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Abstract

Using a new method to extract the data from various one-dimensional chaotic maps, we show that there is a nice c
between the sign of the Lyapunov exponent of the maps and whether the extracted data form a good set of pseud
numbers using various well-known criteria.
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1. Introduction

The need for random and pseudo-random num
arises in many different kinds of applications, su
as simulation, image encryption, transmission of
mail on the web, numerical analysis, decision maki
etc. A pseudo-random number generator (PRNG
a cryptographic algorithm used to generate numb
that must appear random but are necessarily pr
termined. Besides being of a high-quality, a pseu
random number generator must also possess the
lowing desirable properties: good distribution, lo
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period, repeatability, portability and efficiency. For
description of well-studied uniform random numb
generators, the readers are referred to L’Ecuyer[1].
Briefly, a PRNG is a deterministic algorithm produ
ing a sequence(xi)i�0 of numbers in[0,1) which,
for virtually all generators used for computer simu
lations, is purely periodic. The most famous PRN
widely used today are linear congruential genera
LCG(M,a, b,u0), in which the parametersM, a, b,
andu0 are all integers. The LCG produces a seque
(ui)i�0 of integers byui+1 = aui + b (modM), that
is,ui+1 is the integer remainder of dividingaui +b by
M. Using the modular method, the inversive cong
ential generator ICG(p, a, b,u0) and the explicit in-
versive generator EICG(p, a, b) are studied in Leeb
and Wegenkittl[2]. The parameters of the two gene
.
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ators are defined by a (large) primep and an intege
u with 0 � u < p, and one lets̄u = up−2 (modp) if
u �= 0 (mod p) and̄u = 0, otherwise. With suitable pa
rametersp, a, b, andu0, the ICG produces integer
(ui)i�0 by ui+1 = aūi + b (modp), and pseudoran
dom numbers(xi)i�0 by xi = ui/p. A similar process
is used in the EICG to produce a sequence(ui)i�0 of
integers byui = ai + b, and pseudorandom numbe
(xi)i�0 by xi = ui/p. As far as hyperplane structure
and long-range correlations are concerned, the E
has similar favorable properties as the ICG, and th
points are discussed in Eichenauer-Herrmann[3]. In
regard to finding good random number generators,
is referred to the detailed discussions in Hellekalek[4].

As an alternative to the more traditional PRNGs
scribed above, one may also consider using cha
systems. Indeed, the potential of incorporating ch
into cryptography has been under intensive invest
tion since Pecora and Carrolldemonstrated the poss
bility of synchronization in chaotic systems[5]. For
instance, a very primitive way of utilizing it is to d
rectly hide the data in the chaotic signals generate
a chaotic system[6,7] or to combine standard crypto
graphic operations with chaos, as was done in He
Vaidya[8]. However, approaches along these lines
more appropriate for covert communications beca
the driving signals are put in the public channel.
it turns out, methods such as those just mentioned
more akin to the generation of pseudo-random nu
bers, since the only aspect of chaos that is put into
in these systems is the generation of a sequence of
sumably random numbers associated with the sys
variables. This then brings up one important quest
In what respect is chaos tied to the randomness
PRNG? For instance, a measure of the chaotic cha
teristics of a dynamical system is the Lyapunov ex
nent, and how is it correlated to the industry-stand
criteria for PRNGs? One purpose of the present w
is to address this question.

In fact, the idea of applying chaos theory
generate random numbers has produced intere
works in recent years[9–15]. For instance, Collins
et al.[12] have applied the logit transformation to t
logistic map to produce random numbers of unifo
distribution. In this work, one starts with the simp
and famous logistic map defined by

(1)Xn+1 = µXn(1− Xn), Xn ∈ (0,1)
-

where 0< µ � 4, and then convert the nonunifor
data of the logistic map to a more uniform set by
logit transformation assuming the form

(2)Zn = ln
Xn

1− Xn

.

On the other hand, the above and its variants
suffer from the same shortcoming of displaying a n
relationship betweenXn+1 andXn, which is readily
revealed when one does a simple return map. T
has prompted González and Pino[13] to propose the
following “z-logistic map” as a modification:

(3)Xn = sin2(πθzn),

where z is a parameter whose choice significan
determines how smooth the return map will look.

The simple algorithm ofEq. (3)is motivated by the
observation that

(4)Xn = sin2(πθ2n)

is a general solution to the map(1) for µ = 4. In
contrast, for thez-logistic map we have the nic
expression

(5)Xn+1 = sin2(zsin−1
√

Xn

)
only whenz is an integer. In a sense, these auth
were able to overcome the aforementioned weakn
because they have incorporated into the conventiona
recursion formulaXn+1 = f (Xn) an extran-depen-
dence so that it now becomesXn+1 = f (Xn,n). In
the following, however, we will restrict ourselves
the modified form

(6)Xn+1 = 0.25µsin2(zsin−1
√

Xn

)
of Eq. (5) and refer to it as the restrictedz-logistic
map. Later we will also compound it with one ext
transformation

(7)Yn = 2

π
sin−1

√
Xn

to see if this might change the statistical tests on
system.

Other chaotic maps of interest include the tent m
defined by

(8)Xn+1 =
{

2µ(1− Xn), 0.5< Xn � 1,

2µXn, 0 < Xn � 0.5,
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and the sine map defined by

(9)Xn+1 = µ

4
sin(πXn), 0 < Xn < 1.

