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Abstract

Multiple polylogarithms appear in analytic calculations of higher order corrections in quan-
tum field theory. In this article we study the numerical evaluation of multiple polylogarithms.
We provide algorithms, which allow the evaluation for arbitrary complex arguments and
without any restriction on the weight. We have implemented these algorithms with arbitrary
precision arithmetic in C++ within the GiNaC framework.
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1 Introduction

In recent years multiple polylogarithms [1–3] found the wayinto physics in the field of pertur-
bative calculations in quantum field theory. They satisfy several useful algebraic properties, in
particular they satisfy two different Hopf algebras. Multiple polylogarithms are generalisations
of harmonic polylogarithms [4,5], Nielsen polylogarithmsand the classical polylogarithms [6,7]
to multiple scales. Polylogarithms have a natural grading defined by their weight. From explicit
higher order calculations it is emerging that one can express the results of Feynman integrals
in terms of multiple polylogarithms. In dimensional regularisation we obtain in the finite terms
polylogarithms up to weight 2l for an l -loop amplitude. Whereas we expect harmonic polyloga-
rithms to be sufficient to express the results for 2→ 2 scattering processes in massless quantum
field theories, amplitudes with more external particles and/or massive particles involve addi-
tional scales, which naturally leads to multiple polylogarithms. Since many recent results [8–27]
of higher order calculations are expressed in terms of multiple polylogarithms, a numerical eval-
uation routine for multiple polylogarithms is of immediateuse for perturbative calculations in
particle physics. Algorithms for the numerical evaluationof multiple polylogarithms are the
subject of this article. For a few specific subclasses of multiple polylogarithms numerical evalu-
ation methods can be found in the literature: The numerical evaluation of Nielsen polylogarithms
has been known for a long time [28–30]. A special case of multiple polylogarithms are multi-
ple zeta values, which are obtained from the polylogarithmsif all scales are equal to one. For
this special case, efficient algorithms for the numerical evaluation have been studied by Cran-
dall [31] and Borwein et al. [2]. Furthermore, two recent papers provide numerical routines
for harmonic polylogarithms and two-dimensional harmonicpolylogarithms [32–34]. However
these last mentioned routines are restricted to not more than two scales and weight not higher
than 4. Here we provide methods for the larger class of multiple polylogarithms without any
restrictions on the weight and the number of scales. We have implemented these algorithms with
arbitrary precision arithmetic in C++ within the GiNaC [35]framework.

This paper is organised as follows: In Section 2 we review as an introductory example the nu-
merical evaluation of the dilogarithm. Section 3 defines thenotation for multiple polylogarithms
used in this paper. Section 4 collects several useful properties of multiple polylogarithms, which
will be used to construct the algorithms for the numerical evaluation. Section 5 is the main part
of this paper and gives the algorithms for the numerical evaluation. In Section 6 we report on
the implementation in C++ within the GiNaC framework and describe the checks that we have
performed. Finally Section 7 contains our conclusions.

2 The dilogarithm

In this short section we review as an introductory example the numerical evaluation of the dilog-
arithm [30]. The numerical evaluation algorithm is rather simple, but does contain many ideas
which will reappear in more elaborate form in the remaining part of the paper. The dilogarithm
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is defined by

Li2(x) = −
x∫

0

dt
ln(1− t)

t
, (1)

and has a branch cut along the positive real axis, starting atthe pointx = 1. For|x| ≤ 1 one has
the convergent power series expansion

Li2(x) =
∞

∑
n=1

xn

n2 . (2)

The first step for a numerical evaluation consists in mappingan arbitrary argumentx into the
region, where the power series in eq. (2) converges. This canbe done with the help of the
reflection identity

Li2(x) = −Li2

(
1
x

)

− π2

6
− 1

2
(ln(−x))2 , (3)

which is used to map the argumentx, lying outside the unit circle into the unit circle. The function
ln(−x) appearing on the r.h.s. of eq. (3) is considered to be “simpler”, e.g. it is assumed that a
numerical evaluation routine for this function is known. Inaddition we can shift the argument
into the range−1≤ Re(x) ≤ 1/2 with the help of

Li2(x) = −Li2(1−x)+
π2

6
− ln(x) ln(1−x). (4)

Although one can now attempt a brute force evaluation of the power series in eq. (2), it is more
efficient to rewrite the dilogarithm as a series involving the Bernoulli numbersBn:

Li2(x) =
∞

∑
i=0

Bi

(i +1)!
zi+1, (5)

with z= − ln(1−x). The Bernoulli numbersBn are defined through the generating function

t
et −1

=
∞

∑
n=0

Bn
tn

n!
. (6)

Therefore the numerical evaluation of the dilogarithm consists in using eqs. (3) and (4) to map
any argumentx into the unit circle with the additional condition Re(x) ≤ 1/2. One then uses the
series expansion in terms of Bernoulli numbers eq. (5).

It occurs quite frequently in physics, that the numerical value for the dilogarithm is needed
for the case, where the variablex is real except for a small imaginary part. The small imaginary
part specifies if the dilogarithm should be evaluated above or below the cut in the casex > 1. In
this case the evaluation is split into the evaluation for thereal part and the one for the imaginary
part. The imaginary part of the dilogarithm is related to thelogarithm:

Li2(x) = Re Li2(x)− i ln(x) Imln(1−x) . (7)
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The imaginary part of the logarithm is given for realx by

ln(−x∓ i0) = ln(|x|)∓ iπθ(x), (8)

where the step functionθ(x) is defined asθ(x) = 1 for x > 0 andθ(x) = 0 otherwise and “i0”
denotes a small imaginary part.

