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Abstract

Using a new method to extract the data from various one-dimensional chaotic maps, we show that there is a nice correlation
between the sign of the Lyapunov exponent of the maps and whether the extracted data form a good set of pseudo-random
numbers using various well-known criteria.
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1. Introduction period, repeatability, portability and efficiency. For a

The need for random and pseudo-random numbersdescription of well-studied uniform random number
arises in many different kinds of applications, such generators, the readers are referred to L'EC\ggr
as simulation, image encryption, transmission of e- Briefly, a PRNG is a deterministic algorithm produc-
mail on the web, numerical analysis, decision making, N9 & Sequencex;);>o of numbers in[0, 1) which,
etc. A pseudo-random number generator (PRNG) is for virtually all generatcs used for computer simu-
a cryptographic algorithm used to generate numbers [2lions, is purely periodic. The most famous PRNG
that must appear random but are necessarily prede-W'dely used today are_llnear congruential generator
termined. Besides being of a high-quality, a pseudo- -CG(M. a, b, uo), in which the parameterst, a, b,
random number generator must also possess the fol-2nduo are allintegers. The LCG produces a sequence

lowing desirable properties: good distribution, long (#i)i>0 Of INtegers byu;.1 = au; + b (mod M), that
is, u; +1 is the integer remainder of dividing:; + b by

— , M. Using the modular method, the inversive congru-
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ators are defined by a (large) prinpeand an integer  where O< u < 4, and then convert the nonuniform
u with 0 < u < p, and one letsi = u”~2 (mod p) if data of the logistic map to a more uniform set by the
u # 0 (mod p) and: = 0, otherwise. With suitable pa-  logit transformation assuming the form

rametersp, a, b, andug, the ICG produces integers

(ui)i>0 by uiy1 =au; +b (mod p), and pseudoran- 7z, =In X ) 2)
dom numbersx;);>o by x; = u;/p. A similar process 1-Xn
is used in the EICG to produce a sequentg;>o of On the other hand, the above and its variants all

integers byu; = ai + b, and pseudorandom numbers suffer from the same shortcoming of displaying a nice
(xi)i>0 by x; = u;/p. As far as hyperplane structures relationship betweeX, .1 and X,, which is readily
and long-range correlations are concerned, the EICG revealed when one does a simple return map. This
has similar favorable properties as the ICG, and these has prompted Gonzalez and Pifi@] to propose the

points are discussed in Eichenauer-Herrmggjnin following “z-logistic map” as a modification:
regard to finding good random number generators, one _
is referred to the detailed discussions in Hellekfgk ~ Xn = Sinf(70z"), 3)

As an alternative to the more traditional PRNGs de-
scribed above, one may also consider using chaotic
systems. Indeed, the potential of incorporating chaos
into cryptography has been under intensive investiga-
tion since Pecora and Carraléemonstrated the possi-
bility of synchronization in chaotic systenS]. For X, = Sirf (762" (4)
instance, a very primitive way of utilizing it is to di-
rectly hide the data in the chaotic signals generated by iS @ general solution to the ma@) for x = 4. In
a chaotic systerf6,7] or to combine standard crypto- ~ contrast, for thez-logistic map we have the nice
graphic operations with chaos, as was done in He and €Xpression
Vaidya[8]. However, approaches along these lines are , o
more appropriate for covert communications because Xnt1 = smz(z sin l\/X_") (5)
the driving signals are put in the public channel. As only when; is an integer. In a sense, these authors
it turns out, methods such as those just mentioned areywere able to overcome the aforementioned weakness
more akin to the generation of pseudo-random num- pecause they have incorpadtinto the conventional
bers, since the only aspect of chaos that is put into userecursion formulaX,+1 = f(X,) an extran-depen-

in these systems is the generation of a sequence of pregence so that it now becomes, 1 = f(X,,n). In
sumably random numbers associated with the systemthe following, however, we will restrict ourselves to

variables. This then brings up one important question: the modified form

In what respect is chaos tied to the randomness of a

PRNG? For instance, a measure of the chaotic charac-X 11 = 0.25u sirf(zsin /X, ) (6)
teristics of a dynamical system is the Lyapunov expo-
nent, and how is it correlated to the industry-standard
criteria for PRNGs? One purpose of the present work

where z is a parameter whose choice significantly
determines how smooth the return map will look.

The simple algorithm oEg. (3)is motivated by the
observation that

of Eq. (5) and refer to it as the restrictedlogistic
map. Later we will also compound it with one extra

is to address this question. transformation
In fact, the idea of applying chaos theory to Y —Esin—l X 7
generate random numbers has produced interesting "~ "

works in recent year§o—15]. For instance, Collins
et al.[12] have applied the logit transformation to the system.

logistic map to produce random numbers of uniform ~ gher chaotic maps of interest include the tent map
distribution. In this work, one starts with the simple jafined by

and famous logistic map defined by

to see if this might change the statistical tests on the

X _ 2u(l-X,), 05<X,<1, 8
Xnt1=puXn(1—X,), Xn€(0,1) 1) n+l= 2uXny, 0< X, <05, (8)