Once again, these two maps have a simple re
map and therefore must be subject to further modifi
tion if one would like to use their variables for the pu
pose of generating random numbers. To achieve
we can try extracting the lower bits of the variable
a chaotic map. Here in this paper we will call it th
chaotic stream cipher and abbreviate it as CSC.
extraction of the lower bits is done by chopping o
the leading bits after multiplying each variableXn of
the chaotic map by some constantA. Thus, the result
ing numberRn can be succinctly expressed as

(10)Rn ≡ �AXn� (modS),

whereR(n) ∈ Z+, � � is the Gaussian symbol whic
returns the highest integer that is smaller than the n
ber inside the symbol, andS is yet another constan
The tests for the randomness of the numbers ge
ated by a chaotic system are then performed and c
pared with some of the most famous generators s
marized inTable 1. As a brief background informa
tion, we note that the LCGs cover a wide range
quality delivered by linear generators, ranging fro
RANDU (worst) to FISH (best). RANDU, formerly
part of IBM’s Scientific Subroutine Package, exhib
an infamous devastating defect in three dimensio
its points(xi, xi+1, xi+2) all lie in just fifteen paral-
lel planes. ANSIC is the generator employed by
ANSI C rand( ) function, BSD version. MINSTD, in
troduced by Lewis et al. as the random number g
erator for IBM’s System/360[16], was later propose
as a “minimal standard” generator by Park and Mil
[17]. Finally, FISH is one of the best found by Fis
man and Moore[18] in an exhaustive search amo
all maximum period LCGs withM = 231 − 1 and
b = 0. ICG, EICG1, and EICG7 have been chos
arbitrarily among the maximal period inversive ge
erators with modulusp = 231 − 1. For convenience
we have used the “CSCLOGISTIC(µ, t0, x0,A,S)” to
represent our chaotic pseudorandom number gen
tor based on logistic map. In this algorithm, the fr
parameters one can “tune” includeµ, the evolution
time t0 after which we will extract data to get ran
dom numbers, the initial conditionx0, and the num-
bersA andS as described inEq. (10). For example
“CSCLOGISTIC(4.0,10,0.25,107,256)” means that
we will use the logistic map to generate the rand
numbers for the parameterµ = 4.0 and extract the dat
after 10 steps of iteration and useEq. (10)to truncate
the data to get the 8 bits random numbers.
Table 1
The various random number generators defined inSection 1

Index Generator Parameter

1 RANAU LCG(231,65539,0,1)

2 ANSIC LCG(231,1103515245,12345,12345)
3 MINSTD LCG(231 − 1,16807,0,1)

4 FISH LCG(231 − 1,950706376,0,1)

5 ICG ICG(231 − 1,65539,0,1)

6 EICG1 EICG(231 − 1,1,0)

7 EICG7 EICG(231 − 1,7,0)

8 CSCLOGISTIC7 CSCLOGISTIC(µ,10,0.25,107,256)
9 CSCLOGISTIC20 CSCLOGISTIC(µ,10,0.13,1020,256)

10 CSCLOGIT7 CSCLOGIT(µ,10,0.25,107,256)
11 CSCYN7 CSCYN(µ,10,0.25,107,256)
12 CSCZLOGISTIC2 CSCZLOGISTIC(µ,2,10,0.25,107,256)
13 CSCZLOGISTIC3 CSCZLOGISTIC(µ,3,10,0.25,107,256)
14 CSCZLOGISTIC5 CSCZLOGISTIC(µ,5,10,0.25,107,256)
15 CSCSINE7 CSCSINE(µ,10,0.25,107,256)
16 CSCTENT7 CSCTENT(µ,10,0.25,107,256)
17 CSCTENT20 CSCTENT(µ,10,0.13,1020,256)

The parameterµ of the generators 8 through 15 is 3.97; and of generators 16 and
17 is 0.9. The transformed data of generators studied are still based onEq. (10).
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The main purpose of the present work is twofo
Firstly, to show that CSC system can pass the es
lished criteria for random numbers proposed in NI
[19,20], the Diehard battery of tests by Marsaglia[21],
and the random walk tests of Vattulainen[22]. Sec-
ondly, to find whether there is a perfect correlation
tween the Lyapunov exponent and the passing crit
mentioned above.

2. Some famous statistical tests of random
number generators

In order to test the CSC method described
Section 1, we have performed certain statistical te
for various chaotic maps we proposed. These t
include FIPS PUB 140-2 tests[19], SP 800-22[20],
Diehard battery of tests[21], and the random walk
test[22]. For completeness and for reference, we g
in the following a brief description of each of th
aforementioned tests.

2.1. FIPS PUB 140-2 tests

This set of tests is meant to be a general purp
test suite which can be conveniently grouped into fo
totaling 16 items, as specified in the FIPS PUB 14
tests. First, one considers a single bit stream of 20,
consecutive bits output from the generator. The
are then subjected to each of the following tests be
Failure to meet any of the specified criteria means
the sequence must be rejected. The four tests ter
monobit test, poker test, runs test, and long run test
are:

Monobit Test counts the numberX of ones in the
20,000 bit stream. The test is passed if 9,725< X <

10,275.
Poker Test starts by dividing the 20,000 bit stre

into 5,000 contiguous 4-bit segments. One then co
and stores the number of occurrences of each of th
possible 4-bit values. Denotingf (i) as the number o
each 4-bit valuei where 0� i � 15, one then evaluat
the following:

(11)X = 16

5000

(
15∑
i=0

[
f (i)

]2

)
− 5000.

The test is passed if 2.16< X < 46.17.
Table 2
The required interval for runs test

Length of run Required interva

1 2315–2685
2 1114–1386
3 527–723
4 240–384
5 103–209

> 6 103–209

In Runs Test one considers a run defined as
maximal sequence of consecutive bits of either
ones or all zeros, which is part of a 20,000 bit sam
stream. The incidences of runs (for both consecu
zeros and consecutive ones) of all lengths (� 1) in the
sample stream should be counted and stored. The
passes if the number of runs that occur (of length
through 6) is each within the corresponding inter
specified inTable 2. This must hold for both zeros an
ones; that is, all 12 counts must lie in the specifi
interval. For the purpose of this test, runs of grea
than 6 are considered to be of length 6.

