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Abstract

Two methods of evaluating matrix elements of a function in a polynomial basis
are considered: expansion method, where the function is expanded in the basis and
the integrals are evaluated analytically, and numerical method, where the integra-
tion is performed using numerical quadrature. A reduced grid is proposed for the
latter which makes use of the symmetry of the basis. Comparison of the two meth-
ods is presented in the context of evaluation of matrix elements in the non-direct
product basis If high accuracy of all matrix elements is required then the expansion
method is the best choice. If however the accuracy of high order matrix elements is
not important, (as in variational ro-vibrational calculations where one is typically
interested only in the lowest eigenstates) then the method based on the reduced
grid offers sufficient accuracy and is much quicker than the expansion method.
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In many physical applications the problem of effective evaluation of integrals
of a multi-dimensional function often arises. For example, the typical situa-
tion in the calculation of molecular rotation-vibration spectra is evaluation of
matrix elements which are integrals of the product of two general polynomial
functions (basis functions) and an arbitrary function (molecular potential).
Depending on the dimensionality and the number of matrix elements such
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calculations are often computationally very demanding. It is often the case
that the properties of the polynomial functions are very well known and there
are analytical formulae for the integrals of these functions. Reference [1] con-
sidered the case when the basis functions are a direct product of standard
polynomials and advocated the expansion method, i.e., expansion of the po-
tential in the basis and subsequent evaluation of the integrals analytically. In
this paper, we propose a method of numerical integration on a reduced grid
which makes use of the symmetry properties of the basis functions. Consid-
ering an example of a non-direct product basis we argue that our method of
direct numerical integration can be very competitive to the expansion method
and may even be a preferable choice.

Our starting point is a model for floppy four-atomic molecules as implemented
in the new program WAVR4 [7]. The general description of the approach can
be found elsewhere [2-5] and more details about the implementation in Ref.
[6,7]. Of the six internal coordinates, the three radial coordinates are treated
using the discrete variable representation (DVR) [9]. The DVR approximation
for the potential reduces six dimensional integrals to three dimensional. The
other three coordinates are the angles (6;, 62, ¢) which are represented by a
non-direct product basis

eikcp

V21

iUk JK) =P (0)) P} 6)—=]|J K), (1)

where J and K are the usual rotational quantum numbers, 7 and [ are angular
momenta associated with internal coordinates, k is projection of [ on the
quantization axis, Pf are normalized associated Legendre functions, |J K)
are symmetric top eigenfunctions. All the quantum numbers take only non-
negative integer values.

The straightforward approach is to use Gaussian quadrature [10,11]
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where W (z) is weighting function and w; are weights. The grid points x; are
the roots of the polynomial py(z) of order N and the quadrature is exact for
all polynomials p,,(x) to degree (2N — 1). So if we have Legendre type basis
functions P(x) up to order lp.x, we need N = l.x + 1 or more quadrature
points to compute the integrals
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For the basis function given in Eq.(l) we can use Legendre quadrature for
associated Legendre functions (in 6, and 6,) and equidistant (Fourier) grid
for exp ik functions (in ¢). Associated Legendre functions require double the
number of quadrature points which otherwise would be sufficient for Legendre
functions of the same order. If we characterise the size of our basis using
(Jmaxs lmax, kmax) We can define a minimal grid size (2jmax + 1) X (2lpax + 1) X
(2kmax + 1), i.e. the minimal grid on which our basis is still orthogonal. It
is easy to see that evaluation of all matrix elements using multi-dimensional
quadrature can be a bottle-neck.

