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Abstract

Multiple polylogarithms appear in analytic calculatiorfshagher order corrections in quan-
tum field theory. In this article we study the numerical eadiltn of multiple polylogarithms.
We provide algorithms, which allow the evaluation for amdniy complex arguments and
without any restriction on the weight. We have implementeztsé algorithms with arbitrary
precision arithmetic in C++ within the GiNaC framework.
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1 Introduction

In recent years multiple polylogarithms [1-3] found the viiatp physics in the field of pertur-
bative calculations in quantum field theory. They satisfyesal useful algebraic properties, in
particular they satisfy two different Hopf algebras. Mplé polylogarithms are generalisations
of harmonic polylogarithms [4,5], Nielsen polylogaritharsd the classical polylogarithms [6, 7]
to multiple scales. Polylogarithms have a natural gradigfined by their weight. From explicit
higher order calculations it is emerging that one can expties results of Feynman integrals
in terms of multiple polylogarithms. In dimensional regugation we obtain in the finite terms
polylogarithms up to weightlZor anl-loop amplitude. Whereas we expect harmonic polyloga-
rithms to be sufficient to express the results fer2 scattering processes in massless quantum
field theories, amplitudes with more external particles/andhassive particles involve addi-
tional scales, which naturally leads to multiple polyldgans. Since many recent results [8—27]
of higher order calculations are expressed in terms of plalpolylogarithms, a numerical eval-
uation routine for multiple polylogarithms is of immediaise for perturbative calculations in
particle physics. Algorithms for the numerical evaluatminmultiple polylogarithms are the
subject of this article. For a few specific subclasses ofipialpolylogarithms numerical evalu-
ation methods can be found in the literature: The numericdlUation of Nielsen polylogarithms
has been known for a long time [28—30]. A special case of iplelfpolylogarithms are multi-
ple zeta values, which are obtained from the polylogaritifrali scales are equal to one. For
this special case, efficient algorithms for the numerical@ation have been studied by Cran-
dall [31] and Borwein et al. [2]. Furthermore, two recent @approvide numerical routines
for harmonic polylogarithms and two-dimensional harmautylogarithms [32—34]. However
these last mentioned routines are restricted to not morettha scales and weight not higher
than 4. Here we provide methods for the larger class of malfplylogarithms without any
restrictions on the weight and the number of scales. We magemented these algorithms with
arbitrary precision arithmetic in C++ within the GiNaC [3s&dmework.

This paper is organised as follows: In Secfibn 2 we reviewnastaoductory example the nu-
merical evaluation of the dilogarithm. Sectidn 3 definestbtion for multiple polylogarithms
used in this paper. Secti@h 4 collects several useful ptiegast multiple polylogarithms, which
will be used to construct the algorithms for the numericalleation. Sectiofil5 is the main part
of this paper and gives the algorithms for the numericalwat&n. In Sectiolé we report on
the implementation in C++ within the GiNaC framework andatise the checks that we have
performed. Finally Sectidd 7 contains our conclusions.

2 The dilogarithm

In this short section we review as an introductory exampaiimerical evaluation of the dilog-
arithm [30]. The numerical evaluation algorithm is rathienge, but does contain many ideas
which will reappear in more elaborate form in the remainiag pf the paper. The dilogarithm



is defined by

Lis(x) = —/dtln(lt_t>, (1)
0

and has a branch cut along the positive real axis, startitigegtointx = 1. For|x| < 1 one has
the convergent power series expansion

Lizx) = > —. (2)

The first step for a numerical evaluation consists in mappim@rbitrary argument into the
region, where the power series in edl (2) converges. Thisbeadone with the help of the
reflection identity

o = ~tia ()~ ~ 307, ®

which is used to map the argumemntying outside the unit circle into the unit circle. The fuion
In(—x) appearing on the r.h.s. of edl (3) is considered to be “sify@ey. it is assumed that a
numerical evaluation routine for this function is known. dddition we can shift the argument
into the range-1 < Re(x) < 1/2 with the help of

Lio(x) = —Liz(l—x)-l-%—In(x)ln(l—x). 4)

Although one can now attempt a brute force evaluation of thvegp series in eq[12), it is more
efficient to rewrite the dilogarithm as a series involving Bernoulli numbers:

. > B ;
Lio(X) = : z 5
2(x) i; (i+1) ®)
with z= —In(1—x). The Bernoulli numberB, are defined through the generating function
t > tn
_— = Bh—.
-1 n; "l (©)

Therefore the numerical evaluation of the dilogarithm éstissn using eqs.[13) an@l(4) to map
any argumenx into the unit circle with the additional condition Re¢ < 1/2. One then uses the
series expansion in terms of Bernoulli numbers Ely. (5).

It occurs quite frequently in physics, that the numericaligdor the dilogarithm is needed
for the case, where the variablas real except for a small imaginary part. The small imaginar
part specifies if the dilogarithm should be evaluated aboveetow the cut in the case> 1. In
this case the evaluation is split into the evaluation forrtred part and the one for the imaginary
part. The imaginary part of the dilogarithm is related toltgarithm:

Lio(x) = ReLiz(x)—iln(x)ImIn(1—x). (7)
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The imaginary part of the logarithm is given for redby
In(—xFi0) = In(|x|)Fimd(x), (8)

where the step functiofi(x) is defined a®(x) = 1 for x > 0 and6(x) = 0 otherwise andi0”
denotes a small imaginary part.

