
ar
X

iv
:n

uc
l-

th
/0

40
40

83
v2

  2
2 

Ju
l 2

00
4

SHARE: Statistical Hadronization
with Resonances†

G. Torrieri a, S. Steinke a, W. Broniowski b, W. Florkowski b,c,
J. Letessier a,d, and J. Rafelski a

a Department of Physics, University of Arizona, Tucson, AZ 85721
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Université Paris 7, 2 place Jussieu, F–75251 Cedex 05, France.

Abstract

SHARE is a collection of programs designed for the statistical anal-
ysis of particle production in relativistic heavy-ion collisions. With the
physical input of intensive statistical parameters, it generates the ra-
tios of particle abundances. The program includes cascade decays of
all confirmed resonances from the Particle Data Tables. The complete
treatment of these resonances has been known to be a crucial factor
behind the success of the statistical approach. An optional feature im-
plemented is a Breit–Wigner type distribution for strong resonances.
An interface for fitting the parameters of the model to the experimen-
tal data is provided.
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PROGRAM SUMMARY

Title of the program: SHARE, July 2004, version 1.1;

Computer:

PC, Pentium III, 512MB RAM not hardware dependent;

Operating system:

Linux: RedHat 6.1, 7.2, FEDORA etc. not system dependent;

Programming language: FORTRAN77: g77, f77
as well as Mathematica, with temperature-fixed particle yields and excluding
option of finite width;

Size of the package: 645 KB directory including example programs (82KB
compressed distribution archive), without libraries (see
http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html
http://wwwasd.web.cern.ch/wwwasd/cernlib.html
for details on library requirements ).

Distribution format: tar gzip file

Number of lines in distributed program, including test data, etc: 14893

Keywords: relativistic heavy-ion collisions, particle production, statistical
models, decays of resonances

Computer: Any computer with an f77 compiler

Nature of the physical problem:

Statistical analysis of particle production in relativistic heavy-ion collisions
involves the formation and the subsequent decays of a large number of res-
onances. With the physical input of thermal parameters, such as the tem-
perature and fugacities, and considering cascading decays, along with weak
interaction feed-down corrections, the observed hadron abundances are ob-
tained. SHARE incorporates diverse physical approaches, with a flexibility
of choice of the details of the statistical hadronization model, including the
selection of a chemical (non)equilibrium condition. SHARE also offers eval-
uation of the extensive properties of the source of particles, such as energy,
entropy, baryon number, strangeness, as well as the determination of the
best intensive input parameters fitting a set of experimental yields. This al-
lows exploration of a proposed physical hypothesis about hadron production

2



mechanisms and the determination of the properties of their source.

Method of solving the problem:

Distributions at freeze-out of both the stable particles and the hadronic res-
onances are set according to a statistical prescription, technically calculated
via a series of Bessel functions, using CERN library programs. We also have
the option of including finite particle widths of the resonances. While this is
computationally expensive, it is necessary to fully implement the essence of
the strong interaction dynamics within the statistical hadronization picture.
In fact,including finite width has a considerable effect when modeling directly
detectable short-lived resonances (Λ(1520), K∗, etc.), and is noticeable in fits
to experimentally measured yields of stable particles. After production, all
hadronic resonances decay. Resonance decays are accomplished by addition
of the parent abundances to the daughter, normalized by the branching ra-
tio. Weak interaction decays receive a special treatment, where we introduce
daughter particle acceptance factors for both strongly interacting decay prod-
ucts. An interface for fitting to experimental particle ratios of the statistical
model parameters with help of MINUIT [1] is provided.

The χ2 function is defined in the standard way. For an investigated
quantity f and experimental error ∆f ,

χ2 =
(fexperiment − ftheory)

2

(∆fstatistical +∆fsystematic)2
(1)

NDoF = Ndata points −Nfree parameters. (2)

(note that systematic and statistical errors are independent, since the sys-
tematic error is not a random variable).

Aside of χ2 the program also calculates the statistical significance [2], de-
fined as the probability that, given a “true” theory and a statistical (Gaus-
sian) experimental error, the fitted χ2 arises at or above the considered value.
In the case that the best fit has statistical significance significantly below
unity, the model under consideration is very likely inappropriate. In the
limit of many degrees of freedom (NDoF), the statistical significance function
depends only on χ2/NDoF, with 90% statistical significance at χ2/NDoF ∼ 1,
and falling steeply at χ2/NDoF > 1. However, the degrees of freedom in fits
involving ratios are generally not sufficient to reach the asymptotic limit.
Hence, statistical significance depends strongly on χ2 and NDoF separately.
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In particular, if NDoF < 20, often for a fit to have an acceptable statistical
significance, a χ2/NDoF significantly less than 1 is required.

The fit routine does not always find the true lowest χ2 minimum. Specifi-
cally, multi-parameter fits with too few degrees of freedom generally exhibit a
non-trivial structure in parameter space, with several secondary minima, sad-
dle points, valleys, etc. To help the user perform the minimization effectively,
we have added tools to compute the χ2 contours and profiles. In addition,
our program’s flexibility allows for many strategies in performing the fit. It
is therefore possible, by following the techniques described in Sect. 3.7, to
scan the parameter space and ensure that the minimum found is the true
one. Further systematic deviations between the model and experiment can

be recognized via the program’s output, which includes a particle-by-particle
comparison between experiment and theory.
Purpose:

In consideration of the wide stream of new data coming out from RHIC, there
is an on-going activity, with several groups performing analysis of particle
yields. It is our hope that SHARE will allow to create an analysis standard
within the community. It can be useful in analyzing the experimental data,
verifying simple physical assumptions, evaluating expected yields, as well as
allowing to compare various similar models and programs which are currently
being used.

Computation time survey:

We encounter, in the Fortran version computation, times up to seconds for
evaluation of particle yields. These rise by up to a factor of 300 in the
process of minimization and a further factor of a few when χ2/NDoF profiles
and contours with chemical non-equilibrium are requested.

Accessibility:

http://www.ifj.edu.pl/Dept4/share.html

or http://www.physics.arizona/˜torrieri/SHARE/share.html
as well as from the authors upon request

1 Introduction

In strong interaction reaction processes particle production is abundant. In
his seminal 1950 article Fermi proposed a non-perturbative description of
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particle yields based on the assumption that the accessible phase space will
be fully saturated [3]. Pomeranchuk extended the model by reconsidering
the particle freeze-out condition [4]. He argued that the reaction volume
should expand to the point where particles would decouple from each other,
given their inelastic reaction cross sections. We call this stage the chemical
freeze-out. In the ensuing decade another important feature of the strong
interactions was discovered: the existence of numerous hadronic resonances.
Hagedorn recognized that the large number of different hadronic states is an
expression and characterization of their strong interactions. He has shown
that the increase in the number of resonances with their mass has profound
implications for the behavior of matter at high temperature [5]: hot hadronic
matter could undergo a phase transition at Hagedorn temperature, TH ≈
160 MeV. Hagedorn referred to this as the boiling point of hadronic matter
beyond which the gas of quarks would prevail as a new form of matter. For
an introduction into the literature and history of this subject see [6], and for
recent developments also [7].