3 Definitions

3.1 Definition of multiple polylogarithms

Multiple polylogarithms are defined by an iterated sum representation:

Lim1,...,mk(x1, ...,xk) = ∑
i1>i2>...>ik>0

xi1
1

i1m1
. . .

xik
k

ikmk
. (9)

The order of the arguments of multiple polylogarithms (and of multiple zeta values) is re-
versed with respect to the definitions in [1, 36–38]. It is also convenient to define the functions
G(z1, ...,zk;y) for zk 6= 0 by an integral representation as follows [3,38]:

G(z1, ...,zk;y) =

y∫

0

dt1
t1−z1

t1∫

0

dt2
t2−z2

...

tk−1∫

0

dtk
tk−zk

. (10)

Note that in the definition of the functionsG(z1, ...,zk;y) one variable is redundant due to the
following scaling relation:

G(z1, ...,zk;y) = G(xz1, ...,xzk;xy) (11)

Within the functionsG(z1, ...,zk;y) one allows in addition trailing zeros (e.gzk = zk−1 = ... =
zj = 0) through the definitions

G(0, ...,0
︸ ︷︷ ︸

k

;y) =
1
k!

(lny)k ,

G(z1, ...,zk;y) =

y∫

0

dt
t −z1

G(z2, ...,zk; t). (12)

For zk 6= 0 this coincides with the original definition eq. (10). Note that the scaling relation (11)
does not hold for trailing zeroes.G-functions with trailing zeroes can always be transformed to
G-functions without trailing zeroes. An algorithm for this transformation is given in section 4.
Therefore we will always assume thatzk 6= 0, unless explicitly stated otherwise. The functions
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G(z1, ...,zk;y) and Lim1,...,mk(x1, ...,xk) denote the same class of functions. With the short-hand
notation

Gm1,...,mk(z1, ...,zk;y) = G(0, ...,0
︸ ︷︷ ︸

m1−1

,z1, ...,zk−1,0...,0
︸ ︷︷ ︸

mk−1

,zk;y) (13)

the relation between the two notations is given by

Lim1,...,mk(x1, ...,xk) = (−1)kGm1,...,mk

(
1
x1

,
1

x1x2
, ...,

1
x1...xk

;1

)

. (14)

The notation Lim1,...,mk(x1, ...,xk) has a closer relation to the series representation, whereasthe
notationG(z1, ...,zk;y) has a closer relation to the integral representation. For the numerical eval-
uation both representations will be important. It is further convenient to introduce the following
notation for iterated integrals:

Λ∫

0

dt
t −a1

◦ ...◦ dt
t −an

=

Λ∫

0

dt1
t1−a1

× ...×
tn−2∫

0

dtn−1

tn−1−an−1

tn−1∫

0

dtn
tn−an

. (15)

We further use the following short hand notation:

Λ∫

0

(
dt
t
◦
)m dt

t −a
=

Λ∫

0

dt
t
◦ ...

dt
t

︸ ︷︷ ︸

m times

◦ dt
t −a

. (16)

With this notation, the integral representation of the function Gm1,...,mk (z1,z2, ...,zk;y) is written
as

Gm1,...,mk (z1,z2, ...,zk;y) =

y∫

0

(
dt
t
◦
)m1−1 dt

t −z1

(
dt
t
◦
)m2−1 dt

t −z2
...

(
dt
t
◦
)mk−1 dt

t −zk
.

(17)

The series expansion for Lim1,...,mk(x1, ...,xk) is convergent, if
∣
∣x1x2...x j

∣
∣ ≤ 1 for all j ∈ {1, ...,k} and(m1,x1) 6= (1,1). (18)

Therefore the functionGm1,...,mk (z1, ...,zk;y) has a convergent series representation if

|y| ≤
∣
∣zj

∣
∣ for all j, (19)

e.g. no element in the set{|z1|, ..., |zk|, |y|} is smaller than|y| and in addition ifm1 = 1 we have
y/z1 6= 1. The power series expansion for theG-functions reads

Gm1,...,mk (z1, ...,zk;y) =
∞

∑
j1=1

...
∞

∑
jk=1

1
( j1+ ...+ jk)

m1

(
y
z1

) j1 1
( j2+ ...+ jk)

m2

(
y
z2

) j2

...
1

( jk)
mk

(
y
zk

) jk
. (20)
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Multiple polylogarithms satisfy two Hopf algebras. The first one is referred to as “shuffle alge-
bra” and is related to the integral representation. An example for the multiplication is:

G(z1;y)G(z2;y) = G(z1,z2;y)+G(z2,z1;y). (21)

The second algebra is often called “stuffle algebra” or “quasi-shuffle algebra” [39] and is related
to the series representation. An example for this multiplication is:

Lim1(x1)Lim2(x2) = Lim1,m2(x1,x2)+Lim2,m1(x2,x1)+Lim1+m2(x1x2). (22)

Special cases

Multiple polylogarithms contain several specific subclasses. We list here the most important
ones. The notation for multiple zeta values [2] is:

ζm1,...,mk = ∑
i1>i2>...>ik>0

1
i1m1

. . .
1

ikmk
. (23)

Harmonic polylogarithms [5] are denoted as

Hm1,...,mk(x) = Lim1,...,mk(x,1, ...,1
︸ ︷︷ ︸

k−1

). (24)

Nielsen’s polylogarithms [7] are denoted as

Sn,p(x) = Lin+1,1,...,1(x,1, ...,1
︸ ︷︷ ︸

p−1

). (25)

Obviously, the class of multiple polylogarithms contains also the classical polylogarithms [6]:

Lin(x) =
∞

∑
j=1

x j

jn
. (26)

3.2 Definitions related to the analytic continuation

The multiple polylogarithms are analytic functions ink complex variables. To discuss the branch
cuts it is convenient to consider the integral representationGm1,...,mk (z1,z2, ...,zk;y) with zk 6= 0.

Gm1,...,mk (z1,z2, ...,zk;y) =

y∫

0

(
dt
t
◦
)m1−1 dt

t −z1

(
dt
t
◦
)m2−1 dt

t −z2
...

(
dt
t
◦
)mk−1 dt

t −zk
.