One way to reduce the computational cost is to use expansion of integrated
function [1]. In our case we can use the following expansion
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because the potential function of a molecule is rotationally invariant, i.e. only
J = K = 0 basis functions are required in the expanded potential. Reference
[8] provides an elegant way of expressing the matrix elements of the expanded
potential Eq. (4) through integrals of products of spherical harmonics. The lat-
ter can be evaluated analytically through 3.J-symbols. Here, we take a shortcut
and simply define
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Since k; > 0 by definition, m; are chosen so that |m;| = k; and the 3.J-symbol
rule holds: m; +msy 4+ m3 = 0. A second 3J-symbol rule must be satisfied too:
b= 13] <o <+ 1,

Then the matrix elements of the potential function are
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The 3J-symbol rules provide the upper limit for the expansion size: twice the
maximum for each quantum number used in the basis. However the sum in
Eq.(7) is smaller than the sum over the minimal grid for the same basis not
only because of the non-direct nature of our basis but also because many terms
in Eq. (7) are zero due to 3.J-symbol rules (see Ref. [1] for more details).

In spite of the attractions of the expansion method we have found it valuable
to reconsider direct numerical integration. It turns out we can do much better
if we use properties of our basis. It is frequently the case that the integra-
tion interval is symmetric and the basis functions can be symmetric or anti-
symmetric on the interval. Consider again the integral (3). The function f(z)
may be expressed as a sum of symmetric fs(z) = f;(—x) and anti-symmetric
fa(x) = = fo(—x) parts. If the product P, (x)P,(z) is symmetric we need to
integrate only the symmetric part of f(z) because the anti-symmetric part
gives zero. This allows us to sum only over positive quadrature points and
then double the sum. The analogous argument applies if P, (z)P,(x) is anti-
symmetric. Assuming N is even we can write
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Therefore the knowledge of the symmetry properties of our basis can be used
to reduce the computational cost.

Note, that the symmetry properties of the basis may have nothing to do with
the symmetry of the molecule in question. Even if the symmetry + — —x above
is absent in the molecular system one can still get a twofold computational
gain due to the decomposition of the function to be integrated. If symmetry is
present in the molecular system then f,(z) = 0 and the whole problem splits
in two: one involving only a symmetric basis and another involving an anti-
symmetric basis. In this case, it is usual to use the symmetry of coordinate
space and reduce the number of quadrature points. This reduction can be
viewed as a sub-case of the more general case of a system without symmetry
and therefore we suggest always implementing the more general algorithm
described above.

There are more elaborate versions of reducing the cost of integration like Fast
Fourier Transformation (FFT) for cos/sin functions. Recently a combination
of FFT with recursive methods for associated Legendre functions was used to
compute expansions of spherical harmonics [12,13]. However our simple algo-
rithm offers a reasonable compromise between algorithm complexity and con-
siderable computational savings. It is very easy to implement and generalise in
many dimensions where it gives 24™ saving. Thus for the basis (1) the minimal
grid on which the basis is still orthogonal is (jmax + 1) X (lmax +1) X (Kmax + 1)



and therefore represent eightfold saving [14]. It turns out that using the re-
duced grid is very competitive compared to the expansion method. First of
all the analytical integration requires 3.J-symbols. Unfortunately it is usu-
ally not practical to precompute and store them because the required stor-
age size is too big. Therefore they need to be computed every time they are
needed. Secondly the implementation of analytical integration requires some
logic based on the 3.J-symbol rules but this typically degrades processor per-
formance. On the other hand for the numerical integration we need only to
precompute the basis functions and potential on the grid, and perform a direct
multiplication-summation. The memory requirements are small (for example,
for jmax = lmax = kmax = 30 one needs less than 1MB) and the method
performs very well. Our tests showed that the implementation in WAVRA4
performs the numerical integration on the minimal grid much quicker than
the expansion method (even not including the expansion itself). The accuracy
provided by the minimal grid was found to be acceptable because in vari-
ational calculations we are typically interested in the lowest eigenfunctions
and therefore some inaccuracy of high matrix elements is not critical. How-
ever one may want to use a slightly bigger reduced grid to achieve a suitable
compromise between speed and accuracy. For example, it was suggested to
use (Nmax + 4) points instead of (nyay + 1) for polynomials of order np,.x[15].
Only when high accuracy is vital the use of an expansion becomes the prefer-
able choice because comparable accuracy using numerical integration becomes
more expensive. Both the expansion and numerical options are implemented
in WAVRA4 and the user may choose the optimal strategy for the problem of
interest.
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