For Long Run Test one considers a run of len
26 or more (of either zeros or ones). On the sampl
20,000 bits, the test passes if there areno long runs.

To test the quality of the random bits generated,
will have to check a total of sixteen items (one for t
monobit test, one for the poker test, twelve for the ru
test, and two for the long run test). The test results
be discussed below.

2.2. SP 800-22 Test

The NIST test suite, SP 800-22, is a statistical pa
age consisting of 16 tests, as listed inTable 3, that were
developed to test the randomness of (arbitrarily lo
binary sequences produced by either hardware or
ware based cryptographic random or pseudoran
number generators. These tests focus on a varie
different types of non-randomness that could exist
sequence. Some tests are decomposable into a va
of subtests. For example, considering the Freque
Test, the focus of the test is the proportion of zer
and ones for the entire sequence. The purpose of
test is to determine whether the number of ones and
ros in a sequence are approximately the same as w
be expected for a truly random sequence. Listed be
are some excerpts from the test suite.
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Table 3
SP 800-22 tests

Index The items of SP 800-22 tests The number
of subitems

1 The Frequency (Monobit) Test 1
2 Frequency Test within a Block 1
3 The Cumulative Sums (Cusums) Test 2
4 The Runs Test 1
5 Test for the Longest-Run-of-Ones in a Block 1
6 The Binary Matrix Rank Test 1
7 The Discrete Fourier Transform (Spectral) Test 1
8 The Non-overlapping Template Matching Test 148
9 The Overlapping Template Matching Test 1

10 Maurer’s “Universal Statistical” Test 1
11 The Approximate Entropy Test 1
12 The Random Excursions Test 8
13 The Random Excursions Variant Test 18
14 The Serial Test 2
15 The Lempel–Ziv Compression Test 1
16 The Linear Complexity Test 1

Sum 16 189
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For each subitem of SP 800-22 Test, a set of
values (corresponding to the set of sequences) is
duced. For a fixed significance level, a certain perc
age of P-values are expected to indicate failure.
example, if the significance level is chosen to be 0
(i.e. α = 0.01), then about 1% of the sequences
expected to fail. A sequence passes a statistical
whenever the P-value is greater than or equal toα and
fails otherwise. For each statistical test, the propor
of sequences that passes is computed and ana
accordingly. The interpretation of empirical results is
threefold. Case 1: The analysis of the P-values d
not indicate a deviation from randomness. Case
The analysis clearly indicates a deviation from ra
domness. Case 3: The analysis is inconclusive.
interpretation of empirical results can be conduc
in any number of ways. Two approaches NIST h
adopted include (1) the examination of the prop
tion of sequences that pass a statistical test and
the distribution of P-values to check for uniformity.
the event that either of these approaches fails (i.e. th
corresponding null hypothesis must be rejected),
ditional numerical experiments should be conduc
on different samples of the generator to determ
whether the phenomenon was a statistical anoma
a clear evidence of non-randomness. For exampl
1000 binary sequences were tested (i.e.m = 1000),
t

d

α = 0.01 (the significance level), and 996 binary s
quences had P-values� 0.01, then the proportion i
996/1000= 0.9960. The range of acceptable prop
tions is determined using the confidence interval
fined as

(12)p̂ ± 3

√
p̂(1− p̂)

m
,

where p̂ = 1 − α and m is the counting times o
test for a certain size of sequencen, and the whole
size of random number isM. As a modest test, w
set up in this paper the parametern = 106 andm =
15, and the size of random number isM = 1.5 ×
107.

If the proportion falls outside of this interval, the
there is evidence that the data are nonrandom. N
that other standard deviation values could be used
the example above, ifm = 15, the confidence interva
is 0.99±0.077071 (i.e. the proportion should lie abo
0.912929). The confidence interval was calcula
using a normal distribution as an approximation to
binomial distribution, which is reasonably accurate
large sample sizes (e.g.,n � 1000). The distribution o
P-values is examined to ensure uniformity. Uniform
may also be determined via an application of aχ2

test and the determination of a P-values correspon
to the Goodness-of-Fit Distributional Test on the
values obtained for an arbitrary statistical test (
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a P-value of the P-values). This is accomplished
computing

(13)χ2 =
m∑

i=1

Fi − s/m

s/m
,

whereFi is the number of P-values in sub-intervali,
ands is the sample size. A P-value is calculated su
that P-valueT = igamc((m − 1)/2, χ2/2), where the
igamc( ) is the incomplete gamma function, which, t
gether with the gamma function, are defined, resp
tively, by

(14)�(z) =
∞∫

0

tz−1e−t dt (gamma),

(15)

Q(a,x) = 1

�(a)

∞∫
x

e−t ta−1 dt (incomplete gamma),

with Q(a,0) = 1 andQ(a,∞) = 0.
If P-valueT � 0.0001 and the portion of passin

random numbers is higher than the criteria byEq. (12),
then the sequences can be considered to be unifo
distributed. SeeTable 3. We would also like to mention
that the Non-overlapping Template Matching Tes
so stringent that it is not at all easy to pass all the
subitems in the test suite. In our test, the criteria ab
each test was set up so that a pass is granted whe
statistics of the random number sequence satisfie
criteria of proportion and P-valueT .

2.3. Diehard battery of tests

Diehard battery of tests, a set of powerful statis
cal tests for testing randomness of sequences of n
bers, is proposed by Marsaglia, and the Diehard p
gram written by B. Narasimhan can be found on
Web[23]. The Diehard test suite is important becau
quoting the original author, it seems to be one of
most powerful general tests of randomness. This be
comes from the observation that many software
hardware generators which claim “perfect rando
ness” actually fail one or more sections of Diehard
testing longer and longer sequences of random bits
Diehard battery of tests are reported to have the a
ity of eventually detecting these defects. An upda
version, the PowerTest, has also been proposed w
e

contains many other interesting tests besides thos
the original Diehard battery of tests. However, beca
of the stringent requirements in the Diehard test su
a generator which passes Diehard battery of tests
be considered good as a rule of thumb.

