP-1 dataset, in which the
dummy EHR is built by themselves and contains EHR of 32
hospitalized patients. Trienes et al. [224] compared a series
of de-identification methods, including a rule-based system,
a feature-based CRF, and a deep neural network (BiLSTM-
CRF), for transferability and generalizability from English to
Dutch, and found that the deep neural network performed
best. García-Pablos et al. [173] tested a pre-trained multi-
lingual BERT model on several Spanish clinical texts. They
compared the BERT-based sequence labelling model with
a baseline sensitive data classifier, the spaCy Spanish NER
model, and CRFs. They showed that the simple BERT-based
model without domain-specific fine-tuning was able to out-
perform all other methods and was also robust to training
data scarcity. These works show that applying pre-trained
models is also becoming a trend for non-English tasks, due
to the capacity of multilingual BERT models.

4 Embeddings
This section explores various applications of clinical embed-
dings in the EHR domain. Such representations have been
used to model the semantics of biomedical text, the health
trajectory of individual patients, and many other tasks. We
also describe how recent pre-trained language models can
promote better representation learning methods in EHR and
biomedical text.

4.1 Medical Concept Embeddings
Medical concepts include various types of entities: genes,
proteins, diseases and more. Learning the semantics of these
medical concepts can be helpful for other applications. A
number of papers use deep models to learn such domain-
specific embeddings.

A representative work, cui2vec [13] was trained on a cor-
pus of 80 million documents and over 100k medical concepts
including insurance claims, clinical notes, and journal arti-
cles. As a preprocessing step, the researchers mapped each

https://www.hhs.gov/hipaa/index.html
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medical concept word or phrase to its corresponding “con-
cept unique identifier,” or CUI. The co-occurrence statistics
from these mappings are used to construct concept embed-
dings with GloVe [176] and word2vec [155].

Many concepts, including lab tests, diagnoses and drug ad-
ministrations, are temporal in nature. These “heterogeneous
temporal events” may have a high degree of correlation be-
tween them. For example, the event of some diagnosis being
made is correlated with the results of certain lab tests. In
addition to understanding the relationships between events,
the model must also learn temporal representations. Some
medical events happen only once, whereas others will occur
periodically according to some treatment patterns. Ignor-
ing the dynamics of the embedded units may lead to poor
semantics when learning representations. Liu et al. [137]
proposed a model for obtaining the joint representation of
heterogeneous temporal events. The model is trained on
the overarching classification task of clinical endpoint pre-
diction, which predicts whether some medical event like a
disease or symptom will happen in the future. Their main
contribution is a modified LSTM cell based on the Phased
LSTMmodel proposed by Neil et al. [169]. The Phased LSTM
alters the traditional LSTM by adding a time gate that ac-
counts for inputs with irregular sampling patterns. Liu’s
model goes a step further by adding an event gate that is
capable of modeling correlations among thousands of event
types. Zhu et al. [282] also preserve the temporal properties
by compressing each patient visit into a fixed-length vector
with medical embeddings based on surrounding medical con-
text. These event embedding vectors are stacked together to
produce a dense embedding matrix for each patient. Pairs of
these matrices are passed through convolutional filters and
mapped to feature maps, which are then pooled into interme-
diate vectors to build the patient representation embeddings.
A symmetrical similarity matrix is constructed using the
distance between the feature vectors. Their proposed frame-
work achieves strong performance on similarity measures,
with an R1 value of 0.99 and Purity of 0.99 as opposed to
baseline approaches such as KMeans clustering, with an R1
value of 0.66 and Purity of 0.42.

4.2 Visit Embeddings
Visit embeddings of patients are also crucial for clinical
decision-making, outcome prediction, and other downstream
tasks such as question answering and forecasting events.

Some methods treat patient visits as time-series data. An
early attempt, Med2vec [38], generates vector representa-
tions of patient visits and medical concepts like procedures,
diseases, and medications. It represents each patient visit as
a vector of medical codes corresponding to the concepts
that occurred in the visit. Like the word2vec skip-gram
model, med2vec reads the current visit, embeds it, and pre-
dicts the likelihood of previous and future visits. Doing so
preserves the sequential order of a patient’s visits and the

co-occurrence between concepts. Med2vec embeddings out-
perform previous models at tasks like predicting concepts
in future visits and calculating the patient’s current severity
status.

However, most models represent each patient visit as a flat-
tened collection of concepts like diagnoses and treatments.
Doing so, however, ignores valuable hierarchical informa-
tion on the multilevel relationship between the concepts
in an EHR. For example, the diagnosis of a fever can lead
to treatments like acetaminophen and IV fluids, which can
in turn produce side effects that need treatments of their
own. MiME [40] models the inherent hierarchical structure
of EHRs, leveraging it to create embeddings at the concept,
visit, and patient level while jointly performing auxiliary
prediction tasks. These multilevel embeddings can predict
heart failure and sequential diseases with low test loss (0.25),
as opposed to more traditional NN activation functions, with
linear activation at 0.26 and tanh likewise at 0.26.
The neural clinical decision support system by Wei et al.

[247] created visit representations in a simple yet clever way.
First, they extract diagnostic ICD codes from the MIMIC-III
database. With these as labels, they train a CNN to predict
the patients’ codes from the raw EHR text. The final dense
layer of the network is taken to be a visit representation.
This representation is successfully applied to an informa-
tion retrieval task of recommending relevant literature for
individual patients, achieving a MAP score of 0.2084 when
combined with cosine similarity. Here, visit representations
from MIMIC help achieve strong performance on a task for
which little training data exists. The deep neural network by
Escudié et al. [58] learns low-dimensional representations
of patient visits from which ICD codes have been removed
to predict the presence or absence of such codes. A CNN
applied to the text features and a multi-layer perceptron
(MLP) used on the structured data are trained together. The
last hidden layers of each sub-network are concatenated to
produce an embedding for each stay. This embedding is able
to conserve semantic medical representation of the initial
data and improves the prediction performance of a random
forest classifier, increasing the average F1 score among pre-
dicted codes from 0.595 for the random forest to 0.754 with
the embeddings, and 0.820 with the artificial neural network.

4.3 Patient Embeddings
Patient embeddings are another way to take advantage of
EHR understanding and secondary usage and enable better
decision-making and outcome predicting.

As an early attempt, Mehrabi et al. [153] proposed a deep
learning method for temporal pattern discovery over the
Rochester Epidemiology Project dataset by modeling indi-
vidual patient records as a matrix of temporal clinical events.
The rows of the matrix represent medical codes, and the
columns represent years. The embeddings are created from
this matrix with an unsupervised network called a deep
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Figure 7. The diagram of the Deep Patient framework,
adapted from original paper[156]: an unsupervised deep
learning method which is trained on raw dataset, and is able
to learn patient representation in the last neural network
layer.

Boltzmann machine. This model is highly restricted, how-
ever, because it only utilizes 70 most frequent ICD-9 codes.
In addition, all temporal information is chunked in units of
one year, which may be too long in the medical context.

A more widely-used model, Deep Patient [156], is a deep
learning framework for general-purpose patient represen-
tation learning from EHR data. It extracts raw features like
ICD-9 codes, medications, lab tests, and concepts from pre-
processed EHRs. Each patient is represented with either a
single vector or by a sequence of vectors determined by tem-
poral windows. The model then embeds these raw vectors
with stacked denoising autoencoders. These patient embed-
dings are applied to the task of clinical disease prediction.
Evaluation was conducted on 76,214 test patients compris-
ing 78 diseases from diverse clinical domains and temporal
windows. Results show that this model improves accuracy
and F-score by 15% and 54% respectively when compared
with other baselines including K-means, PCA and so on.

Later, Dligach and Miller [54] built upon methods from
Deep Patient to learn patient representations using only text
variables. The neural network model takes a set of CUIs as
input and produces a vector representation of the patient.
The final network layer is composed of Sigmoid units that
are used to jointly predict all possible billing codes associated
with the patient. The learned dense patient representations
are successful in outperforming sparse patient representa-
tions on average and for most diseases.