3 Definitions

3.1 Definition of multiple polylogarithms

Multiple polylogarithms are defined by an iterated sum repngation:

i o) =5 2 K (©)

o
i1 >0 >i>01 Ik

The order of the arguments of multiple polylogarithms (aridultiple zeta values) is re-
versed with respect to the definitions in [1, 36—38]. It imatenvenient to define the functions
G(z,...,zY) for z. # 0 by an integral representation as follows [3, 38]:

y ty te—1
. B dty (0] dty
G(z,...,z3y) = /t1_210/t2_22...0/tk_zk. (10)

Note that in the definition of the functior(z, ..., z;y) one variable is redundant due to the
following scaling relation:

G(Z]_,...,Zk;y) = G(XZJ.?“'aXZk;Xy) (11)

Within the functionsG(z, ..., z;y) one allows in addition trailing zeros (e =z_1=... =
zj = 0) through the definitions

oo L Kk
G(O77O’y) - kl (lny) )
k
Fodt
G(z,...,zqy) = /qG(zz,...,zk;t). (12)

For z # 0 this coincides with the original definition ed.{10). No&t the scaling relatiof{11)
does not hold for trailing zeroe§&-functions with trailing zeroes can always be transforneed t
G-functions without trailing zeroes. An algorithm for thimbsformation is given in sectidnh 4.
Therefore we will always assume that£ 0, unless explicitly stated otherwise. The functions



G(z1,...,Z¢Y) and Lin,,...m(X1,...,%) denote the same class of functions. With the short-hand
notation

Gmy,..m(z1,...,2Zqy) = G(0,...,0,71,...,%-_1,0...,0,Z;y) (13)
—— ———
m—1 mg—1

the relation between the two notations is given by

1 1 1
Li X1, .nn = G - 1. 14
M.y (XL -5 Xk) (—1)k M., Mk (Xl X X X ) (14)
The notation Li,,...m (X1,...,Xk) has a closer relation to the series representation, whéreas
notationG(z, ..., z;y) has a closer relation to the integral representation. Fontimerical eval-
uation both representations will be important. It is furtbenvenient to introduce the following
notation for iterated integrals:

A th tn
dt dt dty ° dt 4 dtn
0...0 = X ... X / (15)
t—a t—an t1—a1 th-1—an-1J th—
0 0
We further use the following short hand notation:
A m A
dt dt dt dt dt
/ P TR L P (16)
t t—a t t t—a
0 0 H,_/
mtimes

With this notation, the integral representation of the oG, m, (21,2, ...,2;Y) is written
as

G (Z Z ; ) - /y go ™ dt go e dt go m(_l—dt
my,...,mg \ &1, 2,4 Y) = / t t—2z t t_ZZ'” t t—Zk

(17)
The series expansion forhi . m, (X1, ..., X) is convergent, if
xiXo..xj| <1 forallje{1,..,k} and(myg,x1) # (1,1). (18)
Therefore the functio®m,,...m (z1, ..., Z;Y) has a convergent series representation if
vl <|z]| forallj, (19)
e.g. no elementin the séfzi|,...,|z,|y|} is smaller tharly| and in addition ify = 1 we have

y/z1 # 1. The power series expansion for @gunctions reads

Gm17...7mk (217 7Zkay> = ) . .
%% ! (1)11 ! (l)m... ! <X)Jk. (20)
L s i+ i)™\ (2t + 0™\ 2 (3™ \
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Multiple polylogarithms satisfy two Hopf algebras. The ffiosie is referred to as “shuffle alge-
bra” and is related to the integral representation. An exargp the multiplication is:

G(z1,Y)G(z2y) = G(z1,22,y) +G(22, 21}Y). (21)

The second algebra is often called “stuffle algebra” or “gshsffle algebra” [39] and is related
to the series representation. An example for this mult@ien is:

Special cases

Multiple polylogarithms contain several specific suboksssWe list here the most important
ones. The notation for multiple zeta values [2] is:

1 1
Cg,ome = — . (23)
" i1>i2>Z>ik>O 1™
Harmonic polylogarithms [5] are denoted as
Hml7...7n']((x> — lel ..... W(X, :I.7 ,1) (24)
k—
Nielsen’s polylogarithms [7] are denoted as
Smp(X) = Lin+1717m71(X, 1, ceey 1). (25)
p—1

Obviously, the class of multiple polylogarithms contaitsoahe classical polylogarithms [6]:
. ° x

3.2 Definitions related to the analytic continuation

The multiple polylogarithms are analytic functionskioomplex variables. To discuss the branch
cuts it is convenient to consider the integral represesmddiy, . m, (21,22, ..., Zq y) With z # 0.