High energy relativistic heavy nuclei (RHI) collisions allow to create, in
the laboratory environment, a fireball of matter at extreme density and tem-
perature. The immediate objective of this experimental program is to identify
formation of a relatively large volume of deconfined quark–gluon matter, the
quark–gluon plasma (QGP), and to explore its properties. This form of mat-
ter has existed in the early Universe just before quarks and gluons evolved
into the ‘normal’ hadronic particles which surround us today. Formation of
a region of space in which quarks can roam freely would confirm that their
confinement is a property of the structured strong interaction vacuum state.
For a general introduction to these physics questions see [8].

Considering the short available lifetime of the fireball, it is difficult to
develop probes capable of uniquely distinguishing a reaction involving for-
mation of the deconfined QGP state from the one involving a cascade of
reactions between individual confined baryons and mesons. The characteris-
tic feature of the RHI reaction is the formation of a large number of hadronic
particles. Irrespective if, or not, deconfinement has been achieved, this con-
stitutes the final state of a RHI collision. Theoretical considerations suggest
that features of the final hadron abundances are sensitive to the question if
deconfined state has been formed [10].

Analysis of the final hadron state can thus lead to important insights
regarding reaction mechanisms governing the last stage of the QGP evolution.
We offer here a standardized version of the Statistical HAdronization with
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REsonances (SHARE) approach allowing to obtain final state hadron particle
yields. We have at first prepared two platforms, developed in parallel in the
form of Fortran and Mathematica shareware, and verified their input and
logical structure by making sure they yield identical results using the same
input file. However, in physics applications which require optimization of
parameters, Mathematica turns out to be forbiddingly slow, and Fortran is
preferred. For some other applications, the versatility of Mathematica is of
clear advantage, e.g., one can track the feeding from resonances, make use
of the integrated graphics, or modify the notebook to extend the model.

Several research groups beginning with P. Koch et al. [11] have developed
statistical models of hadron production based on the seminal work by Fermi,
Pomeranchuk and Hagedorn [3–5]. Hadron yields are computed assuming
that hadron production can be obtained evaluating the accessible phase space
size. Known hadron resonances are incorporated and their decay chain eval-
uated. One has to view this type of hadronization as providing a bottom
line, there could be always additional microscopic production mechanisms
which should be most clearly visible for most rarely produced particles. The
experimental data coming from lower energy collisions of 2–11 GeV at AGS,
through the CERN SPS energies of 8–17 GeV , to the highest presently avail-
able energies at RHIC, reaching 200 GeV, can be understood, sometimes to
a surprising accuracy, with the help of such straightforward statistical ideas.
There are many variants of statistical approaches, with the common feature
that at some point of its evolution the hadronic system freezes, and the parti-
cle fill out the phase space according to statistical distribution. The particles
form a ‘soup’ of both stable hadrons, as well as hadronic resonances, which
later decay, increasing significantly the yields of stable particles. In addition,
the system expands, i.e., undergoes longitudinal and transverse flow, which is
an important phenomenon in heavy-ion collisions, distinguishing them from
elementary hadronic collisions.

We note that statistical hadronization programs [12–18] require a very
detailed input of the hadronic spectrum, and definitions of the subsequent
cascading decays of hadron resonances. Tacit assumptions can make a differ-
ence of physical significance in the outcome of the analysis. In addition, some
information is not available for relevant resonances and has to be assessed by
using the current hadron structure knowledge, in particular regarding parti-
cle degeneracy and decay patterns. We have excluded from consideration all
so called single-∗ resonances, and practically all double-∗∗ resonances seen
in particle data book [2]. The double-∗∗ resonances we accept are those

6



where the discovery record is convincing, but a confirmation experiment not
available. An example are Ω-resonances, see comment on Ω(2470) in [2].

The statistical hadronization approach to describe particle yields arises
naturally when considering a pot of boiling quark–gluon soup: hadrons evap-
orate with an abundance corresponding to the accessible phase space. The
quark-chemical equilibrium in the pot implies that the evaporated hadrons
are near, but in general not at their chemical equilibrium. For the dynami-
cally evolving fireball of quark–gluon plasma, a similar situation arises should
the QGP fireball undergo sudden hadronization in the final stages of its evo-
lution [19]. In this case QGP breaks rapidly into ever smaller drops of mat-
ter, ultimately consisting of individual elementary hadronic particle species.
The statistical particle production model also applies in the opposite limit
of a very slow hadronization process [20, 21], assuming that there is time
for diverse hadronic particles to be produced and destroyed in a chemical
(re)equilibration process.

2 Statistical models in a capsule

The statistical models we are concerned with have the following main physical
ingredients:

• Particle abundances at chemical freeze-out,

• Resonance decays.

For the details of different statistical approaches the reader is referred to
Refs. [22–37].

2.1 Statistical particle distributions

The densities of particle species i are given by the Fermi-Dirac or Bose-
Einstein distribution functions

n(mi, gi;T,Υi) ≡ ni = gi

∫

d3p

(2π)3
1

Υ−1
i exp(

√

p2 +m2
i /T )± 1

, (3)

=
gi
2π2

∞
∑

n=1

(∓)n−1Υn
i

T m2
i

n
K2

(nmi

T

)

. (4)

The second form, Eq. (4), expresses the momentum integrals in terms of
the modified Bessel function K2. This form is practical in the numerical
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calculations and is used in the Fortran code. The series expansion (sum
over n) converges when Υie

−mi/T < 1. Consideration of this condition is
required only for the pion case in the range of parameters of interest. In
Eq. (4), the upper signs refer to fermions and the lower signs to bosons,
respectively. Υi is the fugacity factor, and mi is the particle mass. The
quantity gi = (2Ji + 1) is the spin degeneracy factor as we distinguish all
particles according to their electrical charge and mass. The index i labels
different particle species, including hadrons which are stable under strong
interactions (such as pions, kaons, nucleons or hyperons) and hadron which
are unstable (ρ mesons, ∆(1232), etc.).

In the most general chemical condition 1, the fugacity is defined through
the parameters λI i

3
, λq, λs, λc (expressing, respectively, the isospin, light, strange

and charm quark fugacity factors), and γq, γs, γc (expressing the light, strange
and charm quark phase space occupancies, = 1 for absolute yield equilib-
rium). The fugacity Υi is then given by:

Υi = λIi
3
(λqγq)

N i
q (λsγs)

N i
s (λcγc)

N i
c (λq̄γq̄)

N i
q̄ (λs̄γs̄)

N i
s̄ (λc̄γc̄)

N i
c̄ , (5)

where
λq = λ−1

q̄ , λs = λ−1
s̄ , λc = λ−1

c̄ , (6)

and
γq = γq̄, γs = γs̄, γc = γc̄. (7)

Here, N i
q, N

i
s and N i

c are the numbers of light (u, d), strange (s) and charm
(c) quarks in the ith hadron, and N i

q̄, N
i
s̄ and N i

c̄ are the numbers of the
corresponding antiquarks in the same hadron.

In the case of the models of Refs. [12, 13, 29], where the chemical poten-
tials for the conserved quantum numbers are considered assuming chemical
equilibrium (γq = γs = 1) and absence of charm (N i

c = N i
c̄ = 0) one has

Υ eq
i = exp

(

BiµB + SiµS + I i
3µI3

T

)

, (8)

where Bi, Si, and I i
3 are the baryon number, strangeness, and the third

component of the isospin of the ith particle, and µ’s are the correspond-
ing chemical potentials. In this case, the two formulations are related by

1This condition is commonly called chemical non-equilibrium. However, the conven-
tional equilibrium in which existent particles are redistributed according to chemical poten-
tials is maintained here. The non-equilibrium regarding particle production is, in precise
terms, called absolute chemical (non)equilibrium.
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equations:
λeq
q = eµB/3T , (9)

λeq
s = e(−3µs+µB)/3T , (10)

λeq

Ii
3

= λIi
3
= eI

i
3µI3

/T . (11)

The user is free to input either format for all of the three chemical potentials
(µB, µS, µI3) or fugacities (λq, λs, λI3) (see section 3.1 for details). All quan-
tities are automatically converted into fugacities for calculations and fits,
however both chemical potentials and fugacities are presented in the output
of the program.

