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Abstract

We present results of Adaptive Mesh Refinement (AMR) simulations of the pellet
injection process, a proven method of refueling tokamaks. AMR is a computation-
ally efficient way to provide the resolution required to simulate realistic pellet sizes
relative to device dimensions. The mathematical model comprises of single-fluid
MHD equations with source terms in the continuity equation along with a pellet
ablation rate model. The numerical method developed is an explicit unsplit upwind-
ing treatment of the 8-wave formulation, coupled with a MAC projection method
to enforce the solenoidal property of the magnetic field. The Chombo framework is
used for AMR. The role of the E×B drift in mass redistribution during inside and
outside pellet injections is emphasized.

Key words: Adaptive Mesh Refinement, MHD, Pellet Injection.
PACS: 52.30.Cv, 52.65.Kj

1 Introduction

Injecting small pellets of frozen hydrogen into a tokamak is a proven method
of fueling. Experimentally, it is known that the density distribution, after the
pellet ablates upon encountering the high temperatures in a tokamak, is not
consistent with the distribution inferred from assuming that the ablated mate-
rial remains on the flux surfaces where the ablation occurred. The subsequent
redistribution of mass is believed to be due to anomalous MHD processes.
The mass redistribution is observed to be a sensitive function of the angle
(with respect to the mid-plane) in which the pellet is injected [1,2]. It is this
phenomenon which we seek to explain.

A previous three-dimensional computational investigation of pellet injection
was performed by Strauss and Park [3]. They investigated the evolution of a
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large density “blob” representing the ionized pellet ablation cloud. However,
they did not treat a moving pellet source and their resolution was relatively
coarse. Our approach is to perform detailed simulations of the pellet injection
process and quantify the MHD processes responsible for mass redistribution.
We employ Adaptive Mesh Refinement (AMR) in our simulations to provide
the resolution required to simulate realistic pellet sizes relative to device di-
mensions (typical ratios are O(10−3)). In section 2, we describe the physical
problem and the mathematical model along with the pellet ablation model
and discussion of initial and boundary conditions. In section 3, we describe
the numerical method. In section 4, we present results from AMR simulations
emphasizing the differences between inside and outside injections.

2 Description of Problem and Mathematical Model

2.1 Physical Problem

The physical problem we are dealing with involves the injection of frozen fuel
pellets into a tokamak. The physical processes are broadly distinguished into
the following two stages. The first stage is the ablation of mass at the pellet
surface due to the high temperature background plasma encountered by the
pellet. The ablated pellet mass, which is a neutral gas, is rapidly heated by
electrons and ionizes to form plasma. The second stage is the redistribution
of the ablated pellet material by free streaming along the magnetic field lines
and by anomalous MHD processes which cause mass flow across field lines and
flux surfaces. The pellet ablation phenomenon of the first stage is considered
well-understood [4,5], and as such we use existing ablation models. The thrust
of the work described here is an accurate and efficient simulation of the second
phase.

2.2 Mathematical Model

Our mathematical model consists of single fluid MHD equations with source
terms in the continuity equation to model the mass injected into the system by
the pellet, and source (sink) terms in the energy equations to model electron
heating and corresponding cooling on flux surfaces. The equations are written
below.

∂U

∂t
+
∂Fj(U)

∂xj
=
∂Fv,j(U)

∂xj
+ ST (U) + S∇·B(U) + Spellet(U), (1)
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where the solution vector U ≡ U(x1, x2, x3, t) ≡ U(R, z,R0φ, t) is U = {ρ, ρui, Bi, e}
T ,

and the flux vector Fj(U) is given by

Fj(U) =
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In the above equations, R, z, φ, are the radial, axial and toroidal coordinates,
R0 is the major radius; ρ is the density, ui is the velocity, Bi is the magnetic
field, p and pt are the pressure and total pressure, respectively, and e is the
total energy per unit volume of the plasma. For numerical stability and robust-
ness, we have subtracted out the equilibrium toroidal component of the initial
equilibrium magnetic field, BT (xi, 0) ≡ g0/R. These equations are closed by
the perfect gas equation of state,

e =
p

γ − 1
+
ρ

2
ukuk +

1

2
BkBk, (3)

which we note does not include the contribution 1/2B2
T . The flux vector

Fv,j(U) corresponds to the diffusive resistivity/viscosity terms and is omit-
ted in the interest of brevity. The toroidal geometry terms are modeled in the
source terms as

