
ar
X

iv
:n

lin
/0

31
20

04
v1

 [
nl

in
.S

I]
 2

 D
ec

 2
00

3

Symbolic computation of hyperbolic tangent

solutions for nonlinear differential-difference

equations ⋆

D. Baldwin a Ü. Göktaş b W. Hereman a,c,∗
aDepartment of Mathematical and Computer Sciences, Colorado School of Mines,

Golden, CO 80401-1887, U.S.A.
bWolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820, U.S.A.
cDepartment of Applied Mathematics, University of Stellenbosch, Private Bag X1,

7602 Matieland, South Africa

Abstract

A new algorithm is presented to find exact traveling wave solutions of differential-
difference equations in terms of tanh functions. For systems with parameters, the
algorithm determines the conditions on the parameters so that the equations might
admit polynomial solutions in tanh.

Examples illustrate the key steps of the algorithm. Parallels are drawn through
discussion and example to the tanh-method for partial differential equations.

The new algorithm is implemented in Mathematica. The package DDESpecialSo-
lutions.m can be used to automatically compute traveling wave solutions of nonlin-
ear polynomial differential-difference equations. Use of the package, implementation
issues, scope, and limitations of the software are addressed.

Program summary

Title of program: DDESpecialSolutions.m
Catalogue identifier (supplied by the Publisher):
Distribution format (supplied by the Program Library):
Computers: Created using a PC, but can be run on UNIX and Apple machines
Operating systems under which the program has been tested: Windows 2000 and XP
Programming language used: Mathematica
Memory required to execute with typical data: 9 MB
Number of processors used: 1
Has the code been vectorised or parallelized?: No
Number of bytes in distributed program, including test data, etc.: 104 761

Nature of physical problem: The program computes exact solutions to differential-
difference equations in terms of the tanh function. Such solutions describe particle
vibrations in lattices, currents in electrical networks, pulses in biological chains, etc.
Method of solution: After the differential-difference equation is placed in a travel-
ing frame of reference, the coefficients of a candidate polynomial solution in tanh

Preprint submitted to Computer Physics Communications 13 August 2018

http://arxiv.org/abs/nlin/0312004v1

are solved for. The resulting solution is tested by substitution into the original
differential-difference equation.
Restrictions on the complexity of the program: The system of differential-difference
equations must be polynomial. Solutions are polynomial in tanh .
Typical running time: The average run time of 16 cases (such as Toda, Volterra,
and Ablowitz-Ladik lattices) is 0.228 seconds with a standard deviation of 0.165
seconds on a 2.4GHz Pentium 4 with 512 MB RAM running Mathematica 4.1. The
running time may vary considerably, depending on the complexity of the problem.

Key words: Exact solutions, traveling wave solutions, differential-difference
equations, semi-discrete lattices, tanh-method
PACS: 02.70.Wz; 02.30.Ik; 02.30.Jr; 02.90.+p

1 Introduction

Since the work of Fermi, Pasta, and Ulam in the 1950s [14], differential-
difference equations (DDEs) have been the focus of many nonlinear studies (for
references see e.g. [16,39]). There is renewed interest in DDEs, which can be
used to model such physical phenomena as particle vibrations in lattices, cur-
rents in electrical networks, pulses in biological chains, etc. Unlike difference
equations which are fully discretized, DDEs are semi-discretized with some (or
all) of their spacial variables discretized while time is usually kept continuous.
DDEs also play an important role in numerical simulations of nonlinear partial
differential equations (PDEs), queuing problems, and discretizations in solid
state and quantum physics.

There is a vast body of work on DDEs, including investigations of integrability
criteria, the computation of densities, generalized and master symmetries, and
recursion operators [15]. Notable is the work by Levi and colleagues [20,21],
Yamilov [41,42] and co-workers [4,9,10,29,30,38], where the classification of
DDEs (into canonical forms), integrability tests, and connections between in-
tegrable PDEs and DDEs are analyzed in detail. To a large extent, the clas-
sification and integrability testing of discrete equations parallels continuous
equations (for reviews and references consult [5,25,26,31]).

A wealth of information about integrable DDEs can be found in papers by

⋆ This material is based upon research supported by the National Science Founda-
tion under Grants Nos. CCR-9901929, DMS-9732069 and DMS-9912293.
∗ Corresponding author.

Email address: whereman@mines.edu (W. Hereman).
URL: http://www.mines.edu/fs home/whereman (W. Hereman).

2

Suris [32,33,34,35,36] and his book [37] in progress. Suris and others have
shown that many lattices are closely related to the celebrated Toda lattice
[40], its relativistic counterpart due to Ruijsenaars [28], the KvM lattice [18],
and the two-component Volterra system [29,30].

Recently, variants of the tanh-method have been successfully applied to many
nonlinear polynomial systems of PDEs in any number of independent variables
[6,11,12,13,27]. Baldwin et al. [7] implemented the tanh- method (and also
sech, cn, and sn-methods) in Mathematica. Liu and Li implemented the tanh-
method [22,23] in Maple.

While there has been considerable work done on finding exact solutions to
PDEs, as far as we could verify, little work is being done to symbolically com-
pute exact solutions of DDEs. In this paper we present an adaptation of the
tanh-method to solve nonlinear polynomial differential-difference equations,
which to our knowledge is novel. Our algorithm applies to semi-discrete lat-
tices and allows one to find closed form solutions that are polynomial in tanh.