2.2 Resonance decays

In the first instance, we consider hadronic resonances as if they were particles
with a given well defined mass, e.g., their decay width is insignificant. All
hadronic resonances decay rapidly after freeze-out, feeding the stable particle
abundances. Moreover, heavy resonances may decay in cascades, which are
implemented in the algorithm where all decays proceed sequentially from the
heaviest to lightest particles. As a consequence, the light particles obtain
contributions from the heavier particles, which have the form

n1 = b2→1 ... bN→N−1nN , (12)

where bk→k−1 combines the branching ratio for the k → k−1 decay (appearing
in [2]) with the appropriate Clebsch–Gordan coefficient. The latter accounts
for the isospin symmetry in strong decays and allows us to treat separately
different charged states of isospin multiplets of particles such as nucleons,
Deltas, pions, kaons, etc. For example, different isospin multiplet member
states of ∆ decay according to the following pattern:

∆++ → π+ + p, (13)

∆+ →
1

3
(π+ + n) +

2

3
(π0 + p), (14)

∆0 →
1

3
(π− + p) +

2

3
(π0 + n), (15)

∆− → π− + n. (16)
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Here, the branching ratio is 1 but the Clebsch–Gordan coefficients introduce
another factor leading to the effective branching ratios of 1/3 or 2/3, where
appropriate.

For two-body strong decays (such as the example shown above), the
Clebsch–Gordan coefficients are automatically calculated by the program.
In this case, the branching ratio taken from [2] is the only input in the
program. For three-body decays, the products of the Clebsch–Gordan coef-
ficients have been averaged, with equal weights, over all possible couplings
between the three isospins. The result of this procedure has been used to
rescale the branching ratio taken from [2], and the effective branching ratio
has been obtained in this way, which is delivered as the input.

The case of ∆ −→ πN is easy to deal with, since only one decay channel
is present and the branching ratio is well known. However, in most of the
cases, we take into account several decay channels appear. We note that
the partial widths (product of branching ratio with total width) are not
sufficiently well known. In our approach we disregard, as a rule, all decays
with the branching ratios smaller than 1%. In addition, if the decay channels
are classified as dominant, large, seen, or possibly seen, we always take into
account the most important channel. If two or more channels are described
as equally important, we take all of them with the same weight. For example
f0(980) decays into ππ (according to [2] this is the dominant channel) and
KK (according to [2] this is the seen channel). In our approach, according to
the rules stated above, we include only the process f0(980) −→ ππ. Similarly,
a0(1450) has three decay channels: ηπ (seen), πη′(958) (seen), and KK
(again seen). In this case, we include all three decay channels with the
weight (branching ratio) 1/3. Certainly this procedure is not unique and
other methods of selection/treatment of the decays are conceivable.

Another difficulty is that the branching ratios are not given exactly (in-
stead of one value, the whole range of acceptable values is given) and the sum
of the branching ratios may differ significantly from 1. In this case we take
the mean values of the branching ratios. Since we require that their sum is
properly normalized, sometimes we are forced to rescale all the mean values
in such a way that their sum is indeed 1. Of course, a different convention
from ours can be implemented by the user through a different particle data
input file.

Weak decays (identified by the fact that they break strangeness and
isospin) are stored separately, and added to the ratios with a feed-down cor-
rection set by the user. However, electromagnetic decays such as Σ0 → Λ+γ
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are counted as if it were hadronic in the contribution to the yield of Λ (and
the antiparticle).

2.3 Finite resonance width

If the particle i has a finite width Γi, the thermal yield of the particle is more
appropriately obtained by weighting Eq. (3) over a range of masses to take
the mass spread into account:

ñΓ
i =

∫

dM n(M, gi;T,Υi)
1

2π

Γi

(M −mi)2 + Γ2
i /4

→ ni, for Γi → 0. (17)

The use of the Breit–Wigner distribution with energy independent width
means that there is a finite probability that the resonance would be formed at
unrealistically small masses. Since the weight involves a thermal distribution
n(M, gi;T,Υi) which would contribute in this unphysical domain, one has to
use, in Eq. (17), an energy dependent width.

The dominant energy dependence of the width is due to the decay thresh-
old energy phase space factor, dependent on the angular momentum present
in the decay. The explicit form can be seen in the corresponding reverse
production cross sections [38,39]. The energy dependent partial width in the
channel i → j is to a good approximation:

Γi→j(M) = bi→jΓi

[

1−
(mij

M

)2
]lij+

1

2

, for M > mij . (18)

Here, mij is the threshold of the decay reaction with branching ratio bi→j . For
example for the decay of i := ∆++ into j := p+π+, we have mij = mp+mπ+ ,
while the branching ratio is unity and the angular momentum released in
decay is lij = 1. From these partial widths the total energy dependent width
arises,

Γi → Γi(M) =
∑

j

Γi→j(M). (19)

For a resonance with width, we thus have replacing Eq. (17):

nΓ
i =

1

Ni

∑

j

∫ ∞

mij

dM n(M, gi;T,Υi)
Γi→j(M)

(M −mi)2 + [Γi(M)]2/4
, (20)
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and the factor N (replacing 2π) ensures the normalization:

Ni =
∑

j

∫ ∞

mij

dM
Γi→j(M)

(M −mi)2 + [Γi(M)]2/4
. (21)

In principle, Eq. (20) does not take into account the possibility that the
state into which one is decaying is itself a unstable state in a thermal bath.
Doing this would require a further average over the width distribution of
receiving state. We will not implement here this refinement.

The evaluation of the Breit–Wigner integral requires additional attention.
The presence of the thermal distribution limits the integral range in Eq. (17)
and thus the integral is finite and well behaved. However, it involves in gen-
eral diverse cases of both very narrow, Γ ≪ m, and wide, Γ ≃ m, resonances.
To perform the integral reliably and precisely in all of these cases we split it
in two parts,

∫∞
mij

=
∫ m0+2Γ

mij
+
∫∞
m0+2Γ

. The first part can be securely done

using, e.g., Gaussian integration. The second part, with a potentially slowly
falling tail, can be computed through a variable change z = (m0+2Γ)

M
before

the numerical integration.
Calculating widths adds considerably to the computation time. It should

be noted that Eq. 3 is in the form of K2 functions depending on temperature
and mass, weighted by coefficients representing chemical potentials. The
expensive width integrals, therefore, only have to be recalculated when the
temperature under consideration changes. The program takes advantage of
this in its fitting algorithm, something which can dramatically increase fitting
time. See section 3.7 for details.

3 SHARE structure

SHARE is a modular program, whose basic structure is illustrated in Fig. 1.
Five input data files are required, containing model and experimental data.
There is a calculational and a fitting block, piloted by instructions which the
program reads from a running file (called sharerun.data). Each command
will generally be performed independently from the others, and generate its
own output in a separate file.

