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Abstract

A general computational method for the accurate calculation of rotationally and
vibrationally excited states of tetraatomic molecules is developed. The resulting
program is particularly appropriate for molecules executing wide-amplitude mo-
tions and isomerizations. The program offers a choice of coordinate systems based
on Radau, Jacobi, diatom-diatom and orthogonal satellite vectors. The method

includes all six vibrational dimensions plus three rotational dimensions. Vibration-
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rotation calculations with reduced dimensionality in the radial degrees of freedom

are easily tackled via constraints imposed on the radial coordinates via the input

file.
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PROGRAM SUMMARY

Title of program: WAVRA4
Catalogue number: (supplied by Elsevier)

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N.

Ireland (see application form in this issue).

Licensing provisions: Persons requesting the program must sign the standard CPC

nonprofit use license (see licence agreement printed in every issue).

Computer: Developed under Tru64 UNIX, ported to Microsoft Windows and Sun

Unix.

Operating systems under which the program has been tested: Tru64 Unix, Microsoft

Windows, Sun Unix.

Programming language used: Fortran 90.

Memory required to execute with typical data: case dependent.

No. of lines in distributed program, including test data, etc: 10385.

Keywords: ro-vibrational, bound states, wavefunctions, body-fixed, discrete variable

representation, finite basis representation, tetraatomic, 4-atom

Nature of physical problem: WAVRA4 calculates the bound ro-vibrational levels and
wavefunctions of a tetraatomic system using body-fixed coordinates based on gen-

eralised orthogonal vectors.

Method of solution: The angular coordinates are treated using a finite basis rep-
resentation (FBR) based on products of spherical harmonics. A discrete variable
representation (DVR) [1] based on either Morse-oscillator-like or spherical-oscillator

functions [2] is used for the radial coordinates. Matrix elements are computed using



an efficient Gaussian quadrature in the angular coordinates and the DVR approx-
imation in the radial coordinates. The solution of the secular problem is carried

through a series of intermediate diagonalisations and truncations.

Restrictions on the complexity of the problem: (1) The size of the final Hamiltonian
matrix that can be practically diagonalised; (2) The DVR approximation for a ra-
dial coordinate fails for values of the coordinate near zero - this is remedied only

for one radial coordinate by using analytical integration.
Typical running time: problem-dependent

Unusual features of the program: A user-supplied subroutine to evaluate the poten-

tial energy is a program requirement.
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LONG WRITE-UP

1 Introduction

Recent interest in understanding wide-amplitude (‘floppy’) molecular motions
has been stimulated by the drive to develop theories of intermolecular forces,
isomerization and coherent control of chemical reactions. Methods for calcu-
lating the rotation-vibration energy levels and wavefunctions of floppy systems
have advanced greatly in the last decade but remain technically demanding
and computationally expensive even for molecules and complexes as small as
tetraatomics [1-12]. In this paper we present a new code, WAVR4, specially
adapted for calculating the bound ro-vibrational energy levels and wavefunc-

tions of tetraatomic systems executing wide-amplitude motions.

Coordinate systems based on generalised orthogonal vectors have become a
very popular choice in dealing with wide-amplitude motions in polyatomic sys-
tems. The approach used in this work was suggested by Chapuisat and Tung [1]
and developed further in Refs. [13] and [14]. Recently Mladenovié¢ gave a very
concise account of the approach together with a detailed description of appli-
cations to some molecules [5]. Because of singularities in the Hamiltonian, we
employ a non-direct-product finite basis representation (FBR) for angular co-
ordinates [5]. While the discrete variable representation (DVR) method proved
to be very efficient [15,16] and we use it for radial functions, the non-direct-
product part of our basis cannot be transformed effectively to a DVR and so
integration of the angular potential function must be performed. Therefore we
use a mixed FBR-DVR basis representation and the traditional explicit se-

quential diagonalization and truncation approach [16]. Thus the computation



is performed in several steps.

The program offers a choice of coordinate systems based on Radau, Jacobi,
diatom-diatom and orthogonal satellite vectors (see Fig. 1). Vibration-rotation
calculations with reduced dimensionality in the radial degrees of freedom are
easily tackled via constraints imposed on the radial coordinates via the input
file. So far WAVR4 has been extensively tested for the Ary-HF trimer (5D vi-
bration plus 3D rotation) [17] and acetylene (6D vibration) [18]. The program
is general and should be applicable to a large range of four-atom systems,
particularly those undergoing large amplitude motion. There is no restriction

on the form of the molecular potential energy function.

