
ar
X

iv
:c

s/
05

03
01

4v
1

 [
cs

.M
S]

 4
 M

ar
 2

00
5

ADF95: Tool for automatic differentiation of a

FORTRAN code designed for large numbers

of independent variables

Christian W. Straka

Institut für Theoretische Astrophysik, Universität Heidelberg, Tiergartenstraße 15,

69121 Heidelberg, Germany

Abstract

ADF95 is a tool to automatically calculate numerical first derivatives for any math-
ematical expression as a function of user defined independent variables. Accuracy
of derivatives is achieved within machine precision. ADF95 may be applied to any
FORTRAN 77/90/95 conforming code and requires minimal changes by the user.
It provides a new derived data type that holds the value and derivatives and ap-
plies forward differencing by overloading all FORTRAN operators and intrinsic
functions. An efficient indexing technique leads to a reduced memory usage and
a substantially increased performance gain over other available tools with opera-
tor overloading. This gain is especially pronounced for sparse systems with large
number of independent variables. A wide class of numerical simulations, e.g., those
employing implicit solvers, can profit from ADF95.

Key words: Automatic differentiation; Derivatives; FORTRAN 95; Implicit
Solvers

PROGRAM SUMMARY

Nature of problem:

In many areas in the computational sciences first order partial derivatives for
large and complex set of equations are needed with machine precision accuracy.
For example, any implicit or semi-implicit solver requires the computation of
the Jacobian matrix, which contains the first derivatives with respect to the in-
dependent variables. ADF95 is a software module to facilitate the automatic
computation of the first partial derivatives of any arbitrarily complex mathe-
matical FORTRAN expression. The program exploits the sparsity inherited

Email address: cstraka@ita.uni-heidelberg.de (Christian W. Straka).

Preprint submitted to Computer Physics Communications 1 February 2008

http://arXiv.org/abs/cs/0503014v1

by many set of equations thereby enabling faster computations compared to
alternate [1] differentiation tools.

Solution method:

A class is constructed which applies the chain rule of differentiation to any
FORTRAN expression, to compute the first derivatives by forward differ-
encing. An efficient indexing technique leads to a reduced memory usage and
a substantially increased performance gain when sparsity can be exploited.
From a users point of view, only minimal changes to his/her original code are
needed in order to compute the first derivatives of any expression in the code.

Restrictions:

Processor and memory hardware may restrict both the possible number of
independent variables and the computation time.

Unusual features:

ADF95 can operate on user code that makes use of the array features intro-
duced in FORTRAN 90. A convenient extraction subroutine for the Jacobian
matrix is also provided.

Running time:

In many realistic cases, the evaluation of the first order derivatives of a math-
ematical expression is only six times slower compared to the evaluation of
analytically derived and hard-coded expressions. The actual factor depends
on the underlying set of equations for which derivatives are to be calculated,
the number of independent variables, the sparsity and on the FORTRAN 95
compiler.

References:

[1] S.Stamatiadis, R.Prosmiti, S.C.Farantos, Comp. Phys. Commun. 127 (2000)
343.

2

LONG WRITE-UP

1 Introduction

ADF95 is a software module to facilitate the analytic computation of the first
partial derivative of any arbitrarily complex mathematical FORTRAN ex-
pression including user defined and/or intrinsic functions and subroutines. The
derivatives are computed with respect to independent variables which must
be specified by the user. It must be emphasised that ADF95 does not provide
the analytic derivative in functional form, rather it computes the numerical
values of the analytic derivatives. ADF95 references its computed and inter-
nally stored derivatives with an indexing technique which results in reduced
memory usage of sparse systems. Thereby it enables faster computations in
many practical applications with large numbers of independent variables.

In many areas in the computational sciences the phenomena to be simulated
can be approximated by solving systems of coupled differential equations. A
quite general class of differential equations, e.g., is the following initial value
problem:

B[~y(t), t] · ~y′(t) = ~f [~y(t), t], ~y(t0) = ~y0, (1)

where ~y(t) denotes a n-dimensional vector, ~f an arbitrary n-dimensional vector
valued function and B a n× n matrix. ~y(t) is called a solution in the interval
I = [t0, tE] if Eq.(1) is fulfilled for all t ∈ I. Any implicit solution strategy
requires the computation of the n × n Jacobian matrix of the residual:

J =
∂

∂~y
(~f − B · ~y′(t)). (2)

Thus the Jacobian contains the first derivatives of the residual with respect
to the independent vector variable ~y. The need for an convenient albeit ac-
curate determination of first derivatives for the class of implicit solvers has
driven my motivation to develop ADF95. However, ADF95 may be useful in
all instances where an automatic, efficient and to working precision accurate
generation of first derivatives are needed. Only minimal changes in user code
are required.

The functionality of ADF95 can only be achieved by making use of the new
FORTRAN 95 (F95) features [1] that allow for object-oriented program-
ming. By defining a new compound variable of derived type, and re-defining
operators and functions that act on these types with the mechanism of opera-
tor overloading within the encapsulation mechanism provided by modules we

3

construct a class which applies the chain rule of differentiation to any FOR-
TRAN expression to compute the first derivatives by forward differencing.
All overloaded operators and functions are defined as elemental and can thus
be called with array arguments of any rank. This is extremely useful for codes
that make use of the array capabilities introduced in F90 [2] and may help
compilers to vectorise or parallelise the code.