Any user defined file names of specified length can be used for all input
files except sharerun.data, but the defaults are:

thermo.data (11 letter filename),

12



χ2 profiles, contours file

Thermal
parameters

Particles
Data

Resonances
decay tree

Particle ratios

Best fit parameters

Experimental
data

calc  fitratios
calc  chiprofile
calc  chi2_cont

calc ratioplot 
calc ratiocont

sharerun.data

calc totratios

totratios.datadecays.dataparticles.datathermo.data

Calculation
output file

statistical significance
parameter errors

Extensive 

(13−letters) Fitting output file
point by point model−data comparison

(13 letters)
parameter sensitivity
number of minima
correlations

(12 letters)

Statistical hadronization

Fitting routines

quantities

Figure 1: Structure of the SHARE package. Running commands which can
be given are in red, default input filenames are in blue, while possible output
files are in violet (color online). All output filenames are set by the user
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particles.data (14 letter filename),
decays.data (11 letter filename),
totratios.data (14 letter filename),
ratioset.data (13 letter filename).

These deal, respectively, with initial thermal parameters defining the be-
ginning of the fit procedure, particle properties, decay patterns, and the par-
ticle ratios (Math SHARE uses particles.data and decays.data only).
These input files are described in detail in the next subsections. It is pos-
sible to insert comments into all of these files: any time the first character
starts with ‘#’, the subsequent input is disregarded (CAUTION: For Math
SHARE a comment line must include at least one more word after ‘#’, e.g.,
‘# This is a comment’ ).

3.1 Thermal parameter input

(11 letter filename, default name: thermo.data)

The thermo.data file contains input temperature and chemical potentials.
Where applicable, all units are GeV. A sample is given in Table 1.

tag value explanation (not part of file)
temp 0.165 temperature
mu b 0.028 light quark fugacity or chemical potential
mu s 0.006 strange quark fugacity or chemical potential
gamq 1. light quark phase space occupancy
gams 1. strange quark phase space occupancy
lmi3 -0.001 I3 fugacity or chemical potential
norm 1. absolute normalization
lamc 1. charm quark fugacity
gamc 0.001 charm quark phase space occupancy
accu 0.001 calculations accuracy

Table 1: A typical thermal input file

Chemical potentials can be input as λ′s and γ′s, Eqs. (5)–(7), or as µ′s,
Eqs. (8)–(10). If the tag is, respectively, ‘mu b’, ‘mu s’ or ‘mui3’ the program
assumes input is given as in Eqs. (5)–(7) otherwise Eqs. (8)–(10) are assumed.
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The 4-letter tags given in the file are used throughout the program to label
the corresponding thermodynamic parameters (fitting variables, arguments
for profiles and contour plots, etc).

3.2 Particle properties data file

(14 letter filename, default name: particles.data)

This input file contains information about the properties of particles such
as: mass, width, spin, isospin, the quark contents, and the Monte-Carlo
identification number. The data file is written in the following format

name mass width spin I I3 q s aq as c ac MC

where:

name — a nine-letter character string identifying the particle,

mass — mass in GeV,

width — width in GeV,

spin — spin,

I — isospin,

I3 — 3rd component of isospin,

q, s — number of light/strange quarks,

aq, as — number of light/strange antiquarks,

c, ac — number of charm/anticharm quarks,

MC — particle’s identification number, usually (where applicable) cor-
responding to the standard Monte-Carlo particle identification conven-
tion [2].

For example, the ∆(1232)++ will appear in the input file as

Dl1232plp 1.2320000 0.1200000 1.5 1.5 1.5 3 0 0 0 0 0 2224

The quark number can be a non-integer, to accommodate strong interac-
tion flavor mixing such as that of the η. Note that SHARE calculations are
relevant for a strongly interacting system, where the relevant states are K0

and K0. K0 − K0 mixing is an electroweak process, occurring on a longer
timescale, and should be implemented at the end of the calculation.

Several versions of this input file are available, described in detail in section
6.1
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Our particle naming convention is to form a 9-letter name through a letters-
mass-ending combination (e.g., Lm1115zer for Λ), with the following usual
three letter endings

zer for Zero

zrb for Zerobar

plu for plus

plb for plusbar

min for minus

mnb for minusbar

plp for plusplus

ppb for plusplusbar

sht for particle with this ending sht = 1√
2
(zer+zrb)

e.g., K0492sht for KS = 1√
2
(K0 +K0)

tot tot = (zer+zrb)
e.g., Lm1115tot for Λ + Λ

mnt mnt = (min+mnb)
e.g., UM1321mnt for Ω + Ω

pmb pmb = (plu+plb)
e.g., pr0938pmb for p+ p

plm plm = (plu+min)
e.g., Xi1321plm for Ξ+ + Ξ−

These conventions will be assumed also when fitting particle ratios and/or
yields (see section 3.4 for details)

3.3 Particle decay pattern data file
(11 letter filename, default name: decays.data)

This input file contains the information on particle decays. The data file
lines are here written in the format:

Nameparent Namedaughter1 Namedaughter2 Namedaughter3
2 BR C–G?(0/1)

where BR refers to the branching ratio of this decay (without the Clebsch–
Gordan factor, as it appears in the data book) and C–G refers to whether

2Where applicable.
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the branching ratio should be completed by a Clebsch–Gordan coefficients
(0: no, 1: yes). For instance, the decays ∆+ → π+ +n and ∆+ → π0+ p will
be given as (compare Eqs. (13)–(16)):

Dl1232plu pi0139plu ne0939zer 1.0 1
Dl1232plu pi0135zer pr0938plu 1.0 1

while η decays will be (see discussion in Sect. 2.2):

eta547zer gam000zer gam000zer 0.3943 0
eta547zer pi0135zer pi0135zer pi0135zer 0.3251 0
eta547zer pi0139plu pi0139min pi0135zer 0.226 0
eta547zer pi0139plu pi0139min gam000zer 0.0468 0

3.4 (Experimental) Values to be calculated
(14-letter filename, default file: totratios.data)

Experimental data values of interest are submitted in in the following format.

3.4.1 Particle ratios

When considering the particle ratio evaluation: name1 name2 data ran-

dom systematic fit?(−1/0/1/2)

where

name1 The first particle in the ratio (numerator)

name2 The second particle in the ratio (denominator. Can also be a
tag indicating the quantity is not a ratio but a yield or a density)

data The experimental value of the data point

random The random (statistical) error

systematic The systematic error

fit? This ratio contributes to the evaluation of χ2/NDoF if this pa-
rameter is set to 1 or 2. If the parameter is set to 0, the ratio is not
fitted, but calculated and output to the graph file (see cards in section
4 for details). if fit = −1 or 2 means the ratio is not output to the
graph file.
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#  Strangeness conservation

#------------------------------------------------------------------

# Exact

#--------------------------------------------------------------

netstrang  solvelams     0.        0.0001      0.           2

# Approximate

#--------------------------------------------------------------

#netstrang  totstrang     0.        0.0001      0.           2

#...............................................................

#Weak decay scheme      K_S->pi  K_L->pi     Y->pi,K      Y->N

weakdecay  top           0.0      0.00        0.0         1.00      

weakdecay  bottom        0.0      0.00        0.0         1.00      

#................................................................

#ratio     ratio

#numerator denominator   yield     star. err.  sys. err.    Fit?