SNSRI § (L A SN S
MM (2022 o5 26 ) = )\t t—z \ t t—z \t t—z

(27)

Using the scaling relation eg[—{]11) we can ensure yhata positive real number. (In fact one
could even require that= 1, buty positive and real is sufficient for our purpose here.) Zjrare
arbitrary complex variables. Therefore we can deduce fiwariritegral representation, that the

6



functionGm,,...m. (21,22, ..., Z; y) develops a branch cut whenewegis a positive real number and
the integration variableexceedg;. In most physical applications, thzg will be real numbers.
To distinguish if the integration contour runs above or etocut, we define the abbreviations
Z., meaning that a small positive, respectively negative imey part is to be added to the value
of the variable:

z, =z+i0, z =z-i0. (28)

Close to the real axis we have
1 0
Imt—zq:iO = iT[E@(t—z). (29)

This formula can be used to extract the imaginary parts fluaGtfunctions [20].

4 Useful properties of multiple polylogarithms

In this section we give an algorithm for the removal of traglizeroes fronG-functions, discuss
the transformation properties GffunctionsG(z, ..., z; y) with respect to the argumewtinves-
tigate in more detail the Bernoulli transformation and dssthe Holder convolution. The last
two transformations can be used to speed up the series éapans

4.1 Trailing zeroes

In this subsection we give an algorithm to remove trailingpes fromG-functions. The method
has been described for harmonic polylogarithms in [5] argléhatraightforward generalisation
to multiple polylogarithms. We say that a multiple polylogam of the form

G(z,...,7j,0,...,0;y) (30)
——
k=]
with zj # 0 has(k — j) trailing zeroes. Polylogarithms with trailing zeroes dad have a Taylor
expansion iny, but develop a logarithmic singularity ifiny) aroundy = 0. In removing the

trailing zeroes, one explicitly separates these logaiitlierms, such that the rest has a regular
expansion aroung= 0. The starting point is the shuffle relation

G(0;y)G(zn,-..,7j,0,...,0,y) = (31)
k—j—1
(k—J)G(z,...,7,0,...,0;y) + z G(st, - 5j,7,0,...,0;y).
k—j (s1,--,8j)=(21,...,Zj—1) LLI (O) k—j—1

(z1,...,Zj—1) LU (O) denotes the shuffle product of the strifrg, ...,zj_1) with (0). Solving this
equation forG(zy, ..., zj,0,...,0;y) yields

G(z,...,7;,0,...,0,y) = (32)
k=]



1
—— | G(0;y)G(z, ..., 7,0,...,0;y) — z G(st,---»5j,7,0,...,0y)
K—1] i (S1....8j)=(Z1..Zj_1)LLI(O) I

In the first term, one logarithm has been explicitly factooedtt
G(0y) = Iny. (33)

All remaining terms have at mogkt— j — 1) trailing zeroes. Using recursion, we may therefore
eliminate all trailing zeroes.

4.2 Transformation of the arguments

In the following we will consider transformations of

G(z,....z; T(y)) (34)

with respect to the argument For f(y) =1-vy, f(y)=1/(1-vy), f(y) =1/y and f(y) =
(1-vy)/(1+4y) we give algorithms, which transform the G-function baclk3@, ..., z;y). For
harmonic polylogarithms the corresponding transfornmetivave been discussed in ref. [5]. The
algorithms discussed here are straightforward extensions

The transformation 1 —y

The functionG(z, ..., z; 1 —Yy) can be expressed in terms®@{functions with argument and 1
as follows:

y

dt
G(z14,2Z61-y) = G(Zliw--azk;l)-i-/t_

J (1—_%@(22,...,4;1—0. (35)

For the second term we may use recursion.

The transformation 1/(1—vy)

The functionG(z, ...,z;1/(1—y)) can be expressed in terms Gffunctions with argumeny
and 1 as follows: Foz; # 0 we have

1
G (leb-.-,zk; l—_y) = G(Z]_:t,...,Zk; l)

y y
dt 1 dt 1
— —  _G(zmzg— - —G(zm.zc—). (36
+/t_<1—l) <22’ * 1—t) t-1. <22 Zkl—t) (39)
0 )4 0



Forz; = 0 we have

1—y ——

y
dt 1
.,0, — . (37
/t 1:': ( 24,4 1t) ( )
0 m —

2

1
G 0,0,...,O,zzi,...,zk;) = G 0,0,...,O,zzi,...,zk;l)
N—_——

m—1

The transformation 1/y

The functionG(z, ..., %;1/y) can be expressed in terms @ffunctions with argumery and 1
as follows: Forz; # 0 we have

1 y
1 dt 1 dt 1
G(Zli,...,Zk; ;/) :G(Zli,...,Zk; 1)+/TG <227---7Zk;f) _/TG <227"'7Zk;f)
0 0
[t 1\ [ dt 1
o t=(2), o t=(2),

7 7

Forz; = 0 we have

1
G (0,0,...,O, zzj[,...,zk;> =G (0,0,...,O, 4, 1)
N—— Yy
m—1 m—

1
Fdt 1\ [dt 1
+/—G 0.0, zzj[,...,zk;) —/—G 0.0, zzj[,...,zk;) . (39)
t —— t t —— t
0 m—2 0 m—2

Note that the 1y transformation can also be obtained ag/ 61t y) transformation followed by
a 1—ytransformation.