The Diehard battery of tests consist of 18 differe
independent statistical tests, as listed inTable 4. Re-
sults of tests are so called “p-values.” In the PowerTes
version of Diehard, these values are of Kolmogoro
Smirnov type, which means their values are real,
tween 0 and 1. An individual test is considered to
failed if p value approaches 1 closely, for exam
p > 0.9999. See the PowerTest description for furt
details. As a result, the Diehard battery of tests con
of 18 statistical tests and 215 subitems in the tests

As a reminder from the original author, we shou
note that most of the tests in Diehard return ap-value,
which should be uniform on[0,1) if the input file con-
tains truly independent random bits. Those p-val
are obtained byp = F(X), whereF is the assumed
distribution of the sample random variableX, which
is often normal. But that assumedF is just an asymp
totic approximation, for which the fit will be worst i
the tails. Thus one is reminded not to be alarmed by
occasional occurrences of havingp-values near 0 o
1, such as 0.0012 or 0.9983. When a bit stream re
fails, one will getp’s of 0 or 1 to six or more places.

2.4. Random walk test

The Random walk test proposed by Vattulainen[22]
is a framework for testing the quality of random nu
bers in parallel calculations. The key idea is to stu
the cross-correlations between distinct sequence
random numbers via correlations between various
fusing random walkers, each of which is govern
by a distinct random number sequence. Such me
aims at the property of two types of correlations, t
is, correlations within a single random number
quence{ri}(k) and correlations betweendistinct1 ran-

1 There are many ways to construct the sequences{ri}(1),

. . . , {ri }(m) for the processors one throughm. We used random
numbers{ri } = r1, . . . , rΩ, rΩ+1, . . . , r2Ω, . . . generated by a sin
gle pseudo-random number generator to make non-overlappin
sequences{ri }(1) = r1, . . . , rΩ , {ri}(2) = rΩ+1, . . . , r2Ω and so
forth. Other possibilities for constructing the sequences are g
in, e.g.,[24].
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Table 4
The Diehard battery of tests

Index The items of Diehard battery of tests The number
of subitems

1 The BIRTHDAY SPACINGS TEST 9
2 The OVERLAPPING 5-PERMUTATION TEST 2
3 The BINARY RANK TEST for 31× 31 matrices 1
4 The BINARY RANK TEST for 32× 32 matrices 1
5 The BINARY RANK TEST for 6× 8 matrices 25
6 The BITSTREAM TEST 20
7 The OPSO TEST(Overlapping-Pairs-Sparse-Occupancy) 23
8 The OQSO TEST(Overlapping-Quadruples-Sparse-Occupancy) 28
9 The DNA TEST 31

10 The COUNT-THE-1’s TEST on a stream of bytes 12
11 The COUNT-THE-1’s TEST for specific bytes 25
12 The PARKING LOT TEST 10
13 The MINIMUM DISTANCE TEST 1
14 The 3DSPHERES TEST 20
15 The SQEEZE TEST 1
16 The OVERLAPPING SUMS TEST 10
17 The RUNS TEST 4
18 The CRAPS TEST 2

Sum 18 215
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dom number sequences{ri}(k), . . . , {ri}(m) generated
by CSC systems and other famous PRNGs. Here
consider the case where the sizesΩk of sequences
{ri}(k) are equal for allk. Random numbersri are uni-
formly distributed between zero and one. In the hei
correlation test of this method, we consider the
sition xi of a one-dimensional (1D) random walk
versus the number of jumps made,i. The position
xt = ∑t

i=1 δxi is a sum of displacementsδxi , which
are random variables

(16)δxi =



+1 if ri � 1/3,

0 if 1/3< ri � 2/3,

−1 otherwise.

In this fashion, we construct the pathsx
(1)
i and x

(2)
i

from the sequences{ri}(1) and {ri}(2), respectively.
The height between the two random walkers is th
defined asht = x

(1)
t − x

(2)
t , whose correlation func

tion Ht ≡ 〈|ht − h0|〉 ∼ tφ is known to decay asymp
totically as a power law with an exponentφ = 1/2
[25]. Deviations fromφ = 1/2 are expected, ifHt does
not correspond to a random process. In this work,
height correlation functionHt was investigated up t
Ω = 2000 withM = 107 independent runs.
The other test we have adopted is the so calledSN

test, which is more general in the sense that it can
applied to study any number of random walks. In o
dimension,N random walkers move simultaneous
without any interaction such that, at any jump attem
they can make a jump to the left or to the rig
with equal probability. Aftert � 1 jumps by all
random walkers, the mean number of sites visit
SN,t , has an asymptotic formSN,t ∼ f (N)tγ , with
the scaling functionf (N) = (lnN)1/2 and γ = 1/2
[26]. The value ofγ observed serves as a meas
of correlations. For the similar process, theSN test
was set up toΩ = 4000 withM = 108 independen
runs.

3. Test results and the clear correlation with
Lyapunov exponents

Trying to make use of the chaotic nature of sim
maps, many researchers have discussed the poss
of using the logistic map to generate random numb
[12–15]. One distinct feature of chaotic maps is th
at least one Lyapunov exponent of the system
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Fig. 1. The Lyapunov exponents of the logistic map.

positive for certain parameter regimes. But since
randomness one would like to see on a random num
generator clearly must be correlated to the diverg
nature of the trajectories of a chaotic map, which
tied to the existence of a positive Lyapunov expone
it is natural to investigate just how good the correlat
is. The computation of the Lyapunov exponentλ for
the logistic map can be facilitated by noting

(17)dXn+1 = µ(1− 2Xn)dXn

and using the well-known formula

(18)λ = lim
N→∞

1

N

N∑
n=0

ln

∣∣∣∣df (Xn)

dXn

∣∣∣∣.
This is shown inFig. 1 as a function of the tuning
parameterµ.