Similar to Deep Patient, the patient2vec model [270] repre-
sents each patient visit as a sequence of ICD-9 codes, medica-
tions, and lab tests. It learns an embedding for each of these
codes by using word2vec to predict the codes that are likely
to co-occur in a visit. Then it represents a patient’s entire
history in a single embedding with an RNN and attention
mechanism. Patient2vec predicted future hospitalizations
with higher statistical power than previous patient embed-
ding models, specifically, it achieves 0.02 gain on F2-score
when compared with BiRNN-based models.

Unlike the systems described so far, Sushil et al. [219]
learned unsupervised patient representations directly from

Figure 8. ClinicalBert illustration[86]: notes were added
to electronic health record during a patient’s admission to
update the patient’s risk of being readmitted within a 30-day
window.

clinical text. They attempted this with two neural approaches:
a stacked denoising autoencoder and a doc2vec model [119].
These neural networks produce patient representations that
improved 0.03 upon doc2vec model on F1-score in predicting
mortality and primary diagnostic category.
Finally, as an example which takes advantages of pre-

trained models, TAPER [49] uses text and medical codes to
produce a unified representation from a patient’s visit data
that can be used for downstream tasks. The medical code
embedding is learned by a skip-gram model using the Trans-
former model, while a pretrained BERT [53] model produces
the medical text embeddings. These two embeddings are
concatenated for the final patient representation. TAPER
demonstrated about 5% recall improvement upon med2vec
when evaluated on code embedding using recall@k. Besides,
it showed up to 67% on the AUCROC score when applied on
tasks of predicting readmission, mortality, and length of stay
compared to baselines including med2vec and patient2vec.

4.4 BERT-based Embeddings
BERT [53] harnesses the power of Transformers to gener-
ate better word embeddings than ever before. However, its
embeddings generalize poorly to text from specific domains
like biomedicine. For this reason, several works subject the
pretrained BERT to a subsequent round of pretraining–this
time, on corpora of bioinformatics or EHR text. BioBERT
[121] adapts BERT for biomedical domain. It is directly pre-
trained on biomedical research papers from two large cor-
pora: PubMed abstracts (PubMed) and PubMed Central full-
text articles (PMC). Besides, it applies three representative
biomedical text mining tasks for fine-tuning: named en-
tity recognition, relation extraction and question answering.
SciBERT [14] trains BERT on 1.14 million biomedical and
computer science articles from the Semantic Scholar corpus.
And, most relevantly to EHRs, ClinicalBERT [86] trains on
clinical notes from the MIMIC-III corpus. EhrBERT [126] is
also trained on clinical notes, but it is not generally available
because its training dataset is not public. Four datasets were
included in the evaluation: the Medication, Indication, and
Adverse Drug Events (MADE) 1.0 corpus, the National Center
for Biotechnology Information (NCBI) disease corpus, and
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the Chemical-Disease Relations (CDR) corpus. Results show
that EhrBERT outperforms other baseline systems including
BioBERT and BERT by up to 3.5% in F1.

MT-Clinical BERT [165] is a special model that builds con-
nections between individual tasks. In addition to learning
embeddings of clinical text, it performs multitask learning
on eight information extraction tasks including entity extrac-
tion and personal health indicator (PHI) identification. These
embeddings are shared as inputs to these prediction tasks.
This multitask system is competitive with task-specific infor-
mation extraction models, as it shares information amongst
disjointly annotated datasets.
BEHRT [131] is a deep neural transduction model that

learns about patients’ past diseases and the relationships
that exist between them. It uses the masked language model
pretraining approach from BERT. Specifically, given the past
EHR of a patient, the model is trained to predict the patient’s
future diagnoses (if any). BEHRT produces a final embed-
ding that preserves the timing of events along with data
concerning disease sequences and delivery of care. Evalua-
tion of the model demonstrated BEHRT’s superior predictive
power with an improvement of 8.0–13.2% in average preci-
sion scores in tasks including disease trajectory and disease
prediction, when compared to other approaches like RETAIN
[37].
MS-BERT [44] is a transformer model trained on real

clinical data, rather than the MIMIC corpus. The model is
trained on over 70,000 Multiple Sclerosis (MS) consult notes
and is publicly available3. Before training, the notes are de-
identified. Then, the model is tested on a classification task
to predict Expanded Disability Status Scale (EDSS), which
is usually inside unstructured notes. The model surpasses
other models that applied word2vec, CNN and rule-based
methods on this task by up to 0.12 on Macro-F1 score.
CheXbert [209] applies BERT to the task of labeling free-

text radiology reports. Existing machine learning methods in
this task either employ feature engineering or manual anno-
tations from experts. While of high quality, the annotations
are sparse and expensive to create. CheXbert overcomes this
limitation by learning to label radiology reports using both
annotations and existing rule-based systems. It first trains to
predict the outputs of a rule-based labeller, then fine-tunes
on an augmented set of expert annotations. It set a new state
of the art result by achieving an improvement of 0.007 on
the F1 scores for a report labeling task on the MIMIC-CXR
dataset [97], a large-scale labeled chest radiographs.

5 Information Extraction
Information extraction (IE) is the task of automatically iden-
tifying important content in unstructured natural language
text. It encompasses several subtasks, including named en-
tity recognition, event extraction, and relation extraction. In

3https://huggingface.co/NLP4H/ms_bert

this section, we present an overview of various IE tasks and
methods as applied to EHRs.

5.1 Named Entity Recognition
Named Entity Recognition (NER) is the task of determining
whether tokens or spans in a text correspond to certain
“named entities” of interest, such as medications and diseases
[69, 124].
Formulated as a sequence tagging task, NER is typically

modeled using Conditional Random Fields (CRFs) and/or
RNN-based models [69, 87]. For example, Cho et al. [34]
proposed extracting biomedical entities by using a bidirec-
tional long short-termmemory network (BiLSTM) and a CRF,
achieving improvements of up to 1.5% on F-score over other
methods, including BiLSTMs, and a Vanilla BERT. Similarly,
Giorgi et al. [66] combined both gold-standard and silver-
standard corpora, and trained a LSTM-CRFmodel for biomed-
ical NER. Du et al. [55] used a Transformer encoder and
an LSTM decoder to extract symptoms within transcribed
clinical conversations. In addition to identifying symptoms
within the text, they also tried to predict whether or not the
patient is experiencing the symptom.

Recent works focus on transfer learning methods, includ-
ing using pretrained word embeddings to solve medical NER
tasks. Gligic et al. [67] showed that medical NER perfor-
mance can be improved by first pretrainingword embeddings
on unannotated EHRs with word2vec [155]. They achieved
about 0.95 F1 on the i2b2 Medical Extraction Challenge, im-
proving several points past the previous state of the art. As
far as embedding models go, however, BERT [53], which
incorporates contextual information, is more sophisticated
than word2vec. Because of this, the creators of BioBERT
[121] trained regular BERT on biomedical text, then fine-
tuned it for a number of NER tasks. BioBERT’s embeddings
proved very effective at recognizing entities such as diseases,
species, proteins, and adverse drug reactions. So, Yu et al.
[264] evaluated a BioBERT-based NER system and showed
that their system outperforms other models (i.e. BiLSTM-
based and Attention-based ones) on three biomedical text
mining tasks, achieving 0.62 additional F1 points on biomed-
ical NER, and also improved on the other two subtasks. Peng
et al. [175] similarly adapted BERT for biomedical text via
pretraining on large biomedical datasets like PubMed and
MIMIC-III; their version outperformed BioBERT on 10 dif-
ferent NER tasks like recognizing diseases, chemicals, and
disorders.