#----------------------------------------------------------------

Xi1321min  pi0139min     0.0093    0.002       0.           1

Xi1321mnb  pi0139min     0.0080    0.0017      0.           1

Xi1321mnb  Xi1321min     0.8530    0.1000      0.           1

UM1672mnt  Xi1321mnt     0.1438    0.035       0.           1

Xi1321min  Lm1115zer     0.1870    0.460       0.           1

Xi1321mnb  Lm1115zrb     0.2150    0.5400      0.           1

Xi1321min  ph1020zer     0.3400    0.070       0.           1

Lm1115zrb  Lm1115zer     0.74      0.05        0.           1

Ka0492min  pi0139min     0.181     0.025       0.           1

Ka0492plu  pi0139plu     0.201     0.025       0.           1

#...............................................................

#Weak decay scheme      K_S->pi  K_L->pi     Y->pi,K      Y->N

weakdecay  top           0.5      0.00        0.5         1.00      

weakdecay  bottom        0.5      0.00        0.5         1.00      

#................................................................

Ka0492plu  pr0938plu     2.4       0.5         0.           1

Ka0492plu  pr0938plb     3.0       0.5         0.           1

#---------------------- "other ratios" -------------------------

pr0938plb  pr0938plu     0.71      0.06        0.           1

#-----------------------  K+/K-   Both experiments ----------

#STAR

Ka0492plu  Ka0492min     1.103     0.025       0.           1

#PHENIX

Ka0492plu  Ka0492min     1.153     0.040       0.           1

#------------------------------------------------------------

#------------------- RESONANCES -----------------------------

Lm1520zer  Lm1115zer     0.022     0.01        0.           0

rho770zer  pi0139min     0.1       0.02        0.           1

f00980zer  pi0139min     0.02      0.01        0.           1

Ka0892zer  Ka0492min     0.24      0.01        0.           1     

#...............................................................

#Weak decay scheme      K_S->pi  K_L->pi     Y->pi,K      Y->N

weakdecay  top           0.50      0.00        1.00         0.00      

weakdecay  bottom        0.50      0.00        1.00         0.00      

#...............................................................

ph1020zer  Ka0892min     0.595     0.24        0.           1

Dl1232plp  pr0938plu     0.24      0.037       0.           1

#---------------------------------------------------------------

#  Predictions (NOT fitted)

#---------------------------------------------------------------

#Sg1385plu  Xi1321min     0.64403   0.01        0.           0

#Xi1530min  Xi1321min     0.1802    0.01        0.           0

#pentaq0th  Xi1530min     1.1437    0.10        0.           0        

#rho770zer  ph1020zer     0.1       0.02        0.           0

#f00980zer  ph1020zer     0.1       0.02        0.           0

Figure 2: A typical totratios.data file
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3.4.2 Particle yields and source properties

The entries in this files have a second use when name1 and name2 are not
particle names but are as follows:

In case name2 is:

prt yield the yield of the first particle or collective quantity.

prdensity the density of the first particle or collective quantity (in fm−3).

solveXXXX See section 3.6

In case name1 is:

negatives All negative particles stable under the strong interaction

totstrang strangeness3 〈s〉

netstrang net strangeness 〈s− s̄〉

totenergy energy (in GeV)

totbaryon sum of all baryons and antibaryons, B +B

netbaryon net baryon number, i.e., baryons minus antibaryons, B − B

totcharge charge Q

netcharge net charge < Q−Q >

entropy t entropy S

We provide several data files as an example, described in section 6.1

3.4.3 Weak decay feed-downs

All weak decays are included with the provided SHARE decay tree input
files. They are identified as weak by the program due to the violation of
strangeness and isospin within the decay. Weak decays present additional
complications, since their reconstruction acceptance is usually non-trivial
and experiment-specific.

SHARE therefore, includes additional parameters, set by the user, to
regulate the acceptance of these decays. These parameters are read in from
the same file as the experimental data points, and have approximately the
same format.

3For this and the subsequent quantities, volume normalization can be correct only when
total particle yields are considered. The units of the calculated result vary according to
whether the quantity is a density, a yield or a ratio
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A statement specifying weak decay feed-downs has the form
weakdecay Tag F1 F2 F3 F4

Where:

Tag specifies weather the coefficients refer to the numerator or denominator
of the ratio (note that they are often different, e.g. in a ratio such as
Ξ/h−). If the user is setting the numerator feed-down coefficients, tag
is set to “top”. In case of the denominator, tag is set to “bottom”.

F1−4 are four numbers, specifying the weak feed-down coefficients.

• F1 refers to the acceptance of π from KS → ππ decays. It is by
default set to 0.5

• F2 refers to the acceptance of π from KL → πππ decays. It is
typically very small, so it is by default set to 0

• F3 refers to the acceptance of mesons from weak hyperon decays.
It is by default set to 0.25

• F4 refers to the acceptance of baryons from weak hyperon decays.
It is by default set to 1.

It is possible to specify a different feed-down for each data-point, by preceding
a data line with “weakdecay” statements, eg:
weakdecay top 1.0 0.0 0.3 0.8
weakdecay bottom 0.0 0.0 0.5 0.8
Xi1321mnt negatives 0.2 0.05 0. 1

It is also possible to specify one weak feed-down for a series of data points,
or all the datapoints analyzed; The program assumes all data points after
a “weakdecay” statement to have the same value until a new “weakdecay”
statement is encountered. For example,
weakdecay top 1.0 0.0 0.3 0.8
weakdecay bottom 0.0 0.0 0.5 0.8
Xi1321mnt negatives 0.2 0.05 0. 1
Lm1115zer pr0938plu 0.15 0.05 0.1 1

fixes the feed-down for both Ξ/h− and Λ/p ratios. (In this case, of course,
three of the four feed-down coefficients will have no effect on the second
data-point)
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3.5 Fit parameters
(13 letter filename, default name: ratioset.data)

The ratioset.data file defines the parameters which will be varied during
the fit or kept constant. It further contains the limits to be used in the fit
(for the use of MINUIT), as well as the initial step size. The typical format
is:

tag lower / upper limit step size fit? (0/1)

temp 0. 1. 0.01 1
lamq 0. 10. 0.1 1
lams 0. 10. 0.1 1
gamq 0. 10. 0.01 1
gams 0. 10. 0.1 1
mui3 0. 10. 0.2 1
norm 0. 10000. 0.3 0
lamc 0. 10. 0.1 0
gamc 0. 10. 0.1 0

If the lower and upper limit are equal, MINUIT will fit with no limits. If
the only fit parameters are particle ratios and densities, the normalization
is automatically kept fixed. The parameters can be input in any order. We
have found that the fit quality (speed, reliability) depends considerably on
the order of parameter input which is retained calling the MINUIT package:
firstly, the most significant fit parameters should be input first (temp, norm).
Secondly, the highly correlated parameters should be placed next to each
other.

Note that values of parameters also arise as result of conservation laws
rather than from fits to particle yields. For example, λs can be computed
in terms of the other parameters requiring overall strangeness conservation
within the phase space domain covered by the results considered. λI3 is sim-
ilarly determined via the participant matter proton-neutron ratio, however,
here it is possible to use this only when the data is available in 4π accep-
tance, since other hadrons can buffer the balance of charge condition. For
example, at RHIC in the central rapidity region the large number of pions
implies in effect nearly symmetric λI3 = 1. Also, µB can be fixed through
the participant number in the phase space region observed. The next section
describes how SHARE allows the user to implement these constraints either
by solving the constraints (numerically) or by a fit.
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3.6 Implementing conservation laws

SHARE allows the user to solve for a fit parameter, rather than to find its
value through a fit. For instance, it is possible to implement strangeness
conservation by solving numerically the constraint equation

〈 s− s 〉 = 0 (22)

for λs. In this case, λs is not a fit parameter anymore, but rather an analytical
function of the other fit parameters and experimental particle yields.

