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Abstract

The treatment of kinetic shear Alfvén waves in homogeneous magnetized plasmas by
means of Vlasov simulation is examined. To this end, the driftkinetic version of the
Vlasov-Maxwell equations is solved via various numerical schemes, all employing a
grid in (14+1)D phase space. Since kinetic shear Alfvén waves are Landau damped,
the use of an equidistant grid in velocity space leads to a recurrence problem. The
latter can be circumvented, however, by damping the finest velocity space scales
through higher-order collision operators. Of particular interest is the question if and
under which circumstances the magnetohydrodynamic limit (small perpendicular
wavenumber) can be recovered.
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1 Introduction

Magnetized plasmas exhibit a large number of waves and instabilities.[1] In the
low beta, low frequency range, # < 1 and w < €; [where ; = (¢;B)/(m;c)
is the ion cyclotron frequency], shear Alfvén waves are of particular interest
since they are involved in a large number of plasma physics problems.[2] While
their simplest description is given by magnetohydrodynamics (MHD), kinetic
effects come into play once their perpendicular wavelength reaches the drift
wave dispersion scale p, = ¢,/€; [where ¢, = (T, /m;)'/? is the ion sound speed
in the cold ion limit]. In this regime, they are therefore called kinetic shear
Alfvén waves.[2] If the perpendicular wavelength is further descreased, they
finally transition into electron sound waves. These are exact analogues of ion
sound waves, with the role of electrons and ions reversed. Both kinetic shear
Alfvén waves and electron sound waves are Landau damped.
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Kinetic shear Alfvén waves are described by the driftkinetic (or gyrokinetic)
version of the Vlasov-Maxwell equations in (3+2)D phase space (see, e.g.,
Refs. [3,4]). In both cases, the fast gyrophase dependence is removed ana-
lytically. For the purposes of this paper, it will suffice to study a homoge-
neous magnetized plasma whose (1+1)D phase space is spanned by the field-
line-following coordinate z and the parallel velocity v. The perpendicular
wavenumber enters only as a parameter, and the remaining velocity space
variable can be integrated out.[5,6] Despite its relative simplicity, this reduced
system still contains the key challenges one has to face if seeking a numerical
representation of kinetic shear Alfvén waves.

Several options are available when trying to solve the corresponding initial
value problem by means of computer simulations. Probably the most common
approach is the particle-in-cell (PIC) method.[7] As it turns out, however, the
inherent particle noise prevents a straightforward solution unless the number
of particles is increased substantially. As an alternative route, various noise-
reduced PIC schemes have been proposed (see Ref. [8] and references therein),
but the basic problem remains. Vlasov methods, on the other hand, avoid
the noise issue completely by employing a fixed grid in phase space.[9] The
basic integro-differential equations are then finite differenced and solved via
techniques borrowed from computational fluid dynamics. Here, we adopt this
latter approach.

The paper is structured as follows. In Section 2, the basic equations are in-
troduced and the dispersion relation for kinetic shear Alfvén waves in a ho-
mogeneous magnetized plasma is derived. In Section 3, different phase space
discretization schemes are investigated, involving explicit Runge-Kutta time
stepping and upwind or central spatial discretizations. Due to the use of an
equidistant grid in velocity space, a recurrence problem is encountered which
can be circumvented, however, by the use of appropriate hypercollision oper-
ators. In Section 4, convergence with respect to resolution in velocity space
and real space is checked. It turns out that the number of required velocity
space points is surprisingly low. The results of the initial value computations
are compared to those of the repective dispersion relation for a wide range
of physical parameters in Section 4. Finally, a brief summary is presented in
Section 6.



2 Basic equations
2.1 Unnormalized equations in (3+2)D phase space

Kinetic shear Alfvén waves in a homogeneous magnetoplasma are described
by the driftkinetic version of the Vlasov-Maxwell equations in (3+2)D phase
space. The latter is spanned by the three spatial variables (x,y, z) [the z-axis
is assumed to be aligned with the background magnetic field] and two velocity
space variables, e.g. (v,v.). In the low-frequency limit, the fast gyrophase
dependence may be removed analytically. Moreover, for simplicity, the ions
are taken to be singly charged and immobile. After linearization, one is then
left with the driftkinetic Vlasov equation
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for the perturbed electron distribution function F,, together with the corre-
sponding field equations
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for the perturbed electrostatic and parallel magnetic potentials, ¢ and Aj.
Here, e > 0 is the elementary charge and Fi, is the equilibrium distribu-
tion function of the electrons which is assumed to be given by an unshifted
Maxwellian,

Foo = g (o) ™% 7 /e (3)

such that 0, Feo = —mev) Feo/Teo. Here, vi, = 2T,/ m, and v* = vﬁ + 02,

2.2 Normalization and reduction to (1+1)D phase space
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Table 1
Normalization of all independent and dependent variables (cp. Refs. [5,6]).

