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Abstract
In this work we have studied the dynamic scaling behavior of two scaling functions and
we have shown that scaling functions obey the dynamic finite size scaling rules. Dynamic
finite size scaling of scaling functions opens possibilities for a wide range of applications.
As an application we have calculated the dynamic critical exponent (z) of Wolff’s cluster
algorithm for 2-, 3- and 4-dimensional Ising models. Configurations with vanishing initial
magnetization are chosen in order to avoid complications due to initial magnetization.
The observed dynamic finite size scaling behavior during early stages of the Monte Carlo
simulation yields z for Wolff’s cluster algorithm for 2-, 3- and 4-dimensional Ising models
with vanishing values which are consistent with the values obtained from the autocorrela-
tions. Especially, the vanishing dynamic critical exponent we obtained for d = 3 implies
that the Wolff algorithm is more efficient in eliminating critical slowing down in Monte

Carlo simulations than previously reported.
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1 Introduction

Finite size scaling and universality arguments have been used to study the critical parame-
ters of spin systems over two decades [I]. Jansen, Schaub and Schmittmann [2] showed that
for a dynamic relaxation process, in which a system is evolving according to a dynamics
of Model A [3] and is quenched from a very high temperature to the critical temperature,
a universal dynamic scaling behavior within the short-time regime exists [4, Bl 6]. The
existence of finite size scaling even in the early stages of the Monte Carlo simulation has
been tested for various spin systems [B, 6, [7, B, @, 10, [T}, 2], the dynamic critical behavior
is well-studied and it has been shown that the dynamic finite size scaling relation holds for
the magnetization and for the moments of the magnetization. For the k** moment of the

magnetization of a spin system, dynamic finite size scaling relation can be written as [2]

M(k) (t7 €, Mo, L) = L(_kﬁ/y)M(k) (t/7_7 ELI/V) mOLmO) (1)

where L is the spatial size of the system, 8 and v are the well-known critical exponents, ¢ is
the simulation time, ¢ = (T'—T.) /T is the reduced temperature and zy is an independent
exponent which is the anomalous dimension of the initial magnetization (myg). In Eq.()

T is the autocorrelation time, 7 ~ L* and z is the dynamic critical exponent.

The relation given in Eq.(l) can be used to study the known critical exponents as well as
exponents z and xg. Moments of the magnetization have their own anomalous dimensions

(kB/v) And using these quantities (in order to obtain dynamic exponents z and xy) one



may expect some ambiguities due to correction to scaling and errors on determining the
anomalous dimension of the given thermodynamic quantity. The ambiguities due to the
anomalous dimension of the thermodynamic quantity can be avoided if one considers quan-
tities which are themselves scaling functions. Moreover, scaling functions are extremely
powerful to identify the order of the phase transition, as well as locating the transition

point of statistical mechanical systems on finite lattices.

In this work we propose that the dynamic finite size scaling relation also holds for the
scaling functions and the scaling relation can be written similarly to the moments of the

magnetization,

O(t, e, mg, L) = OW) (t/7, e LY mg L") . (2)

Our aim is to study dynamic finite size scaling behavior of the scaling functions by using

Eq.@).

In our calculations two different scaling functions are used. The first such quantity is
Binder’s cumulant [T3, 4}, [5]. Binder’s cumulant is widely used in order to obtain the
critical parameters as well as to determine the type of the phase transition. This quantity
involves the ratio of the moments of the magnetization or energy. In this work we have
used the definition of Binder’s cumulant which involves the ratio of the moments of the

magnetization. Simplest such quantity can be given as



<S>

B”_<S">2'

(3)

In the usual definition of Binder’s cumulant, < S™ > is the thermal average of the n'P
moment of the configuration average of the spin. In dynamic case, starting from a totally
random configuration (mg = 0), runs are repeated until predetermined number of itera-
tions are reached for each lattice size. The thermodynamic quantities are calculated as the
configuration averages at each iteration. In order to calculate Binder’s cumulant iteration
by iteration, the configuration averages of the magnetization and its higher moments are
calculated. Various moments of the magnetization are divided iteration by iteration in

order to obtain the required form of Binder’s cumulant,

< S > (t)