To solve for a fit parameter, name2 in the totratios.data file should be of
the form solveXXXX where XXXX corresponds to the parameter for which
one wants to solve. The parameter limits are still used by the program, as a
constraint solution outside the limits is rejected. This is useful for rejecting
unphysical solutions of the constraint equation, such as λs < 0.

It is, in principle, possible to solve any data point for any thermal param-
eter. However, many such combinations do not have minima to which the
equations converge nicely. If this is the case with a lot of MINUIT iterations,
it is unlikely that the minimization procedure will work.

It is therefore recommended that the solving algorithm only be used to
solve for chemical potentials from conservation laws. For instance, to ensure
strangeness conservation through solving for λs the input file should contain
the following line:
netstrang solvelams 0. 0. 0. 0. 0. 0
A line solving for λq from baryon conservation in case of Pb-Pb collisions
might be
netbaryon solvelamq 362. 0. 0. 0. 0. 0
and the corresponding charge conservation statement will be
netcharge solvelmi3 142. 0. 0. 0. 0. 0
Note that it is also possible to implement conservation laws in terms of
particle ratios. The two lines
netbaryon solvenorm 362. 0. 0. 0. 0. 0
netcharge solvelamq 142. 0. 0. 0. 0. 0
will fix λq in terms of the baryon/charge (B

Q
= p+n

p
= 0.44 for Pb-Pb) ratio

even when the absolute normalization norm is a dummy variable which
appears in no other data point and is not used in the fit.

The alternative to exact solving is to implement a conservation law by
treating it as a data point. A line such as
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netbaryon prt yield 362. 10. 0. 0. 0. 1
will make sure that the baryon number is close to the one expected for Pb-Pb
collisions at SPS. Similarly,
netstrang totstrang 0. 0.01 0. 0. 0. 1
will make conserve strangeness to one unit in 100 s pairs, rather than solving
the constraint exactly.

The choice of whether to implement the conservation law analytically or
through a fit is therefore left to the user. It was found that both approaches
are giving very similar results. However the most reliable approach is to use
the exact constraint only.

solve statements should be put at the top of the experimental ratios file.
If this is not done, the program returns with an error.

3.7 Fitting strategies

Multi-parameter fits can be very time-consuming, and occasionally give the
wrong answer when a “false”(i.e., local rather than absolute) minimum is
found. If these minima are close enough, MINUIT’s error and contour cal-
culations fail to converge convincingly. If this is the case, a warning message
is printed in the minimization output file.

The user should make note of a few simple rules which can dramatically
decrease the fitting time, and enhance the probability that the right minimum
is found.

• Appropriate calibration of the step size and limits can:

— dramatically decrease the running time for the case that the user
already knows a good estimate of the minimum,

— select the appropriate minimum if several minimal points are present
in the parameter space. Certain datasets analyzed in the litera-
ture present three minimal points: at equilibrium, at γq > 1, and
γq < 1 [18].

• Fitting absolute yields is more difficult (prone to converge to a false
minimal points or spend very long time finding a minimum), as the
yield normalization strongly correlates with other parameters of the
fit. Especially with a limited experimental data set it is not always
easy to distinguish a hot, dense and small fireball from a colder, more
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dilute larger one using yields alone. It is therefore advisable to convert
all data points to ratios.

• Inclusion in the fit of extensive fireball properties, which require a sum
over every hadron, considerably increase the running time. This is es-
pecially true for energy (density), pressure and entropy (density), which
require the Bessel function evaluation to be redone for every hadron at
each iteration step. It is therefore suggested that the experimental file
used for the fit not contain these quantities: They can be calculated
after the fit in a single pass evaluation, with the fitted parameters as
input, using modified input files. The provided experimental input files
(see section 6.1) contain the thermodynamic quantities used in a typi-
cal fit (total baryon number, strangeness and charge). We also provide
an input file (totratext.data) devoted exclusively to thermodynamic
quantities.

• The more variable parameters a fit has, the more minimal points are
likely. In case of a particularly difficult fit, it is suggested it be com-
pleted in two stages: An initial fit with only temperature and normal-
ization as varying parameters, followed by a subsequent fit, starting
from the previously found minimum, where the remaining parameters
are released (the sharerun.data provided with the program is based
on this strategy). Alternatively, the conservation law constraints (for
e.g., zero net strangeness, given charge and/or baryon number) can
be tightened or relaxed. A χ2 profile can also be helpful. Generally,
a minimum with a χ2 significantly above expectation signals that the
true minimum has not been found.

• Fits with finite resonance widths are much more computationally ex-
pensive. However, as explained in section 2.3, the computationally
expensive integrals and Bessel functions only have to be recalculated
when the temperature is changed. For this reason, a temperature χ2

profile (which finds the minimum at each value of the temperature pa-
rameter, kept fixed throughout each fit. Hence, the temperature only
has to be calculated once per datapoint) can be computed much more
quickly than a fit in which temperature is a free parameter.
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4 Running program cards (sharerun.data)

This file contains the instructions which the program executes on running.
Each line corresponds to a different operation, such as reading data files,
assigning values to parameters, calculating ratios, minimizing, and plotting
contours and χ2/NDoF profiles. The program will read this file line by line,
execute each command, and stop when it reaches the end of the file. Fig. 1
has an example of a typical sharerun.data file. 4

Each command can be used more than once with different input and
output files, one at a time. We shall proceed to give a detailed description
of each command’s meaning and syntax. Keep in mind that 2 spaces have
to be maintained between each word or number. The lines have the general
form:

PSET <4-letter tag> VALUE
This Parameter SET command sets the thermodynamic variable de-
fined by the TAG (name) to its designated VALUE. The initial com-
mand shown in figure 3, READ THERM INI, comprises a series of
PSET-type commands which read from an input file, covering all al-
lowed thermal parameters.

READ THERM INI <11-letter filename>
Reads the file corresponding to thermo.data, containing the values for
the thermal parameters, as described in section 3.1.

READ PARTICLES <14-letter filename> <11-letter filename>
Reads the file containing particle properties as well as the file containing
the decay tree, as described in sections 3.2 and 3.3.

READ TOTALDATA <14-letter filename>
Reads the file containing experimental data and particle ratios to cal-
culate, as described in section 3.4.

PFIX tag Fixes the given thermodynamic Parameter to its current value.
In a fit, that parameter will not be a variable.