For reasons that will become clear in Section 3, we introduce the modified
distribution function g. = F, — (v/c)(eA)/Teo) Feo.[6,10] Normalizing Eqs. (1-
3) according to Table 1, one thus obtains
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together with

Vig = /ge doy, (V2= Be/pe) A = /aevngedvn- (5)

Here, we have used the following definitions:
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As mentioned before, ¢ = Too/my, ps = ¢s/%, and Q; = (eBy)/(mic). The
normalizations shown in Table 1 correspond to the ones used in the nonlinear
gyrokinetic code gene (see also Refs. [5,6]). Note that due to the use of g,
instead of F, in Eq. (5), the (/. term appears in Ampére’s law.

Finally, we further simplify the problem by Fourier transforming the x and y
directions, and by integrating out v, space. This procedure turns Eq. (5) into

ko= — /ge dv, (ki + 5e/ue) A= —/aevn ge dv)) - (6)

Eq. (4) is now to be interpreted as an equation for g.(z,v),t), and Fp =

a2 Although the z direction could also be Fourier transformed, we
refrain from doing so because the resulting (0+1)D problem turns out to pos-
sess different numerical properties. In particular, one finds that schemes which
work for the (0+1)D problem may exhibit numerical instabilities when applied
to the (141)D case. To be able to generalize the approaches discussed below
to inhomogeneous situations, it is therefore vital to keep the z coordinate.

2.8  Dispersion relation and nominal parameters

Using Eqs. (4) and (6), one may easily derive the dispersion relation of kinetic
shear Alfvén waves in a homogeneous magnetoplasma. It reads

B+ 1+ 02(@)] [1 - 256/ )] = 0 7

where @ = w/(oek)) and Z is the well-known plasma dispersion function.[11]
Obviously, the (1+1)D system is really characterized by only two parameters,
k, and (/.. Changes in o, and k| may be accounted for by merely renor-
malizing the complex frequency w. Throughout this paper, we use &k = 1
and ., = 1/1836, and with the exception of Section 5.3 we choose ¢ = 10%
which corresponds to a, ~ 0.606. Setting k, = 0, £, and k, will be used
synonymously.
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Fig. 1. Contour plot of the absolute value of the left-hand side of Eq. (7). The zeros
of this function correspond to solutions of the dispersion relation.

Given k, and [,/ ., the task is to determine all positions in the complex @
plane at which both the real part and the imaginary part of Eq. (7) vanish
simultaneously. In our case, this is done by means of Newton’s method. A
typical contour plot of the absolute value of the left-hand side of Eq. (7) is
shown in Fig. 1. Here, k; = 0.3 and (./pe = 1. Note that the Z function
allows for an infinite number of solutions. However, in the present context we
are only interested in the least damped modes (i.e., the ones with the largest
imaginary part) which correspond to the kinetic shear Alfvén waves. In the
remainder of this paper, such solutions will be used to assess the results of
initial value computations.

3 Numerical solution of the initial value problem

3.1 Parallel canonical momentum method

The numerical solution of Egs. (4) and (6) as an initial value problem is not
straightforward. In particular, the partial time derivative of A in Eq. (4)
must be treated with care if a time explicit scheme is to be used. As has
been known since the 1970’s, a simple extrapolation from past values of A
leads to numerical schemes which are violently unstable.[12] This problem may
be circumvented, however, by employing the parallel canonical momentum
method proposed in Refs. [6,10]. Combining 0,F, and 9,4, Eq. (4) may be
used to step the modified distribution function g.. Next, the potentials ¢ and
A\ at the next time level may be computed from Eq. (6). Knowing the updated
values of both g, and A, the new F, may finally be obtained. All numerical
schemes used in this paper are based on this idea.