P-H. Leeet al. / Computer Physics Communications 160 (2004) 187-203 189

and the sine map defined by part of IBM’s Scientific Subroutine Package, exhibits
w . an infamous devastating defect in three dimensions:
Xnt1= 7 sin(rX,), 0<X,<Ll 9) its points (x;, xi+1, xi+2) all lie in just fifteen paral-

lel planes. ANSIC is the generator employed by the

in, th h impl . . .
Once again, these two maps have a simple returmn <" 14y function, BSD version. MINSTD, in-

map and therefore must be subject to further modifica- troduced by Lewis et al th d b
tion if one would like to use their variables for the pur- roduced by Lewis et al. as the random number gen-

pose of generating random numbers. To achieve this, 831" for IBM’s Systenl/36@16], was later proposed
we can try extracting the lower bits of the variable of &S & ‘Minimal standard” generator by Park and Miller
a chaotic map. Here in this paper we will call it the [17]- Finally, FISH is one of the best found by Fish-
chaotic stream cipher and abbreviate it as CSC. The Man and Moorg18] in an exhaustive search among
extraction of the lower bits is done by chopping off &ll maximum period LCGs with¥ = 23! — 1 and
the leading bits after multiplying each variabtg of ~ » = 0. ICG, EICG1, and EICG7 have been chosen
the chaotic map by some constantThus, the result-  arbitrarily among the maximal period inversive gen-

ing numberr, can be succinctly expressed as erators with modulup = 231 — 1. For convenience,
we have used the “CSCLOGISTILZ, 19, xg, A, S)" to
Ry =[AX,] (mod$), (10) represent our chaotic pseudorandom number genera-

whereR(n) € Z*, | | is the Gaussian symbol which tor based on logistic map. In this algorithm, the free
returns the highest integer that is smaller than the num- Parameters one can “tune” incluge the evolution
ber inside the symbol, anfl is yet another constant.  time 7o after which we will extract data to get ran-
The tests for the randomness of the numbers gener-dom numbers, the initial conditiorp, and the num-
ated by a chaotic system are then performed and com-bersA and S as described ifEq. (10) For example
pared with some of the most famous generators sum-“CSCLOGISTIQ4.0, 10, 0.25, 107, 256)" means that
marized inTable 1 As a brief background informa-  we will use the logistic map to generate the random
tion, we note that the LCGs cover a wide range of numbers for the parameter= 4.0 and extract the data
quality delivered by linear generators, ranging from after 10 steps of iteration and ugg. (10)to truncate
RANDU (worst) to FISH (best). RANDU, formerly  the data to get the 8 bits random numbers.

Table 1
The various random number generators defineSeiotion 1
Index Generator Parameter

1 RANAU LCG(231, 655390, 1)

2 ANSIC LCG(231, 110351524512345 12345

3 MINSTD LCG(23! —1,168070, 1)

4 FISH LCG231 — 1, 9507063760, 1)

5 ICG ICG(23! — 1,655390, 1)

6 EICG1 EICG231-1,1,0)

7 EICG7 EICG231—1,7,0)

8 CSCLOGISTIC7 CSCLOGISTIG, 10,0.25, 107, 256)

9 CSCLOGISTIC20 CSCLOGISTI, 10,0.13, 1029, 256)
10 CSCLOGIT7 CSCLOGIT, 10,0.25, 107, 256)
11 CSCYN7 CSCYN, 10,0.25, 107, 256)
12 CSCZLOGISTIC2 CSCZLOGISTIG, 2,10,0.25,107, 256)
13 CSCZLOGISTIC3 CSCZLOGISTIG, 3,10,0.25, 107, 256)
14 CSCZLOGISTIC5 CSCZLOGISTIG, 5,10,0.25, 107, 256)
15 CSCSINE7 CSCSIN@, 10, 0.25, 107, 256)
16 CSCTENT?7 CSCTEN{, 10,0.25, 107, 256)
17 CSCTENT20 CSCTENT, 10,0.13, 1020, 256)

The parameter of the generators 8 through 15 is 3.97; and of generators 16 and
17 is 0.9. The transformed data of generators studied are still badeq. ¢h0)
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The main purpose of the present work is twofold: Table 2
Firstly, to show that CSC system can pass the estab-The required interval for runs test
lished criteria for random numbers proposed in NIST Length of run Required interval

[19,20] the Diehard battery of tests by MarsadR4], 1 2315-2685

and the random walk tests of Vattulainf2?]. Sec- 2 1114-1386

ondly, to find whether there is a perfect correlation be- 3 527-723

tween the Lyapunov exponent and the passing criteria ‘5‘ iggzggg
mentioned above. -6 103-209

2. Some famous statistical tests of random In Runs Test one considers a run defined as the
number generators maximal sequence of consecutive bits of either all

ones or all zeros, which is part of a 20,000 bit sample

In order to test the CSC method described in Stream. The incidences of runs (for both consecutive
Section 1 we have performed certain statistical tests zeros and consecutive ones) of all lengthsl in the
for various chaotic maps we proposed. These tests sample stream should be counted and stored. The test
include FIPS PUB 140-2 tesf49], SP 800-2720], passes if the number of runs that occur (of lengths 1
Diehard battery of testf21], and the random walk through 6) is each within the corresponding interval
test[22]. For Comp|eteness and for reference, we give SpECiﬁEd inTable 2 This must hold for both zeros and
in the following a brief description of each of the Ones; that is, all 12 counts must lie in the specified

aforementioned tests. interval. For the purpose of this test, runs of greater
than 6 are considered to be of length 6.
2.1. FIPSPUB 140-2 tests For Long Run Test one considers a run of length

26 or more (of either zeros or ones). On the sample of

This set of tests is meant to be a general purpose 20,000 bits, the test passes if theremwdong runs.
test suite which can be conveniently grouped into four, 10 test the quality of the random bits generated, we
totaling 16 items, as specified in the FIPS PUB 140-2 will have to check a total of sixteen items (one for the
tests. First, one considers a single bit stream of 20,000 Monobit test, one for the poker test, twelve for the runs
consecutive bits output from the generator. The bits test, and two for the long run test). The test results will
are then subjected to each of the following tests below, Pe discussed below.
Failure to meet any of the specified criteria means that
the sequence must be rejected. The four tests termed2-2. SP 800-22 Test
monobit test, poker test, runs test, andlong run test

are: The NIST test suite, SP 800-22, is a statistical pack-
Monobit Test counts the numbt of ones in the age consisting of 16 tests, as listedable 3 that were