ST (U) = −
1
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∂φ
. (4)

For a large aspect ratio tokamak, ST (U) is small but it contains essential
toroidal effects which cause the in-out asymmetry discussed in Section 4. The
source terms S∇·B(U), written below,

S∇·B(U) = −∇ ·B({0, BR, Bφ, Bz, uR, uz, uφ, uz, (B · u)}
T ), (5)
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are included because we use the symmetrization procedure of Godunov [6]
which leads to the 8-wave formulation. This formulation was also used by
Powell et al. [7] in their AMR implementation of ideal MHD. Finally, the
source terms Spellet = {Sn/n0, 0, 0, 0, 0, 0, 0, Se/n0}

T , where n0 is some refer-
ence number density, correspond to the mass source and energy source/sink
terms, and are described next.

2.3 Pellet Ablation Model

In the present model, the pellet is described by a sphere of frozen molecular
hydrogen of radius rp. The trajectory xp(xi, t) of the pellet is prescribed with
a given initial location xp0 ≡ xp(xi, 0) and constant velocity up. The density
source term arises from the ablation of the pellet and is written in terms of
number density, ( i.e., atoms per unit volume per unit time) as

Sn = Ṅδ(x− xp), (6)

where the delta function is approximated as a Gaussian distribution centered
over the pellet with a characteristic size equal to 10rp. The ablation rate of the
pellet, originally derived by Parks and Turnbull [4] and modified for hydrogen
pellets by Kuteev [8] is given below (in atoms/sec)

Ṅ = −4πr2
p

drp
dt

2nm = 1.12× 1016n0.333
e T 1.64

e r1.33
p M−0.333

i , (7)

where ne is the background plasma density in cm−3, Te is the background
plasma electron temperature in eV, Mi is the atomic mass number in atomic
units and nm = 2.63×1022/cm3 is the molecular density of frozen hydrogen. A
useful approximation which eliminates the electron timescale from the prob-
lem is to consider the electron heat flux as being instantaneous compared to
the other processes being computed. The time-asymptotic effect of the large
electron heat flux is to make the temperature uniform along field lines, i.e.,
T ≡ T (ψ). Thus, for single fluid equations, the temperature T (ψ) in the vol-
ume Vψ between flux surfaces ψ and ψ + dψ will equilibrate as the density
changes while still conserving energy in the volume Vψ. This leads to the fol-
lowing energy source terms in the energy equation

Se = 3
(

SnT (ψ) + nṪ (ψ)
)

. (8)

The first term in Se corresponds to the localized increase in energy due to
the heating of the ablated pellet mass, while the second term corresponds to
a global adiabatic cooling of the entire flux surface. In practice, we compute
the contribution due to the second term by separately solving a 1D model for
the pellet injection assuming only classical processes are present. We then use
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table lookup and interpolation to compute the term Ṫ (ψ) in our 3D AMR
simulation.

2.4 Initial and Boundary Conditions

The initial condition is a static equilibrium state. The initial magnetic field is
written in terms of two function ψ(R, z) and g(R, z), i.e.,

B =
1

R
(φ̂×∇ψ + gφ̂). (9)

These functions satisfy the Grad-Shafranov equation,

R
∂

∂R

1

R

∂ψ

∂R
+
∂2ψ

∂z2
+R2 dp

dψ
+ g

dg

dψ
= 0, (10)

where p ≡ p(ψ) and g ≡ g(ψ). For a torus with rectangular cross-section
of radial extent 2a and axial extent of 2b = 2κa we may write ψ(R, z) =
f(R) cos(πz/κa). Further, with g(R, z) = g0 = constant we get

R
d

dR

(

1

R

df

dR

)