To exhibit the correlation between the Lyapun
exponent and the success rate (of passing the ran
number generator criteria), we have tak
CSCLOGISTIC(3.97,0,0.13,1020,256) in Eq. (10)
as a concrete example. (Not surprisingly, we get m
qualified random number sequences when we cho
more higher bits by adopting a larger value forA.)
Thus, we have

x1 = 3.97x0(1− x0) = 0.44900700000000000000,

x2 = 3.97x1(1− x1) = 0.98217686438547000000,

x3 = 3.97x2(1− x2) = 0.69496721662042407100,

x4 = 3.97x3(1− x3) = 0.25672770154087592061,

x5 = 3.97x4(1− x4) = 0.75754979754558697859,
x6 = 3.97x5(1− x5) = 0.72916236408338182336,

. . . ,

x98 = 3.97x97(1− x97) = 0.3577945032038478202,

x99 = 3.97x98(1− x98) = 0.1369621465829689203,

(19). . .

so that, using the CSC method,

R1 ≡ 1020x1 (mod 256) ≡ 0,

R2 ≡ 1020x2 (mod 256) ≡ 192,

R3 ≡ 1020x3 (mod 256) ≡ 70,

R4 ≡ 1020x4 (mod 256) ≡ 125,

R5 ≡ 1020x5 (mod 256) ≡ 131,

R6 ≡ 1020x6 (mod 256) ≡ 192,

. . . ,

R98 ≡ 1020x98 (mod 256) ≡ 122,

R99 ≡ 1020x99 (mod 256) ≡ 133,

(20). . . .

In the calculation, some variables in the program
of typeZZ of Shoup,2 which, though being very larg
positive numbers, happen to be quite convenien
far as programming task is concerned. For rela
programming code, please refer to Shoup[27] for
details.

We are now ready to discuss our test results.
begin with the relatively simpler test of FIPS PU
140-2. InFig. 2 we have plotted the statistical tes
of FIPS PUB 140-2 on the generated sequence
CSCLOGISTIC(µ,31426,0.25,107,256). Here, the
ordinate is the number of successful passes a sequ
goes through. Thus, a qualified sequence must ha
passing value of 16 for most of the time, with possi
occasional failures. (We should note in passing
one can not expect a true random sequence to pa
all the time even in principle.) Visually one can alrea
see fromFigs. 1 and 2that whenever the Lyapuno
exponent becomes positive for the parameterµ, the

2 ZZ, built in the NTL library of source code, is a speci
class in C++ proposed by V. Shoup. NTL is a high-performan
portable C++ library providing data structures and algorithms
manipulating signed, arbitrary length integers, and for vector
matrices, and polynomials over the integers and over finite fie
Please see[27] for details.
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Fig. 2. The statistical test of FIPS PUB 140-2 f
CSCLOGISTIC(µ,31426,0.25,107,256): it is passed when
the total number of passes is 16.

sequence also tends to pass the FIPS PUB 140-2
To compare the two figures in a more quantitat
manner, we have computed their correlation to beC =
0.719727 using the Pearson correlation,C(x, y,N),
in which x is taken from the data of the Lyapuno
exponents andy is taken from the result of th
statistical test using FIPS PUB 140-2, andN = 1001.
The Pearson correlation is defined by

(21)C(x, y,N) = N
∑

xiyi − ∑
xi

∑
y√

(N
∑

x2
i )(N

∑
y2
i )

whereN is the size of the input data, andx, y are the
sequences to be compared.

To further verify this observation, we have repea
the same analysis for other systems as well. But
fore we proceed, it should be recalled that the L
punov exponent of a one-variable systemXn+1 =
f (Xn) remains the same if one invokes the chan
of variablesY = g(X) to obtain a “new” dynami-
cal systemYn+1 = g ◦ f ◦ g−1(Yn), provided that
g is monotonic and smooth. Thus, for instance,
logit transformation ofEq. (2) and theYn transfor-
mation of Eq. (7) will not change the Lyapunov ex
ponent of the derived systems. (We have also
plicitly verified this fact in our numerical calcula
tions as an independent check of our codes.) T
in the following we will show only the results o
the statistical tests on the generated random n
.

Fig. 3. The statistical test of FIPS PUB 140-2 f
CSCLOGIT(µ,31426,0.25,107,256): it is passed when the
total number of passes is 16.

Fig. 4. The statistical test of FIPS PUB 140-2 f
CSCYN(µ,31426,0.25,107,256): it is passed when the tota
number of passes is 16.

bers without repeatedly displaying the Lyapunov
ponent.

The statistical tests for CSCLOGIT(µ,31426,0.25,
107,256) is shown inFig. 3. Similarly, the results for
the map modified by the CSCYN(µ,31426,0.25,107,

256) are shown inFig. 4, with the same paramete
and initial value. As can be seen, the places whe
sequence successfully passes all the tests corres
nicely to the parameters for which the Lyapunov e
ponent is positive. The correlationC is 0.720672 be-
tweenFigs. 3 and 4.
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Fig. 5. The Lyapunov exponents of thez-logistic map, withz = 2
and initial valueX0 = 0.25.

Fig. 6. The statistical test of FIPS PUB 140-2 f
CSCZLOGISTIC2(µ,31426,0.25,107,256): it is passed when the
total number of passes is 16.