Although the tanh method is easy to apply, it leads to fairly cumbersome
algebra without guarantee that a tanh solution can be found [6]. We therefore
present [8] the fully automated software package, DDESpecialSolutions.m in
Mathematica, which implements the algorithm. Without intervention from
the user, our software computes traveling wave solutions as polynomials in
Tn = tanh ξn, where ξn =

∑Q
i=1 dini +

∑N
i=j cjxj + δ. The continuous variables

xi and the discrete variables nj are combined with constants ci and dj, and δ
is the phase constant.

For systems of DDEs involving constant parameters (denoted by lower-case
Greek letters), the software automatically determines the conditions on the
parameters so that the given equations might admit polynomial solutions in-
volving tanh. Obviously, since sech2 ξ = 1−tanh2 ξ our code can find solutions
in even powers of sech . But our code can not find solutions involving odd pow-
ers of sech.

The paper is organized as follows: Section 2 gives a discussion of the tanh-
method for PDEs with a worked example of a two-dimensional nonlinear PDE.
Since the tanh-method for semi-discrete lattices so closely parallels the tanh-
method for evolutions equations, we believe that a discussion of the continuous
case increases the transparency of the more complicated semi-discrete case.
In Section 3 we present our tanh-method for DDEs with a worked example
of a two-dimensional Toda equation followed by almost a dozen additional
examples. A description of ourMathematica package, DDESpecialSolutions.m,
is given in Section 4. We discuss our results and draw some conclusions in
Section 5. Appendix A gives the full input and output of a test case.

3

2 Traveling Wave Solutions of PDEs

In this section we discuss the tanh-method as it applies to systems of P poly-
nomial differential equations,

∆(u(x),u′(x),u′′(x), · · · ,u(m)(x)) = 0, (1)

where the dependent variable u has P components ui, the independent variable
x has N components xj , and u(m)(x) denotes the collection of mixed derivative
terms of order m. We assume that any arbitrary coefficients parameterizing
the system are strictly positive and denoted by lower-case Greek letters. To
simplify the notation in the examples, we will write u, v, w, . . . instead of
u1, u2, u3, . . . and x, y, t, . . . instead of x1, x2, x3, etc.

2.1 Algorithm of the tanh-method for PDEs

Step 1 (Transform the PDE into a nonlinear ODE). We seek solutions in the
traveling frame of reference,

ξ =
N
∑

j=1

cjxj + δ, (2)

where the components cj of the wave vector x and the phase δ are constants.

In the tanh method, we seek polynomial solutions expressible in hyperbolic
tangent, T = tanh ξ. Based on the identity cosh2 ξ − sinh2 ξ = 1,

tanh′ ξ = sech2 ξ = 1− tanh2 ξ, (3)

tanh′′ ξ = −2 tanh ξ + 2 tanh3 ξ, etc. (4)

Therefore, the first and consequently all higher-order derivatives are polyno-
mial in T. Thus, repeatedly applying the chain rule,

∂•
∂xj

=
∂ξ

∂xj

dT

dξ

d•
dT

= cj(1− T 2)
d•
dT

(5)

transforms (1) into a coupled system of nonlinear ODEs,

Γ(T,U(T),U′(T), . . .) = 0, (6)

where Ui(T) corresponds to ui(x).

Step 2 (Determine the degree of the polynomial solutions). Since we seek

4

polynomial solutions

Ui(T) =
Mi
∑

j=0

aijT
j , (7)

the leading exponents Mi must be determined before the aij can be computed.

Substituting Ui(T) into (6), the coefficients of every power of T in every equa-
tion must vanish. In particular, the highest degree terms must vanish. Since
the highest degree terms only depend on TMi in (7), it suffices to substitute
Ui(T) = TMi into (6). In the resulting polynomial system P(T) = 0, equating
every two possible highest exponents in every component Pi gives a linear
system for determining the Mi. The linear system is then solved for Mi.

If one or more exponentsMi remain undetermined, we assign a strictly positive
integer value to the free Mi, so that every equation in (6) has at least two
different terms with equal highest exponents in T.

Step 3 (Derive the algebraic system for the coefficients aij). To generate the
system for the unknown coefficients aij and wave parameters cj, substitute (7)
into (6) and set the coefficients of T j to zero. The resulting nonlinear algebraic
system for the unknown aij is parameterized by the wave parameters cj and
the parameters in (1), if any.

Step 4 (Solve the nonlinear parameterized algebraic system). The most diffi-
cult step of the method is analyzing and solving the nonlinear algebraic system.
To solve the system we designed a customized, yet powerful, nonlinear solver.

The nonlinear algebraic system is solved with the following assumptions:

• all parameters (lower-case Greek letters) in (1) are strictly positive. (Van-
ishing parameters may change the exponents Mi in Step 2).

• the coefficients of the highest power terms (aiMi
, i = 1, · · · , P) in (7) are

all nonzero (for consistency with Step 2); and,
• all cj are nonzero (demanded by the nature of the solutions we seek).

The algebraic system is solved recursively, starting with the simplest equation,
and continually back-substituting solutions. This process is repeated until the
system is completely solved.

To guide the recursive process, we designed functions to (i) factor, split, and
simplify the equations; (ii) sort the equations according to their complexity;
(iii) solve the equations for sorted unknowns; (iv) substitute solutions into the
remaining equations; and (v) collect the solution branches and constraints.

This strategy is similar to what one would do by hand. If there are numerous
parameters in the system or if it is of high degree, there is no guarantee that

5

our solver will return a suitable result, let alone a complete result.

Step 5 (Build and test solutions). Substituting the solutions from Step 4
into (7) and reversing Step 1, one obtains the explicit solutions in the original
variables. It is prudent to test the solutions by substituting them into (1).