PREL tag <Lower limit> <Upper limit> <Step size> Releases the
given thermodynamic Parameter, giving the limits and initial step size
used in the fit. The next command, ‘READ FIT PARAM’, can be

4The program, being written in FORTRAN, is very sensitive to the file’s format. An
extra space may cause the sharerun.data file to be unreadable. Hence, it is recommended
that the user bases his modifications on the sharerun.data file shown in the Fig. 1.
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# Reading experimental data

READ  TOTALDATA  totratios.data

#---------- no width (file partnowdt.data), should not take that long

READ  PARTICLES  partnowdt.data  decays.data

#  Temperature initialization file (CAN ALSO USE PSET, as in width calculation)

READ  THERM_INI  thermo.data

READ  FIT_PARAM  rtonlnrm.data

CALC  FITRATIOS  fit_junk1.out

READ  FIT_PARAM  ratioset.data

CALC  FITRATIOS  fit_nwrhi.out

CALC  PLOT_DATA  graph_nwd.fit  graph_nwd.clc  graph_nwd.exp

READ  TOTALDATA  totratext.data

CALC  RATIODATA  extrhicnw.out

READ  TOTALDATA  totratios.data

CALC  SIGPROFIL  prof_T_nowdt  temp   0.12 0.18 100

CALC  SIGPROFIL  profgq_nowdt  gamq   0.12 1.80 50 

PSET  gamq  1.

PSET  gams  1.

PFIX  gamq

PFIX  gams

CALC  FITRATIOS  fit_nweqi.out

CALC  PLOT_DATA  graph_neq.fit  graph_neq.clc  graph_neq.exp

READ  TOTALDATA  totratext.data

CALC  RATIODATA  extrhicne.out

READ  TOTALDATA  totratios.data

CALC  SIGPROFIL  prof_T_noweq  temp   0.12 0.18 100

PREL  gams    0.1     5.   0.02

CALC  FITRATIOS  fit_rhins.out

CALC  PLOT_DATA  grphrhins.fit  grphrhins.clc  grphrhins.exp

READ  TOTALDATA  totratext.data

CALC  RATIODATA  ext_rhins.out

READ  TOTALDATA  totratios.data

CALC  SIGPROFIL  prof_T_rhins  temp   0.09 0.18 100

CALC  SIGPROFIL  profgs_rhins  gams   0.03 1.80 50

Figure 3: A typical sharerun.data file
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understood as a series of PFIX and PREL instructions read from an
input file.

READ FIT PARAM <14-letter filename>
Reads the file containing fit parameters, as described in section 3.5.

CALC RATIODATA <13-letter filename>
Calculates the value of the ratios read with the READ RATIODATA
command and the current value of the thermal parameters (obtained
either from READ THERM INI or a previous fit). The output of the
calculation is stored with the given filename, as a table in the following
format:
RATIO NAM1/NAM2 <numerical value>

CALC RATIOPLOT Datapoint <12-letter Filename> tag L H P
Calculates the ratio of 2 particles, or a particle’s yield, or a thermody-
namic quantity, as a function of the variable represented by the 4-letter
tag, in a parameter segment delimited by the limits (L,H) and number
of points (P). The ratio to be calculated must be in the experimental
ratios datafile; datapoint specifies which point to graph (for instance,
if datapoint is 2, the second point from the to will be calculated). The
output is saved as a 2-column table in the given output file, and can
be plotted with packages such as PAW, Mongo or Xmgrace.

CALC RATIOCONT datapoint <12-letter Filename>
tag1 L1 H1 P1 tag2 L2 H2 P25

Calculates the ratio of 2 particles, or a particle’s yield or density, or a
thermodynamic quantity, as a function of two thermodynamic variables
represented by the two 4-letter tags, in the parameter region delimited
by the limits (L1,2 H1,2) and number of points. (P1,2. Note that an
100×100 grid has 10 000 points, and can take a long time to calculate).
The ratio to be calculated is indicated in the same way as in CALC
RATIOPLOT. The output is saved as a 3-column table in the given
output file, and can be plotted with a program capable of 3D plots.

CALC FITRATIOS <13-letter filename>
Minimizes the χ2/NDoF of the set of experimental data obtained through
READ RATIODATA according to the parameters in
READ FIT PARAM and initial values in
READ THERM INI. The output is written out to the given filename
in the following format:

5one line in the file
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First, the output parameters (+/− error if fitted).

Then the detailed fit results, as a table with the format:

Top Bottom Theory Experiment Tot. error. Chiterm

Where Top and Bottom refer to each ratio’s numerator and denomina-
tor, and Chiterm for each ratio refers to χ as defined in Eq. 1

χ =
fexperiment − ftheory

∆fstatistical +∆fsystematic
(= 0 if not fitted) (23)

Finally, the total χ2/NDoF is presented. A typical output file is shown
in Fig. 2

CALC PLOT DATA <3 13-letter filenames>
Generates three files which are optimized to be graphed by a package
such as PAW, Mongo or Xmgrace. The first file has a numerical list of
ratios which were fitted, the second, a numerical list of calculated, but
not fitted, ratios. The third has the experimental data, including the
error bars. See the discussion at the bottom of section 3.4 for details
on which ratio gets fitted and which just gets calculated.

CALC CHIPROFIL <12-letter file> tag L H P
This computes a χ2/NDoF profile of the Parameter designated by tag
<Parameter tag> (see the thermal input file for a list), from the L to
the H limit (real numbers), with P specifying the number of computed
points (integer). The given file will store the main result, as a 2 column
table of the parameter value and χ2/NDoF. The minimum of each of
the other parameters for each data point will also be stored in files in
which the parameter is appended to the name. For instance, if the T,
χ2/NDoF profile is stored in file ’profTforratio’ the minimal points of γq
across the χ2/NDoF profile are stored in file ‘profTforratio gamq’.

CALC SIGPROFIL This command is very similar to
CALC CHIPROFIL. However, instead of the χ2, the profile for the
statistical significance is calculated. The command syntax is identical
to CALC CHIPROFIL

CALC CHI2 CONT <9-letter filename> deviation tag1 tag2 Computes
a χ2/NDoF contour of parameters denoted by tag1 and tag2, with a
given deviation from the χ2/DoF minimum (e.g., 1.1 for a 1.1 × χ2

min

contour). The contour is stored in an output file 9 characters long.
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4.1 Run log (sharerun.out)

The complete ‘log’ for each run is saved in the file sharerun.out. This includes:

• The content of each input file (in the same format as read)

• A list of performed operations

• The output from MINUIT

• The content of each output file (in the same format as in the file)

If the program ends without a problem, the message ‘PROGRAM TERMI-
NATED SUCCESSFULLY’ is printed, both on the screen and this file. If an
error occurs, the program writes to the screen that an error has occurred,
and outputs the details of the error to sharerun.log.

5 Installation

SHARE is distributed in a form of an archive containing source and data files.
Running under the Linux operating system is supported presently. We have
checked SHARE on FORTRAN in a few Linux installations. In order to run
SHARE one needs:

• FORTRAN compiler e.g. g77, f77;

• CERN library
SHARE needs the CERN Library, in particular MINUIT and the CERN
mathematical routines library. These can be found on the CERN web-
site if not installed in current environment.