+
(

R0π

a

)2 (

αR2 −
1

4κ2

)

f = 0 (11)

which permits a Frobenius-type series solution. The value of α is determined
by imposing the boundary conditions ψ = 0. The pressure is written as p = p̄+
p0ψ

2 where p̄ is a small background pressure to avoid zero ion-acoustic speeds
and p0 = απ2/(2a2R2

0). The toroidal field function g0 = R0απ
2|ψ|maxq0/(2ab),

where q0(≈ 1) is the on-axis safety factor. Boundary conditions imposed are
perfectly conducting walls in the radial/axial directions and periodic in the
toroidal direction. In our simulations we use κ = 1, a/R0 = π/9, for which
α = 0.481509.

3 Numerical Method

In this section, we focus on the evaluation of the hyperbolic flux terms (Fj(U))in
Eqn. (1). We use a finite volume technique wherein each variable is stored at
the cell center. The numerical fluxes of conserved quantities are obtained at
the cell faces using a combination of the 8-wave formulation [6] and unsplit up-
winding [9,10]. We define a vector of “primitive” variablesW = {ρ, ui, Bi, p}

T .
Given the conserved quantities and all the source terms, i.e.,U n

i
, Sn

i
, (in this

notation, i is a 3-tuple correponding to the three dimensions), we want to

compute a second-order accurate estimate of the fluxes: F
n+

1

2

i+
1

2
ed

(d indicates
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the d-th direction, 0 ≤ d < 2) The first step is to compute W n
i
in each cell,

followed by fitting a linear profile in each cell subject to slope limiting. We
then extrapolate the primitive and conserved variables at the cell faces using
the normal derivative terms and the source terms at the cell centers, as follows.

Wi,±,d = W n
i
+ 1

2
(±I − Ad

i

∆t

h
)P±∆

dWi, Ui,±,d = U(Wi,±,d) +
∆t

2
Sn

i
(12)

where Ad
i
= (∇WU∇WF

d)(Wi) and P±(W ) =
∑

±λk>0(lk ·W )rk, and ∆dWi is
the undivided but limited slope. The eigenvalues, and left and right eigenvec-
tors of Ad

i
are λk, lk, and rk, respectively with k = 1 · · · 8 in the eight-wave

formulation (see Powell et al. [7] for the left and right eigenvectors). We com-
pute corrections to Ui,±,d corresponding to one set of transverse derivatives
appropriate to obtain (1, 1, 1) diagonal coupling:

Ui,±,d1,d2 = Ui,±,d1 −
∆t

3h
(F 1D

i+
1

2
ed2

− F 1D

i−
1

2
ed2

), d1 6= d2, 0 ≤ d1, d2 < 3 (13)

where F 1D

i±
1

2
ed

= RP (Ui,+,d, Ui+ed,−,d). The notation F = RP (UL, UR) implies

that the flux F is evaluated by solving a linearized Riemann problem using UL
and UR as left and right states, respectively. We next compute final corrections
to Ui,±,d due to transverse derivatives:

U
n+

1

2
i,±,d = Ui,±,d −

∆t

2h
(F

i+
1

2
ed1 ,d2

− F
i−

1

2
ed1 ,d2

), (14)

where F
i+

1

2
ed1 ,d2

= RP (Ui,+,d1,d2 , Ui+ed1 ,+,d1,d2
), and 0 ≤ d < 3; d1 6= d2 6= d.

At this stage, we solve another Riemann problem at the cell faces using U
n+

1

2
i,+,d

and U
n+

1

2

i+ed,−,d
as the left and right states, respectively. The magnetic field ob-

tained from the solution to the Riemann problem at n + 1

2
at the cell faces

is not guaranteed to be divergence free. We enforce the solenoidal property of
the magnetic field by a MAC projection, using B at the cell faces to obtain
a cell-centered monopole charge density. A Poisson solver is used to find a
scalar field satisfying ∇2χ = ∇ ·B with Neumann boundary conditions in the
radial/axial directions and periodic in the toroidal direction. The magnetic

field at the cell faces is then corrected according to B
n+

1

2

i+
1

2
ed

= B
n+

1

2

i+
1

2
ed
− ∇χ.