Like some alternative approaches (see Ref. [10] and references therein), the
parallel canonical momentum method involves an important subtlety which
becomes important at large f./u. and/or at small k£, . When F, was replaced
by g. in Ampere’s law, the ./ e term was introduced analytically to cancel the
A) contribution to the first moment of g.. However, if the second (numerically
computed) moment of Fy deviates from 1/2, wrong answers for w are obtained
in the high 3, long wavelength limit. Therefore, one has to make sure that
such residuals are avoided, either by using very accurate integrators or by
replacing the analytical value for [ vﬁ exp(—vﬁ) dv) in Eq. (6) by its numerical
counterpart.

In the present work, we make use of this latter idea, computing the v integrals
in Eq. (6) via a simple trapezoidal rule. The z domain is taken to be periodic
and runs from —7 to 7, while |v| < vey. Unless noted otherwise, we set
Veut = 3. Equidistant grids are used in all three dimensions, and the grid
spacings corresponding to t, v), and z are called, respectively, At, Av, and
h. So e.g. the value of (ge at the time level ¢, and at the phase space point
(vs, 2 ) is denoted by 91,7:7)1 where v; = (21 — N, — 1) Av/2 [i = 1,...,N,] and
Zm = (2m — N, —1)h/2 [m = 1,..., N,|. While many time implicit methods
are also available, we will restrict to time explicit schemes here since they allow
for straightforward generalizations to more complex problems. A very flexible
approach in which the discretizations in phase space and time are decoupled
is the 'method of lines.’

3.2  Method of lines

2nd order

Fig. 2. Low-order explicit Runge-Kutta methods: Stability regions in the complex
plane.



Eq. (4) may be rewritten as

0 ~
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where the species subscript e’ has been omitted. Together with Eq. (6), it
constitutes an integro-differential equation for g. Introducing a homogeneous
grid in phase space (like outlined above) but keeping time as a continuous
variable, Eq. (8) turns into a linear system of ordinary differential equations,

og
5 = M8 (9)
Here, g is a N,N,-dimensional vector and M is a N, N, x N,N, matrix. The
latter consists of N, x N, submatrices whose structure depends on the dis-
cretization of the spatial differential operator V| as it is applied to g, A}, and
¢. To solve Eq. (9), one may choose from a wide variety of well-documented
time advance methods. In the following, we will focus on explicit Runge-Kutta
(ERK) methods [13] which are known to be fairly robust and rather straight-
forward to implement. Moreover, they allow for easy time step adjustments
which are sometimes necessary in nonlinear generalizations of the computa-
tions presented here.[14] ERK schemes are known to be linearly stable if and
only if all eigenvalues of the matrix M (multiplied by the time step At) fall
inside a certain stability region in the complex plane. The stability regions of
low-order ERK methods are shown in Fig. 2 (see Ref. [13]). As will be shown
below, centered finite-difference representations of V| lead to purely imaginary
eigenvalues. This means that the employed ERK scheme needs to be at least
of third order to be able to handle such cases. The time advance method used
throughout this paper is the so-called Heun scheme, a classic representative
of the one-parameter family of third-order ERK schemes. In the language of
Eq. (9), it reads:

A
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So far, we have not addressed the question which finite difference schemes are

to be used to represent the action of the spatial differential operator V| on g,
Aj;, and ¢. As it turns out, one must approach this topic carefully.



3.3 Finite difference schemes for V)

Straightforward finite difference representations of V| are the centered second-
order method given by

091,m _ 9im+1 — Gim—1

10
0z 2h (10)
and the respective fourth-order scheme,
991,m _ Gim—2 — 891,m—1 + 8Jim+1 — Ji,m+2 (1)
0z 12h '

Applying Eq. (10) to all terms in Eq. (8), the eigenvalues of the matrix M are
found to be purely imaginary as can be seen in Fig. 3(a). This is a reflection
of the fact that centered schemes do not involve numerical dissipation. As a
consequence, if ERK time advance methods are used, they must be of order
three or higher. On the other hand, (computationally less expensive) lower-
order ERK schemes may be used if all eigenvalues exhibit negative real parts.
This implies that the finite difference scheme has to have numerical dissipation
and leads us to consider asymmetric (or 'upwind’) methods.
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Fig. 3. Numerically computed eigenvalues A; of the phase space matrix M for
ki = 0.3, Be/te = 1, N, = 32, and N, = 40. Here, the second-order upwind
scheme of Eq. (12) was used for (a) no term at all, (b) g and 4, (c) g, 4, and ¢,
(d) g only; the remaining terms have been treated according to Eq. (10).