(27)

Using the scaling relation eq. (11) we can ensure thaty is a positive real number. (In fact one
could even require thaty= 1, buty positive and real is sufficient for our purpose here.) Thezj are
arbitrary complex variables. Therefore we can deduce from the integral representation, that the
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functionGm1,...,mk (z1,z2, ...,zk;y) develops a branch cut wheneverzj is a positive real number and
the integration variablet exceedszj . In most physical applications, thezj will be real numbers.
To distinguish if the integration contour runs above or below a cut, we define the abbreviations
z±, meaning that a small positive, respectively negative imaginary part is to be added to the value
of the variable:

z+ = z+ i0, z− = z− i0. (28)

Close to the real axis we have

Im
1

t −z∓ i0
= ±π

∂
∂t

Θ(t−z). (29)

This formula can be used to extract the imaginary parts from theG-functions [20].

4 Useful properties of multiple polylogarithms

In this section we give an algorithm for the removal of trailing zeroes fromG-functions, discuss
the transformation properties ofG-functionsG(z1, ...,zk;y) with respect to the argumenty, inves-
tigate in more detail the Bernoulli transformation and discuss the Hölder convolution. The last
two transformations can be used to speed up the series expansion.

4.1 Trailing zeroes

In this subsection we give an algorithm to remove trailing zeroes fromG-functions. The method
has been described for harmonic polylogarithms in [5] and has a straightforward generalisation
to multiple polylogarithms. We say that a multiple polylogarithm of the form

G(z1, ...,zj ,0, ...,0
︸ ︷︷ ︸

k− j

;y) (30)

with zj 6= 0 has(k− j) trailing zeroes. Polylogarithms with trailing zeroes do not have a Taylor
expansion iny, but develop a logarithmic singularity in(lny) aroundy = 0. In removing the
trailing zeroes, one explicitly separates these logarithmic terms, such that the rest has a regular
expansion aroundy = 0. The starting point is the shuffle relation

G(0;y)G(z1, ...,zj ,0, ...,0
︸ ︷︷ ︸

k− j−1

;y) = (31)

(k− j)G(z1, ...,zj,0, ...,0
︸ ︷︷ ︸

k− j

;y)+ ∑
(s1,...,sj)=(z1,...,zj−1) ⊔⊔ (0)

G(s1, ...,sj ,zj ,0, ...,0
︸ ︷︷ ︸

k− j−1

;y).

(z1, ...,zj−1) ⊔⊔ (0) denotes the shuffle product of the string(z1, ...,zj−1) with (0). Solving this
equation forG(z1, ...,zj ,0, ...,0;y) yields

G(z1, ...,zj ,0, ...,0
︸ ︷︷ ︸

k− j

;y) = (32)
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1
k− j




G(0;y)G(z1, ...,zj,0, ...,0

︸ ︷︷ ︸

k− j−1

;y)− ∑
(s1,...,sj)=(z1,...,zj−1)⊔⊔(0)

G(s1, ...,sj,zj ,0, ...,0
︸ ︷︷ ︸

k− j−1

;y)




 .

In the first term, one logarithm has been explicitly factoredout:

G(0;y) = lny. (33)

All remaining terms have at most(k− j −1) trailing zeroes. Using recursion, we may therefore
eliminate all trailing zeroes.

4.2 Transformation of the arguments

In the following we will consider transformations of

G(z1, ...,zk; f (y)) (34)

with respect to the argumenty. For f (y) = 1− y, f (y) = 1/(1− y), f (y) = 1/y and f (y) =
(1−y)/(1+y) we give algorithms, which transform the G-function back toG(z1, ...,zk;y). For
harmonic polylogarithms the corresponding transformations have been discussed in ref. [5]. The
algorithms discussed here are straightforward extensions.

The transformation 1−y

The functionG(z1, ...,zk;1−y) can be expressed in terms ofG-functions with argumenty and 1
as follows:

G(z1± , ...,zk;1−y) = G(z1± , ...,zk;1)+

y∫

0

dt
t − (1−z1)∓

G(z2, ...,zk;1− t) . (35)

For the second term we may use recursion.

The transformation 1/(1−y)

The functionG(z1, ...,zk;1/(1− y)) can be expressed in terms ofG-functions with argumenty
and 1 as follows: Forz1 6= 0 we have

G

(

z1± , ...,zk;
1

1−y

)

= G(z1± , ...,zk;1)

+

y∫

0

dt

t −
(

1− 1
z1

)

±

G

(

z2, ...,zk;
1

1− t

)

−
y∫

0

dt
t −1±

G

(

z2, ...,zk;
1

1− t

)

. (36)
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Forz1 = 0 we have

G



0,0, ...,0
︸ ︷︷ ︸

m1−1

, z2± , ...,zk;
1

1−y



 = G



0,0, ...,0
︸ ︷︷ ︸

m1−1

, z2± , ...,zk;1





−
y∫

0

dt
t −1∓

G



0, ...,0
︸ ︷︷ ︸

m1−2

, z2± , ...,zk;
1

1− t



 . (37)

The transformation 1/y

The functionG(z1, ...,zk;1/y) can be expressed in terms ofG-functions with argumenty and 1
as follows: Forz1 6= 0 we have

G

(

z1± , ...,zk;
1
y

)

= G(z1± , ...,zk;1)+

1∫

0

dt
t

G

(

z2, ...,zk;
1
t

)

−
y∫

0

dt
t

G

(

z2, ...,zk;
1
t

)

−
1∫

0

dt

t −
(

1
z1

)

∓

G

(

z2, ...,zk;
1
t

)

+

y∫

0

dt

t−
(

1
z1

)

∓

G

(

z2, ...,zk;
1
t

)

. (38)

Forz1 = 0 we have

G



0,0, ...,0
︸ ︷︷ ︸

m1−1

, z2± , ...,zk;
1
y



 = G



0,0, ...,0
︸ ︷︷ ︸

m1−1

, z2± , ...,zk;1





+

1∫

0

dt
t

G



0, ...,0
︸ ︷︷ ︸

m1−2

, z2± , ...,zk;
1
t



−
y∫

0

dt
t

G



0, ...,0
︸ ︷︷ ︸

m1−2

, z2± , ...,zk;
1
t



 . (39)

Note that the 1/y transformation can also be obtained as a 1/(1−y) transformation followed by
a 1−y transformation.