The WAVRA4 code is highly complementary to the RVIB4 and RVIBNH3 codes
of Carter, Colwell and Handy [19]. The latter codes employ non-orthogonal
coordinate systems and kinetic energy operators based on valence coordinates
adapted for formaldehyde-, hydrogen peroxide- acetylene-, and ammonia-like
systems. Finite basis representations are used for all coordinates in RVIB4
and RVIBNH3 and potential energy functions up to sextic in any of the six
coordinates are allowed. RVIB4 and RVIBNH3 are available via the CCP6

web site [20].



2 Computational method
2.1 Formulating and solving the 6D vibration + 3D rotation Hamiltonian

One of the most attractive features of generalised orthogonal coordinates is

the simplicity of the kinetic energy operator,
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where j1, are reduced masses, g, are the lengths of internal vectors q, and
Tyng is the angular kinetic operator given in Eq. (37) of Ref. [5]. The operator
Ting describes both bending and rotation of the molecule and so our reference
to it as an “angular” operator is only for brevity. A very important feature
of Eq. (1) is its invariance under various choices of orthogonal vectors. We
have implemented several choices such as Radau, Jacobi, diatom-diatom and
orthogonal satellite vectors considered in Refs. [3] and [5]. For the case of
tetraatomic molecules there are three values of . Once the coordinate scheme
is chosen, the body-fixed axis system is defined so that the z-axis goes along

vector qsz, and the zz plane is defined by q3 and q;.

There are two types of singularities associated with T},s. One singularity cor-
responds to the angle between q; and q; being zero or 7 (so that the zz plane
is not defined). Since we are interested in wide-amplitude motion we must
consider the full angular dynamical range. The nature of this singularity is
known and can be handled by using a non-direct-product angular basis [21]
as discussed below. For a recent, general discussion see for example Ref. [22].
Another type of singularity arises when a radial coordinate is equal to zero.

As discussed below, we have considered only the most frequently occurring



case when g3 is equal to zero (so that the z-axis is not defined).

Our treatment of the angular problem is essentially close to that of Mladenovié¢
[5] who gave the matrix elements of T,n, in a parity-adapted angular basis.
For convenience and also because we use slightly different phase factors, the
matrix elements that arise in our treatment are presented in the Appendix.

Our primitive angular basis functions are

v K k j 1, Jp) = Ngy* P75 Y%7, K, M)+
(—1)7 PRy R g K, M) (2)

where 7 is an auxiliary number taking the values —1 and +1, J and K are the
usual rotational quantum numbers associated with the total angular momen-
tum and its projection on the body-fixed z-axis, j and [ are angular momenta
associated with rotation of q; and q» respectively, k is the projection of [ onto
qs3, p takes the values 0 and 1 for even and odd total parity respectively, Ng;
is a normalization factor, Pf are associated Legendre functions of the angle 6,
between q3 and qj, Y;-k are spherical harmonics of the body-fixed angles (65, )
defining the direction of qs and |J, K, M) are symmetric top eigenfunctions.
When v = +1 our angular basis functions are the same as in Ref. [5], but they

differ by a factor (—1)7™PtX when v = —1.

The radial basis functions are similar to those employed in the triatomic code
DVR3D [24]. The two possible choices are Morse-oscillator-like functions and

spherical-oscillator functions. Morse-oscillator-like functions are defined as [25]

BY2 Ny exp(—y/2)y T2 L2 (y) (3)



where y = aexp[—8(r — 1)}, @ = 4D,/B, B = w.(u/2D)2, L2(y) is
Laguerre polynomial, y is the reduced mass associated with radial distance
r and N,, is a normalization factor. The set {r., w., D.} is treated as a
set of parameters to be optimized, although they can be associated with the
equilibrium distance, fundamental frequency and dissociation energy. In the
case where the distance 7 can be zero, spherical-oscillator functions [23] are a

better choice,

V2BY4 N,y 12 exp(—y/2)y D2 L2 (y) (4)

where y = Br?, f = (uw,.)'/? and the parameter set {1, w,} is optimized. It
is straightforward to convert the basis functions (3) and (4) to a DVR basis
[24].