Finally the fluxes at cell faces are obtained as F
n+

1

2

i+
1

2
ed

= F (U
n+

1

2

i+
1

2
ed
) and the

conserved quantity at the cell centers are updated using these fluxes. The Pois-
son equation in the projection step above is cast in a residual-correction form
and solved using a multi-grid technique on each level in the AMR hierarchy.
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The residual smoothing is a Gauss-Seidel relaxation procedure with red-black
ordering. When meshes cannot be coarsened any further, the Poisson solve is
taken to convergence using a bottom-smoother which is a biconjugate gradi-
ent solver. We implemented the above method into the Chombo framework
and have developed a second-order adaptive parallel MHD code. Chombo is
a collection of C++ libraries for implementing block-structured AMR finite
difference calculations [11]. Particular care is taken in implementing coarse-
fine interface interpolations of appropriate order to ensure second-order ac-
curacy. Furthermore, conservation at coarse-fine interfaces is maintained by
flux-refluxing. This leads to a non-zero cell-centered∇ ·B in coarse cells which
are adjacent to coarse-fine boundaries, which being a set of codimension one
does not significantly affect the accuracy of the solution.

4 Simulation Results

In this section, we present preliminary results from early to intermediate stages
of pellet injection. The results discussed here correspond to a midpoint toroidal
field of 0.23 T , β ≈ 0.1, and a pellet of 1 mm radius moving radially with
a velocity of 3200 m/s in a tokamak with minor radius of a = 0.26 m. Two
cases are discussed: one in which the pellet is initialized on the high field
side (HFS or the so-called inside launch case) and the other in which the
pellet is injected from the low field side (LFS or the “outside” launch case).
Because the temperature of the plasma is low near the edges of the tokamak,
we initialize the pellet at some radial distance inside the tokamak. This is
merely to save computational effort and have interesting dynamics take place
relatively quickly. In both the LFS and the HFS case, the initial location of the
pellet is on the same flux surface so that the pellet encounters the same initial
temperature in both the LFS and HFS cases. Based on preliminary tests which
suggested that the energy sink term provides only a small contribution, but is
nonetheless computationally expensive to evaluate and occasionally leads to
noisy solutions, we omitted the sink term in the results presented here.

Fig. 1 shows a density isosurface, viewed radially inwards, at times t = 2, 20, 60
(time is normalized by the Alfvén time) for the HFS case. The outlines of the
various meshes in the calculation are also shown in Fig. 1. At t = 2 the pellet
ablated mass is roughly in the shape of an ellipsoid with its major axis aligned
along the magnetic field lines. The pellet cloud is a localized region of high β
with the dominant mass motion being along the magnetic field lines. As time
progresses, the ablated mass moves parallel to the magnetic field at speeds of
about one-third of the local acoustic speed. (See scatter plots of β vs. density
in Fig. 2 and local Mach number vs. density in Fig. 3). In addition to the
“classical” parallel transport there is clear evidence of “anomalous” transport
perpendicular to the flux surfaces.
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We now examine this phenomenon in more detail and compare and contrast
between HFS and LFS pellet launches. Fig. 4 shows poloidal slices at the
mean toroidal pellet location for the HFS and LFS cases. At time t = 2 we
observe the ablated mass in a cloud around the mean pellet position. At later
times (t = 20, 60), the pellet ablated mass has a significant outward radial
displacement compared to the mean pellet location.

The LFS case shows a dramatic turning around of the mass due to the zero
mass flux boundary conditions (Fig. 4-b3) It is conjectured that an outflow
boundary condition would lead to a substantial loss of the ablated mass and
thus poor fueling efficiency in the LFS case. The observed outward displace-
ment implies that HFS launches are more favorable for refueling tokamaks
as opposed to the LFS launches, consistent with observed behavior in ex-
periments [12,1]. We may reconcile this seemingly “anomalous” transport by
appealing to the model by Parks [13] which notes that magnetic curvature and
∇B-induced charged particle drifts cause a local separation of charges in the
pellet cloud. This leads to an axially-oriented electric field, and so the E ×B
drift is radially outward in both the LFS and the HFS case.