A growing number of tools exist [3] for the task of automatically computing
derivatives of FORTRAN expressions. Among them, two different approaches
can be distinguished. The first method operates on the source code itself gen-
erating new source code for the derivatives. Both initial and generated code
must be compiled in a subsequent invocation of the compiler. The advantage
of this approach lies in the production of generally faster executables for the
differentiation task. It is possible to use both the forward and the reverse
mode of automatic differentiation. Disadvantages of the latter are that new
code must be generated for any slight change in the parent code. Furthermore
it is more difficult to pass the calculated derivatives of subroutines to the call-
ing routine. Moreover, new language features are more difficult to add to these
tools.

The second method makes use of operator overloading. The disadvantages of
this method are the advantages of the source code approach and vice versa.
NAG [4] is working on a solution that attempts to combine the advantages of
source code transformation with operator overloading by adding new compiler
functionality. While potentially exciting, code portability is lost. ADF95 is
conceptually similar to AUTO DERIV [5] which, in addition, can provide
second derivatives. In contrast to AUTO DERIV no modification of code
utilising array notation is needed with ADF95. The main enhancement of
ADF95 over existing approaches with operator overloading is its internal,
indexed storage method that allows more efficient execution in case of sparse
systems with large numbers of independent variables.

2 FORTRAN 90/95 concepts

A brief summary of concepts introduced in FORTRAN by the two major
revisions [1,2] and used in ADF95 is given in this section. A thorough expla-
nation of FORTRAN language usage can be found, e.g., in the books [6,7].

The current standard allows to define new data types in addition to the built-
in ones (integer, real, etc.). These derived types constitute aggregates of
built-in and/or other derived types. For example, the following derived type

type vector

4

real :: x, y

end type vector

defines a new data structure that may represent a 2-dimensional vector. Whereas
the compiler “knows” how to perform a mathematical operation on built-in
types, it cannot possibly know how to apply those to derived types. The pro-
grammer can give a meaning to an operation between derived types by, first,
defining a new function, and secondly, overloading the operator with this func-
tion. The following code provides the functionality for adding two variables of
type(vector) employing the rules of vector calculus

function vadd(v, w)

type(vector), intent(in) :: v, w

type(vector) :: vadd

vadd%x = v%x + w%x

vadd%y = v%y + w%y

end function vadd

The following interface construct overloads the plus symbol with the vadd

function:

interface operator(+)
module procedure vadd

end interface

The same mechanism can be useful for intrinsic functions and subroutine. For
example, the intrinsic function abs() can be overloaded to calculate the norm
of the type(vector)

function norm(v)

type(vector), intent(in) :: v

real :: norm

norm = sqrt(v%x**2 + v%y**2)

end function norm

Note that the return value is of type real. Other functions may return the
type vector. Again, an interface is needed to overload abs()

interface abs

module procedure norm

end interface

For built-in data types FORTRAN 90 is instructed to perform array arith-
metic, i.e.

integer, dimension(1:10) :: a, b

5

b = abs(a)

is a compact form equivalent to writing:

integer, dimension(1:10) :: a, b

do i=1, 10

b(i) = abs(a(i))

enddo

If we want to do the same with a derived data type or a user defined func-
tion, the function must be given the keyword elemental introduced in FOR-
TRAN 95

elemental function norm(v)

type(vector), intent(in) :: v

real :: norm

norm = sqrt(v%x**2 + v%y**2)

end function norm

This enables the following notation, making array arithmetic available to the
overloaded abs() function:

type(vector), dimension(1:10) :: a, b

b = abs(a)

3 Usage

ADF95 constitutes a module that is written in ISO FORTRAN 95 and
should be compatible with any standard conforming compiler. A new de-
rived type is introduced in ADF95, namely type(ADF95 dpr), which lays out
the memory structure to hold the value and its first derivatives. All FOR-
TRAN 95 operators and intrinsic functions are implemented for this type.
The user can choose a kind and must specify LDsize which is a number less or
equal the number of independent variables. Some additional user functions are
provided, to specify a variable as independent, to make extraction of values
and derivatives easy and to find the optimal value for LDsize.

3.1 A first example

Consider we would like to calculate the first derivative with respect to the
independent variable x of the following FORTRAN expression

6

real :: f, x

x = 1.0

f = sin(x**2)

The only changes required by the user are to make the module mod adf95

available, change the data type real to type(ADF95 dpr) and call the routine
ADF95 independent() to set the independent variables (second argument)
and initial values (third argument):

use mod_adf95

type(ADF95 dpr) :: f, x

call ADF95 independent(1,x,1.0)

f = sin(x**2)

Note that the code containing the mathematical evaluation is not changed.
This convenient property is retained also for arrays, i.e.

use mod_adf95

type(ADF95 dpr), dimension(1:2) :: f, x

call ADF95 independent((/1,2/),x,(/1.0,5.0/))

f = sin(x**2)

Each independent variable must be given a unique index. User functions to
extract the value and the derivatives from the last expression are provided
and discussed in detail in Section 4.1.

3.2 A second example

A more comprehensive example demonstrates the changes to be made when
function and subroutine calls are involved. Extensive use of array arithmetic
is made to demonstrate this capability of ADF95. Consider we would like to
calculate the derivatives of the original code segment shown in Fig. 1.