Upwind methods are often used for advection equations. Here, the information



reaching a fixed point in space comes from the upwind direction, and the choice
of asymmetric weights and/or stencils is supposed to reflect that. A second-
order upwind scheme for v; > 0 is given by

% — JQim—2 — 5gl,m—1 + 3gl,m + Ji,m+1
0z 4h

(12)

where m is the space index and [ the velocity index. If the same scheme is
used for Aj;, and ¢ is center-differenced according to Eq. (10), one arrives at
the eigenvalue distribution shown in 3(b). Using an appropriate time step,
the rescaled eigenvalues will fit into any of the four stability regions shown
in Fig. 2. However, if all terms in Eq. (8) are upwinded, some eigenvalues
exhibit large negative real parts, as can be seen in Fig. 3(c). Their magnitude
is observed to scale like k2. A third possibility is to upwind only g and
to center-difference both potentials. This leads to the eigenvalue distribution
shown in Fig. 3(d) which resembles that of case (b).

These findings may be understood by inspecting the matrix M of Eq. (9). If
only velocity space is discretized, one obtains

og Ny 1 20v; (Be/1be) \ | 0gi Mo 9g;
5 ;aevl [511 + FuAv (ki 2+ )| 9z = ;Vlz 9% (13)

which can be interpreted as a multidimensional advection equation. Also dis-
cretizing the system spatially, an upwind discretization of all terms yields

1 20 (B/m))] 1
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for the diagonal blockmatrices V}; so that the diagonal elements of V}; increase
like k72 for k; — 0. On the other hand, if we discretize V@ via second-order
centered differences, we get

[1 -531 0] + FoAv (i—M> 1 [—1 0 1”

1
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so that the diagonal elements of V}; are independet of £,. The discretization
of the Aj term is not relevant for stability issues since the respective term in
Vi is limited by 2v2, for k; — 0 as long as 3./p. # 0. (For 8, = 0, the A,
term vanishes, anyway.) These considerations are qualitatively correct also for
higher-order discretization schemes of either upwind or centered type. As will
be shown in Section 4.2, although upwind methods according to cases (b) and
(d) are stable, they are to be avoided on grounds of accuracy properties. In
case (d), additional accuracy problems arise from finite differencing g (which
contains a contribution from A)) and Aj itself differently. In the remainder of

this paper, we will therefore concentrate on centered methods.



3.4  Awoiding recurrence

An important property of Eq. (8) may be investigated by neglecting the po-
tentials ¢ and A|.. It may then be written as a simple advection equation for

f(z,v,):
of  of
hCl — 14
ot TVo: =" (14)
A Fourier transformation of the z coordinate leads to the equation
0 .
% +ikvfr, =0 (15)

for fx(v,t) which has the solution
fe(v,t) = fr(v,t = 0) e ™7, (16)

As is known from Van Kampen’s theory of Landau damping [15], this system
exhibits phase mixing, resulting in a decay of all moments of fi(v,t). In the
course of this process, arbitrarily fine structures in velocity space are created.
If Eq. (14) is solved numerically on an equidistant grid in velocity space with
v; = [Awv, the solution for a given [ can be written as

Fi(t) = ful(t = 0) e™a". (17)

Note that for any [, the phase factor is equal to unity if kAvt = 2x. This
condition translates into the so-called recurrence time t,. = (27)/(kAv) after
which the initial condition is restored. Since this is clearly unphysical, the finite
resolution in velocity space effectively limits the total simulation time 7. A
typical initial value simulation of kinetic shear Alfven waves with NV, = 40 is
shown in Fig. 4. In this case, t, = 69.1.
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Fig. 4. Typical time trace of a simulation with N, = 40: Around t,. = 69.1, a
recurrence phenomenon occurs.
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These considerations seem to indicate that 7' can only be extended if N, is
increased. However, there is an alternative solution to the recurrence problem.
One can think of Eq. (16) as a wave in velocity space with wave number
k, = kt. Obviously, k, increases proportional to time. The Nyquist limit of
the velocity grid, ky, nyquist Av = m, is reached at ¢ = ky nyquist/k = trec/2. Still
finer scales are interpreted as k, = kt — ky nyquist, such that for ¢ = t... we
have k, = 0. This suggests that recurrence can be avoided by stopping this
cascade-like process in k, space before the Nyquist limit is reached. This can
be achieved, for example, by means of a hypercollision operator like

of o' f
=y, L 18
ot ' out (18)
Fourier transforming this equation to k,-space, we obtain
afk 4
= -k . 1
ot 20 (19)