Turning to the restrictedz-logistic equation (6),
CSCZLOGISTIC2(µ,31426,0.25,107,256), we
show inFig. 5 the Lyapunov exponents and inFig. 6
the associated statistical tests forz = 2. The correla-
tion C is 0.723478 betweenFigs. 5 and 6. As we in-
creasez from 2 to 3 (Figs. 7 and 8) and onward to 5
(Figs. 9 and 10) we see a corresponding widening
the regions of successful passes. The correlationC is
calculated to be 0.723478, 0.869878, and 0.676233
tweenFigs. 5 and 6, Figs. 7 and 8, andFigs. 9 and 10,
respectively. But once again, the correlation betw
regions of successful passes and regions of pos
Fig. 7. The Lyapunov exponents of thez-logistic map, withz = 3
and initial valueX0 = 0.25.

Fig. 8. The statistical test of FIPS PUB 140-2 f
CSCZLOGISTIC3(µ,31426,0.25,107,256): it is passed when the
total number of passes is 16.

Lyapunov exponents still correspond almost perfec
as is obvious from the corresponding spikes in the
ures. In the three examples, we find thatC is the high-
est whilez = 3 in CSCLOGIT. For the tent map, th
defining equation implies

dXn+1 = −2µdXn, 0.5< Xn � 1,

(22)dXn+1 = 2µdXn, 0 < Xn � 0.5

which admits the exact calculation of the Lyapun
exponent, which is

(23)λ = lim
N→∞

1

N

N∑
n=0

ln

∣∣∣∣df (Xn)

dXn

∣∣∣∣ = ln(2µ).
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Fig. 9. The Lyapunov exponents of thez-logistic map, withz = 5
and initial valueX0 = 0.25.

Fig. 10. The statistical test of FIPS PUB 140-2 f
CSCZLOGISTIC5(µ,31426,0.25,107,256): it is passed when the
total number of passes is 16.

This is plotted inFig. 11, together with the associate
passing tests plotted inFig. 12, with a correlation
C = 0.685491.Figs. 13 and 14present similar plots
for the sine map, with a correspondingC = 0.767776.
For both cases, we still observe the corresponde
mentioned above.

To better understand how sequences of rand
numbers might fail an individual test, we have divid
the entire parameter regime into 1000 equal inter
and computed the total number of failures for ea
individual test when a specific mapping function
given. This is shown inTable 5. Please note that th
Fig. 11. The Lyapunov exponents of the Tent map, with initial va
X0 = 0.25.

Fig. 12. The statistical test of FIPS PUB 140-2 f
CSCTENT7(µ,31426,0.25,107,256): it is passed when the
total number of passes is 16.

parameter regime isµ (3 � µ � 4) for all mappings
but the tent map, which has 0� µ � 1. This table
suggests that the Poker Test appears to be the
stringent test among all the sixteen criteria of the F
PUB 140-2 test. Also evident from this table is that t
z-logistic map (withz = 3 or 5) is indeed a superio
candidate for random number generator among
those having been tested. InTable 5, as a comparison
we list all the test results using the FIPS PUB 14
and compare the data with the number of occurren
of negative Lyapunov exponent for the same param
regimes. The difference between the two data is ra
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Table 5
Total number of failures in the statistical tests for various mapping functions described inTable 1

Subitem Generator Index

8 10 11 12 13 14 15 16

monobit test 499 492 482 478 52 14 423 53
poker test 623 616 621 620 72 22 533 56
run test(0) 443 444 436 434 49 16 384 53
run test(1) 431 450 454 453 49 14 384 53
run test(00) 397 391 396 396 43 9 349 53
run test(11) 407 382 391 389 45 15 344 53
run test(000) 564 558 560 558 51 11 452 52
run test(111) 556 551 557 556 52 13 466 53
run test(0000) 601 588 597 596 59 15 496 5
run test(1111) 598 598 596 595 59 14 490 5
run test(00000) 604 596 599 597 58 12 508 5
run test(11111) 600 598 605 604 56 12 511 5
run test(000000) 603 602 603 601 61 15 512 5
run test(111111) 604 601 600 598 61 14 512 5
long run test(0) 0 0 0 0 2 1 2 0
long run test(1) 0 0 0 0 0 0 0 0

number of failures 623 616 622 621 74 25 536 5

Number of negative
Lyapunov exponent 614 614 614 612 62 12 517 5

The random number generators studied in order include CSCLOGISTIC7(µ = 3.97), CSCLOGIT7(µ = 3.97), CSCYN7(µ = 3.97),
CSCZLOGISTIC2(µ = 3.97), CSCZLOGISTIC3(µ = 3.97), CSCZLOGISTIC5(µ = 3.97), CSCSINE7(µ = 3.97), CSCTENT7(µ = 0.9).
The parameter regime is equally divided into 1000 intervals, resulting in a set of 1001 test data. The bottom of the table presents the number
occurrences of negative Lyapunov exponent for various generators. The specifications of the test interval are the same as that for the statisti
test in the text.
lue

ov
od

or

O-
ve
trin-
Fig. 13. The Lyapunov exponents of the Sine map, with initial va
X0 = 0.25.

small, once reiterating the fact that positive Lyapun
exponent is nicely correlated with the criteria of a go
random number generator.
Fig. 14. The statistical test of FIPS PUB 140-2 f
CSCSINE7(µ,31426,0.25,107,256): it is passed when the
total number of passes is 16.

But to get a better understanding on how CSCL
GISTIC performs under practical conditions, we ha
to check it against the various standard and more s
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Table 6
The parameters of SP 800-22 tests

The parameters of SP 800-22 tests Value

The Block Frequency Test: Block length 10
The Non-overlapping Template Test: Block length 10
The Overlapping Template Test: Block length 10
Maurer’s “Universal” Test: Block length 6
“Universal” Test: Number of Initialization Steps 640
The Approximate Entropy Test: Block length 5
The Serial Test: Block length 5
The Linear Complexity Test: Sequence length 5000

Fig. 15. The statistical test of FIPS PUB 140-2 for
CSCLOGISTIC20(µ,10,0.13,1020,256): it is passed when
the total number of passes is 16.