As before, the module mod adf95 must be made available within all scopes
where derivatives should be calculated. Next, ADF95 independent() must be
called to specify the independent variables and initial values. All indepen-
dent and dependent variables must be changed to type(ADF95 dpr). Since
the function my func1 may also be called in a context in which the original
version is expected, it is better to add a new module procedure to it (Fig. 2).

It is good practice to add a new function to every existing one that may be
needed for differentiation and combine them in a module procedure. Thus,
differentiation is only performed, when it is actually needed. Purely value ori-
ented operations will choose the matching module procedure thereby omit-

7

ting unnecessary differentiations. Even more importantly, this approach omits
time consuming memory allocations that would be otherwise necessary be-
cause of overloaded function calls with the data type(ADF95 dpr). Thus,
adding module procedures can save a lot of execution time, even more so
if the data structure of type(ADF95 dpr) is large due to many independent
variables. The authors of AUTO DERIV implemented a switch which sig-
nals when derivatives are to be calculated. However, this approach is not very
efficient compared to adding new module procedures, mainly because of the
unnecessary memory allocations described above.

3.3 Full Description

The modifications needed for an existing FORTRAN program in order to
evaluate first derivatives with ADF95 are as follows:

module my_module

interface my_func

module procedure my_func1

end interface
contains

elemental function my_func1(x, y) result(f)
implicit none
real, intent(in) :: x, y

real :: f

f = sqrt(abs(x**2-y**2)) + 1.0

end function my_func1

end module

program original

use my_module

implicit none
real, dimension(1:10) :: fv, gv, xv, yv

integer :: i

xv(1:10) = real((/(i,i=1,10)/))**2

yv(1:10) = 1.0 / real((/(i,i=1,10)/))

fv(1:10) = my_func(xv(1:10),yv(1:10))**2

gv(1) = sum(fv(1:10))

gv(3: 9:2) = log(fv(4:10:2)**2)

gv(2:10:2) = exp(1.0/(fv(1: 9:2)**2))

end program original

Fig. 1. Code segment to be changed to allow for automatic differentiation.

8

In module mod adf95.f90:

(1) For a first guess, the the constant parameter LDsize should be set to

module my_module

interface my_func

module procedure my_func1, my_func1_ADF

end interface
contains

elemental function my_func1(x, y) result(f)
implicit none
real, intent(in) :: x, y

real :: f

f = sqrt(abs(x**2-y**2)) + 1.0

end function my_func1

elemental function my_func1_ADF(x, y) result(f)
use mod_adf95

implicit none
type(ADF95_dpr), intent(in) :: x, y

type(ADF95_dpr) :: f

f = sqrt(abs(x**2-y**2)) + 1.0

end function my_func1_ADF

end module

program original

use mod_adf95

use my_module

implicit none
type(ADF95_dpr), dimension(1:10) :: fv, gv, xv, yv

integer :: i

call ADF95_independent((/(i,i =1,10)/),xv(1:10),real((/(i,i=1,10)/))**2)

call ADF95_independent((/(i,i=11,20)/),yv(1:10),1.0/real((/(i,i=1,10)/))**2)

fv(1:10) = my_func(xv(1:10),yv(1:10))**2

gv(1) = sum(fv(1:10))

gv(3: 9:2) = log(fv(4:10:2)**2)

gv(2:10:2) = exp(1.0/(fv(1: 9:2)**2))

end program original

Fig. 2. Modifications of code presented in Fig. 1 to allow for automatic differen-
tiation. Adding a new module procedure can save a lot of execution time when
calculation of derivatives are not needed.

9

the number of independent variables. The best performance is achieved
with the smallest LDsize possible for the problem to be differentiated.
LDsize is the maximum number of dependencies from other independent
variables. In many applications, this number is much smaller than the to-
tal number of independent variables themselves. To illustrate this point
further, consider the following example:

call ADF95_independent((/(i,i=1,10)/),x(1:10),1.0)

f(2:9) = x(3:10) - 2 * x(2:9) + x(1:8)

where the xi are 10 independent variables. Since all fi are only functions of
three independent variables, i.e. fi = fi(xi−1, xi, xi+1), the best choice for
LDsize is 3. Guessing the best value for LDsize is almost impossible for
large and complex codes. Therefore, the user function ADF95 fillin()

is provided to inquire about the optimal value for LDsize.

(2) If necessary, the kind parameter dpr needs to be changed to the ap-
propriate value for the input variables. The default is to have dpr =

KIND(1.0D0) which is double precision. If the code uses single preci-
sion only, one might like to change this kind to single precision. Other
kind parameters provided for mixed mode arithmetic, i.e. spr and ipr,
can also be changed. Currently, ADF95 supports all expressions among
variables of types real(dpr), real(spr), and integer(ipr).

In the user’s code; in all scopes where derivatives should be calculated:

(1) Make mod adf95 accessible through use. Name clashes with local en-
tities can be avoided by renaming the few public variables. For exam-
ple, use mod, newname => oldname imports the variable oldname from
module mod under the new name newname. The public entities of ADF95
are ADF95 independent, ADF95 value, ADF95 deriv, ADF95 fillin and
type(ADF95 dpr). In addition, all operators and many F95 intrinsic func-
tions are public.