Our full primitive basis is a product of the FBR angular basis (2) and a
radial DVR basis obtained from Eq. (3) or Eq. (4). A major advantage of
Eq. (1) is that it helps separate radial and angular coordinates because no
mixed-derivative angular-radial operators are present. Thus, having radial co-
ordinates represented in DVR, the whole problem can be constructed from a
set, of angular sub-problems. Furthermore the use of the DVR approximation
for the potential energy and 1/¢? in T, requires only the angular integrals to
be computed explicitly. Therefore the whole structure of the Hamiltonian ma-
trix is very sparse: it consists of angular (bending-rotation) sub-blocks which
are coupled by the matrix elements of radial kinetic energy operators that are

diagonal in all angular indices.

The primitive secular matrix is very big and we implemented explicit sequen-

tial diagonalization and truncation to solve the corresponding eigenvalue prob-



lem (see for example Ref. [26,16]). The computation is performed in several
steps. First the angular kinetic energy operator is separated into sub-blocks
diagonal in K, T, , and sub-blocks off-diagonal in K with AK = =1, TK K

ang
The angular problem associated with T;gg + V is solved separately for every
K sub-block for all radial grid triple points (q1, g2, ¢3). Here V' is the full (6D)
potential with fixed ¢, g2 and ¢3. Only eigenfunctions below a certain energy
cutoff, Eélll% are selected for later use. Then the kinetic energy operators in the
radial coordinates ¢; and ¢, are included and the respective matrices are con-
structed in the angular plus (g1, ¢2) basis and solved for eigenvectors for every
g3 point. Again only the lowest states, this time below Ec(ﬁ)t, are selected. Then
the kinetic energy operator in g3 is included and the full 6D vibrational matrix
is computed. During this step only the eigenvalues below Ec(ii are found. Up
to and including this stage, in our implementation, terms in the Hamiltonian
are evaluated setting J equal to K [27]. Hence for K = 0 the eigenvalues give
the desired final vibrational levels. For K > 0 K-optimized eigenvectors are
obtained for further use in the final ro-vibrational step (where the value of J

is restored and the corresponding missing terms are properly included in the

Hamiltonian).

An important feature of our basis (2) is that the contracted eigenvectors for
p = 0 and p = 1 are identical for the K > 0 diagonal sub-blocks because
our basis is such that the matrix elements of Talﬁg + V' are identical. Hence
the contracted eigenvectors for p = 0 can be used for both p =0 and p =1

in the final step. In this final step, AK = 41 sub-blocks are included and

ro-vibrational levels are computed.

Depending on the size of the angular basis, the computation of the three-

dimensional angular integrals of the potential function may be the most time-
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consuming part of the calculation. Therefore it is important to make it as
efficient as possible. To facilitate this the code offers two options. The first op-
tion is to expand the potential function in the J = 0, totally symmetric angular
functions defined by Eq. (2) at every radial triple and compute the angular
integrals analytically. This allows the expansion to be re-used for all angular
integrals. This strategy is particularly useful when high accuracy integrals are
desired. The second option is to perform direct integration over the angles
using Gaussian quadrature. It turned out that in the real applications consid-
ered to date, the second option employing the minimal number of quadrature
points gave us the best ratio of performance to accuracy. This was achieved
after implementing an algorithm [28] which takes into account the symmetry
properties of the product of two primitive basis functions. The summation is
performed over only half of the quadrature points: it uses the symmetric part
of the potential if the product is symmetric and the anti-symmetric part if the
product is anti-symmetric. In choosing the number of quadrature points, we
used the minimum number of points required to maintain the orthogonality
of the basis functions. These numbers are 7™ + 1, k™ 4+ 1 and [™* + 1 for
the coordinates 61, ¢ and 6y respectively. Without taking into account the
symmetry properties of the basis functions one would have to use 2™ + 1,
2k™ax + 1 and 20™2* 4+ 1 points respectively. So the approximately twofold

saving for every angular coordinate gave an almost eightfold saving overall.

