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Abstract

Certain systems, such as amphiphile solutions or diblock copolymer melts, may assemble
into structures called “mesophases”, with properties intermediate between those of a solid
and a liquid. These mesophases can be of very regular structure, but may contain defects
and grain boundaries. Different visualization techniquessuch as volume rendering or iso-
surfacing of fluid density distributions allow the human eyeto detect and track defects in
liquid crystals because humans are easily capable of findingimperfections in repetitive spa-
tial structures. However, manual data analysis becomes tootime consuming and algorith-
mic approaches are needed when there are large amounts of data. We present and compare
two different approaches we have developed to study defectsin gyroid mesophases of am-
phiphilic ternary fluids. While the first method is based on a pattern recognition algorithm,
the second uses the particular structural properties of gyroid mesophases to detect defects.

Key words: Gyroid cubic mesophase, liquid crystal, defect analysis.
PACS: 61.30.Jf, 61.72.Bb, 83.10.Lk

1 Introduction

Molecules in an ordinary liquid will usually have random orientations. There is a
certain interesting class of liquids, called liquid crystals, in which this is not the
case: the molecules exhibit a tendency to align or order. Liquid crystals have some
of the properties of crystals, since they exhibit long-range ordering and strong
anisotropy, but retain the ability to flow, unlike ordinary crystals in which the
molecules are locked onto well-defined positions on a lattice.
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Amphiphiles are one class of molecule which may produce liquid crystalline be-
haviour. These are molecules constructed from two parts, usually a water-loving
head and a long tail which is attracted to oil. In a mixture of oil, water, and am-
phiphile, amphiphile molecules are attracted to the interface between the oil and
water to minimize free energy, hence they are often termed “surface active agents”,
or surfactants. Their precise behaviour is strongly dependent on concentration, so
they are termed “lyotropic” liquid crystals.

A random mixture of oil, water, and surfactant molecules will often spontaneously
arrange itself into separate regions of oil and water, separated by a layer of surfac-
tant at the interface, forming structures called surfactant mesophases. These struc-
tures can be very complex, and their geometry depends strongly upon the relative
proportions of different molecules in the mixture, and the details of how they in-
teract. Such structures can also be produced in binary systems, such as water-lipid
mixtures, and often occur in biological systems[1,2,3].

Surfactant mesophases will often form minimal surfaces: for any boundary drawn
on the surface, the surface lying inside the boundary will have the minimal possible
surface area, and the surface will also have zero mean curvature. Triply periodic
minimal surfaces[4] which extend through space with cubic symmetry[5] have been
found in many systems, such as lipid-water mixtures[1], diblock copolymers[6],
and in many biological systems[7].

The gyroid, also known as the “G surface”, is a particular minimal surface, dis-
covered by Schoen[8]. It is embedded (has no self-intersections), triply periodic
(repeats inx, y, andz directions), and is the only known such surface with triple
junctions (Figure 1(b)). A numerical study of the gyroid wasmade by Große-
Brauckmann[9]; while an analytical description was found by Gandy and Klinowski[10]
a very close approximation of a gyroid is the surfacecos x sin y + cos y sin z +
cos z sin x = 0. It is possible to transform the gyroid into two other well-known
surfaces, the P and D surfaces, through the single parameterknown as the Bonnet
Angle[11]. The gyroid has symmetry groupIa3̄d; the unit cell consists of 96 copies
of a fundamental surface patch, related through the symmetry operations[10] of this
space group.

The gyroid surface divides space into two interpenetratingregions, or labyrinths.
In the case of gyroids formed from a mixture of oil, water, andsurfactant, one
labyrinth contains mostly oil, the other mostly water, and the gyroidic boundary
surface between the two labyrinths is populated with surfactant, as shown in Figure
1(a) and 1(b).

Channels run through the gyroid labyrinths in the (100) and (111) directions; pas-
sages emerge perpendicular to any given channel as it is traversed, the direction at
which they do so gyrating down the channel, giving rise to the“gyroid” name[9].