20,000 bit stream. The test is passed,ifZ6 < X < developed to test the randomness of (arbitrarily long)

10,275. binary sequences produced by either hardware or soft-

Poker Test starts by dividing the 20,000 bit stream Ware based cryptographic random or pseudorandom
into 5,000 contiguous 4-bit segments. One then counts Number generators. These tests focus on a variety of
and stores the number of occurrences of each of the 16differenttypes of non-randomness that could existin a
possible 4-bit values. Denotini(i) as the number of ~ Sequence. Some tests are decomposable into a variety
each 4-bit valué where 0< i < 15, one then evaluate  Of subtests. For example, considering the Frequency

the following: Test, the focus of the test is the proportion of zeroes
and ones for the entire sequence. The purpose of this
16 (& 2 testis to determine whether the number of ones and ze-
X= 5000 Z[f(’)] — 5000 (11) rosin a sequence are approximately the same as would
1=

be expected for a truly random sequence. Listed below
The test is passed it 26 < X < 46.17. are some excerpts from the test suite.
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Table 3
SP 800-22 tests
Index  The items of SP 800-22 tests The number
of subitems
1 The Frequency (Monobit) Test 1
2 Frequency Test within a Block 1
3 The Cumulative Sums (Cusums) Test 2
4 The Runs Test 1
5 Test for the Longest-Run-of-Ones in a Block 1
6 The Binary Matrix Rank Test 1
7 The Discrete Fourier Transform (Spectral) Test 1
8 The Non-overlapping Teplate Matching Test 148
9 The Overlapping Template Matching Test 1
10 Maurer’s “Universal Statistical” Test 1
11 The Approximate Entropy Test 1
12 The Random Excursions Test 8
13 The Random Excursions Variant Test 18
14 The Serial Test 2
15 The Lempel-Ziv Compression Test 1
16 The Linear Complexity Test 1
Sum 16 189

For each subitem of SP 800-22 Test, a set of P- « = 0.01 (the significance level), and 996 binary se-
values (corresponding to the set of sequences) is pro-quences had P-values 0.01, then the proportion is
duced. For a fixed significance level, a certain percent- 996/1000= 0.9960. The range of acceptable propor-
age of P-values are expected to indicate failure. For tions is determined using the confidence interval de-
example, if the significance level is chosen to be 0.01 fined as
(i.e. « = 0.01), then about 1% of the sequences are p(1—p)
expected to fail. A sequence passes a statistical test? £ 3,/ ————. (12)
whenever the P-value is greater than or equal &md "
fails otherwise. For each statistical test, the proportion
of sequences that passes is computed and analyze
fveelold Gase 1: The analysis of he Prvalues does St UP I 1S paper the parametse- 10° and =

S L 15, and the size of random number #$ = 1.5 x
not indicate a deviation from randomness. Case 2: 107
The analysis clearly indicates a deviation from ran-

domness. Case 3: The analysis is inconclusive. The y,qor6 ig evidence that the data are nonrandom. Note
interpretation of empirical results can be conducted 5 other standard deviation values could be used. For
in any number of ways. Two approaches NIST has the example above, if: = 15, the confidence interval
adopted include (1) the examination of the propor- js0,99£0.077071 (i.e. the proportion should lie above
tion of sequences that pass a statistical test and (2)0.912929). The confidence interval was calculated
the distribution of P-values to check for Uniformity. In using a normal distribution as an approximation to the
the event that either of thesapproaches fails (i.e. the  pinomial distribution, which is reasonably accurate for
corresponding null hypothesis must be rejected), ad- Jarge sample sizes (e.g.;> 1000). The distribution of
ditional numerical experiments should be conducted P-values is examined to ensure uniformity. Uniformity
on different samples of the generator to determine may also be determined via an application o4
whether the phenomenon was a statistical anomaly or test and the determination of a P-values corresponding
a clear evidence of non-randomness. For example, if to the Goodness-of-Fit Distributional Test on the P-
1000 binary sequences were tested (ize= 1000), values obtained for an arbitrary statistical test (i.e.

where p =1 — o and m is the counting times of
éest for a certain size of sequenegand the whole
size of random number i8/. As a modest test, we

If the proportion falls outside of this interval, then
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a P-value of the P-values). This is accomplished by contains many other interesting tests besides those in

computing the original Diehard battery of tests. However, because
” of the stringent requirements in the Diehard test suite,
$2= Z Fi — S/m’ (13) a generator which passes Diehard battery of tests can
s/m be considered good as a rule of thumb.

(=1
l The Diehard battery of tests consist of 18 different,

where F; is the number of P-values in sub-interval  ingependent statistical tests, as listedrable 4 Re-
ands is the sample size. A P-value is calculated such gyjts of tests are so callegh“values.” In the PowerTest

i 2 . .
that P-valug = igama(m — 1)/2, x°/2), where the \grsion of Diehard, these values are of Kolmogorov—
igama) is the incomplete gamma function, which, to- - gmimoy type, which means their values are real, be-

gether with the gamma function, are defined, respec- yyeen 0 and 1. An individual test is considered to be

tively, by failed if p value approaches 1 closely, for example
) p > 0.9999. See the PowerTest description for further

[(z) = / le'dr  (gamma) (14) details. As aresult, the Diehard battery of tests consist
, of 18 statistical tests and 215 subitems in the tests.