Bult) = sy

(4)

Here the averages are calculated over the configurations obtained at each iteration. In this
work we use Binder’s cumulant for n = 2 by using the the relation
< S%> (1)

By(t) = CEnE (5)

The second quantity is the scaling function (F') based on the surface renormalization. This
function is studied in detail for the Ising model [16, 7, 18] and g-state Potts model [T9,
20, 21]. In order to calculate this function, one considers the direction of the majority
of spins of two parallel surfaces which are L/2 distance away from each other. For Ising

spins, F' can be written in the form [I8],



F =< sign[S;]sign[Siy /2] > (6)

where S; is the sum of the spins in the 7" surface. Similar to the calculations of Binder’s
cumulant, iteration-dependent calculation of F' requires the configuration averages which

are obtained for each iteration yielding a Monte Carlo time dependent expression,

F(t) =< sign[Silsign[Sitr ] > (1) - (7)

F(t) can be used in calculating the dynamic finite size scaling relation given in Eq.(H).

In Wolff's algorithm [22], only spins belonging to a certain cluster around the seed spin are
considered and updated at each Monte Carlo step. In equilibrium, the dynamic critical
exponent of the Wolff’s algorithm can not be obtained directly from the observed auto-
correlation times (71 ), instead the autocorrelation time (7y) is governed by the average

size (< C' > of the clusters. 7y can be obtained by the relation,

< C >
T ®)

W = Tw

The dynamic critical exponents of cluster algorithms are calculated using the autocor-
relation times of spin systems in thermal equilibrium [22, 23], 24), 25, 26], 27, 28]. In these
studies the dynamic critical exponent is observed to be much less than the value obtained
by use of local algorithms. For 2-dimensional Ising model Wolff obtained z ~ 0.25 [25].

More recently, Heerman and Burkitt [26] suggested that data are consistent with a log-

arithmic divergence, but it is very difficult to distinguish between the logarithm and a
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small power [27]. For the 3-dimensional case, Tamayo et al [28] calculated the dynamic
critical exponent as z ~ 0.44(10). Wolff calculated a smaller value of z = 0.28(2) [25] using
energy autocorrelations. In 4-dimensions, Tamayo et al [28] obtained z with a vanishing
value. This result is also consistent with the mean-field solution for the Ising model in four
and higher dimensions. In a recent publication it has been shown that various alternative
cluster algorithms posses similar dynamic behavior [29]

The efficiency of the Wolff‘s algorithm is directly related to the size of the updated clusters,
hence the efficiency increases during the quenching process, as the number of iterations
increases. Both the average cluster size and susceptibility have the same anomalous di-
mension, hence in obtaining 7 from the observed behavior of the dynamic variable, one
can replace < S2 > by < C >. In our calculations both quantities have been used in order

to scale time variable for quantities Ba(t) and F(t) considered.

2 Simulations and Results

We have studied dynamic scaling for scaling functions By(t) and F(t) for 2-, 3- and 4-
dimensional Ising models evolving in time by using Wolff’s algorithm. We have prepared
lattices with vanishing initial magnetization and total random initial configurations are
quenched at the corresponding infinite lattice critical temperature. We have used the
lattices L = 256,384,512,640, L = 32,48,64,80 and L = 16,20,24 for 2-, 3- and 4-
dimensional Ising models, respectively. For each lattice size, independent initial configu-

rations are created. The number of initial configurations varies depending on the lattice



size. On average, ten bins of one thousand runs, twenty bins of twenty thousand runs
and ten bins of ten thousand runs have been performed for 2- 3-, and 4- dimensional
Ising models, respectively. Errors are calculated from the average values for each iteration

obtained in different bins.