2.2 Symmetry

The symmetry which is always present is space-fixed inversion. It separates

the states of even (p = 0) and odd (p = 1) parity. The inversion symmetry
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is implemented in the angular basis (see Appendix). Furthermore, it allows
a further twofold reduction of the Gaussian quadrature grid for the angle ¢
because the inversion transforms ¢ — 27 — ¢. So the range for the grid can
be chosen from zero to 7 only although ¢ is physically defined from zero to

2.

In addition, the permutation of two identical atoms may be also feasible. In
the present code only those symmetries are supported that reverse a vector
connecting two identical atoms. This has a straightforward effect on the an-
gular matrix, making it block diagonal in even and odd quantum numbers: j
if the permutation reverses ¢1, [ if ¢o, and j + [ if ¢3. To separate these we use
the numbers j-parity, [-parity, and jl-parity which take values 0 (even) and 1
(odd).

2.8 Breakdown of the DVR approzimation for q3

As mentioned above it is possible for some systems for a radial coordinate to
take values close to zero. This results in failure of our quadrature approxima-
tion for the 1/¢? term in the angular kinetic energy operator Tyy,. The problem
of the 1/r?-type singularity is well known in triatomic systems such as Hj and
Ars, for example if treated using Jacobi coordinates [29,30]. The reader is re-
ferred to an excellent paper [31] which explicitly considered the problem of
singularities and implications made by the choice of direct-product or non-
direct-product bases. The conclusion of Ref. [31] is that strictly speaking one
needs a non-direct-product angular-radial basis to account fully for the 1/r?
singularity. However frequently a simpler direct-product approach works well

[29,30]. This simpler approach involves two ingredients: (1) the use of basis

12



functions with nonzero probability density at » = 0 if they are allowed by
symmetry and basis functions with zero probability density at » = 0 other-
wise; (2) the matrix elements of 1/r? are first computed analytically in FBR

and then converted to DVR.

The spherical-oscillator functions (4) have nonzero probability density at r = 0
if n = 0 and zero if n > 0. In fact the Gaussian quadrature points in r never
take the value zero exactly, but sample the area near it. Therefore we may
use 7 = 0 functions if the symmetry allows non-zero probability density at
r = 0 and n = 1 functions otherwise. To deal with the breakdown of the DVR
approximation for g3, an option is implemented to compute 1/¢2 (required in
Tyang) analytically [29]. We have not at present implemented similar options

for ¢; and go.

3 Program structure

The program is written in Fortran 90 taking full advantage of dynamic memory
allocation. All variables are explicitly declared. A diagram of the program flow

is present in Fig. 2.

The program main starts with initialization during which the input data are
read. The input file defines the molecule, its coordinate system and symmetry,
and the type and size of the basis. The size of the radial basis is essentially
the size of the radial grid. The size of the angular grid required for numerical
evaluation of expansion terms or matrix elements can be set manually or au-
tomatically. After the radial and angular grids are computed, the transforma-

tions of radial kinetic energy operators from FBR to DVR representation are
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performed. Next the expansion of the potential is computed and stored for fur-
ther use if necessary (expansion_flag = 1). To avoid calculating eigenvectors
at radial points which are too high in energy the subroutine test_potential
is used: if the minimal potential energy on the angular grid is higher than
a predefined value (margini) then that radial point is excluded from further

processing.

Then the program enters main loops over K, p, and permutation symmetries
(j-parity, [-parity and jl-parity). In step 1, the subroutine

angular_states_qnumbers returns the full set of all possible angular quantum
numbers for the given K, symmetry and the basis limits provided by the input
file. Next, the angular kinetic energy matrix is computed in angleT3D. Then
the matrix elements of the potential function are computed and the angular
problem is solved for eigenvalues and eigenvectors. All diagonalisations are
performed by calling standard LAPACK subroutines [32]. At the end of every
step the program saves the selected eigenvectors and eigenvalues to disk. These
vectors are read later by the subroutine mainj and optionally they can be
used again for another run of the program provided that the basis has not

been changed.

The program proceeds through steps 2 and 3 where further diagonalisations
and truncations are performed. In step 3, angleT3D is called again only if
analytical calculation of 1/¢2 has been requested. It is the responsibility of the
user to specify in the input file how the truncation proceeds. The truncation
can be based either on the number of eigenstates computed for a given grid
point (icut) or on the energy cutoff (encut). The former should be used only
when the radial grid is so small that selecting eigenstates using the energy

cutoff gives poor results because some of the grid points are completely or
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nearly removed. The details of relevant settings in the input file are given
below. The final step 4 is performed by the subroutine mainj which is called

only for K > 0.