As a reminder from the original author, we should
1 7 1 _ note that most of the tests in Diehard returp-aalue,
O(a,x) = @ / e 't“"“dr  (incomplete gamma)  which should be uniform of0, 1) if the input file con-
x tains truly independent random bits. Those p-values

] (15) are obtained by = F(X), whereF is the assumed
with Q(a, 0) =1andQ(a,00)=0. ~distribution of the sample random variabte which

If P-valugr > 0.0001 and the portion of passing s often normal. But that assumelis just an asymp-

random numbers is higher than the criteriey (12) totic approximation, for which the fit will be worst in

then the sequences can be considered to be uniformlyihe tajls. Thus one is reminded not to be alarmed by the
distributed. Se@able 3 We would also like to mention  gccasional occurrences of havipgvalues near 0 or
that the Non-overlapping Template Matching Test is 1 gych as 0.0012 or 0.9983. When a bit stream really

so stringent that it is not at all easy to pass all the 148 fails one will getp’s of 0 or 1 to six or more places.
subitems in the test suite. In our test, the criteria about

each test was set up so that a pass is granted when thg 4 randomwalk test
statistics of the random number sequence satisfies the

criteria of proportion and P-valge The Random walk test proposed by Vattulaiff2?|

is a framework for testing the quality of random num-

bers in parallel calculations. The key idea is to study

) .. the cross-correlations between distinct sequences of
Diehard battery of tests, a set of powerful statisti- 3nqom numbers via correlations between various dif-

cal tests for testing randomness of sequences Ofn“m'fusing random walkers, each of which is governed

bers, is proposed by Marsaglia, and the Diehard pro- ,, 5 gistinct random number sequence. Such method

gram written by B. Narasimhan can be found on the 4ims at the property of two types of correlations, that
Web[23]. The Diehard test suite is important because, is, correlations within a single random number se-

quoting the original author, it seems to be one of the quencelr;}® and correlations betweedistinct® ran-

most powerful general tests of randomness. This belief

comes from the observation that many software and

hardware generators which claim “perfect random- ! There are many ways to construct the sequenfggs?.

ness” actually fail one or more sections of Diehard. In ... {r;}*" for the processors one through. We used random

testing longer and longer sequences of random bits, the"Umperstri} =r1.....re. rg41.....r2q. ... generated by a sin-
. .. gle pseudo-random number gemter to make non-overlapping

Diehard battery of tests are reported to have the abil- a _ @ _

. - sequencegr;}'Y =rq, ..., ro. {ri}\ =roi1...., rpp and so

ity O_f eventually detecting these defects. An Update_d forth. Other possibilities for constructing the sequences are given

version, the PowerTest, has also been proposed whichin, e.g.,[24].

2.3. Diehard battery of tests
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Table 4
The Diehard battery of tests
Index  The items of Diehard battery of tests The number
of subitems
1 The BIRTHDAY SPACINGS TEST 9
2 The OVERLAPPING 5-PERMUTATION TEST 2
3 The BINARY RANK TEST for 31x 31 matrices 1
4 The BINARY RANK TEST for 32x 32 matrices 1
5 The BINARY RANK TEST for 6x 8 matrices 25
6 The BITSTREAM TEST 20
7 The OPSO TEST(Overlapping-Pairs-Sparse-Occupancy) 23
8 The OQSO TEST(Overlapping-Quagles-Sparse-Occupancy) 28
9 The DNATEST 31
10 The COUNT-THE-1's TEST on a stream of bytes 12
11 The COUNT-THE-1's TEST for specific bytes 25
12 The PARKING LOT TEST 10
13 The MINIMUM DISTANCE TEST 1
14 The 3DSPHERES TEST 20
15 The SQEEZE TEST 1
16 The OVERLAPPING SUMS TEST 10
17 The RUNS TEST 4
18 The CRAPS TEST 2
Sum 18 215
dom number sequencés}®, ..., {r;}'" generated The other test we have adopted is the so caflgd

by CSC systems and other famous PRNGs. Here wetest, which is more general in the sense that it can be
consider the case where the siz@s of sequences  applied to study any number of random walks. In one
{r;}® are equal for alk. Random numbers are uni- dimension,N random walkers move simultaneously
formly distributed between zero and one. In the height without any interaction such that, at any jump attempt,
correlation test of this method, we consider the po- they can make a jump to the left or to the right
sition x; of a one-dimensional (1D) random walker with equal probability. Afterr > 1 jumps by all
versus the number of jumps made, The position random walkers, the mean number of sites visited,

x; =Y i_16x; is a sum of displacemenss;, which Sn.:, has an asymptotic fornSy ; ~ f(N)t¥, with
are random variables the scaling functionf(N) = (InN)Y2 andy = 1/2
+1 ifr; <1/3, [26]. The yalue ofy obse_th_ed serves as a measure
Sxi=10 if1/3<r <2/3, (16) of correlations. For the similar process, thig test
_1 otherwise was set up ta2 = 4000 with M = 10° independent
runs.

In this fashion, we construct the patlag) and x,.(z)
from the sequence§;} and {r;}®, respectively.

The height between the two random walkers is then 3. Test resultsand theclear correlation with