2.2 Application of the tanh-method to a PDE

Consider the (2 + 1) dispersive long wave system [24],

{

uyt + vxx + uxuy + uuxy = 0,

vt + ux + uxxy + uxv + uvx = 0,
(8)

which is related to the Eckhaus system.

Applying chain rule (5) repeatedly to (8), we get the coupled ODEs,

2c2T (c3 + c1U)U ′ + c1c2(T
2 − 1)U ′2 + 2c21TV

′

+(T 2 − 1)(c2(c3 + c1U)U ′′ + c21V
′′) = 0,

c1(1 + 2(3T 2 − 1)c1c2 + V)U ′ + (c3 + c1U)V ′

+c21c2(T
2 − 1)(6TU ′′ + (T 2 − 1)U ′′′) = 0,

(9)

where T = tanh(c1x+ c2y + c3t+ δ).

To compute the degree of the polynomial solution(s), substitute U(T) = TM1

and V (T) = TM2 into (9) and pull off the exponents of T (see Table 1).
Removing non-dominant exponents and equating possible highest exponents,

Term Exponents of T

uyt {M1 − 2,M1}

vxx {M2 − 2,M2}

uxuy, uuxy {2M1, 2M1 − 2}

Term Exponents of T

vt {M2 − 1}

ux {M1 − 1}

uxxy {M1 − 3,M1 − 1,M1 + 1}

uxv, uvx {M1 +M2 − 1}

Table 1
The exponents of T in (9) after substituting Ui(T) = TMi

we find M1 = M2 (from uyt and vxx) or 2M1 = M2 (from uxuy or uuxy and
vxx) from the first equation. Then, from the second equation, we find M2 = 2

6

(from uxv or uvx and uxxy). This gives us two branches,







M1 = 1, U(T) = a10 + a11T,

M2 = 2, V (T) = a20 + a21T + a22T
2,

(10)







M1 = 2, U(T) = a10 + a11T + a12T
2,

M2 = 2, V (T) = a20 + a21T + a22T
2.

(11)

For the first branch, substituting (10) into (9) and equating the coefficients of
T j to zero gives

c1(2a22c1 + a211c2) = 0,

c1(2a22c1 + a211c2) = 0,

a21c
2
1 + a10a11c1c2 + a11c2c3 = 0,

a11c1(a22 + 2c1c2) = 0,

a11c1 + a11a20c1 + a10a21c1 − 2a11c
2
1c2 + a21c3 = 0,

a11a21c1 + a10a22c1 + a22c3 = 0.

(12)

Similarly, for the second branch, substituting (11) into (9) and setting the
coefficients of T j to zero yields

a11a12c1c2 = 0,

a212c1c2 = 0,

a21c
2
1 + a10a11c1c2 − 3a11a12c1c2 + a11c2c3 = 0,

2a22c
2
1 + a211c1c2 + 2a10a12c1c2 − 2a212c1c2 + 2a12c2c3 = 0,

2a22c
2
1 + a211c1c2 + 2a10a12c1c2 + 2a12c2c3 = 0,

c1(a12a21 + a11a22 + 2a11c1c2) = 0,

a12c1(a22 + 6c1c2) = 0,

a11c1 + a11a20c1 + a10a21c1 − 2a11c
2
1c2 + a21c3 = 0,

a12c1 + a12a20c1 + a11a21c1 + a10a22c1 − 8a12c
2
1c2 + a22c3 = 0.

(13)

For the first branch, solving (12) under the assumption that a11, a22, c1, c2, and
c3 are nonzero, we find

a10 = −c3
c1
, a11 = ±2c1,

a20 = 2c1c2 − 1, a21 = 0, a22 = −2c1c2.
(14)

Substituting (14) into (10) and returning to u(x, y, t) and v(x, y, t), we get

u(x, y, t) = −c3
c1

± 2c1 tanh(c1x+ c2y + c3t+ δ),

v(x, y, t) = 2c1c2 − 1− 2c1c2 tanh
2(c1x+ c2y + c3t + δ).

(15)

In the second branch, the equation a212c1c2 = 0 in (13) is inconsistent with our

7

assumption that a12, a22, c1, c2, and c3 are nonzero. This branch does not yield
a solution to (8).

Substituting (15) into (8), we verify that our solution does indeed satisfy the
original system.

3 Tanh method for nonlinear DDEs

The tanh-method can be adapted to solve nonlinear polynomial DDEs. Apart
from slight, yet important modifications, the steps mirror those in Section 2.

Given is a system of M polynomial DDEs,

∆(un+p1
(x),un+p2

(x), . . . ,un+pk
(x),

u′

n+p1
(x),u′

n+p2
(x), . . . ,u′

n+pk
(x), . . . ,

u
(r)
n+p1

(x),u
(r)
n+p2

(x), . . . ,u
(r)
n+pk

(x)) = 0, (16)

where the dependent variable u has M components ui, the continuous variable
x has N components xi, the discrete variable n has Q components nj , the k
shift vectors pi ∈ Z

Q, and u(r)(x) denotes the collection of mixed derivative
terms of order r. We assume that any arbitrary coefficients that parameterize
the system are strictly positive and denoted by lower-case Greek letters.

To simplify notation in the examples, we use dependent variables u, v, w, . . .
instead of u1, u2, u3, . . . , continuous independent variables x, y, t, . . . instead of
x1, x2, x3, . . . , and lattice points n,m, . . . , instead of n1, n2, etc. For example,
the two-component Volterra equation [34],

u̇n = un(vn − vn−1)

v̇n = vn(un+1 − un),
(17)

has u = (u1, u2) = (u, v), x = x1 = t, n = n1 = n, and p1 = p1 = −1,
p2 = p2 = 0, p3 = p3 = 1.