4 Program use

4.1 Installing and running the code

BLAS and LAPACK 3.0 libraries [32] are supported by many vendors and also
can be freely downloaded from Netlib.org. They are assumed to be available.
The user is supplied with makefile and make.inc files which should be mod-
ified appropriately for correct references to compiler, linker and libraries. The
code is structured into several directories: the directory 12-3 contains the core
files and COMMON contains various auxiliary subroutines. The program comes
with a subset of LAPACKO95 (see Netlib.org) which is a collection of Fortran
90 interfaces to LAPACK. These are kept in directory LAPACK95. While stan-
dard LAPACK, the interfaces and the code describe integers as 32-bit, some
LAPACK implementations require 64-bit integers (e.g. Sun computers). An
alternative set of LAPACK interfaces is provided in LAPACK95. sun64 for this
purpose. Finally there is a directory test with sample input file, potential
function and test output file. Both input.txt and potential.f90 need to be
placed in a root directory where makefile resides before running make. Af-
ter running make, the user needs only to execute main.exe which reads from

input.txt and writes to output.txt.

At run time the program creates a number of unformatted data files. The files

x h6.dat and x_expansion.dat are temporary files for storing the matrix in

15



step 3 and the potential expansion respectively. The files xnnnn_Kn-n.dat
store eigenvectors and eigenvalues. The naming convention for these files uses
six integer numbers to represent symmetry (p, j-parity, [-parity and jl-parity,
all either 0 or 1), value of K (currently from 0 to 9) and step number (from 1

to 4).

4.2 The potential subroutine

The user must supply potential function v(ql,q2,q3,thetal,theta2,phi)
for the system under consideration. This must contain the following module

and be compatible with its interface

MODULE potential

INTERFACE v
FUNCTION v(ql,q2,q3,thetal,theta2,phi)
REAL(8), INTENT(IN) :: ql1,92,93,thetal,theta2,phi
REAL(8) :: v
END FUNCTION

END INTERFACE

END MODULE

A sample potential file is provided for the HCCH molecule [33].

16



4.8 Input file

WAVRA4 requires an input file for all runs. Not all parameters are used but all
must be present anyway. Apart from the first line, the data is given in free for-

“y»

mat but line positions are fixed. Any lines starting with are comments that
can hold a brief explanation of parameters. The units are: energies expressed
as the equivalent wavenumbers in cm ™, lengths in A, angles in radians, masses

in unified atomic mass units.
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Line 1:

Line 3:

Line 5:

Lines 7-9:

title

— A80 format, 80-character title.

massl, mass2, mass3, mass4

— reals, atom masses in unified atomic mass units.

[Here and below, ‘real’ is used to denote ‘double precision real’.]
opt

— integer, defines coordinate system: = 1, Jacobi; = 2, Radau;
= 3, diatom-diatom; = 4, orthogonal-satellite vectors. See Fig.

1

igq(i), re(i), we(i), De(i), nn(i)

— parameters for the radial basis in ¢, ¢o, and g3.

igq(1:3), integer: = 1, Morse-oscillator-like functions; = 2,
spherical-oscillator functions.

re(1:3), real: r, for Morse-oscillator-like functions and 7 for
spherical-oscillator functions.

we(1:3), real: w, in cm™!.

De(1:3), real: D, in cm™" (not used for spherical-oscillator func-
tions).

nn(1:3), integer: number of functions (i.e. grid size).

Note: If nn(i) = 1 then the i-th coordinate is frozen to the

value given below (see Line 26).
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Line 11:

Line 13:

Line 15:

angular_problem_only_flag, optimize_flag, test_flag,

expansion_flag

— integer flags.

angular problem only flag: = 0 (default), normal operation;
> 0, only 3D angular problem (in the coordinates 6, ¢ and 65)
is computed for the radial triple point specified in Line 26.
optimize_flag: currently not used.

test_flag: = 0, default; = 1 or 2, controls output level giving
progressively more test output.

expansion_flag: = 0, compute 3D FBR angular matrix ele-
ments using quadrature integration; = 1, compute angular ma-

trix elements through the expansion of the angular potential.

jmax, lmax, kmax, jrmax, krmax, j_parity_max,

1 parity max, jl_parity._max

— all integers, define the bending-rotation basis. The first five
numbers indicate maximum quantum numbers included for j, [,
k, J, and K respectively. The last three numbers indicate the
presence of permutational symmetry:

j_parity max: = 1, ¢; is reversible; = 0, no symmetry.