(2) All independent and dependent, as well as any intermediate (dependent)
variables must be declared as type(ADF95 dpr). If the mathematical ex-
pressions are provided in functions and subroutines, it is advisable to
construct an interface and add a new module procedure to the existing
function or subroutine only with different input and output variables of
type(ADF95 dpr). For codes with many expressions, the include state-
ment can be used to omit extensive code repetition. Implicit typing is
permissible, but highly discouraged since it has the side-effect of declaring
constants and other variables as type(ADF95 dpr) that are not related to
the differentiation process, thereby wasting memory and execution speed.

10

(3) The independent variables must be declared in the parent scope of the
differentiation process. This is easily done by calling the user function
ADF95 independent which provides a method to assign an index and a
value to each independent variable. All indices must be unique, the low-
est index must be one and subsequent indices should not differ by more
than one with respect to the previous index. However, the index order is
arbitrary.

(4) After the final assignment to the dependent variable, the real value of
it can be extracted by calling ADF95 value(f) where f is a variable of
type(ADF95 dpr). The first derivative of f with respect to the indepen-
dent variable with index i can be extracted by calling ADF95 deriv(f,i).

Following these rules, changes are neither required in the argument list of
any function or subroutine nor in any statement or mathematical expression.
Almost all modifications can be constrained to interfaces and the declarations
of variables within the interface block and/or the module procedures.

3.4 Special Cases

Some potential difficulties may arise from old FORTRAN 77 programming
style and from kind conversions.

• The use of common blocks and equivalence statements is still widespread,
although their use is discouraged by the current standard and should be re-
placed by automatic arrays, allocatable arrays, pointers and the transfer

statement. Passive variables, such as constants, pose no problems. How-
ever, any active variable, that is passed through a common block or that is
equivalenced should be renamed and duplicated as follows:

real :: constant ! no problems

real :: x, y, z ! active variables

equivalence(y,z)
common /block/ constant, x

!-------------

! use x, y, z

!-------------

should become

real :: constant ! no problems

11

real :: x_, y_, z_ ! rename variables

type(ADF95_dpr) :: x, y, z

equivalence(y_,z_)
common /block/ constant, x_

call ADF95_independent(1, x, x_)

call ADF95_independent(2, y, y_)

! y and z not independent

z = y

!-------------

! use x, y, z

!-------------

! at the end of the routine

x_ = ADF95_value(x)

y_ = ADF95_value(y)

z_ = ADF95_value(z)

• In FORTRAN 77 the use of double precision versions of trigonometric and
other mathematical functions was encouraged, i.e. dsin(x) was used for
double precision types. In ADF95 only the standard conforming generic
names are implemented. The user must therefore change all occurrences, for
example, of dsin(x) to sin(x).

• Type conversions from one kind to another is not permissible for variables
of type(ADF95 dpr), since only one type is implemented. Actually, it is not
possible to construct a user defined function in FORTRAN 95 that can re-
turn values with different kinds. Thus, expressions such as y=real(x,1.d0)
or the obsolete FORTRAN 77 expression y=dble(x) must be omitted.

3.5 Output Verification

To be able to test for successful compilation of ADF95 and verify the correct
solution I provide a simple example in Fig. 3. Running the executable should
yield the following output:

x array = 1.000000000000000E+00 5.000000000000000E+00

f array = 8.414709848078965E-01 -1.323517500977730E-01

***ADF95:

df/dx1 = 1.080604611736280E+00 0.000000000000000E+00

12

program verify_out

use mod_adf95

implicit none
type(ADF95_dpr), dimension(1:2) :: f , x

real(dpr) , dimension(1:2) :: fp, xp

xp = (/1.0,5.0/)

call ADF95_independent((/1,2/),x,xp)

f = sin(x**2)

fp = 2.0_dpr*xp*cos(xp**2)

write(*,’(A,2(ES25.15))’) "x array =", ADF95_value(x)

write(*,’(A,2(ES25.15))’) "f array =", ADF95_value(f)

write(*,*) "***ADF95:"

write(*,’(A,2(ES25.15))’) "df/dx1 =", ADF95_deriv(f,1)

write(*,’(A,2(ES25.15))’) "df/dx2 =", ADF95_deriv(f,2)

write(*,*) "***Analytic:"

write(*,’(A,2(ES25.15))’) "df/dx1 =", fp(1) , 0.0_dpr

write(*,’(A,2(ES25.15))’) "df/dx2 =", 0.0_dpr, fp(2)

end program verify_out

Fig. 3. Code segment to verify correct compilation of ADF95.

df/dx2 = 0.000000000000000E+00 9.912028118634735E+00

***Analytic:

df/dx1 = 1.080604611736280E+00 0.000000000000000E+00

df/dx2 = 0.000000000000000E+00 9.912028118634735E+00

The last digits may vary depending on the system architecture, but outputs
from ADF95 when compared to the analytic approach (last two lines of out-
put) must be identical.