3.1 Algorithm of the tanh-method for DDEs

Step 1 (Transform the DDE into a nonlinear DDE in T). We seek solutions
in the traveling frame of reference,

ξn =
Q
∑

i=1

dini +
N
∑

j=1

cjxj + δ = d · n+ c · x+ δ, (18)

8

where the coefficients c1, c2, . . . , cN , d1, d2, . . . , dQ and the phase δ are all con-
stants. The dot (·) denotes the Euclidean inner product.

Using the properties of hyperbolic tangent, Tn = tanh ξn, repeatedly applying
the chain rule,

d•
dxj

=
∂ξn
∂xj

dTn

dξn

d•
dTn

= cj(1− T 2
n)

d•
dTn

, (19)

transforms (16) into

∆(Un+p1
(Tn), . . . ,Un+pk

(Tn),U
′

n+p1
(Tn), . . . ,U

′

n+pk
(Tn),

. . . ,U
(r)
n+p1

(Tn), . . . ,U
(r)
n+pk

(Tn)) = 0. (20)

It is important to note that for any s (s = 1, · · · , k), Un+ps
is a function of

Tn and not Tn+ps
. Using the identity,

tanh(x+ y) =
tanhx+ tanh y

1 + tanh x tanh y
, (21)

we can write

Tn+ps
=

Tn + tanhφs

1 + Tn tanhφs

, (22)

where

φs = ps · d = ps1d1 + ps2d2 + · · ·+ psQdQ, (23)

and psj is the j-th component of shift vector ps.

Step 2 (Determine the degree of the polynomial solutions). Seeking solutions
of the form

Ui,n(Tn) =
Mi
∑

j=0

aijT
j
n, (24)

we must first compute the leading exponents Mi. As in the continuous case,
we can do this by substituting only the leading term,

Ui,n+ps
(Tn) = TMi

n+ps
=

[

Tn + tanhφs

1 + Tn tanhφs

]Mi

, (25)

with φs in (23).

Suppose we are interested in balancing terms with shift pl, then terms with
shifts other than pl, say ps, will not effect the balance since Ui,n+ps

can be
interpreted as being of degree zero in Tn+pl

. For instance, if pl = 0, then

Ui,n+0(Tn) = TMi
n is of degree Mi in Tn and Ui,n+ps

(T) =
[

Tn+tanh φs

1+Tn tanh φs

]Mi

is of
degree zero in Tn.

9

Therefore, if we need to balance terms with shift pl, we substitute

Ui,n+ps
=







χiT
Mi
n , s = l,

χi, s 6= l,
(26)

into (20) and proceed as in Step 2 of Section 2. We then continue with the
union of the solutions found for l = 1, 2, . . . , k.

Step 3 (Derive the algebraic system for the coefficients aij). Substitute

Ui,n+ps
(Tn) =

Mi
∑

j=0

aijT
j
n+ps

=
Mi
∑

j=0

aij

[

Tn + tanhφs

1 + Tn tanhφs

]j

, (27)

into (20), with φs in (23). Applying (21) one can split tanhφs into powers of
tanh di. While doing so, we repeatedly clear the denominators. The resulting
nonlinear algebraic system for the unknowns aij is parameterized by c1, c2, . . . ,
cN , tanh(d1), tanh(d2), . . . , tanh(dQ) and any parameters (lower-case Greek
letters) in (16).

Step 4 (Solve the nonlinear parameterized system). This step is the same as
in the continuous case; we solve the system for aij in terms of the parameters
c1, c2, . . . , cN , tanh(d1), tanh(d2), . . . , tanh(dQ) and any parameters (lower-case
Greek letters) in (16).

Step 5 (Build and test the solitary wave solutions). Substitute the solution
found in Step 4 into (24) and reverse Step 1. Then, test the solutions (in the
original variables) by substitution into (16).

3.2 Example of a differential-difference equation

To illustrate the method, we derive an exact solution of the (2+1)-dimensional
Toda lattice [19],

∂2yn
∂x∂t

= exp (yn−1 − yn)− exp (yn − yn+1), (28)

where yn(x, t) is the displacement from equilibrium of the n-th unit mass under
an exponential decaying interaction force between nearest neighbors. To write
(28) as a polynomial DDE, set

∂un

∂t
= exp(yn−1 − yn)− 1. (29)

10

Then,

exp(yn−1 − yn) =
∂un

∂t
+ 1 (30)

and (28) becomes

∂2yn
∂x∂t

=
∂un

∂t
+ 1−

(

∂un+1

∂t
+ 1

)

=
∂un

∂t
− ∂un+1

∂t
. (31)

Integrating (31) and ignoring the integration constant, we find

∂yn
∂x

= un − un+1. (32)

Differentiating (29) with respect to x and using (30) and (32), we compute

∂2un

∂x∂t
=

∂

∂x
(exp(yn−1 − yn)− 1) (33)

= exp(yn−1 − yn)

(

∂yn−1

∂x
− ∂yn

∂x

)

, (34)

=

(

∂un

∂t
+ 1

)

[(un−1 − un)− (un − un+1)], (35)

=

(

∂un

∂t
+ 1

)

(un−1 − 2un + un+1) . (36)

So, (28) can be replaced by the polynomial equation (36).