The transformation (1—y)/(1+Y)

The functionG(z, ..., z; (1—y)/(1+Y)) can be expressed in terms@&{ffunctions with argument
y and 1 as follows: For; # —1 we have

1-y
Glzre,...,Z =G(z14,...,2;1
<1i Zk1+y> (z14 Z; 1)
y y
1-t dt 1-t
) - —Gl2, ...z — |- 40
+/t 121 (Zz, ,ZI<1+t) /o1 (Zz ZI<1+t) (40)
0 1+21 -



Forz; = —1 we have

G|z 17V _ 6z -1)—/yie z 1ot (41)
14yl 1+y — 14y ks J t—i-l 25 D 1 1—|—t

4.3 Bernoulli substitution

In this subsection we investigate in more detail the Berdintrahsformation, which can be used
to speed up the series expansion. We recall the standaged sepresentation for the dilogarithm:

oy

Due to eq,[(B) and eq[](4) we can assume that 1 and Réx) < 1/2. Eq. [42) converges
therefore geometrically witkh. On the other hand:

X (42)

X gt ~In(1-x) » B
at - LU SR
Liz(x /t Y / a1~ 2 Gxmi2 (43)
0 0 I=
where we used
u > _ul
el —1 j; J!
and the notatioz = —In(1—x). For largej one obtains from the formula
Bj = (—1)(”2)/2i!.1 j even (45)
’ (2mi™h
that the sum converges geometrically witti2m), e.g.
Bi i (j+2)/22%) (2]
— = (—pUra222l (27 4
(J+1)!Z (=1) j+l<2T[) (46)
Forxin the rangd—1,1/2] we have
In(1—X) In2
— 1104 47
‘ 21 2n <0.110 (47)

Therefore we can expect an improvement in the speed of agenee by using eq[{#3) instead
of eq. [42). We can generalise the Bernoulli transformatiiothe classical polylogarithms and
to the harmonic polylogarithms. For the classical polyligans we find

. o] .
Lin(x) = ,—;(J'ijl))!( In(1—x))i*1, (48)

10



whereCy(j) = dj 0 and

N J i\ Bj—x
Call) = 5 (1) Pt (49)

The coefficient€,(j) are independent ofand need therefore to be calculated only once. Similar
we obtain for the harmonic polylogarithms:

> C:m (J) j+1
Hm  m(X) = M MAT (1 —x)) T, (50)
where
R ) j=0,
q”””“>"{cwmwu—n,j>a (51)
and
C (i) = s (1) Bike k 52
my+1,mp,...,mg J) - kzo K K+ 1 ml,mz,...,l‘rk< ) ( )

For the classical polylogarithms {(ix) the Bernoulli transformation leads to a speed-up i$
not too large. Empirically we find that far > 12 the “standard” series expansion without the
Bernoulli transformation is faster. This can be relatedh® éxplicit factor ¥j" in the series
expansion

o i

Lin}) = 3 7o (53)
=)

4.4 Holder convolution

The multiple polylogarithms satisfy the Holder convolutif?]. For z; # 1 andz, # O this
identity reads

w

i 1 1
G(z,....,2n;1) = —1JG<1—2-,1—2-_ ,...,1—2;1——)6(2- ,...,zW;—).
(1 ) 1;( ) ] j—1 1 P j+1 D
(54)

The Hdolder convolution can be used to improve the rate of eeance for the series represen-
tation of multiple polylogarithms.
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5 Numerical evaluations

5.1 Numerical evaluation of multiple zeta values

Every multiple zeta valué(sy,...,s) with s; > 1 is finite and can be written as a convergent
sum. Therefore it seems that the numerical evaluation asg$ttforward and no further trans-
formations are needed. Yet the convergence can be quiteistbwe parameters are small or
high precision is needed. Therefore algorithms have beemted to accelerate the evalua-
tion [31,40,41]. The motivation often was to find numerigalew relations among multiple zeta
values, and to this end the algorithms needed to deliveryahigh digit accuracy, i.e. several
hundred decimal digits, efficiently in short time. Of courk®mwv precision evaluations benefit
from these algorithms as well and since multiple zeta valki#ssmall parameters appear in the
transformations of harmonic and multiple polylogarithth®se acceleration techniques are also
important for the numerical evaluation of those functions.

The algorithm proposed by Crandall [31] partitions theated integral by a chosen constant
A in such a way that the multiple zeta values can be expressadimite sum over two iterated
integral function®’ andZ, for which all integration variables are either smaller ogager tharm
respectively. Different acceleration method applyYaandZ.

Z can be written in almost exactly the way &but has an additional facter*™ (n, is the
outermost summation index). This factor improves the cayemce, and the greataris the
fasterZ converges.

If A is chosen to be smaller tham2y can be rewritten in terms of Bernoulli numbers. The
remaining summation can be interpreted as a convolutiorittaadonvolution can be made fast
by applying FFT methods. The vectors to be convoluted antbaung Bernoulli numbers or
factors of gamma functions have to have a certain lehgtlhich becomes a parameter of the
algorithm likeA. The performance of the evaluation depends on the valuksnélL, but quite
generally one can find that Crandall’s algorithm performstifer high precision and a small
number of¢ parameters.

Another method [2] uses the Hdlder convolution. As a gemsatbn of duality a given
{my....m, IS rewritten as a finite sum over functions

Gm,..m(L,...,1;1/p) and G, m(1,...,1;1/q). (55)

For p,q > 1 they have a significantly better convergence than.. m .. The p andp must satisfy
the Holder condition Ip+1/q = 1 and can be chosen for best convergence-asy = 2.