The solution of Eq. (19) is

Fra(t) = fu, (8 = 0) 7485t (20)

Thus one can damp out fine scales in velocity space without affecting the
larger scales.

0.5E 1-0.000
R T
04r w ]
g 4-0.001
0.3F ]
8p g <& ; o~
0.2 v plateau : -~ -0.002
0.0F N 1-0.003
078 1077 10% 102 107* 107°
Vy

Fig. 5. Scan of the hypercollisionality parameter vy for k; = 0.1, Be/pe = 1,
N, =40, and N, = 32.

The parameter v4 which determines the damping strength must be chosen
appropriately. If v, is too small, recurrence still occurs, if it is too big, the
damping rate is controlled by hypercollisions, not by Landau damping. So we
have to perform v, scans and search for a plateau in the damping rate curve.
In Fig. 5, such a v4 scan is shown for k£, = 0.1, B./pe = 1, N, = 40, and
N, = 32. There is a wide range of v, values over which the damping rate does
not change substantially. Here like elsewhere in this paper, the damping rates
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are computed by means of a linear regression of log ¢x(t), whereas the real
frequencies are determined via the zeros of ¢y(t).

4 Convergence tests

4.1 Velocity space resolution

Having described the numerical methods used for solving the initial value
problem, we now turn to convergence tests. First, we will address the issue of
velocity space resolution. Given the fact that kinetic shear Alfvén waves are
dissipative (kinetic) in nature, not reactive (fluid-like), one might think that
the narrow Landau resonances in velocity space have to be strictly resolved in
order to obtain correct results. This is not the case, however.
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Fig. 6. Relative error in the damping rate, |Avy/~|, as a function of the number of
points in velocity space, N,.

The runs presented in this subsection all use the following parameters: k;, =
0.1, Be/pe = 1, N, = 32, and v, = 5 - 10°%. Solving the dispersion relation
directly, one obtains w, = 0.42938 and v = —0.002476. These numbers are
used to assess the quality of the initial value computations. In Fig. 6, the
relative error in the damping rate is shown as a function of the number of
points in velocity space, N,. |Avy/~| drops in the range of less than about 1%
for N, = 25. This result is somewhat surprising for a simple reason. Writing
the resonance denominator as

1 wr — eV k| ) Y

B — . (21
w—oevik (W —aeyk)? +9° (wr — e ky)® + 92 21)

one finds that its imaginary part has the form of a Lorentz curve with a full-
width-at-half-maximum (FWHM) of 2|y|. This means that there is a Landau
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resonance in v space around w,/(ca.k|) with a FWHM of dv; = 2|y[/(acky).
Using an equidistant grid with Av| = (2vcu)/Ny, Av S dy) translates into
N, = 734. In practice, we get away with about 1/30 of that number, i.e.,
we do not need to resolve the fine-scale Landau resonances in velocity space.
The structure of fi/¢x in v space as it occurs in the simulation is shown in
Fig. 7. For comparison, a theoretical prediction based on Egs. (4) and (6) is
also depicted.
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Fig. 7. Velocity space structure of fr/¢x from an initial value computation
(a) and from theory (b). The real and imaginary parts are denoted, respec-
tively, with solid and dotted lines. The Landau resonances are located around
|’U||| = wr/(aek”) ~ 0.71.