It is instructive to examine the flow pattern of the perpendicular drift velocity
v⊥ = E × B/|B|2. The radial component of v⊥ is the dominant one and is
shown in Fig. 5 in a poloidal slice. For the HFS case, in Fig. 5(a), there is a
dominant outward radial v⊥ carrying the bulk of the pellet mass outward. This
is flanked on either side in the axial direction by inward radial motion resulting
in a nearly incompressible flow pattern. So the simple picture of only outward
radial v⊥ drift is augmented by this somewhat smaller turning around of the
mass which leads to the mushroom-shaped structure in the poloidal plane.

For the LFS case too, the outward radial E × B drift grows with time and
is clearly seen in Fig. 5(b). The perpendicular transport of the ablated mass
brings into question some of the assumptions made in the earlier section. In
calculation of the ablation rate, we assumed that the ablated mass is heated
instantaneously to the flux surface temperature. However, the motion of the
ablated mass radially outwards in the HFS case means that the temperature
the pellet encounters will actually be smaller than that assumed. Furthermore,
the energy sink term in the equations, which are based on a one-dimensional
parallel transport model will need to be modified.

5 Conclusion and Future Work

In this paper, we presented a numerical method which is based on an un-
split upwinding method coupled with the eight-wave formulation. A MAC-
projection scheme is implemented to enforce the solenoidal property of the
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magnetic field. This projection requires the solution of a Poisson equation
which is solved using a multi-grid technique. It was observed that the con-
vergence of the Poisson solver was sensitive to the block-size in the AMR
mesh-hierarchy. A pellet injection model was implemented as a source term
in the density equations and corresponding energy sources and sinks in the
energy equation. AMR simulations of the pellet injection process were car-
ried out for the inside and outside launch cases. Preliminary studies indicate
that AMR provides a speed-up exceeding two orders of magnitude over corre-
sponding uniform mesh simulations essential to accurately resolve the physical
processes involved in pellet injection. AMR is an effective way of achieving
computational efficiency in detailed and resolved simulations of the pellet in-
jection process. It was observed that the pellet ablated mass is dominantly
transported along magnetic field lines but that a E × B drift causes a sig-
nificant outward radial motion of the pellet cloud in both the LFS and HFS
cases. A high resolution numerical simulation is a viable method of computing
the relative importance of these two competing phenomena for redistributing
the pellet mass.

The results presented in this paper did not include resistive terms which will be
included in future work. We also plan to develop models which better account
for the rapid electron heating and corresponding cooling terms in the energy
equation, taking into account the perpendicular transport of the ablated mass.
Finally, we plan to undertake resolved simulations of pellet injection with
more realistic physical parameters, and to investigate other launch locations
in addition to the HFS and LFS pellet injections.
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Fig. 1. Density isosurface (ρ = 2) for a HFS pellet launch. (a) t = 2 (b) t = 20 (c)
t = 60 viewed radially inwards. The magnetic field lines are shown in red. The box
outlines depict the meshes. Time is normalized by the Alfvèn wave transit time.
(Note that altough the domain is a torus the visualizations are presented in a cube)

Fig. 2. Scatter plot of β vs. ρ at t = 60 for the HFS launch. High β is strongly
correlated with high density.
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Fig. 3. Scatter plot of local Mach number vs. ρ at t = 60 for the HFS launch.

Fig. 4. Density field in a poloidal cross-section. (a1) HFS t = 2, (a2) HFS t = 20,
(a3) HFS t = 60, (b1) LFS t = 2, and (b2) LFS t = 20, and (b3) LFS t = 60.
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Fig. 5. Perpendicular drift velocity v⊥ in a Poloidal cross-section. (a1) HFS t = 20,
(a2) HFS t = 60, (b1) LFS t = 20, and (b2) LFS t = 60.
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