The acceleration is significant and exceeds that of Crasddtorithm for low precision
evaluations. Both algorithms can play hand in hand to satigferent demands. For high preci-
sion evaluations Crandall’s algorithm should be chosentHe other cases Holder convolution
is the best choice.

5.2 Numerical evaluation of harmonic polylogarithms

Harmonic polylogarithms have been introduced by RemiddiMdermaseren [5] and their numer-
ical evaluation has been worked out by Gehrmann and Ren8@¢li Harmonic polylogarithms
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have a convergent series representatidr| ik 1 and no trailing zeroes are present. The right-
most indices are allowed to be zero, in which case the hagrmotylogarithm does not have a
series expansion around zeraxirbut develops a logarithmic singularity proportional ta.lifo
cope with this trailing zeros scenario, one uses recussived shuffle algebra to extract those
zeros in form of ordinary logarithms. It remains to transgfoan arbitrary argumentinto the
domain|x| < 1. To this aim one uses the transformations &nd (1 — x)/(1+ x) from sect.
H.2. Here we differ slightly from the implementation by Getann and Remiddi: These authors
provide a numerical evaluation routine for harmonic paoljathms up to weight 4. They use
for x € [v/2—1,1] the (1—x)/(1+x) transformation to improve the convergence of the result-
ing series. We provide a numerical evaluation routine foiteary weights and therefore have
to determine the transformation formula at run time. We oles that this transformation by
itself is quite expensive. This can outweigh the potentzhdrom the series acceleration. It is
therefore more economical to apply this transformatiory éoi x near one. The starting point is
determined empirically.

In addition, multiple zeta values appear in the transforragpressions. If some indices
are negative, alternating multiple zeta values occur. Hed of the numerical evaluation of
multiple zeta values also has a major impact on evaluatieedpf the harmonic polylogarithms.

5.3 Numerical evaluation of multiple polylogarithms

Multiple polylogarithms can be evaluated with the help af geries expansion in the domain
where this expansion is convergent. This is the case if tpenaents satisfy eq[{IL8) or equiv-
alently eq. [[IB). We first show that any combination of argoteecan be transformed into
this domain. This transformation is based on the integralegentation and is therefore most
naturally expressed in terms of tlefunctions. We consider the function

Gm17...7l"l’]< (217 L) Zj—17 S7 Zj+17 ooy Zks Y) ) (56)

with the condition thals| is the smallest element in the ggt1|,...,|zj—1/, |3, |Zj+1]; -, |2, Y] }-
The algorithm goes by induction and introduces the more gést&ucture

Y1 d81 S dS
/ ...... / G(a1,...,S, - aw; ¥2), (57)

wherely;| is the smallest element in the s@y4|, |b]],..., |bt|, 8], ..., |ayl, |y2|}. The prime in-
dicates that only the non-zero elementsodndb; are considered. If the integrals ov&@ro s

are absent, we recover the origifafunction in eq. [Bb). Since we can always remove trailing
zeroes with the help of the algorithm in section 4.1, we cana® that,, # 0. We first consider
the case where th@-function is of depth one, e.g.

Y1 ds, S-1 ds Y1 ds, S-1 ds
— 6005w = | [ 95 Gysiye. (58
/Sl_bl O/S(—br (\TsryZ) ) s —by J s — by m(S;Y2), (58)
m_
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and show that we can relate the functi®g(s ;y2) to G (y2; S ), powers of Iris;) and functions,
which do not depend og. Form= 1 we have

Gi(s+:¥2) = Gi(Yog:s) —G(0is) +In(—y25). (59)
Form > 2 one can use the transformatiofy¥rom sect[4.P and one obtains:

7t 7 dt
Gm(S+;Y2) = —Zm‘f’/TGml(ti;VZ)_/TGml(ti;YZ)~ (60)
0 0

One sees that the first and second term in EG. (60) yield fumeindependent af. The third
term has a reduced weight and we may therefore use recurbios.completes the discussion
for Gm(s;y2). We now turn to the general case wittGafunction of depth greater than one in
eq. [5T). Here we first consider the sub-case,ghappears in the last place in the parameter list
and(m-— 1) zeroes preceds, e.g.

Y1 S-1

ds / ds

...... G(ag, ..., a0, ...,0,5:V2), 61

/ Osr_br(l a 1s(yz) (61)
mf

Since we assumed that tlefunction has a depth greater than one, we may concludegtba0.
Here we use the shulffle relation to relate this case to thevdasees, does not appear in the last
place:

G(a‘17"'7ak707"'707&;y2) = G(a17"'7ak;y2>G(O7"'7O7$;y2>_ G(a17"'7ak+m;y2)7
?_’T ?_’T sthHes

(62)

where the sum runs over all shuffles(at, ..., ax) with (0,...,0,5) and the prime indicates that
(dg,...,0krm) = (&1, ...,8,0,...,0,5) is to be excluded from this sum. In the first term on the
r.h.s of eq. [(BR) the factoB(ay,...,ax;y2) is independent of , whereas the second factor
G(0,...,0,5;y2) is of depth one and can be treated with the methods discubsed.arhe terms
corresponding to the sum over the shuffles in gl (62) habereit not appearing in the last
place in the parameter list or a reduced number of zeroegdgirags.. In the last case we may
use recursion to remowe from the last place in the parameter list. It remains to dis¢he case,
where theG-function has depth greater than one andoes not appear in the last place in the
parameter list, e.g.