While effective, these BERTmodels fail to address a central
issue in medical NER: the transferability between medical
specialties. Clinicians in different specialties use vastly differ-
ent vocabularies, which poses a huge challenge in training
an effective specialty-independent medical NER model. This
problem is exacerbated by the scarcity of publicly available
data, especially for certain specialties. Wang et al. [246] ap-
proached this issue by developing a double transfer learning

https://huggingface.co/NLP4H/ms_bert
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framework for cross-specialty NER. Their system transfers
both feature representations and parameters, which enables
resource-poor specialties to utilize knowledge gleaned from
specialties with more annotated EHRs.
As a sub-task of NER, clinical concept extraction seeks

to identify medical concepts, such as treatments and drug
names. In earlier years, challenges for concept extraction
tasks were primarily won by hybrid approaches, which com-
bined rule-based and machine learning-based approaches
[106, 142]. Similar to NER, people have framed clinical con-
cept extraction as a sequence tagging problem and commonly
use LSTMs and/or CRF frameworks [26, 76, 91]. For example,
Ji et al. [93] proposed a multi-layer fully-connected LSTM-
CRF model to conduct concept extraction, which cooperates
with character-level word representations and pretrained
word embeddings. Without any feature engineering or prior
knowledge, the model outperforms other selected baseline
models like CRF methods, with an F1 score of 0.845 on the
i2b2 dataset.
Similarly, pretrained models and transfer learning tech-

niques are also investigated for clinical concept extraction
[121, 170, 280] . A work by Tao et al. [222] embedded each
word in an EHR note, then used the embeddings to predict
whether they denote a medical concept. Each embedding
is a concatenation of two separate representations: one de-
rived from ELMo (which is an unsupervised bidirectional
languagemodel), and the other from numerous publicly avail-
able medical ontologies and lexicons, including the Wikidata
graph [235], the Disease Ontology [107, 199], and public FDA
datasets. The latter enables the model’s embeddings to draw
from a larger domain-specific knowledge base. The model
performs prediction with a CRF, which takes neighboring
tokens into account when classifying each word. A recent
system by Krishna et al. [114] extracted diagnoses and or-
gan abnormalities from doctor-patient conversations. These
conversations are often very long and contain large sections
of clinically irrelevant information, so the researchers first
filtered utterances by how "noteworthy" they are. From these
utterances, they used a BERT-based model to recognize the
diagnoses and abnormalities. Finally, Datta and Roberts [50]
applied a BERT-based classifier pretrained onMIMIC-III data,
and a filtering mechanism to identify spatial expressions in
radiology reports. These expressions are important medical
concepts that help describe radiographic images, and have
use cases in image classification as well.

5.2 Entity Linking
Entity linking (or named entity linking) is the process of asso-
ciating mentions of recognized entities to their correspond-
ing node in a knowledge base. In practice, entity linking is
helpful for automatic linking of EHRs to medical entities,
supporting downstream tasks such as diagnosing, decision
making and more [96].

MEDTYPE [228] presented a toolkit for medical entity
linking by incorporating an entity disambiguation step to
filter out unlikely candidate concepts. This step predicts
the semantic type of an identified mention based on its con-
text. They also utilized pretrained Transformer-based models
as encoders. Additionally, they introduced two large-scale
datasets,WikiMed and PubMedDS, to bridge the gap of small-
scale annotated training data for medical entity linking.
Zhu et al. [281] introduced Latent Type Entity Linking

model (LATTE), a neural network-based model for biomedi-
cal entity linking. In this case, latent type refers to the implicit
attributes of the entity. The model consists of an embedding
layer that contains semantic representations of the mentions
and candidates. An attention-based mechanism is then used
to rank candidate entities given a mentioned entity. This
model outperforms previous ranking models, achieving over
0.92 on the MAP score for two entity linking datasets.
Oberhauser et al. [172] introduced TrainX, a system for

medical entity linking that contains an named entity recog-
nition system and a subsequent linking architecture. It is
the first medical entity linking system that utilizes recent
BERT models. They showed that TrainX could link against
large-scale knowledge bases, with numerous named entities,
and that it supports zero-shot cases where the system has
never seen the correct linked entity before.

5.3 Relation and Event Extraction
The task of relation extraction identifies entities that are con-
nected through a relation fitting specific relation types. This
is critical in a health context because an NLP system must
grasp the relationships between various medical entities in
order to fully understand a patient’s record. Some papers
on relation extraction, especially early work [108, 187, 188],
treat the task as a multi-label classification problem and
train traditional classifiers, such as support vector machines,
where the classes are typed relations. Since then, however,
deep relation extraction systems have modeled more com-
plex features of text, leading to improvement in modeling
entities and their relations.

Several papers have used CNNs to model relation extrac-
tion. Sahu et al. [195] used a standard CNN augmented with
word-level features to extract relations from clinical dis-
charge summaries. Another work combined CNNs and RNNs
to extract biomedical relations from linear and dependency
graph representations of candidate sentences [277]. This hy-
brid CNN-RNN model was benchmarked on various protein-
protein and drug-drug interaction corpora, outperforming
Bi-LSTM and CNN models on extracting these relations,
demonstrating the complementary use of CNNs and RNNs
in this relation extraction task.
Several papers used RNNs in order to sequentially label

entities of interest and determine their relations. One such
work [166] compared SVMs, RNNs, and a rule induction sys-
tem, and found that while the SVM model performs the best
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with an F1 score of 89.1%, a BiLSTM model had the best per-
formance in extracting relations among RNN models for an
adverse drug event (ADE) detection task. Another work [196]
used a BiLSTM model with attention to extract drug-drug
interactions. Dandala, Joopudi, and Devarakonda [48] used
a BiLSTM-CRF network to label entities, and another BiL-
STM network with attention to assign relations. They found
that in jointly modeling both tasks, their performance im-
proved from 0.62 to 0.65 F-measure. Christopoulou et al. [41]
employed a similar BiLSTM-CRF model for intra-sentence
relation extraction, but used a Transformer-based model
to capture longer dependencies in modeling inter-sentence
relations.
In another relation extraction task involving BioBERT,

Alimova and Tutubalina [5] used a random forest classifier
with numerous features, such as distance-based features,
word-level features, embeddings, and knowledge-base fea-
tures, for relation extraction framed as a classification task,
and compare it to fine-tuned BERT, BioBERT, and Clinical
BERT. They improved previous results by 3.5% on F-measure
on a relation extraction task. In a protein-protein interaction
(PPI) detection task, another work fine-tuned BioBERT on
PubMed abstracts automatically labeled with PPI types [56].
Their general approach allowed them to text mine 3,253 new
typed PPIs from PubMed abstracts.
The goal of event extraction is to detect different events

of interest and their properties. Usually, events have a verb
indicating a specific event that connects multiple entities,
which makes this task more difficult than relation extrac-
tion. A few works have studied models suitable for both
relation and event extraction. Bȷ̈orne and Salakoski [22] de-
veloped a CNN-based model where the input is encoded
in part using dependency path embeddings. The addition
of deep parsing in the systems helped model both relation
and event arguments. Later, inspired by the Transformer
model, ShafieiBavani et al. [202] presented a model incor-
porating multi-head attentions and convolutions in order
to jointly model relation and event extraction. In this case,
multi-headed attention helps in modeling the dependencies
present in event and relation structure. Their model achieved
state-of-the-art on 10 different biomedical information ex-
traction corpora, including event and relation extraction
tasks.

5.4 Medication Information Extraction
EHRs are a trove of vitally important information pertaining
to medications. Medications and prescriptions, as some of the
few actionable decision outcomes of a clinical encounter, are
critical in healthcare quality analysis and in clinical research.
They are often recorded in EHRs as free text, limiting access
for other applications without pre-processing. Early work
relied on rule-based approaches. For example, the MedEx
system by Xu et al. [257] applied lookup, regular expres-
sions, and rule-based disambiguation components. MedEx

was developed with discharge summaries, and was roughly
transferable to outpatient clinical visit notes in identifying
medication information.