Fig. 16. The statistical test of SP 800-22 for CSCLOGISTIC20(µ,

10,0.13,1020,256): it is passed when the total number of passes is
16.

Fig. 17. Diehard battery of tests for CSCLOGISTIC20(µ,10,
0.13,1020,256): it is passed when the total number of passes is

Fig. 18. The height correlation tests for CSCLOGISTIC20(µ,10,
0.13,1020,256): it is passed when theHt is about 0.5± 0.0125.

gent tests. As discussed before, these include SP
22 tests, Diehard battery of tests, the height co
lation test andSN tests. But before we go on, w
should mention that, due to the nature of the o
inal dynamical system, there are “windows” in t
parameter regime inside which the iteration will s
tle down to a fixed point. Thus, we will exclud
these sets since they are not interesting. As a re
ence, we list below what have been excluded in
report: 3.001 ∼ 3.569,3.583,3.602,3.606,3.627 ∼
3.634,3.656,3.673,3.702,3.739 ∼ 3.743,3.829 ∼
3.849,3.855,3.856,3.906 and 3.961. However, we do
keepµ = 3.000 in the test, simply because the ph
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Table 7
The various statistical tests for CSCLOGISTIC20 system descr
in Table 1

µ FIPS
PUB
140-2

SP
800-22
tests

Diehard
battery
of tests

Height
correlation
test (φ)

3.579 16 12 18 0.49966
3.582 16 15 18 0.50122
3.596 16 14 18 0.50607
3.598 16 15 18 0.50189
3.608 16 14 18 0.50578
3.617 16 14 18 0.50178
3.642 16 15 18 0.50170
3.652 16 14 18 0.49746
3.679 16 14 18 0.49717
3.680 16 15 18 0.50620
3.749 16 15 18 0.49670
3.750 16 14 18 0.50293
3.768 16 13 18 0.49608
3.784 16 13 18 0.49796
3.816 16 16 17 0.49729
3.824 16 16 15 0.50790
3.854 16 16 17 0.50249
3.870 16 16 16 0.50360
3.871 16 13 18 0.49633
3.885 16 14 18 0.50389
3.895 16 13 16 0.50907
3.899 16 16 15 0.50807
3.901 16 15 18 0.49770
3.904 16 16 15 0.50623
3.907 16 12 18 0.50099
3.908 16 16 15 0.49561
3.926 16 14 18 0.50109
3.933 16 15 18 0.50814
3.970 16 15 18 0.50115
3.971 16 15 18 0.49848
3.974 16 14 18 0.50164
3.981 16 14 18 0.50128
3.994 16 13 18 0.50303

Exact 16 16 18 1/2

The bold font means that it is fail to test. The CSCLOG
TIC20 studied based on the logistic map, the parameters
CSCLOGISTIC(µ,10,0.13,1020,256) for eachµ. The criteria of
Height correlation test is set up 0.5± 0.0125.

nomenon of critical slowing down has prevented
system from settling down after an iteration ofn =
1.5× 107 steps.

To get the correlation, we have set up all the s
tistical tests so that a 0 is returned when the pa
meterµ fails a test.Table 6describes the setting o
the parameters in the NIST programming code
we use such condition to test all the random num
Fig. 19. The correlation betweenLyapunov exponents and tests
FIPS PUB 140-2 for CSCLOGISTIC20(µ,10,0.13,1020,256).

Fig. 20. The correlation betweenLyapunov exponents and tests
SP 800-22 for CSCLOGISTIC20(µ,10,0.13,1020,256).

generators defined inTable 1. The size of the ran
dom bits is 1.5 × 107, and the same process is r
15 times, i.e.m = 15, as has been said before. F
the Diehard test suite, we set up the size of data
n = 1.2 × 107 bytes for eachµ. As to the height
correlation tests, the functionHt was investigated up
to Ω = 2000 with sizen = 107 independent runs
For theSN tests, we set upΩ = 4000 withn = 108

independent runs. For CSCLOGISTIC20 system
fined above, we plot the FIPS PUB 140-2 tests
Fig. 15, the SP 800-22 tests inFig. 16, Diehard bat-
tery of tests inFig. 17 and height correlation tes
in Fig. 18. In Tables 7 and 8, we list our thorough
study of the strength of CSCLOGISTIC and co
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Fig. 21. The correlation betweenLyapunov exponents and Dieha
battery of tests for CSCLOGISTIC20(µ,10,0.13,1020,256).

pare it with other famous random number gene
tors using various statistical tests. In theses table
failed test result is marked in bold font for conv
nience. InTable 7, for the special parameterµ, we
find that the listed CSCLOGISTIC20(µ) behave well
in these tests. Though it is hard to satisfy the wh
wide range of tests for a givenµ, CSCLOGISTIC20
can still be seen to possess the potential of bein
good random number generator. For instance, re
ring to Table 8, we see that LCG can hardly pa
most standard tests when CSCLOGISTIC20(µ) stands
quite strong in this respect. In fact, the results s
gest that it is better than LCG, ICG, and EICG u
ing this test. As a side remark, we can also no
that the strength of FIPS PUB 140-2 is weak co
pared to other tests, whereas SP 800-22 tests is m
more powerful as regards to checking for the robu
ness of a PRNG. InFigs. 19–21, we plot the corre-
lation C versus the number of passing items for v
ious tests. InFig. 22, we use the scaling factorS
to check the number of passes in height correla
test, the criteria being 0.5 ± 0.001× (17− S). Note
that in plotting the four figures we have normaliz
things so thata + 1 is returned when the Lyapuno
exponent is positive, whilea − 1 is returned when i
is negative. Similarly, we have assigneda + 1 if the
data successfully pass the tests, anda − 1 is obtained
if otherwise. When compared withFig. 1, the cor-
relationC for Figs. 19–22read 0.726202, 0.71789
0.720198, and 0.720785, respectively. This is sho
in Table 9, which summarizes our assertion that,
Fig. 22. The correlation between Lyapunov exponents and tes
of height correlation for CSCLOGISTIC20(µ,10,0.13,1020,256),
where the scaling factorS checks the number of passes in heig
correlation test, and the criteria is 0.5± 0.001× (17− S).