defined ash; = xt(l) — xt(z), whose correlation func-  Lyapunov exponents

tion H; = (|h; — ho|) ~ t? is known to decay asymp-

totically as a power law with an exponegit= 1/2 Trying to make use of the chaotic nature of simple
[25]. Deviations fromp = 1/2 are expected, iff, does maps, many researchers have discussed the possibility
not correspond to a random process. In this work, the of using the logistic map to generate random numbers
height correlation functiorH; was investigated up to  [12—-15] One distinct feature of chaotic maps is that
£ =2000 withM = 10" independent runs. at least one Lyapunov exponent of the systems is
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x6=3.97x5(1 — x5) = 0.72916236408338182336
0 - .oy
g g | x98 = 3.97x97(1 — x97) = 0.35779450320384782020
s
g x99 = 3.97x9g(1 — x9g) = 0.13696214658296892037
3 2 1
3 (29)
=
g 31 so that, using the CSC method,
=
-4 A Ry =107 (mod 256 =0,
5 . ‘ ‘ ‘ Rz =107 (mod 256 = 192,
3.0 3.2 3.4 3.6 3.8 4.0 R3 = 10°%3 (mod 256 = 70,
u R4 = 10°%;, (mod 256 = 125,
Fig. 1. The Lyapunov exponents of the logistic map. Rs = 10°%s (mod 256 = 131,
Re = 10°°x (mod 256 = 192
positive for certain parameter regimes. But since the '
randomness one would like to see on a random number ' 70
generator clearly must be correlated to the diverging Ro8 = 10""xgg (mod 256 =122
nature of the trajectories of a chaotic map, which is Rgg = 10?%xg9 (mod 256 = 133
tied to the existence of a positive Lyapunov exponent, (20)
it is natural to investigate just how good the correlation o
is. The computation of the Lyapunov exponéntor In the calculation, some variables in the program are
the logistic map can be facilitated by noting of type ZZ of Shoup? which, though being very large
positive numbers, happen to be quite convenient as
dXp1 = p(l—2X,)dX, 17 far as programming task is concerned. For related
and using the well-known formula programming code, please refer to Shdag] for
details.

We are now ready to discuss our test results. We
begin with the relatively simpler test of FIPS PUB
o - _ ) 140-2. InFig. 2 we have plotted the statistical tests
This is shown inFig. 1 as a function of the tuning 4 FIPS PUB 140-2 on the generated sequences by
parametey.. , CSCLOGISTIGu, 31426 0.25, 107, 256). Here, the

To exhibit the correlation between the Lyapunov  qrginate is the number of successful passes a sequence
exponent and the success rate (of passing the randomyses through. Thus, a qualified sequence must have a
number generator criteria), we have taken passingvalue of 16 for most of the time, with possible
CSCLOGISTIG3.97,0,0.13,10%, 256 in Eq. (10) occasional failures. (We should note in passing that
as a concrete example. (Not surprisingly, we get more one can not expect a true random sequence to pass it
qualified random number sequences when we chop off 5| the time even in principle.) Visually one can already

(18)

N
-1 Z df(Xy)
}L_Nlinooﬁn_oln’ dax, |

more higher bits by adopting a larger value for) see fromFigs. 1 and 2that whenever the Lyapunov

Thus, we have exponent becomes positive for the parametethe

x1 = 3.97x0(1 — x0) = 0.44900700000000000000

x2=3.97x1(1 — x1) = 0.98217686438547000000 2 77, built in the NTL library of source code, is a special
class in C++ proposed by V. Shoup. NTL is a high-performance,

x3=3.97x2(1 — x2) = 0.69496721662042407100 portable C++ library providing data structures and algorithms for

x4 = 3.97x3(1 — x3) = 0.25672770154087592061 manipulating signed, arbitraryemgth integers, and for vectors,

matrices, and polynomials over the integers and over finite fields.
x5 =3.97x4(1 — x4) =0.75754979754558697859 Please sef27] for details.
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Fig. 2. The statistical test of FIPS PUB 140-2 for
CSCLOGISTIGu, 31426 0.25,107,256): it is passed when
the total number of passes is 16.

sequence also tends to pass the FIPS PUB 140-2 test.

To compare the two figures in a more quantitative
manner, we have computed their correlation t@be

0.719727 using the Pearson correlatidgix, y, N),

in which x is taken from the data of the Lyapunov

exponents andy is taken from the result of the

statistical test using FIPS PUB 140-2, aNd= 1001.

The Pearson correlation is defined by

C(x’y’N):Nleyl—szZy 21)
JN AN D

whereN is the size of the input data, andy are the
sequences to be compared.

To further verify this observation, we have repeated
the same analysis for other systems as well. But be-
fore we proceed, it should be recalled that the Lya-
punov exponent of a one-variable systey 1 =
f(X,) remains the same if one invokes the change
of variablesY = g(X) to obtain a “new” dynami-
cal systemY,;1 =g o f o g~ 1(¥,), provided that
g is monotonic and smooth. Thus, for instance, the
logit transformation ofEq. (2) and theY, transfor-
mation of Eg. (7) will not change the Lyapunov ex-
ponent of the derived systems. (We have also ex-
plicitly verified this fact in our numerical calcula-

tions as an independent check of our codes.) Thus,

in the following we will show only the results of

the statistical tests on the generated random num-

195

18
16 -
14 1
12 1
10 A

Number of passes

o N A O
T S S

3.0 3.2 3.4 3.6 3.8 4.0
U

Fig. 3. The statistical test of FIPS PUB 140-2 for
CSCLOGIT(i, 31426 0.25, 107,256 it is passed when the
total number of passes is 16.
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Fig. 4. The statistical test of FIPS PUB 140-2 for
CSCYN(i, 31426 0.25,107, 256): it is passed when the total
number of passes is 16.

bers without repeatedly displaying the Lyapunov ex-
ponent.

The statistical tests for CSCLOG(jk, 31426 0.25,
107, 256) is shown inFig. 3. Similarly, the results for
the map modified by the CSCYN, 31426 0.25, 10/,
256) are shown inFig. 4, with the same parameters
and initial value. As can be seen, the places where a
sequence successfully passes all the tests correspond
nicely to the parameters for which the Lyapunov ex-
ponent is positive. The correlatian is 0.720672 be-
tweenFigs. 3 and 4
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Fig. 5. The Lyapunov exponents of thdogistic map, withz = 2
and initial valueXq = 0.25.
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Fig. 6. The statistical test of FIPS PUB 140-2 for
CSCZLOGISTIC2u, 31426 0.25, 107, 256): it is passed when the
total number of passes is 16.