4 Implementation

ADF95 is a FORTRAN 95 module containing functions that overload all
operators and all appropriate FORTRAN 90/95 intrinsic functions for the
new derived data type(ADF95 dpr). The data structure of type(ADF95 dpr)

is simple: it holds one entry for the value, LDsize entries for the values of
derivatives and LDsize+1 values for indices:

type ADF95_dpr

real (dpr) :: value = 0.0_dpr

real (dpr), dimension(1:LDsize) :: deriv = 0.0_dpr

13

integer(ipr), dimension(0:LDsize) :: index = 0_ipr

end type ADF95_dpr

The entry for index(0) is reserved for the current number of non-zero deriva-
tives. The values for the indices correspond to the index of the independent
variable with respect to which the derivative is taken. For illustration, consider
that the variable f is a function of the independent variable x and further that
f(x) = 1, f ′(x) = 2. The representation on type(ADF95 dpr) would be:

f%value = 1.0 ! f(x) = 1

f%index(0) = 1 ! number of derivatives

f%index(1) = 1 ! unique index of x

f%deriv(1) = 2.0 ! f’(x) = 2

This indexing technique leads to compact storage of derivatives and — since
LDsize is in many applications much smaller than the total number of in-
dependent variables — to an economical memory use which is rewarded by
faster execution speeds.

Note that LDsize must be chosen before the compilation of the program and
that all variables of type(ADF95 dpr) allocate the same amount of memory.
Since not all of those variables actually need LDsize entries, memory and exe-
cution speed is wasted. Dynamic memory allocation could be used through the
allocatable keyword which is nowadays supported also for derived types by
many FORTRAN 95 compilers and that is part of the new FORTRAN 2003
standard [8]. However, all my actual implementations resulted in considerably
slower execution speeds in practical applications. This is probably due to the
overhead needed to decide when new memory must be allocated/deallocated
and, more likely, because of the time needed for the allocation process and for
the access to the resulting scattered memory locations. These findings may
well change with future compilers 1 and further research in this direction is
needed.

Due to the overloading of operators and intrinsic functions the compiler gen-
erates code for the evaluation of the value and the numerical derivatives
according to the chain rule of differentiation whenever operations between
type(ADF95 dpr) are encountered. Mixed mode arithmetic is also supported
through additional module procedures provided in ADF95. For example, with
variable a of type real(dpr) and variables b, c of type(ADF95 dpr) the com-
piler parsing the statement

c = a · b (3)

1 Tests were only performed with the Lahey/Fujitsu F95 compiler.

14

generates code for the value and its derivatives:

c = a · b (4)

∂c

∂qi

= a
∂b

∂qi

(5)

This is accomplished technically by the following function that overloads
operator(*):

elemental function multiply(a, b) result(f)

use mod_precision

implicit none
real(dpr) , intent(in) :: a

type(ADF95_dpr), intent(in) :: b

type(ADF95_dpr) :: f

integer(ipr) :: lenb

lenb = b%index(0)

f%value = a * b%value

f%deriv(1:lenb) = a * b%deriv(1:lenb)

f%index(0:lenb) = b%index(0:lenb)

end function multiply

The only parameters defined in the module are the kinds of the components
in type(ADF95 dpr), i.e. dpr, and those needed for mixed mode arithmetic,
i.e. spr and ipr. These parameters can be changed to extend the precisions.
In order to avoid clashes in overloading resolution, dpr and spr must have
different values. Currently, FORTRAN 95 does not provide a mechanism to
utilise implicit promotions from one derived type to another nor does it allow
to define conversions between derived types. Therefore, all procedures had to
be written into supported types. Also note, that complex variables are not
supported.

4.1 User functions

The mathematically independent variables must be specified at run-time,
therefore ADF95 provides the user function ADF95 independent. The rou-
tine accepts three arguments, the variable, a value and an integer index that
must be unique. This routine assigns the value and sets the derivative with
respect to itself to 1.0 dpr. Its interface is:

elemental subroutine ADF95_independent(i,x,val)

15

integer(ipr) , intent(in) :: i

type(ADF95_dpr), intent(inout) :: x

real(dpr) , intent(in) :: val

end subroutine ADF95_independent

Three different versions are overloaded such that ADF95 independent accepts
values of the types real(dpr), real(spr) and integer(ipr). The value of
the variable of type(ADF95 dpr) can be extracted by calling ADF95 value. Its
function interface is:

elemental function ADF95_value(x) result(f)

type(ADF95_dpr), intent(in) :: x

real(dpr) :: f

end function ADF95_value

Similarly, the function ADF95 deriv is provided to extract the derivatives. In
addition to the type(ADF95 dpr) a second argument is expected, the index of
the independent variable to which respect the derivative is taken:

elemental function ADF95_deriv(x, i) result(df)

type(ADF95_dpr), intent(in) :: x

integer(ipr) , intent(in) :: i

real(dpr) :: df

end function ADF95_deriv

Two additional user routines are provided for convenience. The first subrou-
tine, ADF95 jacobian, expects an array of type(ADF95 dpr) and returns three
arrays containing derivatives and indices. For example, df(k) is the derivative
of ∂f(ir(k))/∂x(ic(k)). The integer return value nz, contains the number
of non-zero entries in df or a negative value if the array size of df, ic or ir

is not sufficiently large:

pure subroutine ADF95_jacobian(f, df, ir, ic, nz)

type(ADF95_dpr), dimension(:), intent(in) :: f

real(dpr) , dimension(:), intent(out) :: df

integer(ipr) , dimension(:), intent(out) :: ir, ic

integer(ipr) , intent(out) :: nz

end subroutine ADF95_jacobian

Finally, the function ADF95 fillin inquires about the optimal value for LDsize.
Its input argument is the the (array of) variables of the final assignment state-
ment. Two optional integer arguments ml and mu are returned with the number
of non-zero sub-diagonals and/or super-diagonals, respectively.

pure subroutine ADF95_fillin(f, LDsize_opt, ml, mu)

type(ADF95_dpr), dimension(:) , intent(in) :: f

16

integer(ipr) , intent(out) :: LDsize_opt

integer(ipr) , optional , intent(out) :: ml, mu

end subroutine ADF95_fillin

It must be stressed that ADF95 fillin returns only the correct number for
LDsize if ADF95 was compiled with a sufficiently large LDsize in the first
place. If a sensible initial guess for LDsize is not possible, LDsize should be
set to the total number of independent variables before compiling ADF95.
Next inquire about the best value for LDsize by calling ADF95 fillin and set
it to the inquired value. Finally re-compile ADF95.