The transformation (1−y)/(1+y)

The functionG(z1, ...,zk;(1−y)/(1+y)) can be expressed in terms ofG-functions with argument
y and 1 as follows: Forz1 6= −1 we have

G

(

z1± , ...,zk;
1−y
1+y

)

= G(z1± , ...,zk;1)

+

y∫

0

dt

t−
(

1−z1
1+z1

)

∓

G

(

z2, ...,zk;
1− t
1+ t

)

−
y∫

0

dt
t +1

G

(

z2, ...,zk;
1− t
1+ t

)

. (40)
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Forz1 = −1 we have

G

(

z1± , ...,zk;
1−y
1+y

)

= G(z1± , ...,zk;1)−
y∫

0

dt
t +1

G

(

z2, ...,zk;
1− t
1+ t

)

. (41)

4.3 Bernoulli substitution

In this subsection we investigate in more detail the Bernoulli transformation, which can be used
to speed up the series expansion. We recall the standard series representation for the dilogarithm:

Li2(x) =
∞

∑
j=1

x j

j2
. (42)

Due to eq, (3) and eq. (4) we can assume that|x| ≤ 1 and Re(x) ≤ 1/2. Eq. (42) converges
therefore geometrically withx. On the other hand:

Li2(x) = −
x∫

0

dt
t

ln(1− t) =

− ln(1−x)∫

0

du
u

eu−1
=

∞

∑
j=0

B j

( j +1)!
zj+1, (43)

where we used

u
eu−1

=
∞

∑
j=0

B j
u j

j!
(44)

and the notationz= − ln(1−x). For largej one obtains from the formula

B j = (−1)( j+2)/2 2 j!
(2π) j ζ j , j even, (45)

that the sum converges geometrically withz/(2π), e.g.

B j

( j +1)!
zj+1 = (−1)( j+2)/2 2zζ j

j +1

( z
2π

) j
. (46)

Forx in the range[−1,1/2] we have
∣
∣
∣
∣
− ln(1−x)

2π

∣
∣
∣
∣
≤ ln2

2π
< 0.1104. (47)

Therefore we can expect an improvement in the speed of convergence by using eq. (43) instead
of eq. (42). We can generalise the Bernoulli transformationto the classical polylogarithms and
to the harmonic polylogarithms. For the classical polylogarithms we find

Lin(x) =
∞

∑
j=0

Cn( j)
( j +1)!

(− ln(1−x)) j+1 , (48)

10



whereC1( j) = δ j ,0 and

Cn+1( j) =
j

∑
k=0

(
j
k

)
B j−k

k+1
Cn(k). (49)

The coefficientsCn( j) are independent ofx and need therefore to be calculated only once. Similar
we obtain for the harmonic polylogarithms:

Hm1,...,mk(x) =
∞

∑
j=0

Cm1,...,mk( j)
( j +1)!

(− ln(1−x)) j+1 , (50)

where

C1,m2,...,mk( j) =

{
0, j = 0,
Cm2,...,mk( j −1), j > 0,

(51)

and

Cm1+1,m2,...,mk( j) =
j

∑
k=0

(
j
k

)
B j−k

k+1
Cm1,m2,...,mk(k). (52)

For the classical polylogarithms Lin(x) the Bernoulli transformation leads to a speed-up ifn is
not too large. Empirically we find that forn ≥ 12 the “standard” series expansion without the
Bernoulli transformation is faster. This can be related to the explicit factor 1/ jn in the series
expansion

Lin(x) =
∞

∑
j=1

x j

jn
. (53)

4.4 Hölder convolution

The multiple polylogarithms satisfy the Hölder convolution [2]. For z1 6= 1 andzw 6= 0 this
identity reads

G(z1, ...,zw;1) =
w

∑
j=0

(−1) j G

(

1−zj ,1−zj−1, ...,1−z1;1−
1
p

)

G

(

zj+1, ...,zw;
1
p

)

.

(54)

The Hölder convolution can be used to improve the rate of convergence for the series represen-
tation of multiple polylogarithms.
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5 Numerical evaluations

5.1 Numerical evaluation of multiple zeta values

Every multiple zeta valueζ(s1, . . . ,sk) with s1 > 1 is finite and can be written as a convergent
sum. Therefore it seems that the numerical evaluation is straightforward and no further trans-
formations are needed. Yet the convergence can be quite slowif the parameters are small or
high precision is needed. Therefore algorithms have been invented to accelerate the evalua-
tion [31,40,41]. The motivation often was to find numerically new relations among multiple zeta
values, and to this end the algorithms needed to deliver a very high digit accuracy, i.e. several
hundred decimal digits, efficiently in short time. Of course, low precision evaluations benefit
from these algorithms as well and since multiple zeta valueswith small parameters appear in the
transformations of harmonic and multiple polylogarithms,these acceleration techniques are also
important for the numerical evaluation of those functions.

The algorithm proposed by Crandall [31] partitions the iterated integral by a chosen constant
λ in such a way that the multiple zeta values can be expressed asa finite sum over two iterated
integral functionsY andZ, for which all integration variables are either smaller or greater thanλ
respectively. Different acceleration method apply forY andZ.

Z can be written in almost exactly the way asζ but has an additional factore−λn1 (n1 is the
outermost summation index). This factor improves the convergence, and the greaterλ is the
fasterZ converges.