The labyrinths are chiral, so that the channels of one labyrinth gyrate in the op-
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(a) (b)

(c) (d)

Fig. 1. Views of the gyroid mesophase. 1(a) 2D slice from a small (163) simulation of
a gyroid mesophase. Contours show composition, varying from pure oil to pure water;
arrows show the surfactant orientation. It can be seen clearly that the surfactant sits at
the interface, with the head groups pointing towards the water component. 1(b) Structure
of the two labyrinths enclosed by a gyroid minimal surface, showing the characteristic
triple junctions. 1(c) Channels running in the (100) direction of a gyroid surface: note how
adjacent channels rotate in opposite senses. 1(d) Parallel-projection volume rendering of a
gyroid, looking in the (111) direction to show the distinctive “wagon-wheel” appearance.

posite sense to the channels of the other, as seen in Figure 1(c). Looking down the
(111) direction of a gyroid shows a distinctive “wagon wheel” pattern (Figure 1(d)),
which has been observed experimentally in transmission electron micrographs of
gyroid phases[6].

As a Platonic or mathematical abstraction, the gyroid consists of perfect copies of
the unit cell, repeating on a Bravais lattice extending through space. This is not the
case for gyroid structures in the real world: various effects may give rise to regions
where the structure deviates from a gyroid. Such deviationsare calleddefects.

During the gyroid self-assembly process, several small, separated gyroid-phase re-
gions or domains may start to form, and then grow. Since the domains evolve inde-
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Fig. 2. Dislocation in a simulated gyroid mesophase

pendently, the lattices describing them may not be identical, and can differ in ori-
entation, position, or unit cell size. The interface between the domains will not be
gyroidal: therefore, grain-boundary defects arise between gyroid domains. Inside a
domain, there may be dislocations, or line defects, corresponding to the termination
of a plane of unit cells; there may also be localised non-gyroid regions, correspond-
ing to defects due to contamination or inhomogeneities in the initial conditions.

While equilibrium gyroid mesophases and their defects are observed experimen-
tally, it is desirable to formulate a theoretical or computational model to better
understand how and why they form and how they evolve.

Much effort has been invested in theoretical and computational modelling of liq-
uid crystals. Nematic liquid crystals have been modelled using the Leslie-Erickson
formulation [12]; Monte Carlo[13,14] and Molecular Dynamics[15] simulations
have provided some insight, but reaching regimes where hydrodynamic effects are
significant is currently computationally unfeasible with these techniques.

Lyotropic liquid crystals, of interest in this paper, have also been studied extensively[16]
through techniques such as free-energy methods[17,18] andthrough consideration
of the interface between the lipid and water phases[19]; again, most treatments have
been limited to examination of the equilibrium state and itsstability.

There have been recent attempts to take advantage of the lattice Boltzmann method
for hydrodynamics[20,21], and modify it to take account of liquid-crystalline be-
haviour. Lattice Boltzmann is a discrete-time and discrete-space algorithm; since
only nearest-neighbour interactions take place between vertices on the simulation
lattice, it is extremely fast, and extremely scalable on parallel computer hardware[22].
There are several such schemes, some of which[23] are based around the Leslie-
Ericksen model for nematic liquid crystals, and others which use a free-energy-
based approach for nematic[24,25,26,27,28,29] and lyotropic[30,31] phases.