Y1 S-1

d d
/ 3 / S G(a17--'7ai—17$'7ai+17"'7aw;y2)7 (63)
A S —br

with a, # 0. Obviously, we have

G(at,...,8-1,5,8i11,...,aw; Y2) = (64)

S
G(al,..-,au1,0,au+1,---,aw;yz)+/dsr+1 G(ag, ..., 8-1,5+1,8+1,---,aw; Y2) -
0

0S 11
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The first termG(ay, ...,a8-1,0,841, ...,ax; Y2) does no longer depend @n and has a reduced
depth. For the second term we first write out the integralesgmtation of th&-function. We
then use

0 1 0 1
3si—s — atiss (65)

followed by partial integration ih and finally partial fraction decomposition according to

11:1(1 1). (66)

t—at—s s—a\t-s t—a

If 5 is notin the first place of the parameter list, we obtain

S

d
/dsm G(ag,...,8-1,5+1,8i+1, .-, 8w, Y2)
A 0S 11

ds
— _/7+1G(a177al—275'+17al+177awsy2>
A S+1—a-1

ds
+/ +1. G(aL---,ai—27ai—1,ai+17---,aw;)/2)
9 S+1—a-1

ds i1
+/7+_ G(ag,...,8-1,5+1,8i+2, ..., 8w, Y2)
A S+1—ai+1

s
d
_/il-G(ala---7ai—17ai+17ai+27"'7aW;y2)' (67)
0

EachG-function has a weight reduced by one unit and we may usesiecurfs, appears in the
first place we have the following special case:

7 9 7 ds
/dS'-i-l G(Sr+17ai+1a---7a\/v;YZ):/ = G(ai+17"'7aW;y2)
A 0S 11

A S+1—Y2

S S
d d
+/i1_6(sr+1,aa+z,---,aw;yz)—/il_G(aH,mz,---,aw;yz). (68)
A S+1—ait+1 A S+1—ait1

There is however a subtlety: éf_1 or aj 1 are zero, the algorithm generates terms of the form

y y
[Sre- [ SR (69)

0 0
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Although the sum of these two terms is finite, individual giediverge as = 0. We regularise
the individual contributions with a lower cut-off

y

y
/ dSe (g - / %SF(O). (70)

S
A A

In individual contributions we therefore obtain at the efithe day powers of IA from integrals
of the form
/yd_sl [ ds

_ Lo 112
- = 2In y Inyln}\+2ln A (71)

A

In the final result, all powers of kcancel, and we are left wit-functions with trailing ze-
ros. These are then converted by standard algorithr@sftonctions without trailing zeros. The
G-functions without trailing zeros can then be evaluated etcally by their power series ex-
pansion.

In addition, the algorithms may introduce in intermediateps G-functions with leading
ones, e.d5(1,...,7%;1). These functions are divergent, but the divergence candverfsed and
expressed in terms of the basic diverge@¢é; 1). The algorithm is very similar to the one for
the extraction of trailing zeroes. In the end all divergencancel.

Acceleration of the convergent series

The G-functionGn, .. m (71, ..., Z; y) has a convergent power series expansion if the conditions
in eq. [I9) are met. This does not necessarily imply, thatctherergence is sufficiently fast,
such that the power series expansion can be used in a stoawgdtd way. In particular, if;

is close toy the convergence is rather poor. In this paragraph we cansidéhods to improve
the convergence. We can assume that no trailing zeroes esemrgx # 0), therefore we can
normalisey to one. Convergence implies then, that we hggye> 1 and(z1,my) # (1,1). If
somez; is close to the unit circle, say,

1<|z] <2, (72)
we use the Hdlder convolution ed._[54) wiph= 2 to rewrite theG-functions as
G(z,...,201) = G(2z1,...,224;1) + (= 1)"G (2(1 — zy),2(1 — Zw_1), ---,2(1 — 21); 1)
+Vj\§(—1)1G(2(1—zj),2(1—zj1),...,2(1—21);1)G(ZzHl,...,ZZW; 1). (73)
Here, we normalised the r.h.s to one and explicitly wrote firs¢ and last term of the sum.
We observe, that the first ter@®(2z, ..., 2z,; 1) has all arguments OUtSinZj‘ > 2. This term

has therefore a better convergence. Let us now turn to ttendeerm in eq,[(73). If somg
lies within ‘Zj — 1} < 1/2, the Holder convolution transforms the arguments out efrégion

16



of convergence. In this case, we repeat the steps abovetrangformation into the region of
convergence, followed by a Holder convolution, if necegsdérhile this is a rather simple recipe
to implement into a computer program, it is rather tricky toqd that this procedure does not lead
to an infinite recursion, and besides that, does indeed teaud improvement in the convergence.
For the proof we have to understand how the algorithms fotrdresformation into the region
of convergence act on the arguments ds-dunction with lengthw. In particular we have to
understand how in the result tiifunctions of lengthw are related to the origin&-function.
Products of5-functions of lower length are “simpler” and not relevanttioe argument here. We
observe, that this algorithm for th@&-function G (zy, ..., zy; y) substitutey by the element with
the smallest non-zero modulus from the §i], ..., |zw|, Y|}, permutes the remaining elements
into an order, which is of no relevance here and possiblytdubss some non-zero elements by
zero. The essential point is, that it does not introduce amytrivial new arguments (e.g. new
non-zero arguments).