Turning to the restricted-logistic equation (6)
CSCZLOGISTIC2u, 31426 0.25, 107, 256), we
show inFig. 5the Lyapunov exponents and fig. 6
the associated statistical tests foe 2. The correla-
tion C is 0.723478 betweekigs. 5 and 6As we in-
creasez from 2 to 3 Figs. 7 and Band onward to 5
(Figs. 9 and 1pwe see a corresponding widening of
the regions of successful passes. The correlaiios

P-H. Leeet al. / Computer Physics Communications 160 (2004) 187-203
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Fig. 7. The Lyapunov exponents of thdogistic map, withz =3
and initial valueXg = 0.25.
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Fig. 8. The statistical test of FIPS PUB 140-2 for
CSCZLOGISTIC3., 31426 0.25, 107, 256): it is passed when the
total number of passes is 16.

Lyapunov exponents still correspond almost perfectly,
as is obvious from the corresponding spikes in the fig-
ures. In the three examples, we find tlaais the high-
est whilez = 3 in CSCLOGIT. For the tent map, the
defining equation implies

dX,41=-2pndX,, 05<X,<1,

dX,+1=2ndX,, 0<X,<05 (22)
which admits the exact calculation of the Lyapunov

calculated to be 0.723478,0.869878, and 0.676233 be-exponent, which is

tweenFigs. 5 and 6Figs. 7 and 8andFigs. 9 and 10

respectively. But once again, the correlation between
regions of successful passes and regions of positive

(23)

=In2u).

N
_N —Zln
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Fig. 9. The Lyapunov exponents of thdogistic map, withz =5
and initial valueXq = 0.25.
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Fig. 10. The statistical test of FIPS PUB 140-2 for
CSCZLOGISTICSBu, 31426 0.25, 107, 256): it is passed when the
total number of passes is 16.

This is plotted inFig. 11, together with the associated
passing tests plotted ifig. 12 with a correlation
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Fig. 11. The Lyapunov exponents of the Tent map, with initial value
Xg = 0.25.
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Fig. 12. The statistical test of FIPS PUB 140-2 for
CSCTENTT i, 31426 0.25, 107,256): it is passed when the
total number of passes is 16.

parameter regime ig (3 < u < 4) for all mappings
but the tent map, which hasQ u < 1. This table

C = 0.685491.Figs. 13 and 14resent similar plots  suggests that the Poker Test appears to be the most
for the sine map, with a correspondifig=0.767776. stringent test among all the sixteen criteria of the FIPS
For both cases, we still observe the correspondencePUB 140-2 test. Also evident from this table is that the
mentioned above. z-logistic map (withz = 3 or 5) is indeed a superior

To better understand how sequences of random candidate for random number generator among all
numbers might fail an individual test, we have divided those having been tested.Table 5 as a comparison,
the entire parameter regime into 1000 equal intervals we list all the test results using the FIPS PUB 140-2
and computed the total number of failures for each and compare the data with the number of occurrences
individual test when a specific mapping function is of negative Lyapunov exponentfor the same parameter
given. This is shown imable 5 Please note that the regimes. The difference between the two data is rather
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Table 5
Total number of failures in the statisticakts for various mappingihctions described ifiable 1
Subitem Generator Index

8 10 11 12 13 14 15 16
monobit test 499 492 482 478 52 14 423 538
poker test 623 616 621 620 72 22 533 565
run test(0) 443 444 436 434 49 16 384 534
run test(1) 431 450 454 453 49 14 384 533
run test(00) 397 391 396 396 43 9 349 532
run test(11) 407 382 391 389 45 15 344 534
run test(000) 564 558 560 558 51 11 452 521
run test(111) 556 551 557 556 52 13 466 530
run test(0000) 601 588 597 596 59 15 496 521
run test(1111) 598 598 596 595 59 14 490 520
run test(00000) 604 596 599 597 58 12 508 524
run test(11111) 600 598 605 604 56 12 511 527
run test(000000) 603 602 603 601 61 15 512 532
run test(111111) 604 601 600 598 61 14 512 534
long run test(0) 0 0 0 0 2 1 2 0
long run test(1) 0 0 0 0 0 0 0 0
number of failures 623 616 622 621 74 25 536 565

Number of negative
Lyapunov exponent 614 614 614 612 62 12 517 500

The random number generators sadliin order include CSCLOGISTIC# = 3.97), CSCLOGITA{u = 3.97), CSCYN7Tu = 3.97),
CSCZLOGISTIC2u = 3.97), CSCZLOGISTIC3 = 3.97), CSCZLOGISTIC%u = 3.97), CSCSINET{uw = 3.97), CSCTENT7{n = 0.9).
The parameter regime is equally divided into 1000 intervals, resuhimgset of 1001 test data. The bottofrite table presents the number of

occurrences of negative Lyapunov exponent forosigenerators. The specifications of the tetgrial are the same as that for the statistical
test in the text.
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Fig. 13. The Lyapunov exponents of the Sine map, with initial value Fig. 14. The statistical test of FIPS PUB 140-2 for
X0 =0.25. CSCSINETy, 31426 0.25,107, 256): it is passed when the
total number of passes is 16.

small, once reiterating the fact that positive Lyapunov But to get a better understanding on how CSCLO-
exponentis nicely correlated with the criteriaof agood GISTIC performs under practical conditions, we have
random number generator. to check it against the various standard and more strin-
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Table 6
The parameters of SP 800-22 tests
The parameters of SP 800-22 tests Value
The Block Frequency Test: Block length 10
The Non-overlapping Template Test: Block length 10
The Overlapping Template Test: Block length 10
Maurer’s “Universal” Test: Block length 6
“Universal” Test: Number of Initialization Steps 640
The Approximate Entropy Test: Block length 5
The Serial Test: Block length 5
The Linear Complexity Test: Sequence length 5000
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Fig. 15. The statistical test of FIPS PUB 140-2 for