We used another kind of lattice Boltzmann model, which employs a “bottom-up”
approach to model interactions between particles[32,33] including surfactants[34],
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postulating a form of interparticle potential rather than using a free-energy-based
technique. Briefly, the single-particle distribution function fσ

i (x) for speciesσ with
velocity ci is discretized onto lattice pointsx, and then evolved according to the
lattice BGK equation[21]. Three species, called red, blue,and green, are used, cor-
responding to oil, water, and surfactant. Immiscible fluidsare modelled using an
interparticle interaction force, controlled by a couplingconstantgcc: this force is
calculated from the gradient of the order parameter, or “colour field”, defined as the
differenceφ(x) = ρr(x) − ρb(x) between red and blue fluid densities. The mean
surfactant director fieldd(x) is also tracked on the lattice. A point-like surfac-
tant molecule is modelled as being constructed from two different immiscible fluid
molecules joined together, and therefore subject to dipole-like interactions with the
other fluids, controlled by a coupling constantgcs. Finally, interactions between
surfactant molecules are controlled by a constantgss. It was recently shown[35,36]
through simulations with the LB3D parallel lattice Boltzmann code that certain
mixtures of specific composition (specified by the initial densitiesfr,fb,fg of oil,
water, and surfactant) would spontaneously assemble from arandomized, disor-
dered initial condition, into a gyroid mesophase whose lattice parameter is around
8–9 simulation lattice sites. Similar cubic phases have been observed experimen-
tally with lattice parameter of order50nm, in polymer blends[6] and biological
systems[7].

On a sufficiently small lattice, the gyroid may evolve to perfectly fill the simu-
lated region, without defects. As the lattice size grows, itbecomes more probable
that multiple gyroid domains will emerge independently, sothat grain boundary
defects are more likely to appear and the time required for localized defects to
diffuse across the lattice increases making it more likely that defects will persist.
Therefore, examination of the defect behaviour of surfactant mesophases requires
the simulation of very large systems. This was achieved as part of the TeraGyroid
project, where systems on lattice sizes of up to10243 were simulated by linking
together multiple geographically-distributed supercomputing resources to form a
computational Grid[37,38,39,40].

2 Structure factor analysis of liquid gyroid mesophases

Simulation data from liquid crystal dynamics can be visualized using isosurfacing
or volume rendering techniques. The human eye has a remarkable ability to easily
distinguish between regions where the crystal structure iswell developed and areas
where it is not. For quantitative studies of large systems evolving over long inter-
vals of time, computational methods for defect detection and tracking are required.
Developing algorithms to detect and track defects is a non-trivial task, however,
since defects can occur within and between domains of varying shapes and sizes
and over a wide variety of length and time scales.
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A standard method to analyse simulation data is the calculation of the three-dimensional
structure function

S(k, t) ≡
1

V
|φ′

k
(t)|

2
, (1)

whereV is the number of cites of the lattice,φ′

k
(t) the Fourier transform of the

fluctuations of the order parameterφ′ ≡ φ− 〈φ〉, andk is the wave vector [41,36].
S(k, t) can easily be calculated, but only gives general information about the crys-
tal development [42,43,35]. It does not allow one to detect where the defects are
located or how many there are, nor does it furnish access to information about the
number of differently oriented gyroid domains.

Figure 3 gives an example of the three-dimensional structure factor calculated for
the order parameterφ(x) at timestepst=10000, 100000, and 700000. We use pe-
riodic boundary conditions, a 1283 lattice and simulate for one million timesteps.
This is more than an order of magnitude longer than any other simulation per-
formed before the TeraGyroid [40] project using our lattice-Boltzmann code LB3D
and took 300 wall clock hours on 128 CPUs of an IBM SP4 (namely HPCx in
Daresbury, UK). We use data from this simulation throughoutthe present paper
to demonstrate the properties of different defect detection and tracking algorithms.
The initial condition of the simulation is a random mixture with maximum densities
of 0.7 for the case of the immiscible fluids and 0.6 for surfactant. The surfactant-
surfactant coupling constant is given bygss=-0.0045 and the coupling between sur-
factant and the other fluids is determined bygcs=-0.006. In order to obtain a visual-
ization that is comparable to experimentally obtained SAXSdata (see for example
[42]), we sum the structure factor in one of the cartesian directions. The example
here has been summed in thex-direction andXmax denotes the value of the largest
peak normalised by the number of lattice sites in the direction of summation (128
in this case). Results for they- and z-directions are similar. Att=10000, gyroid
assembly is just commencing, which is evident due to the eight peaks of the struc-
ture factor which are already clearly distinguishable.Xmax is 11.85 in this case
and is almost eight times bigger fort=100000. The peaks of the structure function
correspond to a well developed crystal which consists of differently oriented gy-
roid domains with defects at the domain boundaries. Att=700000,Xmax reaches
197.00 and most of the previously existing domains have merged into a single one.
Only a few defects are left of which two can be spotted visually at the right corner
of the volume rendered visualisation and the centre of the top surface (denoted by
the white arrows).