For the Holder convolution we are concerned with the secerd bf eq. [ZB)

G(2(1—2zy),2(1—2zy-1),...,2(1—21);1). (74)

The first termG (2z, ..., 2z,; 1) never transforms the arguments into the non-convergeidmneg
and has, as we have seen, a better convergence. The termasimtiof eq.[{43) have a reduced
length, and by induction we can assume that suitable metioddsprove the convergence exist
for those terms. For the second term of ef.] (73) we have tasksthe transformation—
2(1—2z). We divide the argumentg into different classes:

- class A:|z| > 2. These will map under the transformatier- 2(1 — z) again to|z| > 2.
Actually, they transform téz— 2| > 4, but this region is included in the previous one.

- class B: 1< |z| < 2 and|z— 1] > 1. These will map under the transformation- 2(1— z) to
|zl > 2 (and necessarilg— 1| > 1). Therefore class B is mapped to class A.

-class C: I< |zl < 2 and ¥2 < |z— 1] < 1. These will map under the transformatior-
2(1-2z)to 1< |z <2 and|z— 1| > 1. Therefore class C is mapped to class B.

- class D: I< |z < 2 and|z—1| < 1/2. These will map under the transformation> 2(1 — z)
to|zl < 1 and|z—1| > 1. Class D is mapped to the non-convergent regpsa 1.

Let us first assume that a|’s are from class A and B. Then after the Holder convolutidh, a
arguments satisfyz| > 2, which ensures a fast convergence. Secondly, we assuinalthgs

are from the classes A, B and C. The the Hoélder convolutioh géherateG-functions with
arguments from the classes A and B alone. One subsequengrHidvolution on thos&-
functions, which contain arguments from class B will agaiad to|z| > 2 for all zj. For the

last case we have to considgffunctions, where some arguments are from class D. Then we
obtain arguments witlg| < 1 and it is necessary to re-use the transformation into thiemeof
convergence. Latcp be the number of argumertgsfrom the classes C and D from the original
G-function. The second term in ed._{73) equals dql (74). Z«gtbe the argument such that
2|1 — Znin| is the smallest in the set
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Since at least one argument is from class D, we hate-Z,,| < 1. The algorithm for the
transformation into the convergent region introduces tBdanctions of the form

ES TS )]
1—Zmin" " 1= Zmin 2(1—2Zmin)" 1= 2Zmin "~ 1= Zmin
Here, o is permutation of the original arguments. The argumet/11 — zyin) results from

permutating the originay = 1 into the argument list of th&s. We note that this argument
satisfies

(76)

1
2(1— Zmin)
and lies therefore always outside region C and D. This is reasily seen by using polar coor-

dinates for 21 — zy;n). Furthermore, if an arbitrary argumenis from class A or B, it satisfies
|z— 1| > 1. Therefore

—4>1, (77)

1
|Z—amﬂ>§, (78)
and it follows that
1-z
-1| > 1. 79
1—Zin ' (79)

Therefore, arguments from classes A and B will remain indghetasses. It remains to consider
the case = 0 and to show it does not re-introduce arguments in the daSsw D. Again, we
can show that

‘ 1
1— Zmin
In summary, theés-function in eq. [Zb) has the numbegp reduced by at least one (due to eq.
[74). Therefore the algorithm will successively remove ttgaments from classes C and D and
terminate. This completes the proof.
In practice, there is again a trade-off between the gain ¢elacation and the cost involved
for the Holder convolution. We therefore apply the Héldemaalution only if somez; satisfies
1< || <A, (81)

with A < 2. A typical value is\ = 0.01.

—4>1. (80)

6 Implementation and checks

The numerical evaluations have been implemented as pariNd@[35], a C++ library for
computer algebrah{tp: /7 www. gi nac. de). GiNaC enables symbolic algebraic manipulations
within the C++ programming language. Like FORM [42], it wasvdloped within the high-
energy physics community. GiNaC allows numerics in arbjtgecision.

The following functions have been added to GiNaC. On thededtthe names and the math-
ematical notations, on the right are the names within GiNaC.
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Name Math. notation GiNaC notation

Classical polylogarithm Lwi(X) Li (n, x)

Nielsen polylogarithm Sp(X) S(n, p, x)

Harmonic polylogarithm R(X) H({mL, ..., nk},Xx)

Multiple polylogarithm Lin(X) Li ({mt,...,nk},{x1,...,xk})
G(d,y) G{al,...,ak},y)

G{al,...,ak},{d1,...,dk},y)
Multiple zeta value ¢(m) zeta({nt,...,nk})
Alternating MZV {(m,0) zeta({nmt,...,nk},{sl,...,sk})

While x and the entries of can be arbitrary complex numbers, p and the entries oifh
must be positive integers. In the case of the harmonic pgarithmm may also contain negative
integersd is the expanded parameter string for Gunctions. Thed;’s are positive or negative
numbers indicating the signs of a small imaginary partiof Thes’s are positive or negative
numbers indicating which corresponding sum in the definitod the multiple zeta values is
alternating.