It must be emphasized that we have not attempted to minimize the number
of velocity space points by use of non-equidistant grids and/or higher-order
v|| space integrators. One of the simplest generalizations would be to divide
the domain [—veyt, Veyt] into two subdomains, a better resolved one located
around the origin and encompassing the resonance region, and a less resolved
one representing the tails.[10] But even for a simple equidistant grid, we find
that the errors can be reduced if all grid points are shifted collectively by up
to Av/2 such that the resonance region is better covered with grid points.
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Moreover, it should be kept in mind that the results presented in this subsec-
tion are strongly problem dependent. The required number of velocity space
points may vary substantially with the type of wave or instability under con-
sideration. Employing the gyrokinetic Vlasov code gene [14], we have found,
for example, that toroidal ion temperature gradient instabilities are well rep-
resented by about 12 x 6 points in (v, 1) space. Slab-type instabilities, on
the other hand, may require more points in the v direction (the number of
points required in the p direction tends to almost always stay small).[10] In
general, one can say that reactive (fluid-like) modes are easier to resolve than
dissipative (kinetic) modes.

4.2 Configuration space resolution

Next, the resolution requirements for the z direction are investigated. Here we
expect (and find) a dependence on the employed finite difference scheme. In
Fig. 8, the results of initial value computations are compared with those of the
dispersion relation for three different discretization methods: (a) fourth-order
centered, (b) second-order centered, (c) second-order upwind for f and second-
order centered for ¢. Obviously, the fourth-order centered scheme outperforms
the other two, requiring less than 10 grid points in the spatial domain. The
other parameters are k; = 0.1, 3./ = 1, N, = 40, and v4 = 5-107%. In this
case, the dispersion relation yields w, = 0.42938 and v = —0.002476.

The results of the initial value computations lie on straight lines in this log-log
plot, reflecting the power law dependence of the relative error on N,. Naturally,
the slope depends on the discretization scheme. It is possible to predict the
results of Fig. 8 analytically by inspection of a modified dispersion relation
corresponding to the spatially discretized system. The latter has the form

i %—2—5@2 wZ(@)) =
k“L(Qf i )(1+ Z(@))=0 (22)

which depends on the finite difference scheme for the derivatives of f and ¢
via the spectral functions Q; and Q4. Moreover, @ = w/(a.k)) is changed to
@ = w/(cek)Qy). The relevant spectral functions are (using ¢ = kjh):
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abs(Ay/7)
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Fig. 8. Relative error in the damping rate, |Avy/~|, as a function of N, for three dif-
ferent discretization methods: (a) fourth-order centered, (b) second-order centered,
(c¢) second-order upwind for f and second-order centered for ¢. For comparison,
analytic predictions are also shown (solid lines).

_sin(Q)

second-order centered ;- Q(¢)= 1. (23)
fourth-order centered :  Q(C) = — Sin(%)(g 8sin(c) (24)

second-order upwind :  Q(¢)=— Sin(?clg 6sin(C)
_H-—COS(QC) +4cos(C) =3 (25)

4¢
They are defined via V|| = ik Q(C).

If we use the same sort of finite differences for both f and ¢, we have @, =
@5 = Q. This means that the discretized dispersion relation differs from the
continuous one only in the meaning of &w. The resulting complex frequencies
just need to be rescaled by a factor of ). We thus obtain |Avy/v| = |Q — 1].
For second-order centered differences, Eq. (23) yields

|Ay/| = /64 O(CY). (26)
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Analogously, for fourth-order centered differences one gets

[Ay/y| = (/304 O(C°) (27)

with the help of Eq. (24). These two functions are shown for comparison in
Fig. 8. They agree quite nicely with the results from the initial value simula-
tions.

Choosing a second-order upwind discretization for the distribution function f
together with a second-order centered scheme for the electrostatic potential ¢,
the calculation is similar only if the same @ is used irrespective of the sign of
v). (Otherwise, the plasma dispersion function Z is not recovered.) By means
of this approximation, one may solve Eq. (22) numerically to get the solid
line corresponding to case (c) in Fig. 8. It reproduces the initial value results
fairly well. However, the slope of this line is of the order of —3 and not —2 like
expected for a second-order accurate scheme. This puzzle may be solved by
further analyzing Eq. (22). Setting Q,/Qs = 1, one obtains again a rescaled
value of w, but this time the factor @) is complex valued, Q5 = Q1 +7Q2. The
relative error turns out to be |Avy/v| = [Q1 — 1 + (w,/7) Q2] or

[Ay/9] = (2/12 = (wr/7) /8 + O((H). (28)