By repeatedly applying the chain rule (19) to (36), one gets

c1c2(1− T 2
n)
[

2TnU
′

n − (1− T 2
n)U

′′

n

]

+
[

1 + c1(1− T 2
n)U

′

n

]

[Un−1 − 2Un + Un+1] = 0. (37)

where Tn = tanh(d1n + c1x+ c2t + δ).

For this system, we have three shifts p1 = −1, p2 = 0, and p3 = 1. Substituting
(26) into (37) and pulling off the highest exponents, we find {M1} for shift p1
and p3, and {M1,M1 + 1,M1 + 2, 2M1 + 1} for shift p2. With only one term,
neither shifts p1 or p3 contribute any solutions. Equating the two highest terms
from the shift p2, M1 + 2 and 2M1 + 1, we find M1 = 1.

Substituting (27) into (37), clearing the denominator and setting coefficients
of power terms in Tn to zero, gives

a11 − c1 = 0,

c1c2 − tanh2(d1)− a11c2 tanh
2(d1) = 0,

c1c2 − tanh2(d1)− 2a11c2 tanh
2(d1) + c1c2 tanh

2(d1) = 0.

(38)

11

Assuming d1, c1, and a11 nonzero, the solution of (38) is

a10 = arbitrary, a11 = c1 =
sinh2(d1)

c2
. (39)

Then, the closed form solution of (36) is

un(x, t) = a10 +
1

c2
sinh2(d1) tanh

[

d1n+
sinh2(d1)

c2
x+ c2t + δ

]

(40)

where a10, d1, c2 and δ are arbitrary. The algorithm must be repeated if any
of the parameters in (16) are set to zero.

3.3 Further examples

We applied the tanh algorithm to solve a variety of nonlinear lattice equations
in (1 + 1)-dimensions. The results are summarized in Table 2. For notational
simplicity, we denote ∂un

∂t
by u̇n.

The Ablowitz-Ladik equation [1,2] is a discretization of the nonlinear Schrödinger
equation. The Toda lattices [32,34,40] describe vibrations in mass-spring lat-
tices with an exponential interaction force. The Volterra type equations [3,17,34]
are discretizations of the Korteweg-de Vries (KdV) and modified KdV equa-
tions.

4 Description of DDESpecialSolutions.m

The format of DDESpecialSolutions is similar to the Mathematica function
DSolve. The output is a list of sub-lists with solutions and constraints. The
Backus-Naur form of the function is:

〈MainFunction〉→ DDESpecialSolutions[〈Equations〉, 〈Functions〉,
〈Discrete V ariables〉, 〈Continuous V ariables〉,
〈Parameters〉, 〈Options〉]

〈Options〉→ Verbose → 〈Bool〉 |InputForm → 〈Bool〉 |
DegreeOfThePolynomial → 〈List of Rules〉 |
NumericTest → 〈Bool〉 | SymbolicTest → 〈Bool〉

〈Bool〉→ True | False
〈List of Rules〉→{m[1] → Integer, m[2] → Integer, ...}

12

Equation Name Equations

Reference Solution(s)

Ablowitz-Ladik
Lattice

u̇n(t) = (α+ unvn)(un+1 + un−1)− 2αun

v̇n(t) = −(α+ unvn(vn+1 + vn−1) + 2αvn

[1,2]
un(t) =

α sinh2(d1)

a21

(

±1− tanh
[

d1n+ 2αt sinh2(d1) + δ
])

vn(t) = a21(±1 + tanh
[

d1n+ 2α sinh2(d1)t+ δ
]

)

Toda Lattice ün(t) = (u̇n + 1)(un−1 − 2un + un+1)

[40] un(t) = a10 ± sinh(d1) tanh[d1n± sinh(d1)t+ δ]

(2+1) Dimensional
Toda Lattice

∂2un

∂x∂t
(x, t) =

(

∂un

∂t
+ 1
)

(un−1 − 2un + un+1)

[19] un(x, t) = a10 +
1
c2
sinh2(d1) tanh

[

d1n+ sinh2(d1)
c2

x+ c2t+ δ
]

Another Toda
Lattice

u̇n(t) = un(vn − vn−1)

v̇n(t) = vn(un+1 − un)

[32]
un(t) = − coth(d1)c1 + c1 tanh(d1n+ c1t+ δ)

vn(t) = − coth(d1)c1 − c1 tanh(d1n+ c1t+ δ)

Relativistic Toda
Lattice

u̇n(t) = (1 + αun)(vn − vn−1)

v̇n(t) = vn(un+1 − un + αvn+1 − αvn−1)

[34]
un(t) = − 1

α
− c1 coth(d1) + c1 tanh(d1n+ c1t+ δ)

vn(t) =
c1

α
coth(d1)−

c1

α
tanh(d1n+ c1t+ δ)

Another Relativistic
Toda Lattice

u̇n(t) = (un+1 − vn)vn − (un−1 − vn−1)vn−1

v̇n(t) = vn(un+1 − un)

[32]
un(t) = coth(d1)c1 + c1 tanh(d1n+ c1t+ δ)

vn(t) = coth(d1)c1 + c1 tanh(d1n+ c1t+ δ)

Volterra Lattice
u̇n(t) = un(vn − vn−1)

v̇n(t) = vn(un+1 − un)

[34]
un(t) = −c1 coth(d1) + c1 tanh(d1n+ c1t+ δ)

vn(t) = −c1 coth(d1)− c1 tanh(d1n+ c1t+ δ)

Discretized mKdV
Lattice

u̇n(t) = (α− u2n)(un+1 − un−1)

[3] un(t) = ±√
α tanh(d1) tanh[d1n+ 2α tanh(d1)t+ δ]

Hybrid Lattice u̇n(t) = (1 + αun + βu2n)(un−1 − un+1)

[17] un(t) =
−α±

√
α2−4β tanh(d1)

2β tanh
[

d1n+ α2
−4β
2β tanh(d1)t+ δ

]

Table 2
Examples of DDEs and their solutions computed with DDESpecialSolutions.m.