The algorithms used can be found in [28, 29] for classicaylpglarithms and Nielsen poly-
logarithms, in [5, 32] for harmonic polylogarithms, in [2,]3for multiple zeta values and in
our text above for multiple polylogarithms. The transfotioas are performed algebraically so
there are no restrictions on the size or length of the pamnsieThe summation is accelerated by
the use of Bernoulli numbers in the case of classical andsBlirepolylogarithms. Since GiNaC
has arbitrary precision numerics and the precision can bagdd at every time this is the only
feasible acceleration technique. Evaluation of multiglazvalues either goes by Crandall’s al-
gorithm or by Hélder convolution depending on the precisionl parameters. The switching
point has been determined empirically. For alternatingtiplel zeta values Holder convolution
is always used.

For the sign of the imaginary part we adopted a widely usedeaion for mathematical
software:implementations shall map a cut so the function is contisw®uthe cut is approached
coming around the finite endpoint of the cut in a counter alosk direction[43]. With this
convention the cuts on the positive real axis are contindouble lower complex half-plane.
This convention also ensures consistency among the vapmykgarithms including the ordi-
nary logarithm. We note that the implementation of harmguiylogarithms by Gehrmann and
Remiddi [32] uses the opposite sign convention. GehrmadrRemiddi give the argument of H
a positive imaginary pax-+i€. This implies that cuts on the positive real axis are comursuito
the upper complex half-plane.

To ensure the correctness of the implementation many chesokes been performed. First,
one can compare the numerical evaluation to known speciaésaf the function, e.g. ki
with parameters = 0,% or 1, or{(2n) with integern. In the same sense but with less rigour of
course, one can compare to other well proven software imgaéations for a quick reassurance.
Second, the transformations can be checked for internaistemcy if they overlap. Hence the
1 — x transformation can always be be verified against the puiesself the (1—X)/(1+ x)
transformation is done as it is with the harmonic polylotam the /x transformation overlaps
and can be tested as well. Checking identities betweerreliffédunctions is the third method.
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Since all discussed functions merely are special caseseofeheral multiple polylogarithm,
there exists a hierarchy of identities between them, e.g.

Sha(X) =Lint1(x) or Hzz1(X) = S23(%).
In addition, limits can be examined, for example
Li27374(X, al) — H27374(X) as a—1.

The checks listed above are sufficient to assure the coggxtof the implementation for the
simpler functions. Yet the more general functions of mugtipolylogarithms and multiple zeta
values still have areas of the parameter space that haveeanttbsted with the methods so far.
Here, the shuffle and quasi-shuffle identities are a very mapbtool to fill this gap. Identities
like
{(4,3) =17¢(7) —10¢(2)¢(5)

or

Liz(X)Lis(y) = Lizs(X,y) + Lis2(Y,X) + Liz(xy)

are examples for such identities. Shuffle and quasi-shiieions similar to those can be used
to expose problems within the implementation for arbity@ayameter sets.

The checks mentioned above have been exercised not onlylmrtigaost of them have been
added as automatic checks to the GiNaC library itself. Withdource code at hand the test suite
of GiNaC can be run anytime. This helps to detect new erroicktyuthat might make their way
into the code in the course of future extensions or optindaat

The standard use of GiNaC is through its C++ interface. A bexample program is listed
below:

#i ncl ude <iostreanp
#i ncl ude <gi nac/ gi nac. h>

int main()

{
usi ng namespace std;
usi ng namespace G NaC

ex x1

numeric(8, 3)
ex x2 1,5

numeric(1,5)

cout << "Li {1,1}(8/3,1/5) ="
<< Li( Ist(1,1), Ist(x1,x2) ).evalf() << endl;

N

return O;

}
If this program is compiled and linked with the GiNaC-libyait will print out:
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Li {1,1}(8/3,1/5) = -0.8205920210842043836- 0. 70102614150465842094* |

Alternatively, GiNaC offers also a small interactive shedlledginsh which allows to try and
use GiNaC's features directly as in the following examples:

> Li(2,1);

1/ 6*Pi 72

> §(2,3,4.5);

-1.5214058021507574768+1. 7013776892289268546* |
> Li({2,2,1},{3.0,2.0,0.2});

-0. 7890678826631402472+0. 5791683703217281085* |
> Di gi t s=40;

40

> H({2,-1,3},8.7);
-5.65207410697321998445159060623787475178342968036- 1. 05486293307539105482
5025378324573142440702785858* |

Here the user input is done at the prompnd the result is given on the next line.

7 Conclusions

In this paper we reported on numerical evaluation methodsnidtiple polylogarithms. These
functions occur in higher loop calculations in quantum figldory. We provided algorithms,
which allow the evaluation of these functions for arbitrapmplex arguments without any re-
striction on the weight of the function. The functions canéwaluated in C++ to arbitrary
precision within the GiNaC framework. Subclasses of midtgmlylogarithms are the classical
polylogarithms, the Nielsen polylogarithms, the harmgmtylogarithms and the multiple zeta
values. For these subclasses we have implemented spedialgorithms. All routines are in-
tegrated in the computer algebra package GiNaC from vefs®bonwards and can be obtained
by downloading this library [35].
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