More recent work on this task has focused on expanding
accessibility and transitioning toward deep learning tech-
niques. The Clinical Language Annotation, Modeling, and
Processing (CLAMP) toolkit by Soysal et al. [213] provided
a GUI for end-users to customize their NLP pipelines for
individual applications. Inspired by this system, Amazon
invested heavily in its Amazon Comprehend Medical sys-
tem [20]. This system performs NER to extract information
about a patient’s anatomy, medical condition, medications
(including name, strength, and dosage) and more. It encodes
the EHR texts using two LSTMs, then extracts concepts with
a tag decoder. In specific, the proposed conditional softmax
decoder in Amazon Comprehend Medical outperforms the
best model (bidirectional LSTM-CRF) by over 1.5% F1 score
in negation detection in the 2010 i2b2 challenge [217]. The
ease of use of these systems enables users with less technical
background to make use of these NLP techniques to improve
clinical outcomes.
Like Amazon Comprehend Medical, Mahajan et al. [147]

also used NER in their model for medication dosage extrac-
tion. Theirs, however, is the first to automatically compute
daily dosage from medication instructions in the form of
unstructured text. They used a BERT-based NER system to
extract features related to medications, like names, frequen-
cies, administration route, and dosage, which the model then
uses to calculate the daily dosage of each medication.

6 Generation
In this section, we introduce recent breakthroughs of deep
learning models on generation tasks: clinical text generation,
summarization, and medical language translation.

6.1 EHR Generation
Natural Language Generation (NLG) is one of the central
components of an NLP pipeline. In the context of EHR, NLG
is used to create novel clinical text from existing clinical
documents [89]. Generation is extremely important in the
medical research domain, due to the difficultiy from EHR’s
accessibility and confidentiality. Making artificially created
data available to researchers makes it easier to avoid privacy
issues.

RNN and LSTM based seq2seq models are commonly used
in generative tasks. In an earlier paper, Lee [122] introduced
an RNN-based encoder-decoder framework to generate arti-
ficial chief complaints in EHRs. In this model, the encoder
takes into account many patient variables, like age, dispo-
sition, and diagnosis, and decodes them into a a chief com-
plaint in text form. They found that the generated complaints
are largely epidemiologically valid, and preserve the rela-
tionships between the diagnoses and chief complaints. This
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model has applications in clinical decision support, disease
surveillance, and other data-hungry tasks. In a more domain-
specific setting, Hoogi et al. [82] focused on generating artifi-
cial mammography reports via an LSTM architecture trained
on real mammography reports. Such models take an image
like an X-ray as input and generate a description of what it
shows. Their work applied a Turing test in which they ask a
radiologist to distinguish between real and generated reports;
the radiologist classified real reports correctly 86% of the
time, and fake ones as real 75% of the time, suggesting that
the fake reports are of acceptably high quality. They showed
that augmenting real data with generated data significantly
improves performance in a downstream benign/malignant
breast tumor classification task by up to 6% on the accuracy.
Similarly, Melamund and Shivade [154] used an LSTM lan-
guage model to generate a synthetic dataset that mimicked
the style and content of the original dataset. They introduced
a new notes generation task, in which the synthetic notes will
be generated based on real de-identified clinical discharge
summary. To benchmark this task, they collected MedText
dataset that contains about 60k clinical notes extracted from
MIMIC-III.

Transformers have also been used for medical text gener-
ation. Amin-Nejad et al. [7] introduced a Transformer-based
model. Using the MIMIC-III database, they model text gen-
eration with information of the patient and the ICU stay as
input, and the textual discharge summary as output. They
compare the generation capacity of the vanilla Transformer
model to that of GPT-2 [184]. Evaluation shows that Trans-
former achieves BLEU score of 4.76 and ROUGE-2 score of
0.3306, while GPT-2 only achieves 0.06 and 0.1350. More-
over, they showed that the augmented dataset generated
by the Transformer model is able to beat other baselines
downstream tasks including readmission prediction and phe-
notype classification.
In addition to seq2seq and Transformer models, Genera-

tive Adversarial Networks (GANs) [68] are also widely used
for synthetic EHR generation. Choi et al. [39] proposed an
approach to synthetic EHR generation via a medical Gen-
erative Adversarial Network (medGAN). This model gener-
ates high-dimensional multi-label discrete variables found
within an EHR, such as medications, diagnoses, and pro-
cedures. Via a combination of an autoencoder and a GAN,
the model is trained to learn the distribution of these dis-
crete high-dimensional EHR variables. The autoencoder is
trained to project real samples to a low dimentional space,
and project back into the original feature space, acting as a
feature extractor; the discriminator then makes judgments
on source data and generated data passed from the generator
and decoder. Except for a few outliers, a trained medical pro-
fessional found records from medGAN and the source data
relatively indistinguishable. Baowaly et al. [11] improved
upon the existing medGAN method, proposing two varia-
tional models: medWGAN and medBGAN. The medWGAN

model uses Wasserstein GAN with gradient penalty (WGAN-
GP) [72] model as the generative network, which employs
gradient penalties to overcome sample quality challenges;
and medBGAN uses the boundary-seeking GAN (BGAN)
[80] model, where the generator is trained to create samples
on the decision boundary of the discriminator. The synthetic
EHR data generated by the three models were compared, and
evaluation shows that both proposed models outperformed
medGAN by up to 0.1 on the F1 score, and medBGAN per-
forms the best.
Another typical application of generation is captioning

medical images in medical reports. Writing medical reports is
a tedious task for experienced radiologists, and challenging
for newer radiologists who do not yet possess the requisite
skills and experience. To automate the progress of writing
reports, the generation model is trained to generate a para-
graph description of the image, both accurately identifying
all abnormalities and generating complex sentences, which
are more informative and complicated than the usual natural
image captions. Li et al. [129] proposed the Auxiliary Signal-
Guided Knowledge Encoder-Decoder (ASGK) model, which
attempts to mimic the work patterns of radiologists. They
took advantage of two types of auxiliary signals: the internal
fusion features and external medical linguistic information.
The first type of feature is generated from auxiliary region
features and global visual features, while the second type
of feature is extracted from a large-scale medical textbook
corpus. The medical graph and natural language decoders
are pretrained with external auxiliary signals to memorize
and phrase medical knowledge, and then trained with inter-
nal signals to support the graph encoding which integrates
prior medical knowledge and visual and linguistic informa-
tion. The AGSK model outperforms other state-of-the-art
methods in report generation and tag classification on the
CX-CHR dataset and a new COVID-19 CT report dataset,
and it achieves a gain of up to 4 in BLEU score and up to 8%
on human evaluation Hit Rate.
To generate more complete and consistent radiology re-

ports, Miura et al. [159] proposed two reward functions to
improve text quality. The first encourages systems to gener-
ate entities that are consistent with the reference; the second
applies NLI to encourage these entities to be described in
inferentially consistent ways. They optimized these two re-
wards in a reinforcement learning framework, leading to a
significant improvement over report generation baselines
with up to 64.2% gain on selected clinical metrics.

6.2 Summarization
Nurses, doctors and researchers deal with massive EHRs on
a daily basis. Text summarization, one of the fundamental
tasks in NLP, could reduce their workloads by condensing
documents into brief, readable summaries [158]. Common
summarization domains include news articles [57, 60, 200],
scientific papers [1, 263], and dialogues [266]. Recent work
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in summarization has also looked at documents in the EHR
domain. We group these pieces of work into two categories:
extractive summarization and abstractive summarization. Ex-
tractive summarization selects short, discrete chunks (words,
sentences, or passages) directly from the source text in or-
der to express its most salient content as the summary. Ab-
stractive summarization is used to generate a summary that
captures the salient concepts or ideas of the source text in
clear language, possibly with novel words or sentences that
do not exist in the source text.

6.2.1 Extractive Summarization. Extractive summariza-
tion on EHR texts has long been an interesting task. Portet et
al. [182] proposed one of the first attempts in EHR extractive
summarization. Their model was designed for neonatal inten-
sive care data, which consists of both free text and discrete
information (e.g. equipment settings and drug administra-
tion). Handling these diverse types of data in one model
is a challenging task, and human evaluators found model
summaries to be unhelpful. For this reason, most subsequent
attempts handled only textual data. Recently, Moradi et al.
[161] proposed a graph-based model which ranks sentences
by the important biomedical concepts they share. To circum-
vent the shortage of labeled training data, Liu et al. [139]
performed extractive summarization based on the intrinsic
correlation between EHRs within a disease group to generate
pseudo-labels.