1 parity_max: = 1, ¢, is reversible; = 0, no symmetry.

jl-parity_max: = 1, g3 is reversible; = 0, no symmetry.

nel, ne2, ne3

— all integers, specify maximum quantum numbers for angular

expansion in 7, [, and k respectively.
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Line 17: ntl, nt, nphi, iauto

— all integers. The first three numbers specify the size of the
angular quadrature in 6, 6, and ¢ respectively. iauto: = 0,
WAVRA4 uses user-supplied numbers; = 1, 2, or 3, WAVR4 au-
tomatically defines minimum, double or quadruple grid sizes as

described in Table 1.

Line 19: enzero

— real, zero-point energy, used only if not computed in the present run.

Line 21: icut0O, icutl, icut2, icut3, icuté

— all integers. icutN defines the number of eigenvectors com-
puted during every diagonalisation in step N. If icutN = 0 then
all eigenvectors are found. If icutN > 0 then only icutN low-
est eigenvectors are found. If icutN < 0 then encutN controls
the number of computed eigenvalues and defines the maximum

energy for computed eigenvalues.

Note: step 0 is reserved for future use.
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Line 22:

encut0, encutl, encut2, encut3, encutd

— all reals. encutN defines the energy cutoff used in step N. The

selection based on energy is always applied.

Note: if a cutoff based on a number of levels is desired, encuti1
and/or encut2 need to be set to a sufficiently large number.
This may be useful for removing some very high eigenstates

(particularly those on the edges of the radial grid).

WARNING: special considerations apply to steps 3 and 4. If
icut3/4 = 0 then all eigenvalues will be computed but no
eigenvectors. Most importantly, because Hamiltonian matrices
in steps 3/4 are created in a packed form, storage for eigenvec-
tors must be allocated separately. In practice this means that,
for initial calculations, it is safer to use truncation based on
numbers (i.e. setting positive icut3/4) rather than based on
energy encut3/4. If icut3/4 are negative, abs(icut3/4) are
used to reserve the storage for eigenvectors and it could happen
that there are more than abs(icut3/4) states below encut3/4.
However it is still possible to use the energy cutoff: icut3/4 must
be sufficiently big but not too big to make selective computation

of eigenvectors inefficient (i.e. less than 10% of the matrix size).
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Line 23:

Line 24:

Line 26:

Line 28:

margin0, marginl, margin2, margin3, margin4

—all reals. The only one used currently is margin1, which is used
to skip 3D angular calculation at a radial triple point if minimum
potential energy computed on the angular grid is higher than

marginl.

imargin0, imarginl, imargin2, imargin3, imargin4

— all integers, currently not used.

qe(1), qe(2), qe(3), qe(4), qe(5), qe(6)

— all reals. The values of qe(1), qe(2) and qe(3) define fixed
values of ¢i, ¢ and ¢z respectively if required by the options
specified in Lines 7-9 and 11. The values of qe(4), qe(5) and
qe(6) define fixed values of #;, 6, and ¢ respectively used to

compute pure 3D stretching states when jmax = lmax = 0.

stage_flag

— integer, from 0 (default) to 4. If set to a value greater than 0 the
program will attempt to read from disk eigenvectors saved on a
previous run of the program; the value indicates up to which step
the eigenvectors are already available. It is the responsibility of
the user to make sure that the eigenvectors correspond to the
current primitive basis and potential. The eigenvectors are saved
to disk files with names of the form xnnnn-Kn-n.dat where the
digits ‘n’ indicate the numbers p, j-parity, [-parity, jl-parity, K

and the step number respectively.
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Line 30: oner_flag

— integer: = 0, 1/¢2 is computed in DVR approximation; = 1,
1/q3 is computed analytically in the FBR and transformed to

the DVR (this is only valid for igq(3) = 2, see Lines 7-9).

iauto = 0 1 2 3
user grid minimal grid double grid quadruple grid
61 input Jmax + 1 2jmax + 1 4jmax + 1
0, input lmax +1 2max + 1 A max + 1
7 input (kmax +1)/2, kmax is odd  Kmax + 1 2kmax + 1

Emax/2 + 1, kmax 1 even

Table 1

The size of the angular grid depending on input options.