We are interested here in very well developed liquid crystals with defect domains
covering only a minority of the total simulation volume. In order to distinguish be-
tween different defects and to study their evolution in time, we need to be able to
clearly separate defect domains from regions where we find a perfect gyroid struc-
ture. An important property of these systems is that the variations of the structure
function in time become very small and the system reaches a state close to equi-
librium. Figure 4 shows the time dependence of the maxima of the structure func-
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Fig. 3. Three-dimensional structure factor of the order parameter at timestepst=10000,
100000, and 700000, lattice size 1283 and simulation parametersfr=fb=0.7, fg=0.60,
gss=-0.0045,gcs=-0.006. For comparability with SAXS experimental data, wedisplay the
total structure factor in thex-directionX=

∑
kx

S(k, t). Xmax denotes the value of the
largest peak divided by the number of lattice sites in the direction of summation (128 in
this case). The lower half of the figure shows volume renderedvisualizations of the cor-
responding order parameters and the white arrows are a guidefor the eye to spot some
defective areas at the top surface and the right corner att=700000.

tion in x-, y- andz-direction for up to 700000 timesteps. To suppress short lived
fluctuations within the fluid mixture, i.e. local variationsthat spontanously form
and disappear after up to a few thousand timesteps, we average every data point
over 20000 timesteps. The maximum value ofS(k, t) shows a generally increasing
behaviour in all three cases, but fluctuates greatly for the first 320000 timesteps.
Then,Xmax(t) andZmax(t) show a steep increase indicating that two major gyroid
domains are merging into a single one. During this process, defects located at the
boundaries between these domains disappear. Att=400000, the fluctuations present
in all three plots become very small indicating a very clean crystal with only a small
number of defects. It is easy to detect this state numerically by defining a maximum
allowed variation of the maximum values of the structure function. The remaining
part of this paper will only discuss the analysis of data obtained fort ≥340000.

Very long simulations like the one presented here can generate large amounts of
data – especially if one measures physical quantities with ahigh resolution. Here,
we measured the order parameter every 100 timesteps resulting in 10000 data files
or about 78GB of data which we need to analyse. Filtering out data that is irrelevant
for studying defect behaviour using the method described here allows us to reduce
the number of files to 6500.
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Fig. 4. Maximum value of the three othogonal projections of the three-dimensional struc-
ture factor. For a clearer presentation, we averaged over 20000 timesteps to obtain a single
data point displayed here.

3 Data reduction: From three dimensions to two dimensions

A first order approach to reduce the amount of data which needsto be analysed in
detail is to project the three-dimensional system onto a two-dimensional plane. If
one volume renders the order parameter of a gyroid unit cell using a step function
which fills out all areas above an appropriate threshold value and leaves all values
below that threshold transparent, it is possible to “look through” the unit cell un-
der various angles. Since in a perfect gyroid mesophase the individual unit cells
assemble in a very regular way, it is then possible to look through the whole liquid
crystal. This can be implemented as a ray-tracing algorithm: First, select an appro-
priate projection direction, for exampley. Define a projection planeP (x, z) to store
the results and define a threshold valueC. For the gyroid mesophase, we use 66%
of the maximum value of the order parameter, but this value depends on the system
to be analysed. For every point in thexz-plane, start aty=0 and check for all values
of y if the order parameterφ(x, y, z) is smaller thanC. As long as that is the case,
we keepP (x, z)=0. If φ(x, y, z) is greater or equalC, we setP (x, z)=1, move to
the next point in thexz-plane and start fromy=0 again.