13

The main function, DDESpecialSolutions , uses five subroutines corresponding
to the five steps of the algorithm.

(1) DDESpecialSolutionsVarChange returns a list of nonlinear DDEs in Tn.
(2) DDESpecialSolutionsmSolver uses the result from DDESpecialSolutions-

VarChange to determine the degree(s), Mi, of the polynomial solutions.
(3) DDESpecialSolutionsBuildSystem uses the output of DDESpecialSolu-

tionsVarChange and DDESpecialSolutionsmSolver to build the nonlinear
algebraic system for the aij . The output of DDESpecialSolutionsBuildSys-
tem is a list of sub-lists containing the algebraic system, the unknowns,
the wave parameters (di, cj), the parameters (α, β, . . .), and the nonzero
variables (ai,Mi

, di, cj, α, β, . . .).
(4) Algebra‘AnalyzeAndSolve‘AnalyzeAndSolve solves the system returned by

DDESpecialSolutionsBuildSystem.
(5) DDESpecialSolutionsBuildSolutions builds and tests the solutions using

the output from Algebra‘AnalyzeAndSolve‘AnalyzeAndSolve, DDESpe-

cialSolutionsmSolver , and the original system of DDEs.

5 Discussion and Conclusions

We presented a straightforward algorithm to compute special solutions of non-
linear polynomial DDEs, without using explicit integration. We designed the
symbolic package DDESpecialSolutions.m to find traveling wave solutions of
nonlinear DDEs involving the tanh functions. Our code is designed to han-
dle DDEs with multiple continuous variables and/or multiple lattice points
(n,m, · · ·). However, we were unable to find semi-discrete lattices with multi-
ple lattice points in the literature.

While the software reproduces the known solutions for many equations, there
is no guarantee that the code will compute the complete solution set of all
polynomial solutions involving the tanh function, especially when the DDEs
have parameters. This is due to restrictions on the form of the solutions and
the limitations of the algebraic solver. Furthermore, the nonlinear constraints
which arise in solving the nonlinear algebraic system may be quintic or of
higher degree, and therefore unsolvable in analytic form. Also, since our soft-
ware package is fully automated, it may not return the solutions in the simplest
form.

Often, the nonlinear solver returns constraints on the wave parameters cj and
the external parameters (lower-case Greek letters), if any. In principle, one
should verify whether or not such constraints affect the results of the previous
steps in the algorithm. In particular, one should verify the consistency with
the results from Step 2 of the algorithm.

14

There are several ways our algorithm could be generalized. One could look
for solutions other than polynomials in tanh. Rational solutions would be
an obvious choice since Tn+pj

is a rational expression in Tn. One may try
to compute exact solutions in terms of functions f (other than tanh). We
restricted our algorithm to tanh solutions because f(ξn+pj

) = tanh(ξn+pj
)

can be expressed in f(ξn) = tanh(ξn) via

f(ξn+pj
) = tanh(ξn+pj

) =
tanh(ξn)+tanh(φj)

1+tanh(ξn) tanh(φj)
=

f(ξn)+tanh(φj)

1+f(ξn) tanh(φj)
, (41)

which allowed us to use chainrule (19). If tanh were replaced by another func-
tion f , the function must have the property that f(ξn+pj

) can be expressed as
some function of f(ξn). Otherwise a modified chain rule for f would no longer
work.

Acknowledgements

This material is based upon work supported by the National Science Foun-
dation (NSF) under Grants Nos. CCR-9901929, DMS-9732069 and DMS-
9912293. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect
the views of NSF.

WH thankfully acknowledges the hospitality and support of the Department of
Applied Mathematics of the University of Stellenbosch, South Africa, during
his sabbatical visit in Spring 2001. Part of the work was done at Wolfram
Research, Inc., while WH was supported by a Visiting Scholar Grant in Fall
2000.

The authors thank P. Blanchard, J. Blevins, J. Heath, J. Milwid, and M.
Porter-Peden for their help with the project.

Appendix A. Test run description

We illustrate the use of the package DDESpecialSolutions.m on a PC. Users
should have access to Mathematica v. 3.0 or higher.

Put the package in a directory, say myDirectory, on drive C. Start a Mathe-

matica notebook session and execute the commands:

SetDirectory["c:\\myDirectory"]; (* specify directory *)

15

<<DDESpecialSolutions.m (* read in the package *)

DDESpecialSolutions[

{D[u[n, t], t] == (1 + alpha*u[n, t])*(v[n, t] - v[n - 1, t]),

D[v[n, t], t] == v[n, t]*(u[n+1, t] - u[n, t] + alpha*v[n+1, t] -

alpha*v[n - 1, t])

}, {u, v}, {n}, {t}, {alpha},

Verbose -> False, NumericTest -> True, SymbolicTest -> True

(*, DegreeOfThePolynomial -> {m[1] -> 1, m[2] -> 1} *)];

If the DegreeOfThePolynomial → {m[1] → 1, m[2] → 1} were specified, the
code would continue with this case only and not attempt to compute the
degrees of the polynomials U(Tn) and V (Tn).