Since w, /vy ~ —173.417, the third-order term is dominant in the parameter
range we are interested in. This explains the seemingly “wrong” slope of curve
(c) in Fig. 8. Moreover, Eq. (28) reveals that any finite difference scheme for
V|| whose spectral function () possesses a finite imaginary part, leads to large
relative errors if |y/w,| < 1. This is the case for £, < 1 and/or Be/ue > 1.
Upwinding g while center-differencing ¢ and A makes matters even worse.
This is because the contribution of A to g and A itself (these two terms
cancel out in an analytic formulation of the basic equations) leave a finite
residuum when finite differenced differently. As far as the parallel dynamics
of kinetic shear Alfvén waves are concerned, upwind schemes are therefore
clearly inferior to centered schemes.

5 Parameter scans

Having tested the convergence properties of various numerical schemes, we are
now in a position to do parameter scans. As was mentioned before, the two
key quantities are the electron plasma beta (normalized to the electron-to-ion
mass ratio), (./p., and the perpendicular wavenumber, k,. But before we
actually present the simulation results, we will derive some analytic results
which may be used for comparison later.
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5.1 Analytic results (limiting cases)

The dispersion relation, Eq. (7), contains the plasma dispersion function 7
which, in general, must be evaluated numerically. Only in the limit of small
or large arguments do analytic expressions exist.[11] For || < 1, we have

Z(@) = in'/? exp[-@?] + Y ew”, ve{l,3,5,...} (29)

where the power series contains only odd powers of @. Inserting this expression
into Eq. (7), we see that it turns into a polynomial equation of infinite order.
And this means that it possesses infinitely many solutions. A representative
example of the positions of solutions in the complex @ plane was shown in
Fig. 1. We will be mainly interested in the one solution with the lowest damp-
ing rate since it dominates the long-time behavior of any initial-value problem
(assuming that it is excited at all). Analytically, we may recover it by setting
all coefficients ¢, to zero and replacing the exponential by unity. Eq. (7) then
yields

o Lpe 2 - /2 He ;92

wr—2ﬂe(1+lﬁ)a 7= ﬂekr (30)
Here, we have evaluated the real and imaginary parts of Eq. (7) separately, at
the same time assuming that |y/w,| < 1. A post-hoc self-consistency check
shows that this assumption is only satisfied if f./u. > 1 (and/or k; < 1).
In the opposite limit, [w| > 1, an asymptotic expansion of Z [11] yields (to
lowest order)

o Me 1

TS WA B (31)
This has important consequences for the numerical treatment of kinetic shear
Alfvén wave in the appropriate limit. For 3, < p.k?, @, scales like k7'. In a
simulation, the highest frequency is thus set by the smallest finite value of £ .
If a time-explicit numerical scheme is employed, increasing the perpendicular
box size further increases @, and in turn reduces the time step because of the
numerical stability requirement w,At < 1. For this reason it is often highly
advisable (e.g., in gyrokinetic turbulence computations) to use finite values of
Be/ 1he to avoid these problems - even if the physics under consideration may
be basically electrostatic in nature.

We note in passing that in unnormalized units, the real frequencies given in
Egs. (30) and (31) read, respectively,

w? = kijvy (1+k%p3) [high 3 limit] (32)
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and -
o Kjua

T I+ k62
Fluid models of kinetic shear Alfvén waves, on the other hand, lead to [16]

1+ k2 p?
2 _ 12 2 1P

[low £ limit] . (33)

5.2 Dependence on Be/p. and k.

The following numerical results have been obtained using second-order cen-
tered differences for V| together with a third-order ERK (Heun) time step-
ping algorithm. We have employed N, = 32 points in the spatial direction and
N, = 40 points in velocity space. The hypercollisionality parameter v, was set
to 5-1075. Only for cases in which v < 107°, we used more (up to N, = 140)
velocity space points, an extended velocity space domain (up to v,y = 4), and
a reduced hypercollisionality parameter (of the order of v4 = 5 -1077). For
ky = 0.3, one obtains the results shown in Fig. 9. They agree well with the
predictions from the dispersion relation over 4 orders of magnitude in (3, /.. In
the 3./pe > 1 range, the predicted scalings [see Eq. (30)] of w, o< (Be/ ) /2
and v o< (Be/pe) ™" are recovered.