There have been limited attempts for applying deep mod-
els for extractive summarization. The work from Alsentzer
and Kim [6] was the first to apply neural networks for EHR
summarization. They provided an upper bound on extractive
summarization on EHR discharge notes. An LSTM model is
proposed to label topics in the history of present illness (HPI)
notes with am F1 score of 0.876. Besides, they showed that the
model is able to create a dataset for evaluation purpose for
extractive summarization methods. Liang et al. [132] further
proposed a clinical note processing pipeline and evaluated it
on a disease-specific extractive summarization task on clini-
cal notes. For the summarization model, they compared with
a linear SVM, a linear chain CRF model in which each note
is modeled as a sequence, and a simple CNN-based model.
The CNN model outperforms the other two by up to 0.12 on
the F1 score even with limited labeled data.
Unlike generic summarization as described so far, query-

based summarization aims to produce a summary that is
relevant to a given query. Applying query-based summariza-
tion on EHRs is extremely helpful in practice. For example,
a physician may want to conduct a quick search for rele-
vant medical information, and a summarized version of EHR
can make an efficient job. McInerney et al. [151] designed a
query-focused extractive summarization model that selects
the sentences that are the most relevant to a potential diag-
nosis. Because no large corpus of EHRs with extractive sum-
maries exists, they used a distant supervision framework that

Figure 9. Example result of Zhang’s RL-based abstractive
summarizer.[278] It is capable of achieving near-human per-
formance.

extracts ICD diagnosis codes from future visits. They trained
a Transformer-based neural network to select the summary
sentences from an EHR and use them to predict future diag-
noses, formulating the task as a sentence classification task
and report precision, recall and F1. Another model that pro-
duces extractive summaries based on queries by Molla et al.
[160] directly compares the query sentence with each candi-
date sentence from the EHR. They applied different encoding
methods including BERT, BioBERT and various deep model
architectures (not pre-trained, pre-trained and Siamese net-
work). However, they found that applying BioBERT did not
improve the results. A strong benefit of this system is that it
is capable of performing multiple-document summarization,
rather than being limited to a single document.

6.2.2 Abstractive Summarization. Recent research of
abstractive summarization has been focused on applying
seq2seq and similar models to summarize radiology reports.
The first work that applies seq2seq to automate the gener-
ation of radiology impressions was proposed by Zhang et
al. [276]. The model learns to encode the “Background” sec-
tion in the report to guide decoding as abstractive summary.
Later, [146] further replaced the seq2seq model by a pointer-
generator model [200] with up to 10 improvement ROUGE-1
score and 9 improvement ROUGE-2 score compared with
traditional LSA [214] and LexRank [57] models.
Reinforcement learning (RL) has also been used. In the

model proposed by Zhang et al.[278]. They aim to optimize
an RL objective that balances the model summary’s factual
accuracy, linguistic likelihood, and overlap with the target
summary. A factual correctness score is computed between
the model summary and the CheXpert labeler [90], which
extracts fact variables from a source radiology report. The
results show that with a pointer-generator model [200] as
the baseline, applying reinforcement learning leads to an
improvement of roughly 3-4 on ROUGE scores.
A separate area of research is concerned with summa-

rization of questions and their answers, there are a few
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benchmark datasets introduced for this topic. Abacha and
Demner-Fushman [16] introduced a corpus of summarized
consumer health questions and used it to train an effective
pointer-generator network for abstractive summarization.
Similarly, Savery et al. [197] developed a dataset of common
consumer health questions, their answers, and summaries
of their answers. To benchmark this dataset, they evaluated
state-of-the-art summarization models including a BiLSTM
model, pointer-generator networks [200] and BART [125].

6.3 Medical Language Translation
The understanding of EHRs is limited to most readers ex-
cept for professionals since they include esoteric medical
terms, abbreviations, and they exhibit a unique structure
and writing style. Medical language translation is the task of
converting medical texts to a style that is more easily under-
standable by laypeople. For example, a term like “peripheral
edema” may be replaced with or tagged as “ankle swelling.”
Only a limited amount of research has focused on EHR

simplification. Weng et al. [248] performed unsupervised
text simplification for clinical notes. Using unsupervised
methods helps circumvent the shortage of texts that have
been manually annotated with simplified versions. They use
skip-gram embeddings learned from two clinical corpora:
MIMIC-III, which includes a large amount of medical jargon,
and MedlinePlus,4 which is oriented towards the layper-
son. A Bilingual Dictionary Induction model is used to align
these embeddings of technical and simpler terms and ini-
tialize a denoising autoencoder. This autoencoder inputs a
physician-written sentence, generates a simpler translation
with a language model, and uses back-translation to recon-
struct the original sentence. On the supervised end of the
spectrum, Luo et al. [143] introduced the MedLane dataset,
a human-annotated Medical Language translation dataset,
which aligns professional medical sentences with layperson-
understandable expressions. It includes 12,801/1,015/1,016
samples for training, validation, and testing, respectively.
They also proposed the PMBERT-MT model, which takes
the pre-trained PubMedBERT [71], and conducts translation
training using MedLane.

7 Other Topics
After covering some of the main NLP tasks as related to EHR,
in this section, we discuss other topics that receive less atten-
tion but still important to EHRs and other relevant domains.
These topics include question answering, phenotyping, med-
ical dialogues, multilinguality, interpretability, and finally,
applications in public health.

7.1 Question Answering
Question answering (QA) is the task of interpreting natu-
ral language questions and retrieving appropriately paired
4https://medlineplus.gov/

answers [117]. Open domain QA systems have had recent
success with pre-trained language models [102], but these
results have not carried over to biomedical QA because of
the domain-specific challenges it faces. The primary reason
for the lower performance of biomedical QA in EHRs is that
models trained on open domain corpora have difficulty un-
derstanding the hyper-specific technical vocabulary often
used in clinical settings.
While the main difficulty is still the limitation of large-

scale training data, pre-trainedmodels play an important role.
BioBERT [121], a pre-trained biomedical language model
trained on PubMed articles, has been successfully adapted
for QA tasks. For successful domain adaptation, pre-trained
language models needs to be fine-tuned on biomedical QA
datasets. However, biomedical QA datasets are often very
small (e.g., just a few thousand samples), and creating new
datasets is cost-prohibitive. So, Lee et al.[225] first fine-tune
BioBERT on large-scale general domain extractive QAdatasets,
and then fine-tune on the biomedical BioASQ dataset . Using
this transfer learning framework, they are able to signifi-
cantly outperform the basic BERT [53] and other state-of-the-
art models in the QA task, as well as other biomedical NLP
tasks, improving and overcoming challenges in both range
of vocabulary and dataset size. Vilares et al. [231] recognized
the same problem with limited datasets and focus on the
task of multi-choice QA, which requires knowledge and rea-
soning in complex domains. They introduced the HEAD-QA
(Healthcare Dataset for Complex Reasoning) dataset, which
is created from the Spanish government’s annual specialized
healthcare exams. They evaluated an information retrieval
model on the Spanish HEAD-QA, as well as a translated
English version (HEAD-QA-EN). The cross-lingual model
performed better with an average accuracy of 34.6 vs. 32.9
across different sub-domains in unsupervised settings and
37.2 vs 35.2 in supervised settings. Being able to train with
cross-lingual datasets or potentially automatically translate
question-answer pairs could open the door to improvements
in multilingual QA, solving dataset limitations by expanding
possible source material.

It is also possible to transform the QA task to other tasks
including information extraction, question similarity, infor-
mation retrieval, and recognizing question entailment.

Recently, Selvaraj et al. [201] applied a QA method to ex-
tract themedication regimen (dosage and frequency formedi-
cations) discussed in a medical conversation. They formulate
the Medication Regimen task as a QA task and generate ques-
tions using templates such as “What is the <dosage/frequency>
for <MedicationName>?” They used an abstractive QAmodel
based on pointer-generator networks [200]with a co-attention
encoder to model the task, achieving ROUGE-1 scores aver-
aging 86.40.
Question similarity and question entailment have been

promising paths to solving the biomedical QA task. Many

https://medlineplus.gov/
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Figure 10. A few samples from HEAD-QA dataset [231], a
multi-choice question answering healthcare dataset.