If λ is chosen to be smaller than 2π, Y can be rewritten in terms of Bernoulli numbers. The
remaining summation can be interpreted as a convolution andthis convolution can be made fast
by applying FFT methods. The vectors to be convoluted and containing Bernoulli numbers or
factors of gamma functions have to have a certain lengthL, which becomes a parameter of the
algorithm likeλ. The performance of the evaluation depends on the values ofλ andL, but quite
generally one can find that Crandall’s algorithm performs best for high precision and a small
number ofζ parameters.

Another method [2] uses the Hölder convolution. As a generalisation of duality a given
ζm1,...,mk is rewritten as a finite sum over functions

Gm1,...,mk(1, . . . ,1;1/p) and Gm1,...,mk(1, . . . ,1;1/q). (55)

For p,q > 1 they have a significantly better convergence thanζm1,...,mk. Thep andp must satisfy
the Hölder condition 1/p+1/q = 1 and can be chosen for best convergence asp = q = 2.

The acceleration is significant and exceeds that of Crandall’s algorithm for low precision
evaluations. Both algorithms can play hand in hand to satisfy different demands. For high preci-
sion evaluations Crandall’s algorithm should be chosen, for the other cases Hölder convolution
is the best choice.

5.2 Numerical evaluation of harmonic polylogarithms

Harmonic polylogarithms have been introduced by Remiddi and Vermaseren [5] and their numer-
ical evaluation has been worked out by Gehrmann and Remiddi [32]. Harmonic polylogarithms
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have a convergent series representation if|x| < 1 and no trailing zeroes are present. The right-
most indices are allowed to be zero, in which case the harmonic polylogarithm does not have a
series expansion around zero inx, but develops a logarithmic singularity proportional to lnx. To
cope with this trailing zeros scenario, one uses recursively the shuffle algebra to extract those
zeros in form of ordinary logarithms. It remains to transform an arbitrary argumentx into the
domain|x| < 1. To this aim one uses the transformations 1/x and (1− x)/(1+ x) from sect.
4.2. Here we differ slightly from the implementation by Gehrmann and Remiddi: These authors
provide a numerical evaluation routine for harmonic polylogarithms up to weight 4. They use
for x∈ [

√
2−1,1] the(1−x)/(1+x) transformation to improve the convergence of the result-

ing series. We provide a numerical evaluation routine for arbitrary weights and therefore have
to determine the transformation formula at run time. We observed that this transformation by
itself is quite expensive. This can outweigh the potential gain from the series acceleration. It is
therefore more economical to apply this transformation only for x near one. The starting point is
determined empirically.

In addition, multiple zeta values appear in the transformedexpressions. If some indices
are negative, alternating multiple zeta values occur. The speed of the numerical evaluation of
multiple zeta values also has a major impact on evaluation speed of the harmonic polylogarithms.

5.3 Numerical evaluation of multiple polylogarithms

Multiple polylogarithms can be evaluated with the help of the series expansion in the domain
where this expansion is convergent. This is the case if the arguments satisfy eq. (18) or equiv-
alently eq. (19). We first show that any combination of arguments can be transformed into
this domain. This transformation is based on the integral representation and is therefore most
naturally expressed in terms of theG-functions. We consider the function

Gm1,...,mk

(
z1, ...,zj−1,s,zj+1, ...,zk;y

)
, (56)

with the condition that|s| is the smallest element in the set{|z1|, ..., |zj−1|, |s|, |zj+1|, ..., |zk|, |y|}.
The algorithm goes by induction and introduces the more general structure

y1∫

0

ds1

s1−b1
......

sr−1∫

0

dsr

sr −br
G(a1, ...,sr, ...,aw;y2), (57)

where|y1| is the smallest element in the set{|y1|, |b′1|, ..., |b′r|, |a′1|, ..., |a′w|, |y2|}. The prime in-
dicates that only the non-zero elements ofai andb j are considered. If the integrals overs1 to sr

are absent, we recover the originalG-function in eq. (56). Since we can always remove trailing
zeroes with the help of the algorithm in section 4.1, we can assume thataw 6= 0. We first consider
the case where theG-function is of depth one, e.g.

y1∫

0

ds1

s1−b1
......

sr−1∫

0

dsr

sr −br
G(0, ...,0

︸ ︷︷ ︸

m−1

,sr ;y2) =

y1∫

0

ds1

s1−b1
......

sr−1∫

0

dsr

sr −br
Gm(sr ;y2), (58)
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and show that we can relate the functionGm(sr ;y2) to Gm(y2;sr), powers of ln(sr) and functions,
which do not depend onsr . Form= 1 we have

G1(sr ± ;y2) = G1
(
y2∓ ;sr

)
−G(0;sr)+ ln

(
− y2∓

)
. (59)

Form≥ 2 one can use the transformation 1/y from sect. 4.2 and one obtains:

Gm(sr ± ;y2) = −ζm+

y2∫

0

dt
t

Gm−1(t ± ;y2)−
sr∫

0

dt
t

Gm−1(t ± ;y2) . (60)

One sees that the first and second term in eq. (60) yield functions independent ofsr . The third
term has a reduced weight and we may therefore use recursion.This completes the discussion
for Gm(sr ;y2). We now turn to the general case with aG-function of depth greater than one in
eq. (57). Here we first consider the sub-case, thatsr appears in the last place in the parameter list
and(m−1) zeroes precedesr , e.g.

y1∫

0

ds1

s1−b1
......

sr−1∫

0

dsr

sr −br
G(a1, ...,ak,0, ...,0

︸ ︷︷ ︸

m−1

,sr ;y2), (61)

Since we assumed that theG-function has a depth greater than one, we may conclude thatak 6= 0.
Here we use the shuffle relation to relate this case to the casewheresr does not appear in the last
place:

G(a1, ...,ak,0, ...,0
︸ ︷︷ ︸

m−1

,sr ;y2) = G(a1, ...,ak;y2)G(0, ...,0
︸ ︷︷ ︸

m−1

,sr ;y2)− ∑
shu f f les′

G(α1, ...,αk+m;y2),

(62)

where the sum runs over all shuffles of(a1, ...,ak) with (0, ...,0,sr) and the prime indicates that
(α1, ...,αk+m) = (a1, ...,ak,0, ...,0,sr) is to be excluded from this sum. In the first term on the
r.h.s of eq. (62) the factorG(a1, ...,ak;y2) is independent ofsr , whereas the second factor
G(0, ...,0,sr;y2) is of depth one and can be treated with the methods discussed above. The terms
corresponding to the sum over the shuffles in eq. (62) have either sr not appearing in the last
place in the parameter list or a reduced number of zeroes precedingsr . In the last case we may
use recursion to removesr from the last place in the parameter list. It remains to discuss the case,
where theG-function has depth greater than one andsr does not appear in the last place in the
parameter list, e.g.

y1∫

0

ds1

s1−b1
......

sr−1∫

0

dsr

sr −br
G(a1, ...,ai−1,sr ,ai+1, ...,aw;y2), (63)

with aw 6= 0. Obviously, we have

G(a1, ...,ai−1,sr ,ai+1, ...,aw;y2) = (64)

G(a1, ...,ai−1,0,ai+1, ...,aw;y2)+

sr∫

0

dsr+1
∂

∂sr+1
G(a1, ...,ai−1,sr+1,ai+1, ...,aw;y2) .
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The first termG(a1, ...,ai−1,0,ai+1, ...,aw;y2) does no longer depend onsr and has a reduced
depth. For the second term we first write out the integral representation of theG-function. We
then use

∂
∂s

1
t −s

= − ∂
∂t

1
t−s

, (65)

followed by partial integration int and finally partial fraction decomposition according to

1
t −α

1
t −s

=
1

s−α

(
1

t −s
− 1

t −α

)

. (66)

If sr is not in the first place of the parameter list, we obtain

sr∫

0

dsr+1
∂

∂sr+1
G(a1, ...,ai−1,sr+1,ai+1, ...,aw;y2)

= −
sr∫

0

dsr+1

sr+1−ai−1
G(a1, ...,ai−2,sr+1,ai+1, ...,aw;y2)

+

sr∫

0

dsr+1

sr+1−ai−1
G(a1, ...,ai−2,ai−1,ai+1, ...,aw;y2)

+

sr∫

0

dsr+1

sr+1−ai+1
G(a1, ...,ai−1,sr+1,ai+2, ...,aw;y2)

−
sr∫

0

dsr+1

sr+1−ai+1
G(a1, ...,ai−1,ai+1,ai+2, ...,aw;y2) . (67)

EachG-function has a weight reduced by one unit and we may use recursion. If sr appears in the
first place we have the following special case:

sr∫

0

dsr+1
∂

∂sr+1
G(sr+1,ai+1, ...,aw;y2) =

sr∫

0

dsr+1

sr+1−y2
G(ai+1, ...,aw;y2)

+

sr∫

0

dsr+1

sr+1−ai+1
G(sr+1,ai+2, ...,aw;y2)−

sr∫

0

dsr+1

sr+1−ai+1
G(ai+1,ai+2, ...,aw;y2) . (68)

There is however a subtlety: Ifαi−1 or αi+1 are zero, the algorithm generates terms of the form

y∫

0

ds
s

F(s)−
y∫

0

ds
s

F(0). (69)
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Although the sum of these two terms is finite, individual pieces diverge ats= 0. We regularise
the individual contributions with a lower cut-offλ:

y∫

λ

ds
s

F(s)−
y∫

λ

ds
s

F(0). (70)

In individual contributions we therefore obtain at the end of the day powers of lnλ from integrals
of the form

y∫

λ

ds1

s1

s1∫

λ

ds2

s2
=

1
2

ln2y− lnylnλ+
1
2

ln2 λ. (71)

In the final result, all powers of lnλ cancel, and we are left withG-functions with trailing ze-
ros. These are then converted by standard algorithms toG-functions without trailing zeros. The
G-functions without trailing zeros can then be evaluated numerically by their power series ex-
pansion.

In addition, the algorithms may introduce in intermediate stepsG-functions with leading
ones, e.gG(1, ...,zk;1). These functions are divergent, but the divergence can be factorised and
expressed in terms of the basic divergenceG(1;1). The algorithm is very similar to the one for
the extraction of trailing zeroes. In the end all divergences cancel.

Acceleration of the convergent series

TheG-functionGm1,...,mk(z1, ...,zk;y) has a convergent power series expansion if the conditions
in eq. (19) are met. This does not necessarily imply, that theconvergence is sufficiently fast,
such that the power series expansion can be used in a straightforward way. In particular, ifz1

is close toy the convergence is rather poor. In this paragraph we consider methods to improve
the convergence. We can assume that no trailing zeroes are present (zk 6= 0), therefore we can
normalisey to one. Convergence implies then, that we have|zj | ≥ 1 and(z1,m1) 6= (1,1). If
somezj is close to the unit circle, say,

1≤
∣
∣zj

∣
∣ ≤ 2, (72)

we use the Hölder convolution eq. (54) withp = 2 to rewrite theG-functions as

G(z1, ...,zw;1) = G(2z1, ...,2zw;1)+(−1)wG(2(1−zw),2(1−zw−1), ...,2(1−z1);1)

+
w−1

∑
j=1

(−1) j G
(
2(1−zj),2(1−zj−1), ...,2(1−z1);1

)
G

(
2zj+1, ...,2zw;1

)
. (73)

Here, we normalised the r.h.s to one and explicitly wrote thefirst and last term of the sum.
We observe, that the first termG(2z1, ...,2zw;1) has all arguments outside