In the dynamic finite size scaling, for the algorithms in which all spins are checked for
updating the Monte Carlo time, t scales as ¢/L?. In Wolff’s algorithm, one cluster is
updated at each iteration, hence there is a need to use the average number of updated
spins at each iteration. If the time is not scaled by the average cluster size, using only
L* as a factor shifts the curves towards each other and curves cross at some point, but
scaling can not be observed. In order to see a good scaling, there is a need to use a factor
which is the average cluster size (< C' > (t)) or alternatively < S? > (). Dynamic scaling
using < C' > (t) and < S? > (t) as the factor in time scaling results in the same value of
the dynamic critical exponent z. The dynamic critical exponent z is calculated using the

relation

z=2 —(2Yg —d) 9)

which is obtained from the relation

T=11<C> (10)

where 2z’ and 7' are the measured values of the dynamic critical exponent and the au-

tocorrelation time. In these calculations, Yy is taken as Yy = % (Onsager solution),



Y = 2.4808 [30, BI], Yy = 3 (mean-field solution) for the 2-, 3- and 4- dimensional mod-
els, respectively. Since < C' > and < S? > scale in the same form, in our presentation we

have scaled time axis with t < S > /L?.

In Figure [ we have presented Binder’s cumulant (Bz(t)) before and after the dynamic
finite size scaling for 2-dimensional Ising model for the lattice sizes considered. Figure
[ a) shows the time evolution of By(t) during the relaxation of the system. During the
relaxation process the correlation length tends to grow until it reaches the lattice size.
When the correlation length approaches the lattice size, Binder’s cumulant exhibits an
abrupt change and finally it settles to a new, long correlation length value. The position
of this abrupt change along time axis depends on the linear size (L) of the lattice. But
the initial and the final values are exactly the same for all lattice sizes. In Figure [l b)
the scaling of Binder’s cumulant (Bs(t)) can be seen. As it is seen from this figure, Bs(t)
scales with time as t < S2 > (t)/L?". As a result of scaling, the value 2’ = 1.725 4 0.03 is

obtained from minimizing distances between Bs(t) data for different lattice sizes.

Figure B shows the surface renormalization function F(t) for the 2—dimensional Ising
model for the same lattice sizes given in Figure [l Figure ] a) shows the simulation data
and Figure Bl b) shows the scaling by use of < S? > (t) as the factor in time scaling. This
function also exhibits an abrupt change from initial vanishing value to a certain constant
value as the correlation length reaches the size of the lattice. As it is seen from this

figure, time to reach the plateau is proportional to the linear size (L) of the system. The



positions of the abrupt changes for both F(t) and Bs(t) are the same for each lattice size.
As in the case of Bs(t) given in Figure[ll, a good scaling is observed for the same value of
2 =1.725 4+ 0.03.

Figures B and Bl show the simulation data and the dynamic scaling for Bs(t) and F(t)
for 3- dimensional Ising model, respectively. In both figures a) shows the time evolution
of the scaling functions and b) shows the functions after dynamic scaling. Scaling gives
z' = 1.95 £ 0.05 for both Bs(t) and F(t) for the 3-dimensional Ising model. Similarly,
figures @ and @ show the simulation data and the dynamic scaling for Ba(t) and F(t) for
4- dimensional Ising model, respectively. For this model scaling of data for By (t) and F'(t)
results in 2/ = 2.0 £ 0.2 and 2’ = 2.1 + 0.2, respectively. In all these figures simulation
data for functions Bs(t) and F'(t) show the same behavior and scaling is very good. The
errors in the values of 2’ are obtained from the largest fluctuations in the simulation data
for By(t) and F'(t). The values of the dynamic critical exponent z are calculated using
Eq.[@) for 2-, 3- and 4- dimensional Ising models and these values are given in Table 1.

The literature values are also given for comparison.