Figure 11. The double finetune method using a pre-trained
BERT to an intermediate task to medical question-similarity
task for two different intermediate tasks: Quora question-
question pairs (left) and medical question-answer pairs
(right).[150]

medical questions asked online often resemble “already an-
swered”questions, so the goal of question entailment is to
map new questions to similar answered ones. In a work
by McCreery et al. [150], an in-domain semi-supervised ap-
proach was proposed and tested on 3,000 medical question
pairs. They pretrained BERT on the HealthTap dataset 5 and
double fine-tuned, first on either Quora question similarity
(QQP) or medical answer completion, and then on medical
question pairs. The model tuned with medical answer com-
pletion reached a higher question-similarity accuracy than
the QQP model, with an average difference in performance
of 3.7%.

Biomedical QA can also be solved by combining IR models
with recognizing question entailment (RQE) methods. RQE
is a task similar to natural language inference. RQE also ex-
tracts meaning from sentences, however it tries to create
relevant relaxations of contextual and semantic constraints,
5https://github.com/durakkerem/Medical-Question-Answer-Datasets

such that specific questions can be related to more general
and already-answered questions. A work by Abacha et al.
[17] attempted two approaches to RQE: a neural network and
a logistic regression classifier. The neural network performed
best with the general domain NLI datasets with an average
accuracy of 80.66% on textual datasets and 83.62% on ques-
tion datasets, but logistic regression resulted in higher accu-
racy for the domain-specific datasets at 98.6%. The domain-
specific dataset consisted of specifically consumer-health
questions which would be more applicable for general medi-
cal QA use.
Other attempts including applying paraphrasing have

been proposed to improve QA systems in EHRs [211, 212].
A representative work by Soni et al. [211] collected 10,578
unique questions via crowdsourcing. Then a deep model
consisting of a variational autoencoder and an LSTM model
[74] to create an automated clinical paraphrasing system.
This model seeks to generate paraphrases without using
any external resource for EHR questions. The paraphrases
were evaluated on several metrics, achieving a BLEU score
of 13.25, METEOR score of 21.47, and TER score of 91.93.

7.2 Phenotyping
Computational phenotyping is the process of extracting clin-
ically relevant characteristics from patient data. These char-
acteristics include physical traits, physiology, and behavior.
Phenotyping is used in several areas of medical research,
such as categorizing patients by diagnosis for further analy-
sis and identifying new phenotypes [267]. Recent techniques
in computational phenotyping have replaced traditional rule-
based phenotyping algorithms with scaleable NLP models.
Zhang et al. [271] proposed an unsupervised deep learn-

ing model to identify phenotypes in EHRs. They make use of
the Human Phenotype Ontology (HPO) [111], and assume
the latent semantic representation of EHRs is a combination
of the semantics of phenotypic abnormalities. In order to
learn EHR representations, they first use an autoencoder to
learn the semantic vector representations, and then merge
them with representations of each phenotype. They also use
a classifier to ensure the learned representations are different
enough from each other. Their approach achieves competi-
tive results, with a precision of 0.7113, recall of 0.6805, and
F1 of 0.6383, and is much faster than previous phenotype
identification models, taking 40.2 minutes to annotate what
took other common annotation tools hours or days.

Another recent unsupervised approach, Granite [79], used
a tensor factorization method with limited human supervi-
sion, improving on classic dimensionality reduction tech-
niques. Granite is a robust Poisson Nonnegative tensor fac-
torization model (NNTF) that encourages diverse and sparse
latent factors. It introduces angular penalty and an L2 reg-
ularization term, reduces overlap between factors, and also
introduces simplex projection on factors which results in
better sparsity control. Empirical work shows Granite yields

https://github.com/durakkerem/Medical-Question-Answer-Datasets
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phenotypes with more distinct elements, with cosine score
between 0 and 0.4, where comparables were significantly
more spread out, and is better than previous tensor factoring
methods at capturing rare phenotypes, as most phenotypes
captured only small parts of the population (e.g. 110 v.s. 4
on the average number of non-zero entries of diagnosis and
medication modes per phenotype) .

Chiu et al. [33] introduced bulk learning to the infectious
disease domain, which uses a small dataset to simultane-
ously train and evaluate a large amount of phenotypes. This
method uses diagnostic codes as surrogate labels and trains
an intermediate model based on feature abstractions. These
abstractions capture common clinical concepts among mul-
tiple clinical conditions. Each disease can then be labeled
by multiple clinical concepts. The training stage consists of
three parts. First, base classifiers are trained to predict la-
bels of the set of the infectious diseases. Next, predictors are
aggregated through a meta-classifier, conducting a feature
abstraction step which describes the extent of effect that a
base model has on the prediction on a disease. In the final
stage, a small subset of disease cases are collected to produce
an annotation set. In effect, bulk learning serves to separate
disease batches while using less data annotations. ICD9 cod-
ing evaluation shows that this method achieves a mean AUC
score of 0.83, surpassing other base classifiers by 0.05-0.4.

7.3 Medical Dialogues
Recent natural language understanding (NLU) research on
doctor-patient dialogues has large potential implications.
The two primary applications are automatic scribing and
automatic health coaching.
Automatic scribing is valuable because physicians today

spend hours dealing with administrative tasks like filling in
information for electronic health records. The simple solu-
tion is to hire a medical scribe. Such a person takes notes
about the patient-physician encounter to reduce the physi-
cian’s administrative burden and ensures that documentation
in the EHR is accurate and up-to-date. However, scribes are
an expensive solution [23]. To solve this problem, NLP re-
searchers are trying to automatically generate clinical notes
from medical dialogue. One model, AutoScribe [105], auto-
matically parses the dialogue for entities like medications,
symptoms, times, dates, referrals, and diagnoses; it then uses
this information to generate a patient note. AutoScribe was
evaluated on a set of 800 audio patient-clinician dialogues
and transcripts, and achieved a 0.71 F1 score on this data.
While AutoScribe produced strong results, the researchers
noted that it could be improved by extracting more entities
and training on more dialogues.
Automatic health coaching tries to generate conversa-

tional dialogues on top of transcription and interpretation.
For simple questions that do not require complex or nuanced
guidance, a health coach can be a cost-effective solution.

Personal health coaches are useful but inaccessible for lower-
income patients, so Gupta et al. [75] developed an automatic
health coach that sends text messages to patients. This health
coach communicates important medical information, sets
concrete goals, and encourages the patient to adhere to them.
Another model, from Campillos-Llanos et al. [141], learns to
simulate a patient, instead of the medical professional. They
developed a “virtual patient” dialogue system with which a
physician can practice clinical interactions, and found that
the model produced correct replies in 74.3% of interactions
with doctors.

7.4 Multilinguality
There has been substantial recent interest in processing non-
English medical texts, which are generally less available than
ones written in English [171].
Roller et al. [191] proposed a cross-lingual sequential

search for candidate concepts for biomedical concept nor-
malization. The main component of the model is a neural
machine translation network trained on UMLS for Spanish,
French, Dutch and German. The proposed model performs
similarly to commercial translators (such as Google and Bing)
on these four languages. Perez et al. [177] compared the
effectiveness of three approaches in automatic annotation
of biomedical texts in Spanish: information retrieval and
concept disambiguation, machine translation (annotating in
English and translating into Spanish), and a hybrid of the two.
The hybrid approach performed the best of the three, achiev-
ing an average F1 score of 0.632. Neural Clinical Paraphrase
Generation (NCPG) is a model that casts clinical paraphras-
ing as a monolingual neural machine translation problem
[77]. Using a character-level, attention-based bidirectional
RNN in an encoder-decoder framework paradigm to NMT ef-
forts, NCPG outperforms a baseline word-level RNN encoder-
decoder model at the word level, with a BLEU score of 24.0
vs. 18.8, but results are more mixed at the character level
with BLEU scores of 30.1 vs. 31.3. Models were evaluated on
a constructed dataset which combined Paraphrase Database
(PPDB) 2.0 [174] and UMLS to build a clinically-oriented
parallel paraphrase corpus. The authors additionally show
that the character-level NCPG model is superior to word-
level based methods, with BLEU scores of 31.3 vs. 18.8 in
the non-attention baseline and 30.1 vs. 24.0 in the attention
model, likely because it tackles the out-of-vocabulary prob-
lem directly.