The output of the above is:

DDESpecialSolutionsmSolver::“remove” :
The potential solutions {{m[1] → 1, m[2] → 2}} are being removed because
they are (i) negative, (ii) contain freedom, (iii) fail to balance highest expo-
nent terms from two different terms in the original system. If Mi < 0, then
the transformation u → 1/v may result in a system that DDESpecialSolu-
tions can solve.

Numerically testing the solutions.

Symbolically testing the solutions.

{{{u(n, t) → −
(

1 + α c(2) coth(c(1))− α c(2) tanh(phase + n c(1) + t c(2))

α

)

,

v(n, t) → c(2) (coth(c(1))− tanh(phase + n c(1) + t c(2)))

α
}}}

The package DDESpecialSolutions.m has been tested on various PCs with
Mathematica versions 3.0, 4.0, 4.1 and 5.0.

References

[1] M.J. Ablowitz, J.F. Ladik, J. Math. Phys. 16 (1975) 598–603.

[2] M.J. Ablowitz, J.F. Ladik, Stud. Appl. Math. 55 (1976) 213–229.

[3] M.J. Ablowitz, J.F. Ladik, Stud. Appl. Math. 57 (1977) 1–12.

[4] V.E. Adler, S.I. Svinolupov, R.I. Yamilov, Phys. Lett. A 254 (1999) 24–36.

16

[5] V.E. Adler, A.B. Shabat, R.I. Yamilov, Theor. Math. Phys. 125 (2000) 1603–
1661.

[6] D. Baldwin, Ü. Göktaş, W. Hereman, L. Hong, R.S. Martino, J.C. Miller,
Symbolic computation of exact solutions expressible in hyperbolic and elliptic
functions for nonlinear PDEs, J. Symb. Comp. (2003) in press.

[7] D. Baldwin, Ü. Göktaş, W. Hereman, L. Hong, R.S. Martino, J.C. Miller,
PDESpecialSolutions.m: A Mathematica program for the symbolic computation
of exact solutions expressible in hyperbolic and elliptic functions for nonlinear
PDEs, 2001, http://www.mines.edu /fs home/whereman/.

[8] D. Baldwin, Ü. Göktaş, W. Hereman, L. Hong, R.S. Martino, J.C. Miller,
DDESpecialSolutions.m: A Mathematica program for the symbolic computation
of hyperbolic tangent solutions of nonlinear differential-difference equations,
2003, http://www.mines.edu /fs home/whereman/.

[9] I.Yu. Cherdantsev, R.I. Yamilov, Physica D 87 (1995) 140–144.

[10] I.Yu. Cherdantsev, R. Yamilov, Local master symmetries of differential-
difference equations, in: D. Levi, L. Vinet, P. Winternitz (Eds.), Symmetries
and Integrability of Difference Equations, CRM Proc. & Lect. Notes 9, AMS,
Providence, Rhode Island, 1996, pp. 51–61.

[11] E. Fan, J. Phys. A.: Math. Gen. 35 (2002) 6853–6872.

[12] E. Fan, J. Phys. A: Math. Gen. 36 (2003) 7009–7026.

[13] E. Fan, Chaos, Solitons and Fractals 16 (2003) 819–839.

[14] E. Fermi, J. Pasta, S. Ulam, Collected papers of Enrico Fermi II, University of
Chicago Press, Chicago, Illinois, 1965, p. 978.

[15] W. Hereman, J.A. Sanders, J. Sayers, J.P. Wang, Symbolic Computation of
Conserved Densities, Generalized Symmetries, and Recursion Operators for
Nonlinear Differential-Difference Equations, in: D. Levi, P. Winternitz (Eds.),
CRM Proc. & Lect. Notes, AMS, Providence, Rhode Island, 2004, submitted.

[16] M. Hickman, W. Hereman, Proc. Roy. Soc. Lond. A 459 (2203) 2705–2729.

[17] R. Hirota, M. Iwao, Time-discretization of soliton equations, in: D. Levi,
O. Ragnisco (Eds.), SIDE III–Symmetries and Integrability of Difference
Equations, CRM Proc. & Lect. Notes 25, AMS, Providence, Rhode Island,
2000, pp. 217–229

[18] M. Kac, P. van Moerbeke, Adv. Math. 16 (1975) 160–169.

[19] K. Kajiwara, J. Satsuma, J. Math Phys. 32 (1991) 506–514.

[20] D. Levi, O. Ragnisco, Lett. Nuovo Cimento 22 (1978) 691–696.

[21] D. Levi, R.I. Yamilov, J. Math. Phys. 38 (1997) 6648–6674.

[22] Z.B. Li & Y.P. Liu, Comp. Phys. Comm. 148 (2002) 256–266.

17

http://www.mines.edu
http://www.mines.edu

[23] Y.P. Liu, Z.B. Li, Comp. Phys. Comm. 155 (2003) 65–76.

[24] A. Maccari, Nonlinearity 15 (2002) 807–815.

[25] A.V. Mikhailov, A.B. Shabat, R.I. Yamilov, Usp. Mat. Nauk 24 (1987) 3–53;
(Engl. Transl. Russian Math. Surveys 42 (1987) 1–63.

[26] A.V. Mikhailov, A.B. Shabat, V.V. Sokolov, The symmetry approach to
classification of integrable equations, in: V.E. Zakharov (ed.), What is
Integrability?, Springer Verlag, Berlin, 1990, pp. 115–184.

[27] E.J. Parkes, B.R. Duffy, P.C. Abbott, Phys. Lett. A 295 (2002) 280–286.