4.4 Test output

A test input file has been prepared. It is based on the HCCH potential energy
surface of Carter et al [33]. The basis set used for the test is rather small to
reduce the run time. Full J = 1 calculation takes about 10 minutes on a current
computer (e.g. Compaq Alpha or Sun workstation). The output file for the
test run is presented at the end of this paper. This output is slightly adapted
and truncated after the first few purely vibrational levels. The beginning of

the file reproduces the input file as read by the program.
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Appendix

Here we present matrix elements of Ty, in the angular basis given by Eq. (2).

It is useful to introduce radial functions

h? h?
b= + 5
YT T 2us3 5)
h? h?
by = T 6
2T 2003 T 2us43 (6)
h2
b — —. 7
’ 2#3(]?% ( )

J and p are strictly conserved and are therefore omitted in the formulae below.

The matrix elements diagonal in K are given by:

<’7’ Kak:jal|Tang|’Y’K7k7j7 l) = bl](] + 1) + b2l(l + 1)
+bs [J(J +1) = 2(K° + K — KF)]

<77 K7 kla j’ Z‘Tangh/: K7 ka j7 l) = b3 Slgn(k - ny) V 1+ 6K05k00;:]¢_7[{01_f_]c6k’,k+1

+bg sign (k" — YK)\/1 4 0k00x1C; i CrgOhr k-1,
<’YI = 17K> kl = 1>jal‘Tang"y = _17 K7 k= Oaja l) = _b3 Cj_,KCljm
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where Cji = \/l(l +1) — k(k £1). The quantity sign(/) takes the value —1
if I < 0 and +1 if I > 0. Inspection shows that these matrix elements do
not depend on the parity quantum number p. This allows the eigenvectors for
the K > 0 diagonal blocks to be re-used in the construction of the matrix

elements for the off-diagonal blocks.

The matrix elements off-diagonal in K are given by:

<% K'=K -1, k',j, Z|Tang|7a K,k,j, l) = —7b3Cx [Cljl:ign(y)ék’,k—fy

+sign(k — vK)y/1+ 5K15k00,s-f,§f(ﬁ{5k1,k] ) (11)
(3, K' = K + 1K, 5, Tung 7, K, k, 1, 1) = —yb3CH5 [CF8 60014
+sign(k — vK')y/1+ 5Ko5k00j_,;:iig§2)5k',k] , (12)
<’7/ = 1;K =1, kajallTangl’Y =-1,K= O,k,j, l>

— _b3CIOCj_,k(_1)J+p7 (13)
<’)/I = 1,K =1, k+ 1,j,l|Tang|7 = _17K = Oakaja l)

= —b3\/1 4 6k C o Ch(—1)7, (14)

<7I = 1;KI = K-i—l,k, = 1ajal|Tang|/Y: _1aKak = O,j,l>

== —bg\/ ]. + (SK()CIKCZ—O. (15)

If K =k =0 and J + p is even then the last two equations are the same and

need be used only once.
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O
ds

Fig. 1. Coordinate systems supported by WAVRA4. The positions of the points CM 4,

CM123, CM34, B and M are defined in Ref. [5]
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| initialization . |
| i nput _dat a |
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| radial _grid |
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______________________ d
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| Istep 3 angl eT3D ||
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| === — |
| lstep 4 T |
I mal nj |
|L ______________________ Jl
L - — — = = J

Fig. 2. Diagram of WAVR4 program flow.
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WAVR4 version 1.0: (1,2),3 héswap

Four Atomic RoVibrational Program
INPUT: reading input...