Figure 5 shows visualizations ofP (x, z) for timesteps 50000, 100000, 200000,
300000, 400000, 500000, 600000, 700000. Black areas correspond toP (x, z)=1
and white areas toP (x, z)=0. For early simulation times most ofP (x, z) is 1 and
while the simulation evolves white spots start to occur in the images presented in
figure 5 until a very regular lattice-like structure with some black islands appears
for t >400000. Areas of regular lattice structure correspond to perfect crystal struc-
tures along the projection direction. Black islands can be interpreted as areas where
the gyroid structure is disturbed or not existent at some point along the projection
axis.
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t=50000 t=100000 t=200000

t=400000 t=500000 t=600000 t=700000

t=300000

Fig. 5. Two-dimensional projection in they-direction of volume rendered
three-dimensional colour fields att= 50000, 100000, 200000, 300000, 400000, 500000,
600000, 700000.

Obviously, projecting the full system makes it impossible to retain the three-dimensional
structure of individual defects. Therefore, we apply the projection algorithm on
slabs of the dataset only. For an optimal resolution of the defect detection, the
slab thicknessl should be comparable to the size of a gyroid unit cell which cor-
responds to eight lattice sites in our case, resulting in 16 individual 128×128×8
slabs for a 1283 lattice. We found that using overlapping slabs does not improve
the defect detection rate. The positions and sizes of the defects detected in the
two-dimensional projections can be used to reconstruct three-dimensional datasets
which only include the defective areas. A defective area in the two-dimensional
datasets is mapped to a volume of thicknessl.

In order to further improve the reliability of the detection, we repeat the analysis
for all three cartesian directions. In this way, we can detect gyroid cells which are
deformed in one direction only. For the reconstruction of the three-dimensional
dataset, all three analysis runs are taken into account. Additional resolution can be
obtained by distinguishing between how often and in which direction(s) a defective
volume has been detected, indicating the particular kind ofdefect.

The human eye is easily able to accurately detect defective areas in the individ-
ual images of figure 5. In the following sections we will present two possible ap-
proaches which try to transfer this remarkable ability to a well defined algorithm
that can be implemented on a computer. The first approach is based on a generic
pattern recognition algorithm and should work with all liquid crystals that form a
regular pattern, while the second has been developed with our particular problem
in mind and is not known to work with systems other than the gyroid mesophase.
However, it is about an order of magnitude faster and the general principles under-
lying it should be applicable to different systems as well.
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4 A general pattern recognition based approach for the detection of defects

The first approach is based on the regularity or periodicity of patterns and was de-
veloped by Chetverikov and Hanbury in 2001 [44]. It is assumed that the defect-free
pattern is homogeneous and shows some periodicity. The algorithm searches for ar-
eas which are significantly less regular (i.e. aperiodic) than the bulk of the dataset
by computing regularity features for a set of windows and identifying defects as
outliers in regularity feature space. The regularity is quantified by computing the
periodicity of the normalised autocorrelation function inpolar coordinates. In short,
for every window a regularity value is computed. If this value differs by more than a
defined threshold value from the median of all window regularity values, the area is
accordingly classified as a defect. For a more detailed description of the algorithm
see [44,45].

Fig. 6. Two-dimensional projection of the three-dimensional colour field for a gyroid sys-
tem of size 1283 at t= 600000. The white frames depict the areas detected by the pattern
recognition algorithm of Chetverikov and Hanbury [44]. In order to detect small defects
at the system’s boundaries, we extend the dataset by mirroring 50% of its corresponding
content from the opposite side. The size of the original dataset is depicted by the large box.