[28] S.N.M. Ruijsenaars, Comm. Math. Phys. 133 (1990) 217–247.

[29] A.B. Shabat, R.I. Yamilov, Leningrad Math. J. 2 (1991) 377–400.

[30] A.B. Shabat, R.I. Yamilov, Phys. Lett. A 227 (1997) 15–23.

[31] V.V. Sokolov, A.B. Shabat, Sov. Scient. Rev. C; Math. Phys. Rev. 4 (1984)
221–280.

[32] Yu.B. Suris, J. Phys. A: Math. Gen. 30 (1997) 1745–1761.

[33] Yu.B. Suris, J. Phys. A: Math. Gen. 30 (1997) 2235–2249.

[34] Yu.B. Suris, Miura transformations for Toda-type integrable systems, with
applications to the problem of integrable discretizations, Preprint SFB 288,
Fachbereich Mathematik, Technische Universität Berlin, Berlin, Germany, 1998.

[35] Yu.B. Suris, Rev. Math. Phys. 11 (1999) 727–822.

[36] Yu.B. Suris, Miura transformations for Toda-type integrable systems, with
applications to the problem of integrable discretizations, Sfb288 Preprint 367,
Department of Mathematics, Technical University Berlin, Berlin, Germany,
2001.

[37] Yu.B. Suris, The problem of integrable discretization: Hamiltonian approach.
A skeleton of the book, Sfb288 Preprint 479, Department of Mathematics,
Technical University Berlin, Berlin, Germany, 2002.

[38] S.I. Svinolupov, R.I. Yamilov, Phys. Lett. A 160 (1991) 548–552.

[39] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices,
AMS Mathematical Surveys and Monographs 72, AMS, Providence, Rhode
Island, 2000.

[40] M. Toda, Theory of Nonlinear Lattices, Springer Verlag, Berlin, Germany, 1981.

[41] R.I. Yamilov, Classification of Toda type scalar lattices, in: V. Makhankov, I.
Puzynin, O. Pashaev (Eds.), Proc. 8th Int. Workshop on Nonlinear Evolution
Equations and Dynamical Systems, NEEDS’92, Dubna, U.S.S.R., 1992, World
Scientific, Singapore, 1993, pp. 423–431.

[42] R.I. Yamilov, J. Phys. A: Math. Gen. 27 (1994) 6839–6851.

18

Equation Name Equations Solution(s) Ref.

Ablowitz-Ladik
Lattice

u̇n(t) = (α+unvn)(un+1+un−1)−2αun

v̇n(t) =−(α+unvn(vn+1+vn−1)+2αvn

un(t) =
α sinh2(d1)

a21

(

±1−tanh
[

d1n+2αt sinh2(d1)+δ
])

vn(t) = a21(±1+tanh
[

d1n+2α sinh2(d1)t+δ
]

)

[1,2]

Toda Lattice ün(t) = (u̇n+1)(un−1−2un+un+1) un(t) = a10 ± sinh(d1) tanh[d1n± sinh(d1)t+δ] [40]

(2+1) Dimensional
Toda Lattice

∂2un

∂x∂t
(x, t) =

(

∂un

∂t
+1
)

(un−1−2un+un+1) un(x, t) = a10+
1
c2
sinh2(d1) tanh

[

d1n+
sinh2(d1)

c2
x+c2t+δ

]

[19]

Another
Toda Lattice

u̇n(t) = un(vn−vn−1)

v̇n(t) = vn(un+1−un)

un(t) =−coth(d1)c1+c1 tanh(d1n+c1t+δ)

vn(t) =−coth(d1)c1−c1 tanh(d1n+c1t+δ)
[32]

Relativistic
Toda Lattice

u̇n(t) = (1+αun)(vn−vn−1)

v̇n(t) = vn(un+1−un+αvn+1−αvn−1)

un(t) =−1

α
−c1 coth(d1)+c1 tanh(d1n+c1t+δ)

vn(t) =
c1
α
coth(d1)−

c1
α
tanh(d1n+c1t+δ)

[34]

Another Relativistic
Toda Lattice

u̇n(t) = (un+1−vn)vn−(un−1−vn−1)vn−1
v̇n(t) = vn(un+1−un)

un(t) = coth(d1)c1+c1 tanh(d1n+c1t+δ)

vn(t) = coth(d1)c1+c1 tanh(d1n+c1t+δ)
[32]

Volterra Lattice
u̇n(t) = un(vn−vn−1)

v̇n(t) = vn(un+1−un)

un(t) =−c1 coth(d1)+c1 tanh(d1n+c1t+δ)

vn(t) =−c1 coth(d1)−c1 tanh(d1n+c1t+δ)
[34]

Discretized mKdV
Lattice

u̇n(t) = (α−u2
n)(un+1−un−1) un(t) = ±√

α tanh(d1) tanh[d1n+2α tanh(d1)t+δ] [3]

Hybrid Lattice u̇n(t) = (1+αun+βu2
n)(un−1−un+1) un(t) =

−α±
√

α2−4β tanh(d1)

2β
tanh

[

d1n+
α2

−4β
2β

tanh(d1)t+δ
]

[17]

Table 3. Alternate version of Table 2.

19

	Introduction
	Traveling Wave Solutions of PDEs
	Algorithm of the tanh-method for PDEs
	Application of the tanh-method to a PDE

	Tanh method for nonlinear DDEs
	Algorithm of the tanh-method for DDEs
	Example of a differential-difference equation
	Further examples

	Description of DDESpecialSolutions.m
	Discussion and Conclusions
	References