Multilingual BERT models are also being investigated for
EHR tasks. Vunikili et al. [237] studied BERT-based embed-
dings trained on general domain Spanish text for tumor mor-
phology extraction in Spanish clinical reports. The model
achieves an F1 score of 71.3% on the NER task without any
feature engineering or rule-based methods. Silvestri et al.
[206] investigated the Cross-lingual Language Model (XLM)
[42] by fine-tuning on English language training data and
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testing performance on ICD-10 code classification in an Ital-
ian language dataset of short medical notes. The XLM model
shows an improvement over mBERT6 in this task, achieving
an accuracy of 0.983 compared to 0.968.

7.5 Interpretability
Many machine learning models such as random forest and
bootstrapping operate like black boxes; they are not directly
interpretable. However, efforts have been made to improve
interpretability to make these models more helpful in prac-
tice.
One major challenge comes from the trade-off between

interpretability and performance. Caruana et al. [25] applied
high-performance generative additive models with pairwise
interactions to pneumonia risk prediction, and were able to
reveal clinically-relevant patterns while preserving SOTA
performance. The model also provides a simple mechanism
to correct discovered patterns and confounding factors, as
with asthma, chronic lung disease, and chest pain history in
a pneumonia case study. A work by Choi et al. [37] proposed
the Reverse Time Attention Model (RETAIN), which im-
proves interpretability by using a two-layer attention model,
giving the most recent visits higher attention. Evaluation on
Heart failure prediction performance shows that it achieved
0.87 on the AUC score which is comparable to SOTA deep
learning methods like RNNs. Another approach to increase
interpretability was suggested by Che et al. [29], who intro-
duced a knowledge-distillation approach called interpretable
mimic learning. The model uses gradient boosting trees to
learn interpretable features from existing deep learning mod-
els including LSTM and Stacked Denoising Autoencoder.
Evaluated on an ICU dataset for acute lung injury, it achieves
similar or better performance than deep learning models,
with AUC averaging 0.760 vs. 0.756.

7.6 Applications in Public Health
The COVID-19 pandemic, as a public health crisis, is impact-
ing people’s lives in multiple ways. It has also caused an
information crisis, with the development of the Internet and
other techniques. It is estimated thatmore than 23k published
papers have been indexed on Web of Science and Scopus
just between January 1 and June 30, 2020 [46]. In the NLP
domain, researchers are focusing on processing pandemic-
generated data and working on various tasks including text
classification, information retrieval, named entity recogni-
tion and knowledge discovery [32, 127, 242]. While there are
many relevant papers, we list here some typical works that
perform NLP techniques on COVID-19 data. We limit our
focus to resource works.

TREC-COVID [189, 234] is an information retrieval shared
task to promote and support research related to the pandemic.

6The multilingual version of BERT: https://github.com/google-research/
bert/blob/master/multilingual.md

Among the participants, MacAvaney et al. [145] introduced
a zero-shot SciBERT-based ranking algorithm for COVID-
related scientific literature. Bendersky et al. [19] presented a
weighted hierarchical rank fusion approach. The approach
combines results from lexical and semantic retrieval systems,
pretrained and fine-tuned BERT rankers, and relevance feed-
back runs [269]. They were able to achieve SOTA perfor-
mance in rounds 4 and 5 of the challenge, with a 9.2% mean
average precision gain over the next-best team.

The Open Research Dataset Challenge (CORD-19) corpus
[239] is a resource collection of scientific papers on COVID-
19 and coronavirus research: PubMed PMC, bioRxiv and
medRxiv corpus collected from search results using ‘COVID-
19 and coronavirus research’ as query, in addition to the
WHO corpus of COVID-19 research papers. The initial re-
lease contains 28K papers, and it has been updated frequently.
This dataset promotes a number of research directions in-
cluding text classification [133], information extraction [243],
knowledge graphs [3] and more.

Finally, COVID-KG [240] is a knowledge discovery frame-
work focused on extracting multimedia knowledge elements
from 25,534 peer-reviewed papers. In COVID-KG, nodes are
entities/concepts and edges are relations and events among
these entities. The edges are extracted from both images and
texts. Specifically, the knowledge graph contains multiple
types of entities and links. After construction, they are able
to perform a number of tasks related to COVID and drugs,
including question answering and report generation 7.

8 Conclusion and Future Direction
In this survey, we reviewed recent studies that show how
EHR and health informatics tasks can benefit from deep NLP
models. Though some of these papers partially deal with
structured data, our focus was on unstructured text data for
downstream EHR tasks. More specifically, we summarized
recent work on the following EHR-NLP tasks: classification
and prediction, representation learning, extraction, gener-
ation, as well as other topics such as question answering,
phenotyping, knowledge graphs, multilinguality, medical di-
alogues and applications on public health. We also list some
relevant datasets and existing tools to promote EHR-NLP
research.
Though deep learning methods in the general NLP do-

main have achieved remarkable success, applying them to
the biomedical field is still challenging due to the limited
availability and difficulty of domain-specific textual data
and the lack of interpretability of deep learning methods.
One future direction in this field is better mining knowledge
and information from unstructured data [59], and a useful
combination of both structured and unstructured data for bet-
ter decision making and potential interpretability. Another

7http://blender.cs.illinois.edu/covid19/visualization.html

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
http://blender.cs.illinois.edu/covid19/visualization.html
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direction could be employing transfer learning or unsuper-
vised learning for EHR tasks to compensate for the dearth
of annotated textual data. We hope that our survey will in-
spire readers and promote future developments in NLP for
electronic health records.
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9 Appendix: Datasets and Tools
9.1 Datasets
9.1.1 General EHR-NLP Datasets. MIMIC-III8 A free,
publicly accessible database of de-identified medical infor-
mation on patient stays in the critical care units of the Beth
Israel Deaconess Medical Center between 2001 and 2012.
The table NOTEVENTS contains clinical notes from over
40,000 patients. Other tables have data on mortality, imaging
reports, demographics, vital signs, lab tests, drugs, and pro-
cedures. Before MIMIC-III, there were two other iterations
of MIMIC used by biomedical NLP researchers.

MIMIC-CXR9 Like MIMIC-III, MIMIC-CXR contains de-
identified clinical information from the Beth Israel Deaconess
Medical Center. It has over 377,000 radiology images of chest
X-rays. The creators of the dataset also used the ChexPert[90]
tool to classify each image’s corresponding free-text note
into 14 different labels.

NUBes-PHI [134] A Spanish medical report corpus, con-
taining about 7,000 real reports with annotated negation and
uncertainty information.

Abbrev dataset10 This dataset is a re-creation of an old
dataset which contains the acronyms and long-forms from
Medline abstracts. It is automatically re-created by identi-
fying the acronyms long forms in the Medline abstract and
replacing it with it’s acronym. There are three subsets con-
taining 100, 200 and 300 instances respectively. [215]

MEDLINE11 A database of 26 million journal articles on
biomedicine and health from 1950 to the present. It is com-
piled by the United States National Library of Medicine
(NLM). MedlinePlus12, a related service, describes medical
terms in simple language.

PubMed13 A corpus containing more than 30 million ci-
tations for biomedical and scientific literature. In addition to
MEDLINE, these texts come from sources like online books,
papers on other scientific topics, and biomedical articles that
have not been processed by MEDLINE.

9.1.2 Task-SpecificDatasets. BioASQ14 An organization
that designs challenges for biomedical NLP tasks. While
BioASQ challenges focus primarily on question answering
(QA) and semantic indexing, some use other tasks including
multi-document summarization, information retrieval, and
hierarchical text classification.