Ak, scan at B./p. = 1 is shown in Fig. 10. As suggested by Eq. (30), w,
is almost constant and v oc k7% The simulation results again compare very
favorably with the solutions of the dispersion relation — even for values as
low as k; = 0.0025 (corresponding to a perpendicular box size of more than
2500 ps). Note that in the limit £, — 0, kinetic shear Alfvén waves transition
into ideal MHD Alfvén waves, characterized by w? = kfv} and v = 0 in
unnormalized units. This MHD limit is well captured by the present Vlasov
scheme.

5.3 Transition to electron sound waves at high k,

Replacing the driftkinetic approach [Egs. (4) and (6)] by a gyrokinetic one
[4], the graphs in Fig. 10 can be extended to smaller perpendicular scales,
k, = 1. This is shown in Fig. 11, which has been produced by means of the
gyrokinetic code gene.[14] In this case, the parallel gradients are again dis-
cretized via second-order centered differences, and a third-order ERK (Heun)
time stepping scheme is used. Thus the numerics is basically the same as that
described and studied in the present paper. As parameters we used (3./p. = 10,
¢ = 18360, N, = 32, N, = 61, and N, = 8 (gene employs two velocity space
variables, the parallel velocity v and the magnetic moment p). Here, instead
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Fig. 9. Real frequencies and damping rates of kinetic shear Alfvén waves as a func-
tion of B¢ /ue for k; = 0.3. The numerical solution of the corresponding dispersion
relation is shown as a solid line for comparison.
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Fig. 10. Real frequencies and damping rates of kinetic shear Alfvén waves as a
function of k| for 8. /ue = 1. The numerical solution of the corresponding dispersion
relation is shown as a solid line for comparison.
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of using hypercollisions we simply increased NN, to treat the weakly damped
modes at low k,, thus extending the recurrence time up to several 100 time
units. The dispersion relation, Eq. (7), was also generalized to include finite
Larmor radius effects. As can be seen in Fig. 11, the gene results and the
solutions of the gyrokinetic dispersion relation agree quite well over a wide
range of k. For £, > 1, kinetic shear Alfvén waves become electron sound
waves, the exact mirror image of ion sound waves. In particular, the ions are
adiabatic at high &, leaving the dynamics entirely up to the electrons. For
ion sound waves, driftkinetic theory yields

T, + 3T; ;

W=k (Te +3T)/m ;)/sz (35)
1 + kJ_ps

in unnormalized units. Exchanging the species labels, setting 7, /7; = 1, and
normalizing according to Table 1, one obtains

i 2

= - . 36
“r 1+/1'ek%_ ( )

For £, ~ 15, this formula yields w, ~ 0.6, in good agreement with Fig. 11.
As expected, one finds that |y/w,| ~ 1, i.e., electron sound waves are strongly
Landau damped. Finally, we would like to point out that the driftkinetic esti-
mates for w, and 7 as given by Eq. (32) hold way beyond their strict range of
validity, £, < 1. As can be inferred from Fig. 11, the driftkinetic results give
reasonable approximations up to k, ~ 1.

6 Summary

We have examined kinetic shear Alfvén waves in homogeneous magnetoplas-
mas by means of Vlasov simulation. To this end, we solved the driftkinetic
version of the Vlasov-Maxwell equations on a grid in (1+1)D phase space
and compared the results to the numerical solutions of a respective dispersion
relation. Very good agreement is obtained over a wide range of the two key
parameters (3. /. and k] , even as k2 ji./B. — 0. For an accurate reproduction
of kinetic shear Alfvén waves, it turned out to be crucial to use a centered
finite difference scheme for all spatial derivatives. If combined with an explicit
Runge-Kutta time stepping algorithm, this requires the latter to be of third
order or higher. Resolution tests revealed that a surprisingly low number of
velocity space points is required, provided the recurrence problem for Landau
damped modes on a phase space grid is dealt with (e.g. via hypercollisions).
For long wavelengths, the ideal MHD results are recovered, whereas for short
wavelengths, kinetic shear Alfvén waves transition to electron sound waves if
the driftkinetic system is replaced by a gyrokinetic one.
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Fig. 11. Real frequencies and damping rates of kinetic shear Alfvén waves, computed
with the gyrokinetic code gene. For k; ~ 10, there is a transition to electron sound
waves. The driftkinetic estimates are shown as dashed curves for comparison.
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