deed, a positive Lyapunov exponent is nicely cor
lated with the industry criteria for a good random nu
ber generator. Finally, we show inTable 10the num-
ber of steps it takes for our system to settle down
a stable period-doubled state for various scaling fa
A. This table explains why CSCLOGISTIC(µ = 3.0)

can occasionally pass the statistical tests: As the s
ing factorA gets larger, the time to settle down al
gets longer. This is the reason why we always k
the parameterµ = 3.0 in our discussions. Despite a
these successes, we must quickly add, however,
our conclusion is drawn on a relatively small set
data (of order 107 to 108) as compared to the hug
number of data one would like to use in the si
ulation of actual physical systems (which could
as large as 1014). This means our success is mod
at the best, and further investigation in the future
still needed to see how things go in this line of a
proach.

4. Conclusion

Although it is tempting to use simple chaotic ma
as an efficient method of generating useful rand
numbers, the correlation between adjacent num
generated by the same map must first be proce
before they can be used in an application. In t
paper we have suggested a simple modulo opera
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eria
Table 8
The various statistical tests for random number generators described in the text

Index Generator FIPS
PUB
140-2

SP
800-22
tests

Diehard
battery
of tests

Height
correlation
test (φ)

SN

test

1 RANAU 11 0 0 1.00730 0.01670
2 ANSIC 15 0 0 1.00842 0.03607
3 MINSTD 16 15 14 0.98954 0.04689
4 FISH 16 14 16 1.03299 0.49587
5 ICG 16 15 15 1.02911 0.49826
6 EICG1 16 15 16 0.96355 0.53779
7 EICG7 16 14 16 0.92437 0.50474
8 CSCLOGISTIC7 16 15 11 0.49604 0.48088
9 CSCLOGISTIC20 16 15 18 0.50115 0.50171

10 CSCLOGIT7 16 15 12 0.49765 0.51723
11 CSCYN7 16 13 9 0.49701 0.50972
12 CSCZLOGISTIC2 16 12 11 0.50054 0.52163
13 CSCZLOGISTIC3 16 11 13 0.49746 0.51702
14 CSCZLOGISTIC5 16 13 15 0.50268 0.49785
15 CSCSINE7 16 14 10 0.49884 0.50533
16 CSCTENT7 16 11 8 0.50604 0.52056
17 CSCTENT20 16 11 12 0.49452 0.52534

Exact 16 16 18 1/2 1/2

Numbers in bold signify a failure in the tests. For the tests of generators 1 through 7,Eq. (10)is also implemented when applying the tests
FIPS PUB 140-2, SP 800-22, and Diehard tests. In height correlation test andSN test, we use instead only the original random data. The crit
of height correlation test andSN test are both set to 0.5± 0.0125.
var-
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Table 9
The correlation calculation between Lyapunov exponents and
ious statistical tests of CSC systems, whereX1,X2 represent the
data of input sequences andN as the size of input data,N = 1001

Correlation function CorrelationC

C(X1,X2,N)

C(Fig(1),Fig(2),N) 0.719727

C(Fig(1),Fig(3),N) 0.720672

C(Fig(1),Fig(4),N) 0.723787

C(Fig(5),Fig(6),N) 0.723478

C(Fig(7),Fig(8),N) 0.869878

C(Fig(9),Fig(10),N) 0.676233

C(Fig(11),Fig(12),N) 0.685491

C(Fig(13),Fig(14),N) 0.767776

C(Fig(1),Fig(15),N) 0.726202

C(Fig(1),Fig(16),N) 0.717896

C(Fig(1),Fig(17),N) 0.720198

C(Fig(1),Fig(18),N) 0.720785

the chaotic stream cipher (CSC), for this purpose.
have shown that, using standard criteria for rand
number generators, the scheme is quite robust with
respect to these tests. Furthermore, we show that t
is a close correlation between the Lyapunov expon
of the underlying chaotic map and the “randomne
defined by the industry standard tests for the gener
sequences. Although the correlation is not perfect,
investigation suggests convincingly that the stand
tests might be closely related to only a very few
number of characteristics inherent in a chaotic syst
However, we must emphasize that our guess still ne
a lot of polishing because, up to this point, the kno
useful measures for chaos are not too many in num
and exactly which measure is more relevant remains t
be investigated.
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Table 10
The number of time steps for the CSCLOGISTIC(µ,0,0.13,A,256) system to evolve into one of the periodic states for various scale param
A. µj is thej th period doubling bifurcation parameter

µ Period The scale parameterA

105 106 107 108 109 1010

µ1 = 3.0 21 20 2484 16910 84156 394138 183466
µ2 = 3.449489 22 460 1876 9276 39220 186444 83717
µ3 = 3.544090 23 128 1104 4880 22040 105944 52913
µ4 = 3.564407 24 160 704 3104 13200 53136 29953
µ5 = 3.568759 25 96 416 1984 9120 32512 9596
µ6 = 3.569692 26 64 128 704 4544 15488 4678
µ7 = 3.569891 27 128 256 384 2944 15488 4454
µ8 = 3.569934 28 256 256 256 2304 7424 2918
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