∣
∣2zj

∣
∣ ≥ 2. This term

has therefore a better convergence. Let us now turn to the second term in eq, (73). If somezj

lies within
∣
∣zj −1

∣
∣ < 1/2, the Hölder convolution transforms the arguments out of the region
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of convergence. In this case, we repeat the steps above, e.g.transformation into the region of
convergence, followed by a Hölder convolution, if necessary. While this is a rather simple recipe
to implement into a computer program, it is rather tricky to proof that this procedure does not lead
to an infinite recursion, and besides that, does indeed lead to an improvement in the convergence.
For the proof we have to understand how the algorithms for thetransformation into the region
of convergence act on the arguments of aG-function with lengthw. In particular we have to
understand how in the result theG-functions of lengthw are related to the originalG-function.
Products ofG-functions of lower length are “simpler” and not relevant for the argument here. We
observe, that this algorithm for theG-functionG(z1, ...,zw;y) substitutesy by the element with
the smallest non-zero modulus from the set{|z1| , ..., |zw| , |y|}, permutes the remaining elements
into an order, which is of no relevance here and possibly substitutes some non-zero elements by
zero. The essential point is, that it does not introduce any non-trivial new arguments (e.g. new
non-zero arguments).

For the Hölder convolution we are concerned with the second term of eq. (73)

G(2(1−zw),2(1−zw−1), ...,2(1−z1);1) . (74)

The first termG(2z1, ...,2zw;1) never transforms the arguments into the non-convergent region
and has, as we have seen, a better convergence. The terms in the sum of eq. (73) have a reduced
length, and by induction we can assume that suitable methodsto improve the convergence exist
for those terms. For the second term of eq. (73) we have to discuss the transformationz→
2(1−z). We divide the argumentszj into different classes:

- class A: |z| > 2. These will map under the transformationz→ 2(1− z) again to|z| > 2.
Actually, they transform to|z−2| > 4, but this region is included in the previous one.

- class B: 1≤ |z| ≤ 2 and|z−1| > 1. These will map under the transformationz→ 2(1−z) to
|z| > 2 (and necessarily|z−1| > 1). Therefore class B is mapped to class A.

- class C: 1≤ |z| ≤ 2 and 1/2 ≤ |z−1| ≤ 1. These will map under the transformationz→
2(1−z) to 1≤ |z| ≤ 2 and|z−1| > 1. Therefore class C is mapped to class B.

- class D: 1≤ |z| ≤ 2 and|z−1| < 1/2. These will map under the transformationz→ 2(1−z)
to |z| < 1 and|z−1| > 1. Class D is mapped to the non-convergent region|z| < 1.

Let us first assume that allzj ’s are from class A and B. Then after the Hölder convolution, all
arguments satisfy|z| > 2, which ensures a fast convergence. Secondly, we assume that all zj ’s
are from the classes A, B and C. The the Hölder convolution will generateG-functions with
arguments from the classes A and B alone. One subsequent Hölder convolution on thoseG-
functions, which contain arguments from class B will again lead to|z| > 2 for all zj . For the
last case we have to considerG-functions, where some arguments are from class D. Then we
obtain arguments with|z| < 1 and it is necessary to re-use the transformation into the region of
convergence. LetnCD be the number of argumentszj from the classes C and D from the original
G-function. The second term in eq. (73) equals eq. (74). Letzmin be the argument such that
2|1−zmin| is the smallest in the set

{2|1−zw| , ...,2|1−z1| ,1} . (75)
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Since at least one argument is from class D, we have 2|1− zmin| < 1. The algorithm for the
transformation into the convergent region introduces thenG-functions of the form

G

(
1−zσw

1−zmin
, ...,

1−zσ j+1

1−zmin
,

1
2(1−zmin)

,
1−zσ j−1

1−zmin
, ...,

1−zσ1

1−zmin
;1

)

. (76)

Here, σ is permutation of the original arguments. The argument 1/2/(1− zmin) results from
permutating the originaly = 1 into the argument list of thez’s. We note that this argument
satisfies

∣
∣
∣
∣

1
2(1−zmin)

−1

∣
∣
∣
∣
> 1, (77)

and lies therefore always outside region C and D. This is mosteasily seen by using polar coor-
dinates for 2(1−zmin). Furthermore, if an arbitrary argumentz is from class A or B, it satisfies
|z−1| > 1. Therefore

|z−zmin| >
1
2
, (78)

and it follows that
∣
∣
∣
∣

1−z
1−zmin

−1

∣
∣
∣
∣
> 1. (79)

Therefore, arguments from classes A and B will remain in these classes. It remains to consider
the casez= 0 and to show it does not re-introduce arguments in the classes C or D. Again, we
can show that

∣
∣
∣
∣

1
1−zmin

−1

∣
∣
∣
∣
> 1. (80)

In summary, theG-function in eq. (76) has the numbernCD reduced by at least one (due to eq.
77). Therefore the algorithm will successively remove the arguments from classes C and D and
terminate. This completes the proof.

In practice, there is again a trade-off between the gain in acceleration and the cost involved
for the Hölder convolution. We therefore apply the Hölder convolution only if somezj satisfies

1≤
∣
∣zj

∣
∣ ≤ λ, (81)

with λ < 2. A typical value isλ = 0.01.

6 Implementation and checks

The numerical evaluations have been implemented as part of GiNaC [35], a C++ library for
computer algebra (http://www.ginac.de). GiNaC enables symbolic algebraic manipulations
within the C++ programming language. Like FORM [42], it was developed within the high-
energy physics community. GiNaC allows numerics in arbitrary precision.