After unpacking, one needs to compile SHARE using the included shellscript
‘fortrat’ (which needs to be amended with the correct path to where the
CERN libraries are)

6 Organization of the Fortran package

6.1 Directory tree

source code:

sharev1.1.f F77
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share1.0.nb mathematica

Data files:

thermo.data Thermal inputs

particles.data Particle datafile — full width

partnowdt.data Particle datafile — no width

decays.data Full decays file

dec no.data Empty decays file

ratioset.data Minimization settings

rtonlnrm.data Minimization settings with most parameters fixed (used in
the course of an intermediate minimization, see section 3.7)

totratios.data Sample input drawn from RHIC data (2004).

totratext.data Sample input with extensive thermodynamic functions

chi2.data Sample input in Mathematica-readable format

sharerun.data running script optimized for RHIC

Shell-scripts:

fortrat Sample compiling shell-script

tarrat Sample archiving shell-script

7 SHARE webpage edition

A reduced version of SHARE is also accessible directly from the web, at the
same website from which the program is downloaded. It is possible to submit
thermal parameters, and calculate a select table of experimentally relevant
ratios and thermodynamic quantities. The webpage can be used as a cross-
check between statistical hadronization packages, and for a comparison with
experimental data. For full input and calculational versatility, however, we
recommend downloading the full version
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8 Mathematica version of SHARE

The Mathematica notebook Math SHARE, included in the SHARE distribu-
tion, has a similar functionality as the Fortran program but greatly restricted
physical scope. It uses the same universal input files as the Fortran, namely
particles.data, decays.data, and in addition the file chi2.data. The
notebook is designed to perform three types of calculations:

1. Run the thermal model for specific thermal parameters T , µB, µS, and
µI (in the Mathematica code the γ factors of Sect. 2.1 are set to unity)
and determine the particle ratios,

2. Fit the thermal parameters to the experimental ratios read from file
chi2.data via the χ2 method,

3. Track the feeding of a specified particle from decays of higher states.
This shows the physical importance of high-lying states and allows to
determine the amount of feeding for a given state.

The installation of Math SHARE requires only setting the path to the
data files (the first cell of the notebook). The following modules are partic-
ularly useful when running the notebook:

• readpart[fn] reads the particle properties from the file fn and initial-
izes the primordial yields to zero

• decay[fn1] performs the decays according to the file fn1 (CAUTION:
these to modules should be always run in sequence, i.e.,
...

readpart[fn]

decay[fn1]

...

• prop[part] displays the properties of particle part

• prrat[part1,part2] gives the ratio of yields of particles part1 and
part2 after the resonances have decayed

• prrat0[part1,part2] gives the ratio of ‘primordial’ (before the de-
cays) yields of particles part1 and part2

The following flags are used throughout the notebook to control the out-
put and decays:
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• listp (False or True) – when True, echos the properties of read parti-
cles in the readpart module

• describe (False or True) – controls the output of the readpart and
decay modules. It is recommended to set it to True when running for
the first time

• debug (False or True) – when True, tests of the input files are performed
while running the readpart and decay modules. In particular, a check
is made if the decays proceed from the heaviest to the lightest particle
(otherwise the DECAY OUT OF SEQUENCE warning is printed), the
conservation of the baryon number and the electric charge is checked,
and finally, the sum of the branching ratios is printed (of course, it
should be equal to 1 within the assumed accuracy). It is recommended
to set debug to True when running after modification of the input files.

• yes3b (True or False) – when True, three-body decays are included.
This is the normal mode. Switching off the three-body decays allows
to test their importance

• nomass (True or False) – when True, decays into product whose total
mass is heavier than the mass of the decaying particle are allowed (!).
There are a few decays like this in the Particle Data Tables, where the
decaying particle is sufficiently wide. To switch off such decays, set
nomass to False

• threshmass (Infinity or number) – when Infinity, all decays are in-
cluded, when set to a number, only particle lighter than threshmass
are decayed

• tracking (False or True) – when True, tracking of feeding to particle
tracklab is made

For convenience, particle labels negatives and positives are intro-
duced. They include all negative or positive charge ground-state hadrons
which are stable with respect to the strong interactions.

Furthermore, we include the weak-decays feeding corrections as done by
the STAR collaboration at RHIC. The STAR procedure excludes the feed-
ing of pions from the decays of Λ(1115). We define labels of such pions as
pi0139pluSTAR or pi0139minSTAR at the end of the decay module. Sim-
ilar corrections can be defined for other ways of including the weak-decay
corrections.
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The format of the chi2.data file, containing the experimental informa-
tion for the fitting, is
part1 part2 ratio stat.err syst.err

More information on how to run Math SHARE is included in comments in
the notebook itself.

9 Conclusion

We hope that SHARE will be useful both as an auxiliary tool in the analysis of
experimental data and as a benchmark to verify more detailed ideas about the
statistical approach to particle production in relativistic heavy-ion collisions.
Also, the modules with the particle data and the resonance decays may be
useful in their own right and interfaced to other models of particle production.
We hope that given the versatility and modular structure of SHARE it will
become a useful widely applied tool in study of hadron production in heavy-
ion physics.
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 DATE: 20/07/04 TIME: 06.47.04

 UNITS:  ENERGY IN GeV, DENSITY IN 1/fm^3

 temp       0.1373+/-     0.0102 limits:      0.1000     0.1800

 lamq       1.0591+/-     0.0439 limits:      1.0000    10.0000

 lams  1.02737723

 gamq       1.4294+/-     0.6479 limits:      0.1000     2.1000

 gams       1.8735+/-     1.1862 limits:      0.1000     5.0000

 lmi3       1.1014+/-     0.1457 limits:      0.7500     1.2500

 lamc  1.

 gamc  1.

 norm  2481.0208

 MU_B,MU_S   0.0236606956  0.00417839215

  

         TOP      BOTTOM      THEORY         EXP       ERROR     CHITERM

    Xi1321min    pi0139min      0.0089      0.0093      0.0020     -0.1954

    Xi1321mnb    pi0139min      0.0074      0.0080      0.0017     -0.3426

    Xi1321mnb    Xi1321min      0.8326      0.8530      0.1000     -0.2043

    UM1672mnt    Xi1321mnt      0.1422      0.1438      0.0350     -0.0443

    Xi1321min    Lm1115zer      0.1453      0.1870      0.4600     -0.0906

    Xi1321mnb    Lm1115zrb      0.1572      0.2150      0.5400     -0.1070

    Xi1321min    ph1020zer      0.3162      0.3400      0.0700     -0.3397

    Lm1115zrb    Lm1115zer      0.7696      0.7400      0.0500      0.5929

    Ka0492min    pi0139min      0.2073      0.1810      0.0250      1.0533

    Ka0492plu    pi0139plu      0.1959      0.2010      0.0250     -0.2053

    Ka0492plu    pr0938plu      2.0164      2.4000      0.5000     -0.7671

    Ka0492plu    pr0938plb      2.9504      3.0000      0.5000     -0.0992

    pr0938plb    pr0938plu      0.6834      0.7100      0.0600     -0.4426

    Ka0492plu    Ka0492min      1.1185      1.1030      0.0250      0.6202

    Ka0492plu    Ka0492min      1.1185      1.1530      0.0400     -0.8623

    Lm1520zer    Lm1115zer      0.0421      0.0220      0.0100      0.0000

    rho770zer    pi0139min      0.0858      0.1000      0.0200     -0.7076

    f00980zer    pi0139min      0.0065      0.0200      0.0100     -1.3547

    Ka0892zer    Ka0492min      0.2424      0.2400      0.0100      0.2413

    ph1020zer    Ka0892min      0.5803      0.5950      0.2400     -0.0611

    Dl1232plp    pr0938plu      0.2002      0.2400      0.0370     -1.0762

 DATA POINTS: 21 PARAMETERS: 5 DoF: 16

 TOTAL CHI**2/DEG. OF FREEDOM  0.457254927

  SIGNIFICANCE OF FIT:   0.966676891

 [ (S-SBAR)/(S+SBAR) ]  -5.50687837E-17

Figure 4: A typical fitratios.out file
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