BIOSSES 15 [210] A benchmark dataset for biomedical
sentence similarity estimation.

8https://mimic.physionet.org/
9https://physionet.org/content/mimic-cxr/2.0.0/
10https://nlp.cs.vcu.edu/data.html
11https://www.nlm.nih.gov/bsd/medline.html
12https://www.nlm.nih.gov/bsd/medline.html
13https://www.ncbi.nlm.nih.gov/guide/howto/obtain-full-text/
14http://bioasq.org/
15http://tabilab.cmpe.boun.edu.tr/BIOSSES/

BLUE 16 Biomedical Language Understanding Evaluation
(BLUE) is a collection of ten datasets for five biomedical NLP
tasks. These tasks cover sentence similarity, named entity
recognition, relation extraction, document classification, and
natural language inference. BLUE serves as a useful bench-
marking tool, as it centralizes the datasets that medical NLP
systems evaluate on.

Clinical Abbreviation Sense Inventory17 A dataset for
medical term disambiguation. In the latest version, 440 of
the most frequently used abbreviations and acronyms were
selected from 352,267 dictated clinical notes.

CLINIQPARA[211] A dataset with paraphrases for clini-
cal questions. Contains 10,578 unique questions across 946
semantically distinct paraphrase clusters. Initially collected
for improving question answering for EHRs.

i2b218 Informatics for Integrating Biology and the Bedside,
or i2b2, is a non-profit that organizes datasets and competi-
tions for clinical NLP. It has numerous datasets for specific
tasks like deidentification, relation extraction, clinical trial
cohort selection. These datasets and challenges are now run
by Harvard’s National NLP Clinical Challenges, or n2c2;
however, most papers refer to them with the name i2b2.

MedICaT19 A collection of more than 217,000 medical
images, corresponding captions, and inline references, made
for figure retrieval and figure-to-text alignment tasks. Unlike
previous medical imaging datasets, subfigures and subcap-
tions are explicitly aligned, introducing the specific task of
subcaption-subfigure alignment.

MedNLI20 Designed for Natural Language Inference (NLI)
in the clinical domain. The objective of NLI is to predict
whether a hypothesis can be deemed true, false, or undeter-
mined from a given premise. MedNLI contains 14,049 unique
sentence pairs, annotated by 4 clinicians over the course of
six weeks. To download it, one first needs to get access to
MIMIC-III.

MedQuAD21 Medical Question Answering Dataset, a col-
lection of 47,457 medical question-answer pairs created from
12 NIH websites (e.g. cancer.gov, niddk.nih.gov, GARD, Med-
linePlus Health Topics). There are 37 question types associ-
ated with diseases, drugs, and other medical entities such as
tests. [18]

VQA-RAD22 A dataset of manually constructed question-
answer pairs corresponding to radiology images. It was de-
signed for future Visual Question Answering systems, which
will automatically answer salient questions on X-rays. These
models will hopefully be very useful clinical decision support
tools for radiologists.

16https://github.com/ncbi-nlp/BLUE_Benchmark
17https://conservancy.umn.edu/handle/11299/137703
18http://www.i2b2.org/
19https://github.com/allenai/medicat
20https://jgc128.github.io/mednli/
21https://github.com/abachaa/MedQuAD
22https://osf.io/89kps/
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WikiMed andPubMedDS [228] Two large-scale datasets
for entity linking. WikiMed contains over includes 650,000
mentions normalized to concepts in UMLS. PubMedDS is
an annotated corpus with more than 5 million normalized
mentions spanning across 3.5 million documents.

PathVQA [78] The first dataset for pathology visual ques-
tion answering. It contains manually-checked 32,799 ques-
tions from 4,998 pathology images.

MedQA [95] The first multiple-choice OpenQA dataset
for solving medical problems. The dataset is collected from
professional medical board exams on three languages: Eng-
lish, simplified Chinese, and traditional Chinese. For the
languages, there are 12,723, 34,251, and 14,123 questions
respectively.

9.2 Tools and libraries
9.2.1 NLP and Machine Learning. Pytorch 23 Pytorch
is an open source deep learning library developed by Face-
book, primarily for use in Python. It is a leading platform in
both industry and academia.

Scikit-learn24 An open python library providing efficient
data mining and data analysis tools. These includes methods
for classification, regression, clustering, etc.

TensorFlow25 Google’s open-source framework for ef-
ficient computation, used primarily for machine learning.
Tensorflow provides stable APIs for Python and C; it has
also been adapted for use in a variety of other programming
languages.

AllenNLP26 An open-source NLP research library built
on PyTorch. AllenNLP has a number of state-of-the-art mod-
els readily available, making it very easy for anyone to use
deep learning on NLP tasks.

Fairseq27 A Python toolkit for sequence modeling. It en-
ables users to train models for text generation tasks like
machine translation and language modeling.

Gensim28 A scalable, robust, efficient, and hassle-free
python library for unsupervised semantic modelling from
plain text. It has a wide range of tools for topic modeling,
document indexing, and similarity retrieval.

Natural Language Toolkit (NLTK)29 A leading plat-
form for building Python programs concerned with human
language data. It contains helpful functions for tasks such as
tokenization, cleaning, and topic modeling.

PyText 30 PyText is a deep-learning based NLP modeling
framework built on PyTorch, providing pre-trained models
23https://pytorch.org/
24https://scikit-learn.org/
25https://www.tensorflow.org/
26https://allennlp.org/
27https://github.com/pytorch/fairseq
28https://radimrehurek.com/gensim/index.html
29https://www.nltk.org/
30https://pytext-pytext.readthedocs-hosted.com/en/latest/

for NLP tasks such as sequence tagging, classification, and
contextual intent-slot models.

SpaCy31 A remarkably fast Python library for modeling
and processing text in 34 different languages. It includes
pretrained models to predict named entities, part-of-speech
tags, and syntactic dependencies, as well as starter models de-
signed for transfer learning. It also has tools for tokenization,
text cleaning, and statistical modeling.

StanfordCoreNLP32 A set of tools developed by Stanford
NLP Group for statistical, neural, and rule-based problems
in computational linguistics. Its software provides a simple,
useful interface for NLP tasks like NER and part-of-speech
(POS) tagging.

9.2.2 EHR-NLP. Criteria2Query 33 A system for auto-
matically transforming clinical research eligibility criteria to
Observational Medical Outcomes Partnership (OMOP) Com-
mon Data Model-based executable cohort queries. [265] The
system is an information extraction pipeline that combines
machine learning and rule-based methods.

CuiTools 34 A package of PERL programs for word sense
disambiguation (WSD)[152]. Its models perform supervised
or unsupervisedWSD using both general English knowledge
and specific medical concepts extracted from UMLS.

Metamap35 A tool to identify medical concepts from the
text and map them to standard terminologies in the UMLS.
MetaMap uses a knowledge-intensive approach based on
symbolic methods, NLP, and computational-linguistic tech-
niques.

MIMIC-Extract 36 An open source pipeline to preprocess
and present data from MIMIC-III. [241] MIMIC-Extract has
useful features for analysis - for example, it transforms dis-
crete temporal data into a time-series and extracts clinically
relevant targets like mortality from the text.

ScispaCy37 Many NLP models perform poorly under do-
main shift, so ScispaCy adapts SpaCy’s models to process
scientific, biomedical, or clinical text. It was developed by Al-
lenNLP in 2019 and includes much of the same functionality
as SpaCy.

Unified Medical Language System (UMLS)38 UMLS is
a set of files and software that provides unifying relation-
ships across a number of different medical vocabularies and
standards. Its aim is to improve effectiveness and interoper-
ability between biomedical information systems like EHRs.
It can be used to link medical terms, drug names, or billing
codes across different computer systems.
31https://spacy.io/
32https://stanfordnlp.github.io/CoreNLP/
33http://www.ohdsi.org/web/criteria2query/
34http://cuitools.sourceforge.net/
35https://metamap.nlm.nih.gov/
36https://github.com/MLforHealth/MIMIC_Extract
37https://allenai.github.io/scispacy/
38https://www.nlm.nih.gov/research/umls/
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