The following functions have been added to GiNaC. On the leftare the names and the math-
ematical notations, on the right are the names within GiNaC.
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Name Math. notation GiNaC notation
Classical polylogarithm Lin(x) Li(n,x)
Nielsen polylogarithm Sn,p(x) S(n,p,x)
Harmonic polylogarithm H~m(x) H({m1,...,mk},x)
Multiple polylogarithm Li~m(~x) Li({m1,...,mk},{x1,...,xk})

G(~α,y) G({a1,...,ak},y)
G({a1,...,ak},{d1,...,dk},y)

Multiple zeta value ζ(~m) zeta({m1,...,mk})
Alternating MZV ζ(~m,~σ) zeta({m1,...,mk},{s1,...,sk})

While x and the entries of~x can be arbitrary complex numbers,n, p and the entries of~m
must be positive integers. In the case of the harmonic polylogarithm~mmay also contain negative
integers.~α is the expanded parameter string for theG-functions. Thedi ’s are positive or negative
numbers indicating the signs of a small imaginary part ofαi . Thesi ’s are positive or negative
numbers indicating which corresponding sum in the definition of the multiple zeta values is
alternating.

The algorithms used can be found in [28, 29] for classical polylogarithms and Nielsen poly-
logarithms, in [5, 32] for harmonic polylogarithms, in [2, 31] for multiple zeta values and in
our text above for multiple polylogarithms. The transformations are performed algebraically so
there are no restrictions on the size or length of the parameters. The summation is accelerated by
the use of Bernoulli numbers in the case of classical and Nielsen polylogarithms. Since GiNaC
has arbitrary precision numerics and the precision can be changed at every time this is the only
feasible acceleration technique. Evaluation of multiple zeta values either goes by Crandall’s al-
gorithm or by Hölder convolution depending on the precisionand parameters. The switching
point has been determined empirically. For alternating multiple zeta values Hölder convolution
is always used.

For the sign of the imaginary part we adopted a widely used convention for mathematical
software:implementations shall map a cut so the function is continuous as the cut is approached
coming around the finite endpoint of the cut in a counter clockwise direction[43]. With this
convention the cuts on the positive real axis are continuousto the lower complex half-plane.
This convention also ensures consistency among the variouspolylogarithms including the ordi-
nary logarithm. We note that the implementation of harmonicpolylogarithms by Gehrmann and
Remiddi [32] uses the opposite sign convention. Gehrmann and Remiddi give the argument of H
a positive imaginary partx+ iε. This implies that cuts on the positive real axis are continuous to
the upper complex half-plane.

To ensure the correctness of the implementation many checkshave been performed. First,
one can compare the numerical evaluation to known special values of the function, e.g. Lin

with parametersx = 0, 1
2 or 1, orζ(2n) with integern. In the same sense but with less rigour of

course, one can compare to other well proven software implementations for a quick reassurance.
Second, the transformations can be checked for internal consistency if they overlap. Hence the
1− x transformation can always be be verified against the pure series. If the(1− x)/(1+ x)
transformation is done as it is with the harmonic polylogarithm the 1/x transformation overlaps
and can be tested as well. Checking identities between different functions is the third method.
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Since all discussed functions merely are special cases of the general multiple polylogarithm,
there exists a hierarchy of identities between them, e.g.

Sn,1(x) = Lin+1(x) or H3,1,1(x) = S2,3(x).

In addition, limits can be examined, for example

Li2,3,4(x,a,1) → H2,3,4(x) as a→ 1.

The checks listed above are sufficient to assure the correctness of the implementation for the
simpler functions. Yet the more general functions of multiple polylogarithms and multiple zeta
values still have areas of the parameter space that have not been tested with the methods so far.
Here, the shuffle and quasi-shuffle identities are a very important tool to fill this gap. Identities
like

ζ(4,3) = 17ζ(7)−10ζ(2)ζ(5)

or
Li2(x)Li5(y) = Li2,5(x,y)+Li5,2(y,x)+Li7(xy)

are examples for such identities. Shuffle and quasi-shuffle relations similar to those can be used
to expose problems within the implementation for arbitraryparameter sets.

The checks mentioned above have been exercised not only once, but most of them have been
added as automatic checks to the GiNaC library itself. With the source code at hand the test suite
of GiNaC can be run anytime. This helps to detect new errors quickly that might make their way
into the code in the course of future extensions or optimisations.

The standard use of GiNaC is through its C++ interface. A small example program is listed
below:

#include <iostream>
#include <ginac/ginac.h>

int main()
{

using namespace std;
using namespace GiNaC;

ex x1 = numeric(8,3);
ex x2 = numeric(1,5);

cout << "Li_{1,1}(8/3,1/5) = "
<< Li( lst(1,1), lst(x1,x2) ).evalf() << endl;

return 0;
}

If this program is compiled and linked with the GiNaC-library, it will print out:
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Li_{1,1}(8/3,1/5) = -0.8205920210842043836-0.70102614150465842094*I

Alternatively, GiNaC offers also a small interactive shellcalledginsh, which allows to try and
use GiNaC’s features directly as in the following examples:

> Li(2,1);
1/6*Pi^2
> S(2,3,4.5);
-1.5214058021507574768+1.7013776892289268546*I
> Li({2,2,1},{3.0,2.0,0.2});
-0.7890678826631402472+0.5791683703217281085*I
> Digits=40;
40
> H({2,-1,3},8.7);
-5.65207410697321998445159060623787475178342968036-1.05486293307539105482
5025378324573142440702785858*I

Here the user input is done at the prompt> and the result is given on the next line.

7 Conclusions

In this paper we reported on numerical evaluation methods for multiple polylogarithms. These
functions occur in higher loop calculations in quantum fieldtheory. We provided algorithms,
which allow the evaluation of these functions for arbitrarycomplex arguments without any re-
striction on the weight of the function. The functions can beevaluated in C++ to arbitrary
precision within the GiNaC framework. Subclasses of multiple polylogarithms are the classical
polylogarithms, the Nielsen polylogarithms, the harmonicpolylogarithms and the multiple zeta
values. For these subclasses we have implemented specialised algorithms. All routines are in-
tegrated in the computer algebra package GiNaC from version1.3 onwards and can be obtained
by downloading this library [35].
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