file: input.txt
TITLE: HCCH; coords: diat-diat (valence-like); potential: Carter et al (1982)

ml m2 m3 m4 <-- masses
1.007825032 12.000000000 12.000000000 1.007825032

! Coordinate system: <== 1 Jacobi; 2 Radau; 3 DDiatom; 4 Orthog-Sat
3
type re/eta we De gridsize <-- radial basis/quadrature
1 1.1100 3200.000  43000.000 4
1 1.1100 3200.000  43000.000 4
1 1.3720 2100.000  45000.000 5
angular_problem_only_flag optimize_flag test_flag expansion_flag
0 3 1 0
jmax lmax kmax Jmax Kmax j_par 1l_par j+l_par <-- angular basis size
12 12 4 1 1 0 0 0
j 1 k <-- angular potential expansn size (if needed)
8 8 8
ntl nt nphi iauto (1 - on) <-- angular quadrature size (autoslct: on/off)
9 5 1
enzero <-- zero energy is used only when not computed
0.0000000000
encut0 ! encutl encut2 encut3 encuté4 <-- Ecut#/icut#/margin#
0 50 80 40 10
0. 30000. 30000. 30000. 30000.
0. 30000. 0. 0. 0.
0 0 0 0 0
ri(1) r2(2) R(3) thetal(4) theta(5) phi(6) <-- reference config
1.06100 1.06100 1.36700 3.14159 0.00000 0.00000
stage_flag <-- used to read in saved eigenvectors from previous stage
oner_flag <-- 1/R"2 treatment: 0 - DVR approx, 1 - exact
0

INPUT: processing input...
opt 3: Diatom-diatom vectors

adapted masses:
0.92974040 0.92974040 6.50391252

Basis Optimization is ENABLED

j=, 1-, (j+1)-parity:

NO: ql -> -ql symmetry (j-parity)
NO: q2 -> -q2 symmetry (l-parity)
NO: g3 -> -q3 symmetry (jl-parity)

angular basis size: jmax= 12 lmax= 12 kmax= 4
angular potential expansion size: nel = 8 ne2 = 8 ne3 = 8

(auto) signle ang grid, iauto= 1:
ntl = 13 nt = 13 nphi= 3

full angular grid: nagrid = ntilsnt*nphi = 507
input zero emergy (enzero)= 0.0
stage #; icut; E cutoff E margin
stage O: 0 0.0 . 0
stage 1: 50 30000.0  30000.0 0
stage 2: 80  30000.0 0.0 0
stage 3: 40  30000.0 0.0 0
stage 4: 10 30000.0 0.0 0
Equilibrium/reference Valence configuration:
Rel= 1.06100000 AA
Re2= 1.06100000 AA
Re3= 1.36700000 AA
Thi= 3.14159300 rad
Th2= 0.00000000 rad
Phi= 0.00000000 rad
Equilibrium/reference energy: -0.014511
INPUT: done.
angular_states_max: namax= 1663
angular_states_max: mmax = 5
angular_states_max: nexp = 285

stretch: processing ril...
stretch: done.
stretch: processing r2...
stretch: done.
stretch: processing r3...
stretch: done.

computing theta grid...
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done.

computing theta grid...
done.

computing phi grid...
done.

preparatory stage

Last step: 0.05s; total: 0.08s.
YAANA jp= 0 YANAS
angular_states_qnumbers: na= 1663

number of basis functions for various K
K # start end
0 615 1 615

1 1048 616 1663

%hhh K= 0 p= 0 %hhh

Last step: 0.00s; total: 0.08s.
angular K sub-block: na = 615
stagel vectors will be computed
stage2 vectors will be computed
stage3 vectors will be computed

starting stage 1...

stage 1: made 3969 records

Last step: 92.96s; total: 93.04s.

direct product basis= 49200

optimized basis= 3969

effective energy window for optimised basis was

from 1936.438 to 30000.000

max number of selected levels= 50
istagel= 3969
Last step: 0.22s; total: 93.27s.

end of stage 1
starting stage 2...

max number of records per i3, nf = 800

effective energy window for optimised basis was
from 4880.770 to 30000.000

max number of selected levels= 80

stage 2: made 400 records

Last step: 8.28s; total: 101.55s.

end of stage 2
starting stage 3...

matrix size= 400
allocating and reading in h6..

read 80200 out of 180200
Last step: 15.59s; total: 117.14s.
diagonalising h6...
zero energy= 5827.59151952
h6 energies (relative to zero energy):
0.000000

2 1347.190247

3 1457.040837

4 1559.452193

5 1943.875342

<truncated>
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