4.2 Supported FORTRAN 90/95 intrinsics

Great care has been taken to overload all FORTRAN 90/95 intrinsic func-
tions and built-in operators for the new data type(ADF95 dpr) whenever
meaningful. Fully supported are the following routines including the capability
to accept and return conformable arrays: abs, atan, cos, cosh, digits, dim,
dot product, epsilon, exp, exponent, fraction, huge, kind, log, log10,
matmul, maxexponent, minexponent, mod, modulo, nearest, precision, radix,
range, rrspacing, scale, set exponent, sign, sin, sinh, spacing, tan,
tanh, tiny. For some others, exactly the same behaviour as for built-in func-
tions cannot be overloaded. These limitations are described in the next section.

4.3 Implementation details of tanh

The derivative of tanh(x) with respect to x is given by 1.0/cosh(x)**2.
For increasing x the hyperbolic cosine grows beyond all limits. Thus, cosh
produces a floating point exception for large x. To circumvent this situation,
the derivative could be calculated from the mathematically equivalent form
1.0-tanh(x)**2 as done in [5]. This formula avoids floating point exceptions
but due to finite computer precision the result is resolved to zero for relatively
small x rather than to a finite number.

A better implementation is chosen in ADF95. The formula 1.0/cosh(x)**2

is used for abs(x) < 2.0*range(x) in which case cosh can be calculated. For
larger abs(x) the derivative is approximated with 4.0*exp(-2.0*abs(x)).
Thus a finite number is returned which can be as low as the smallest number
that is representable in the current data model without being hampered by
finite precision. For even larger x the derivative is resolved to zero.

17

4.4 Limitations

The built-in intrinsic functions aint, anint, ceiling, floor, int and nint

can be called with an optional kind parameter such that the return value
has the same kind. Since FORTRAN 95 does not allow the kind of a derived
type’s component to be chosen when the derived type is used, this functionality
cannot be implemented. However, this situation will change in the near future
with the advent of FORTRAN 2003 [8].

A similar problem arises with functions that accept arrays of different rank.
Since the rank cannot be chosen dynamically in user defined functions, a new
module procedure must be added for all possible ranks. ADF95 accepts only
arrays of rank one in these instances. The functions maxloc, maxval, minloc,
minval, product and sum are affected by this restriction. For the same reason,
the optional parameter dim is not supported for these functions.

The functions max and min accept a variable number of arguments for built-
in types. This cannot be implemented either. A simple work-around to this
deficiency is to change all instances in which more than two arguments are
used from max(v1, v2,..., vn) to max(...max(v1,v2),..., vn).

4.5 Undefined derivatives

Any mathematical operation between values of type(ADF95 dpr), that is for-
bidden (e.g., division by zero) is treated exactly the same as for built-in types
and produces floating point exceptions. No additional coding is needed in
these instances. However, in some functions a situation can occur where the
operation on the value is permissible while the derivative is not defined.

Serious problems of this kind arise in cases where the function is not mathe-
matically differentiable. For example, the derivative of abs(f(x)) at f(x)=0,
f’(x)6=0 is not defined, likewise the derivative of sqrt(f(x)) at f(x)=0. Un-
defined situations as such can occur in the functions acos, asin, atan2, max,
maxval, min, minval and sqrt. Divisions by zero return Inf (Infinity) or, de-
pending on the compiler options, a floating point exception. In all other cases
ADF95 is instructed to return -sqrt(-1.0) which yields, depending on the
system and compiler options, either NaN (Not a Number) or a again a floating
point exception. Note that computing the analytic derivatives by other means
would lead to the same undefined situations.

In AUTO DERIV, these occurrences are arbitrarily resolved to zero which
is mathematically incorrect. The approach of ADF95 has the advantage that
the user is being notified that an illegal mathematical operation has been

18

performed, pointing him to the location where his code needs rethinking.

5 Tests

5.1 Verifying the solution

In order to test the correctness of the solution calculated with ADF95, nu-
merous comparisons between ADF95 and AUTO DERIV including all over-
loaded operators and functions (as well as combinations among them) were
performed. These comparisons revealed an error in the function fraction

of AUTO DERIV: the return value must be of type real and not of type
integer.

The results of all other operations and functions turned out to be identical.
Since both modules were developed completely independently this result is
a strong indication for the correctness of both packages. Nevertheless, it is
almost impossible to cover and compare all possible code branches of both
routines, therefore all tests are inherently incomplete.

As expected, different results were encountered with tanh and in situations in
which undefined derivatives occur. Those are set to zero in AUTO DERIV
whereas ADF95 sets them to NaN (see Section 4.5).