We have found this pattern recognition algorithm to be very robust and reliable
in detecting defects. In figure 6 the detected defects for an example dataset at
t=600000 are depicted by the white boxes. For good results, the regular pattern
needs to occur multiple times within an analysis window. A window size of 17x17
lattice sites has been found to generate the best results. Defects located in the cen-
tral area of the crystal are very well detected, but the algorithm fails at the bound-
aries. We overcome this problem by taking advantage of the fact that our model
has periodic boundary conditions, and extend the dataset bymirroring 50% of its
corresponding content from the opposite side. In this way weincrease the number
of analysis windows containing regular patterns and the defects at the boundaries
differ more substantially from the surrounding regular pattern since they appear at
their full size. The pattern recognition algorithm is then able to detect boundary
defects and, depending on the maximum size of defects, the size of the additional
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“padded” regions can be adapted in order to limit the additional computational
costs.

By applying the pattern recognition algorithm to all individual projected slabs of
the dataset, we are able to reconstruct a three-dimensionalvolume that only con-
sists of areas which have been detected as defective. Figure7 shows reconstructed
datasets att=340000, 500000 and 999000. Even att=340000 a very large region
of the system has not yet formed a well defined gyroid phase. 160000 timesteps
later, the main defects are pillar shaped ones at the centre and at the corners of the
visualised systems. Due to the periodic boundary conditions, the corner defects are
connected and should be regarded as a single one. As can be seen from the analysis
at t=999000, defects in the gyroid mesophase are very stable in size as well as in
their position.

Fig. 7. Volume rendered visualization of the colour field at t=340000, 500000, 999000 from
the evolving gyroid system. Only the defects are shown as they have been isolated from the
full datasets using the pattern recognition algorithm.

5 A mesh generator as an alternative method for defect detection

The second approach presented in this paper also utilises the two-dimensional slab
projections and encapsulates knowledge about the patternsproduced by regular and
defect regions (see figure 8). As a consequence, it is an orderof magnitude faster
than the pattern recognition code.

For each slab image, the centroid and area of each dot is computed and dots be-
low a certain threshold area are discarded. The four nearestneighbours of each dot
are determined and a connection mesh is generated (Figure 8(b)). Neighbours that
lie more than one gyroid unit cell width away from a dot are discounted. Periodic
boundary conditions are assumed when generating the mesh sothat defects at the
edge of the system may be reliably detected. Nodes which lie in defect-free re-
gions of the lattice are distinguished by having four four-hop closed routes through
neighbouring nodes (denoted by the arrows in figure 9). Mesh nodes that describe
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Fig. 8. Defect regions (c) are extracted from a mesh representation (b) of the
two-dimensional projection (a) fort= 600000 shown in Figure 5.

the perimeter of defect regions lack this property. A tree-searching algorithm is
used to search the data-structure representing the mesh anddetect the presence of
closed loops. The regions of regular mesh are discarded, leaving only mesh that
describes the perimeters of defect regions (emboldened regions in 8(b)).

A

Fig. 9. Mesh nodes which lie within regular regions (A) are distinguished by having four
four-hop closed routes through their neighbouring nodes. Nodes lacking this property
(black) are categorised as defect boundary nodes.

A flood-fill algorithm is applied to a rasterised image of the defect perimeters to
locate distinct defect regions and isolate them from the background (corresponding
to defect-free regions). Thereafter, a mask image as presented in Figure 8(c) is
generated.

As with the pattern recognition approach, this procedure isrepeated for each of
the three Cartesian axes and the resultant mask images are assembled to produce
a three-dimensional defect mask which is then applied to theoriginal dataset. For
comparison, figure 10 shows reconstructed visualizations of defective areas for the
same parameters and timesteps as figure 7.