3 Conclusion

Wolff’s algorithm is one of the most difficult algorithms to calculate the dynamic criti-
cal exponent. Simply the difficulty arises from the comparison between the number of
updated spins and the total number of spins. At each iteration only a single cluster is

updated. In the literature, for 2-, 3- and 4-dimensions, small dynamic critical exponents
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are obtained [22] 23] 24), 25| 26], 27, 28], but further studies of the data suggest that for
all three dimensions the dynamic critical exponent of the Ising model can be considered
as zero. The measurement of the dynamic critical exponent in thermal equilibrium is ex-
tremely difficult, since the correlation length around the phase transition point is as large
as the size of the lattice. In dynamic finite size scaling, since the correlation length remains
smaller than the lattice size, it is expected that statistically independent configurations

lead to better statistics since there are no finite size effects.

In this work we have considered the dynamic scaling behavior of Binder’s cumulant (Bs(t))
and the renormalization function (F'(t)) for 2-, 3- and 4- dimensional Ising models. We
have observed that these scaling functions can be used to identify the critical point and the
critical exponents during the initial stages of the thermalization. In our calculations, we
have observed that our results are consistent with vanishing dynamic critical exponent.
Despite the fact that obtaining good statistics is extremely time consuming for large
lattices, finite size effects do not play any role in obtaining the results. One can see from
the results of dynamic scaling that scaling is very good and the errors are very small,
hence this method is a good candidate to calculate the dynamic critical exponent for any
spin model and for any algorithm. The most striking result of our calculations is that the
dynamic critical exponent for 3-dimensional Ising model is obtained as z = 0.02 £ 0.09,
instead of previously reported range of values z = 0.28 — 0.44 [28, 25]. This is a clear
indication that the efficiency of the Wolff’s algorithm is better than previously thought,

especially in eliminating critical slowing down of Monte Carlo simulations. This means
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that using this algorithm, very large lattices at criticality can be considered, without

unusually large statistical errors building up.
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Table Captions

Table 1.
The values of calculated dynamic critical exponents (z) (using Eq.[@)) for 2-, 3- and
4-dimensional Ising models. First two coulumns are the values obtained from scaling

functions Bs(t) and F'(t), respectively and the third column includes the literature values.

Figure Captions

Figure 1 a) Binder cumulant data (Ba(t)) for 2-dimensional Ising Model for linear lattice
sizes L = 256, 384, 512, 640 as a function of simulation time ¢, b) scaling of By(t) data

given in a) using < S? > (¢) as the factor in time scaling,

Figure 2 a) Simulation data for the renormalization function (F'(t)) as a function of simu-
lation time ¢ for 2-dimensional Ising model for linear lattice sizes L = 256, 384, 512, 640,

b) scaling of F(t) data given in a) using < S% > (¢) as a factor in time scaling.

Figure 3. Simulation data for Bs(t) as a function of simulation time ¢ for 3-dimensional
Ising model for linear lattice sizes L = 32, 48, 64, 80, b) scaling of Bs(t) data given in a)

using < S% > (t) as the factor in time scaling.

Figure 4. Simulation data for F'(t) as a function of simulation time t for 3-dimensional

Ising model for linear lattice sizes L = 32, 48, 64, 80, b) scaling of F(t) data given in a)
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using < S% > (t) as the factor in time scaling.

Figure 5. Simulation data for Bs(t) as a function of simulation time ¢ for 4-dimensional
Ising model for linear lattice sizes L = 16, 20, 24, b) scaling of Bs(t) data given in a) using

< S? > (t) as the factor in time scaling.

Figure 6. Simulation data for F'(t) as a function of simulation time t for 4-dimensional

Ising model for linear lattice sizes L = 16, 20, 24, b) scaling of F'(¢) data given in a) using

< S? > (t) as the factor in time scaling.
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z(Bs) z(F) z(Literature)
0.0£0.05 0.02 £0.05 0-04 [25], 26, 27]
0.0£0.09 0.02 £ 0.09 0.28 — 0.44 [28, 25]
0.0£0.19 —0.13£0.19 0 [28]

Table 1.
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