CSCLOGISTIC20Qy, 10,0.13,10%0,256): it is passed when

the total number of passes is 16.
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Fig. 16. The statistical test of SP 800-22 for CSCLOGISTIG20
10,0.13, 1020, 256): it is passed when the total number of passes is
16.
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Fig. 17. Diehard battery of tests for CSCLOGISTIC2010,
0.13,10%0, 256): it is passed when the total number of passes is 18.
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Fig. 18. The height correlation tests for CSCLOGISTIG2010,
0.13,10%0, 256): it is passed when th#, is about 05 = 0.0125.

gent tests. As discussed before, these include SP 800-
22 tests, Diehard battery of tests, the height corre-
lation test andSy tests. But before we go on, we
should mention that, due to the nature of the orig-
inal dynamical system, there are “windows” in the
parameter regime inside which the iteration will set-
tle down to a fixed point. Thus, we will exclude
these sets since they are not interesting. As a refer-
ence, we list below what have been excluded in this
report: 3001 ~ 3.569, 3.583 3.602 3.606, 3.627 ~
3.634,3.656,3.673 3.702 3.739 ~ 3.743 3.829 ~
3.849 3.855, 3.856, 3.906 and 3961. However, we do
keepu = 3.000 in the test, simply because the phe-
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1.00

Table 7
The various statistical tests for CSCLOGISTIC20 system described
in Table 1 0.99
n FIPS SP Diehard Height

PUB 800-22 battery correlation 0.98 1

140-2 tests of tests test @) QO
3.579 16 12 18 049966 0.97 A
3.582 16 15 18 050122
3.596 16 14 18 050607
3598 16 15 18 050189 0.96 1
3.608 16 14 18 050578
3.617 16 14 18 050178 0.95 : : : : : : : :
3.642 16 15 18 050170 0 2 4 6 8 10 12 14 16 18
3.652 16 14 18 049746
3679 16 14 18 049717 Number of passes
g?ig 12 ig ig giggig Fig. 19. The correlation betwedryapunov exponentsoand tests of
3.750 16 14 18 050293 FIPS PUB 140-2 for CSCLOGISTIC2M, 10,0.13, 107 , 256).
3.768 16 13 18 049608
3.784 16 13 18 049796 12
3.816 16 16 17 0.49729
3.824 16 16 15 0.50790 1.0 1
3.854 16 16 17 0.50249
3.870 16 16 16 0.50360 0.8 1
3.871 16 13 18 049633
3.885 16 14 18 050389 O 06 1
3.895 16 13 16 0.50907
3899 16 16 15 0.50807 04 |
3.901 16 15 18 049770
3.904 16 16 15 0.50623 0.2 1
3.907 16 12 18 050099
3.908 16 16 15 0.49561
3926 16 14 18 050109 0.0 T
3.933 16 15 18 050814 0 2 4 6 8 10 12 14 16 18
3.970 16 15 18 050115 Number of passes
3971 16 15 18 049848
3.974 16 14 18 050164 Fig. 20. The correlation betwedtyapunov exponents and tests of
3981 16 14 18 050128 SP 800-22 for CSCLOGISTIC20, 10, 0.13, 1079, 256).
3.994 16 13 18 050303
Exact 16 16 18 A2 generators defined iflable 1 The size of the ran-

The bold font means that it is fail to test. The CSCLOGIS- dom bits is 15 x 107, and the same process is run
TIC20 studied based on the logistic map, the parameters as 15 times. i.e.n = 15. as has been said before. Eor
CSCLOGISTIGu, 10,0.13, 10?0, 256) for eachy. The criteria of the Diehz’ard test suit’e we set up the size of data as
Height correlation test is set up3t- 0.0125. ! .

n = 1.2 x 10’ bytes for eachu. As to the height

correlation tests, the functioH; was investigated up
nomenon of critical slowing down has prevented the to 2 = 2000 with sizen = 10’ independent runs.
system from settling down after an iteration of= For the Sy tests, we set up2 = 4000 withn = 108
1.5 x 10’ steps. independent runs. For CSCLOGISTIC20 system de-

To get the correlation, we have set up all the sta- fined above, we plot the FIPS PUB 140-2 tests in

tistical tests so that a 0 is returned when the para- Fig. 15 the SP 800-22 tests ifig. 16 Diehard bat-
meter . fails a test.Table 6describes the setting of tery of tests inFig. 17 and height correlation tests
the parameters in the NIST programming code and in Fig. 18 In Tables 7 and 8we list our thorough
we use such condition to test all the random number study of the strength of CSCLOGISTIC and com-
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Fig. 21. The correlation betwediyapunov exponents and Diehard ~ Fig. 22. The correlation be®en Lyapunov exponents and tests
battery of tests for CSCLOGISTIC20, 10, 0.13, 1020, 256). of height correlation for CSCLOGISTIC2Q, 10, 0.13, 1070, 256),
where the scaling factof checks the number of passes in height