Since the algorithm defines the perimeter of a defect region by the nearest mesh
nodes, there is a tendency to over-estimate the boundary of the defect region. How-
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Fig. 10. Volume rendered visualization of the colour field att=340000, 500000, 999000
from the evolving lattice-Boltzmann simulation. Only the defects are shown as they have
been separated from the full datasets using the mesh generation algorithm.

ever, this over-estimate is proportional to the defect surface area and the maximum
error of the detected defect volume can be estimated as the volume of a one gyroid
unit cell thick layer surrounding all individual defects.

Since the dots in the two-dimensional projections are sections of tube-like structure
that run through the gyroid rather than spatially localisedentities, the division of
the dataset into slabs is an essential step. For this reason,no attempt was made to
develop a three-dimensional mesh generator.

6 Comparison of the detection algorithms

From the reconstructed datasets we are able to compute the volume fraction of the
simulation system that contains defects. This value is plotted in figure 11(a). The
shades denote the original data, while the solid and dashed lines are averages over
4000 timesteps. As expected, the volume fraction detected by the mesh generator is
larger than the area detected by the pattern recognition algorithm because the mesh
generation algorithm’s resolution is limited by the size ofa unit cell. In addition, the
mesh generator detects very small and short-lived variations of the dataset which
occur due to small local variations of the gyroid structure resulting in more noisy
data for the volume fraction. The results of the pattern recognition algorithm are
noisy because the shape of the detected regions is determined by the combination
of overlapping squares corresponding to the analysis windows. Small variations
of the defect shape can result in differently arranged overlapping windows and
thus in varying defect volume fractions. Improvement is possible by using a higher
resolution for the pattern recognition analysis, but at greater computational cost.
However, both methods show the same general behaviour.

Figure 11(b) shows the averaged volume fraction contained in the large defect in
the centre of the system. We compute the total volume of an individual defect by
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assuming that all detected areas that overlap belong to the same defect. While for
early simulation times, the mesh generator’s results fluctuate substantially more
than the values obtained from the pattern recognition algorithm, they eventually
converge fort >600000.

Fig. 11. Fraction of the total simulation volume contained in defects (a) and volume fraction
of the large central defect (b) detected by both algorithms.The lighter noisy plots in (a)
denote the original data from the pattern recognition algorithm and the mesh generator.
The solid and dashed lines have been averaged over 4000 timesteps for better visability.

An important feature of both algorithms is the possibility they provide to track indi-
vidual defects in time and so enable us to study their dynamics on the lattice. As an
example, we plot the distance of the centre of mass of the large defect in the centre
of the system in figure 12. Both methods generate the same general behaviour and
differences in these plots are caused by the slightly different volumes detected by
both methods. The origin corresponds to the lower front corner in figures 7 and 10.

Finally, we analyse the number of defects detected by both methods fort >34000.
As shown in table 1, the pattern recognition algorithm has a minimum detection rate
of 4 defects which corresponds to a value at an early simulation time (t =346200)
and a maximum value of 34 (t =578600). The mean is 20.17 and the standard de-
viationσ is 3.48. All values are substantially smaller than the results obtained from
the mesh generator (see table 1). This is because of the mesh generator’s ability to
detect very small variations of the gyroid. Furthermore, since the pattern recogni-
tion’s resolution is limited due to the rectangular shape ofthe analysis windows,
the resulting detection areas are not as flexible in shape as the ones from the mesh
generator. Thus, the mesh generator might detect multiple small defects which are
very close to each other while the pattern recognition algorithm would detect those
as a single defect. We can enhance the comparability of both methods by applying a
filter to the mesh generator and only taking defects into account that have a lifetime
of at least 1000 timesteps. For our data, the new minimum drops to 7 which is only
3 defects more than obtained using the pattern recognition algorithm. The resulting
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Fig. 12. Distance (in lattice sites) of the centre of the large defect in the centre of the simu-
lated 1283 system from the origin. The data has been obtained using the pattern recognition
algorithm (solid line) and the mesh generation algorithm (dashed line). The origin corre-
sponds to the left front corner in figures 7 and 10.

maximum is 36 and the mean becomes 22.76.