5.2 Performance and Compiler Comparison

A number of tests have been performed in order to measure the efficiency of
ADF95 in comparison to AUTO DERIV and in comparison to analytically
computed and hard-coded derivatives. Five up-to-date FORTRAN compil-
ers for Linux must demonstrate their efficiency: Absoft, Intel, Lahey/Fujitsu,
NAG and PGI. The compiler options have been chosen to give maximum
execution performance (Table 1). All tests were performed on a Mobile In-
tel(R) Pentium(R) 4 processor at 2.5 GHz, 1 GB of memory, running on a
Linux/RedHat 8 operating system.

As a first example in [5], the performance of AUTO DERIV is benchmarked
by calculating the derivatives of the Potential Energy Surface (PES) for the
HCP molecule, described in [9]. The code for the calculation of the PES is
available from [10]. This is a realistic example, but only with three independent
variables and its main purpose is to test ADF95 with the exact same piece of
code on which AUTO DERIV was tested. The PES code is simple enough
that the calculation of first derivatives “by hand” is still feasible and I have

19

Table 1
FORTRAN 95 compilers and compiler options used for test runs.

Compiler Options

Absoft Pro FORTRAN Version 8.2a –O3 –cpu:p7

Intel(R) Fortran Compiler for 32-bit applications, –O3 –ipo –static a

Version 8.0 (Package ID: l fc pc 8.0.046)

Lahey/Fujitsu Fortran 95 Compiler Release L6.20b –O –tp4 –trap –staticlink

NAGWare Fortran 95 compiler Release 5.0(322) –O4 –Bstatic –unsharedf95

Portland Group, Inc. pgf90 5.1-6 b –fast –tp piv

a Omitted in third example: generated code causes segmentation fault.
b Note: pgf90 is not a FORTRAN 95 compiler.

done this in order to allow comparison with the automatic differentiation
approach. Table 2 summarises the results of the HCP example for different
methods and compilers. The variable LDsize had to be set to 3 in ADF95.
The time was measured with the FORTRAN routine system clock.

For three out of five compilers ADF95 is only a factor of 3–6 slower compared
to the direct analytic computation. Furthermore, ADF95 is about a factor of
four faster than AUTO DERIV regardless of the compiler chosen. This is
quite surprising, because the advantages of the indexing method do not show
up in systems where LDsize is small or where it is equal to the number of
independent variables. One reason might stem from the additional memory
that must be allocated in AUTO DERIV to hold the second derivatives.
Extensive use of function calls in AUTO DERIV may also produce additional

Table 2
Derivatives of the Potential Energy Surface of a HCP molecule. Time averaged over
106 evaluations and quoted in µs.

Compiler Execution time [µs] Memory usage [kBytes]

analytic ADF95 AUTO DERIV analytic ADF95 AUTO DERIV

Absoft 3.6 32 108

2.0 3.3 5.5

Intel 3.7 11 42

Lahey/Fujitsu 1.5 19 93

NAG 5.3 30 159

PGI 7.3 19 a 714

a ADF95 was stripped of its FORTRAN 95 features in order to make it run with
the PGI compiler.

20

Table 3
Derivatives for nuclear reaction network example. The simulation consists of 10
shells with 14 nuclei each which amounts to 140 independent variables.

Compiler Execution time [s] Memory usage [kBytes]

analytic ADF95 AUTO DERIV analytic ADF95 AUTO DERIV

Absoft 1.6 7.3 a 5090

48 172 74800
Intel 1.0 5.7 103

Lahey/Fujitsu 1.2 7.0 2530

NAG 1.4 7.1 1139

PGI b — — —

a The Absoft compiler does not behave conforming to ISO FORTRAN 95 . ADF95
had to be altered to make it run with this compiler.
b Excluded from test since PGI does not support FORTRAN 95.

overhead, unless the compiler is capable of inlining code properly.

My second example is one from astrophysics. A nuclear fusion network with
14 nuclei is operating within every 10 different temperature/density shells.
This corresponds to 140 independent variables altogether, but since only the
network is coupled, LDsize can be set to 14. Thus this example exploits the
advantages of ADF95 as can be seen in Table 3.

Depending on the compiler AUTO DERIV is a factor of 20–700 slower and
uses 400 times more memory than ADF95. Also note that the performance of
AUTO DERIV is extremely compiler dependent whereas ADF95 is about
a factor of 6 slower compared to the analytic computation of derivatives re-
gardless of the compiler.

Finally I use the exact same application again, but now with 1000 tempera-
ture/density shells which amounts to 14000 independent variables. This prob-
lem cannot be handled with AUTO DERIV any more (Table 4). It can be
seen, that as long as LDsize is not changed, the execution time scales simply
with the number of derivatives to be calculated. Again, computation of hard-
wired analytic derivatives are by a factor of 6 faster. The memory requirement
of ADF95 can be easily calculated: A variable of type(ADF95 dpr) holds
(1 + LDsize) ∗ (real(dpr)+ integer(ipr)) numbers. Taking default param-
eters for dpr and ipr this amounts to 12 · (1 + LDsize) bytes multiplied by
the number of type(ADF95 dpr) variables in the program.

21

Table 4
Derivatives for nuclear reaction network example consisting of 1000 shells with 14
nuclei each which amounts to 14000 independent variables.