. . correlation test, and the criteria iS5Gt 0.001x (17— S).
pare it with other famous random number genera-

tors using various statistical tests. In theses tables, a

failed test result is marked in bold font for conve- deed, a positive Lyapunov exponent is nicely corre-
nience. InTable 7 for the special parameter, we lated with the industry criteria for a good random num-
find that the listed CSCLOGISTIC20] behave well ~ ber generator. Finally, we show ifable 10the num-

in these tests. Though it is hard to satisfy the whole ber of steps it takes for our system to settle down to
wide range of tests for a given, CSCLOGISTIC20 a stable period-doubled state for various scaling factor
can still be seen to possess the potential of being aA- This table explains why CSCLOGIST(Z = 3.0)
good random number generator. For instance, refer- can occasionally pass the statistical tests: As the scal-
ring to Table 8 we see that LCG can hardly pass ing factor A gets larger, the time to settle down also
most standard tests when CSCLOGISTIG2D§tands ~ gets longer. This is the reason why we always kept
quite strong in this respect. In fact, the results sug- the parametep = 3.0 in our discussions. Despite all
gest that it is better than LCG, ICG, and EICG us- these successes, we must quickly add, however, that
ing this test. As a side remark, we can also notice Our conclusion is drawn on a relatively small set of
that the strength of FIPS PUB 140-2 is weak com- data (of order 10to 1(°) as compared to the huge
pared to other tests, whereas SP 800-22 tests is mucHumber of data one would like to use in the sim-
more powerful as regards to checking for the robust- ulation of actual physical systems (which could be
ness of a PRNG. IiFigs. 19-21 we plot the corre-  as large as 19). This means our success is modest
lation C versus the number of passing items for var- at the best, and further investigation in the future is
jous tests. |nFig_ 22 we use the sca”ng factof still needed to see how things go in this line of ap-
to check the number of passes in height correlation proach.

test, the criteria being.B+ 0.001x (17— S). Note

that in plotting the four figures we have normalized

things so thatz + 1 is returned when the Lyapunov 4. Conclusion

exponent is positive, while — 1 is returned when it

is negative. Similarly, we have assignedr 1 if the Although it is tempting to use simple chaotic maps
data successfully pass the tests, and1 is obtained as an efficient method of generating useful random
if otherwise. When compared witRig. 1, the cor- numbers, the correlation between adjacent numbers

relation C for Figs. 19—22ead 0.726202, 0.717896, generated by the same map must first be processed
0.720198, and 0.720785, respectively. This is shown before they can be used in an application. In this
in Table 9 which summarizes our assertion that, in- paper we have suggested a simple modulo operation,
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Table 8
The various statistical tests for random rhengenerators described in the text
Index Generator FIPS SP Diehard Height SN
PUB 800-22 battery correlation test
140-2 tests of tests test @)
1 RANAU 11 0 0 1.00730 0.01670
2 ANSIC 15 0 0 1.00842 0.03607
3 MINSTD 16 15 14 0.98954 0.04689
4 FISH 16 14 16 1.03299 0.49587
5 ICG 16 15 15 1.02911 0.49826
6 EICG1 16 15 16 0.96355 0.53779
7 EICG7 16 14 16 0.92437 0.50474
8 CSCLOGISTIC7 16 15 11 0.49604 0.48088
9 CSCLOGISTIC20 16 15 18 0.50115 0.50171
10 CSCLOGIT7 16 15 12 0.49765 0.51723
11 CSCYN7 16 13 9 0.49701 0.50972
12 CSCZLOGISTIC2 16 12 11 0.50054 0.52163
13 CSCZLOGISTIC3 16 11 13 0.49746 0.51702
14 CSCZLOGISTICS 16 13 15 0.50268 0.49785
15 CSCSINE7 16 14 10 0.49884 0.50533
16 CSCTENT? 16 11 8 0.50604 0.52056
17 CSCTENT20 16 11 12 0.49452 0.52534
Exact 16 16 18 2 1/2

Numbers in bold signify a failure in the tests. For the tests of generators 1 throlgh @0)is also implemented when applying the tests of
FIPS PUB 140-2, SP 800-22, and Dieharst$eIn height correlation test asig; test, we use instead only the original random data. The criteria

of height correlation test angly test are both set to.®+ 0.0125.

Table 9

The correlation calculation between Lyapunov exponents and var-
ious statistical tests of CSC systems, wh&g X, represent the
data of input sequences andas the size of input dat&y = 1001

Correlation function Correlatiod
C(X1,X2,N)

C(Fig(1), Fig(2). N) 0.719727
C(Fig(1), Fig(3), V) 0.720672
C(Fig(1), Fig(4). N) 0.723787
C(Fig(5), Fig(6). N) 0.723478
C(Fig(7), Fig(8), N) 0.869878
C(Fig(9), Fig(10), N) 0.676233
C(Fig(11) Fig(12), N) 0.685491
C(Fig(13), Fig(14), N) 0.767776
C(Fig(1), Fig(15), N) 0.726202
C(Fig(1), Fig(16). N) 0.717896
C(Fig(1), Fig(17). N) 0.720198
C(Fig(1), Fig(18). N) 0.720785

the chaotic stream cipher (CSC), for this purpose. We
have shown that, using standard criteria for random
number generators, the @he is quite robust with

is a close correlation between the Lyapunov exponent
of the underlying chaotic map and the “randomness”
defined by the industry standard tests for the generated
sequences. Although the correlation is not perfect, our
investigation suggests convincingly that the standard
tests might be closelyefated to only a very few
number of characteristics inherent in a chaotic system.
However, we must emphasize that our guess still needs
a lot of polishing because, up to this point, the known
useful measures for chaos are not too many in number,
and exactly which measurginore relevant remains to
be investigated.
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Table 10

203

The number of time steps for the CSCLOGISTICO, 0.13, A, 256) system to evolve into one of the periodic states for various scale parameter

A. pj is the jth period doubling bifurcation parameter

i Period The scale parametér
10° 108 107 108 10° 1010

n1 =30 pa 20 2484 16910 84156 394138 1834660
o = 3.449489 2 460 1876 9276 39220 186444 837172
13 = 3.544090 3 128 1104 4880 22040 105944 529136
a4 = 3.564407 2 160 704 3104 13200 53136 299536
ns = 3.568759 5 96 416 1984 9120 32512 95968
e = 3.569692 5 64 128 704 4544 15488 46784
u7 = 3569891 7 128 256 384 2944 15488 44544
ng = 3.569934 3 256 256 256 2304 7424 29184
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