Algorithm Minimum Maximum Mean σ

Pattern recognition 4 34 20.17 3.48

Mesh generator 28 78 48.70 7.52

Mesh generator (avg) 7 36 22.76 3.80
Table 1
Statistics for the number of defects within the system obtained from the pattern recognition
algorithm, the mesh generator and the mesh generator with added time averaging over 4000
timesteps.

In order to make the advantages of the two-dimensional projections apparent, we
have extended the pattern recognition algorithm to three dimensions and applied
it to the three-dimensional dataset directly. For the case presented here, the com-
putational effort needed to analyse a single dataset is 2.7 times higher than the
analysis of all individual projections (s=8) in all three directions. Furthermore, the
three-dimensional approach does not allow a greater resolution than the size of the
analysis window which in our case is 17x17x17. The projection based approach
allows us to improve the resolution since the individual two-dimensional windows
are mapped to 17x17x8 volumes. By taking all three cartesiandirections into ac-
count, we are able to achieve an effective resolution of 8x8x8. Furthermore, due to
the well defined structures produced by the projection algorithm, the detection rate
of the pattern recognition algorithm is higher than if one uses it on a non-processed
dataset.
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7 Conclusions

We first briefly described the most spectacular liquid crystalline mesophases which
may arise in amphiphilic fluids, and our capability to simulate these. The spe-
cific liquid crystalline mesophase of interest has been the cubic gyroid phase. We
then described two powerful algorithms based on a pattern recognition algorithm
and a mesh generation method to detect and track defects in liquid crystals and
applied them to simulation data of a gyroid mesophase obtained during the Ter-
aGyroid project [37]. Both algorithms are superior to fullythree-dimensional ap-
proaches since they exploit basic properties of the system to be analysed. The two-
dimensional projection of slabs which have the thickness ofa crystal unit cell al-
lows us to reduce the computational analysis effort substantially. Since the pattern
recognition algorithm was not developed with gyroid mesophases in mind, it should
be applicable to many different regular structures. Additionally, it is more robust in
detecting defective areas than the mesh generation algorithm. However, the latter is
about ten times faster and thus saves a substantial amount ofCPU time if one has to
analyse large amounts of simulation data. In addition, we found that time averaging
is efficient in filtering out short time fluctuations or artefacts.

The methods described in this paper are most powerful if theyare applied in a
combined fashion and it would be a natural extension to perform parts of it during
an ongoing simulation. For checking if a gyroid phase has formed, observing the
variation of the maxima of the projected structure functionof the order parameter
is most efficient. Efficient parallel FFT implementations are widely available and
can be implemented within the simulation code. If the variation of the maxima of
the projected structure function drops below a threshold value, one should apply
the mesh generation algorithm and track values like the total defect volume or the
number of defects. Since our simulation code uses spatial domain decomposition,
each CPU can generate the two-dimensional projections of the order parameter in-
dividually following which the mesh generation algorithm can be applied locally.
The computational effort for this analysis is negligible compared to the actual sim-
ulation time, and moreover would allow the scientist to use computational steering
techniques [38,46,47] to monitor the state of the simulation while it is running.

The pattern recognition algorithm is less efficient than mesh generation, but is the
only choice if one is not limited to simulations of gyroid mesophases. In the gy-
roid case, it is more efficient to use the results from the meshgenerator to select
a smaller number of datasets for post-processing using the pattern recognition al-
gorithm since the computational effort involved in the pattern recognition can be
substantial. For very large datasets, a promising approachis to determine regions
of interest within a single dataset using the mesh generation algorithm and then to
analyse subdomains of the system utilizing the pattern recognition approach.

Articles are currently in preparation which make extensiveuse of the detection
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and tracking algorithms described here in order to understand the dynamics and
properties of amphiphilic gyroid phases.
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