Compiler Execution time [s] Memory usage [kBytes]

analytic ADF95 analytic ADF95

Absoft 159 715 a

3838 7643
Intel 107 566

Lahey/Fujitsu 109 575

NAG 131 706

PGI b — —

a The Absoft compiler does not behave conforming to ISO FORTRAN 95. ADF95
had to be altered to make it run with this compiler.
b Excluded from test since PGI does not support FORTRAN 95.

6 Discussion

If there is need for numerical first derivatives, accurate to machine precision,
which is the case, e.g., for implicit solvers employed for simulations in all
computational sciences, the use of ADF95 should be seriously considered. As
demonstrated for realistic examples in this paper, this method is still about
a factor of 6 slower compared to the method of hard-wiring the analytically
derived first derivatives. Thus, if maximum performance is demanded, ADF95
should be employed only if the part for calculating first derivatives is not
limiting the performance of the entire program. The latter situation in which
the differentiation part is not crucial to the overall program performance does
indeed occur in state-of-the-art implicit solvers [11] and little compromise has
to be made when employing ADF95.

Apart from these performance considerations, ADF95 can reduce code devel-
opment considerably. In the case of large systems the analytic differentiation
combined with the need of extra coding is an error-prone task which easily
introduces difficult to find bugs into the program thereby slowing down the
development process. Furthermore, successfully implemented systems are diffi-
cult to change, since it usually requires to alter many equations for calculating
derivatives. Even if one insists on this approach in view of its performance ben-
efits, ADF95 can be a convenient tool to find bugs or verify the solution for
calculating derivatives more quickly. It can be also used to inquire about the
structure of the Jacobian matrix and also to search for non-differentiable situ-
ations within the coded systems of equations which can lead to the detection
of spurious convergence problems.

The disproportionality in performance between the hard-wiring approach and

22

ADF95 may well be reduced with better compiler technology in the future.
Although FORTRAN 95 has been standardised seven years ago, many com-
pilers are still lacking reliable support for it. PGI does not provide FOR-
TRAN 95 and the one from Absoft is extremely buggy on the new features.
To a substantially lesser degree, this finding is also true for the Intel compiler.
Throughout the whole study the Intel compiler produces the fastest executa-
bles but best support for ISO FORTRAN 95 is provided by the compilers
from NAG and Lahey/Fujitsu. The latter offers the best compromise between
stable language support and execution speed. It can be suspected that there
is still room for compiler optimisations when FORTRAN 95 constructs are
involved.

On the other hand, the design of ADF95 may also be improved upon. The
approach of allocating memory statically leads to some waste of memory.
Dynamic memory allocation might improve on the performance of ADF95
but my first tests on this showed, unfortunately, the opposite effect. Also,
the default initialisation of all entries within type(ADF95 dpr) is not needed
but the code for the overloaded functions would have been more complicated
otherwise.

With ADF95 an easy to use automatic differentiation tool is now available
efficient enough worth being employed in many realistic applications.

Acknowledgements

This research has been supported in part by the Deutsche Forschungsge-
meinschaft, DFG (SFB 439 Galaxies in the Young Universe) and the stipend
of the Eliteförderprogramm für Postdoktoranden der Landesstiftung Baden-
Württemberg.

References

[1] International Organization for Standardization, ISO/IEC 1539-1:1997,
Information technology-Programming languages-Fortran, 1997.

[2] International Organization for Standardization, ISO/IEC 1539-1:1991,
Information technology-Programming languages-Fortran, 1991.

[3] http://www.autodiff.org.

[4] http://www.nag.co.uk/nagware/research/ad overview.asp.

[5] S. Stamatiadis, R. Prosmiti, S.C. Farantos, Comp. Phys. Commun. 127 (2000)
343.

23

http://www.autodiff.org
http://www.nag.co.uk/nagware/research/ad_overview.asp

[6] J.C. Adams, W.S. Brainerd, J.T. Martin, B.T. Smith, J.L. Wagener, Fortran
95 Handbook — Complete ISO/ANSI Reference (The MIT Press, Cambridge,
Massachusetts, 1997).

[7] M. Metcalf, J. Reid, Fortran 90/95 explained (Oxford University Press, Oxford,
2nd edn., 2000).

[8] International Organization for Standardization, ISO/IEC 1539-1:2004(E),
Information technology-Programming languages-Fortran, 2003.

[9] C. Beck, H.-M. Keller, S.Yu. Grebenshchikov, R. Schinke, S.C. Farantos,
K. Yamashita, K. Morokuma, J. Chem. Phys., 107 (1997) 9818.

[10] S.C. Farantos, H.-M. Keller, R. Schinke, K. Yamashita, K. Morokuma, J. Chem.
Phys., 104 (1996) 10055, Software Archive: E-JCPSA-104-10055-0.005MB.

[11] R. Ehrig, U. Nowak, LIMEX Version 4.3B, Konrad-Zuse-Zentrum für Informati-
onstechnik (ZIB), Berlin, 2003, http://www.zib.de/ehrig/software.html

24

	Introduction
	FORTRAN 90/95 concepts
	Usage
	A first example
	A second example
	Full Description
	Special Cases
	Output Verification

	Implementation
	User functions
	Supported FORTRAN 90/95 intrinsics
	Implementation details of tanh
	Limitations
	Undefined derivatives

	Tests
	Verifying the solution
	Performance and Compiler Comparison

	Discussion
	Acknowledgements
	References

