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Abstract

Although mean field theories have been very successful tigire wide range of proper-
ties for solids, the discovery of high temperature supetaotivity in cuprates supported
the idea that strongly correlated materials cannot be tatisgly described by a mean field
approach. After the original proposal by Anderson [P. W. énstn,Science 235, 1196
(1987)], there is now a large amount of numerical evidenes tile simple but general
resonating valence bond (RVB) wave function contains jossé ingredients missing in
uncorrelated theories, so that the main features of elecmorelation can be captured by
the variational RVB approach. Strongly correlated antifieragnetic (AFM) systems, like
C'soCuCly, displaying unconventional features of spin fractioretian, are also under-
stood within this variational scheme. From the computaiiqoint of view the remarkable
feature of this approach is that several resonating valbnoes can be dealt simultane-
ously with a single determinant, at a computational cosivgrg with the number of elec-
trons similarly to more conventional methods, such as dafEfock or Density Functional
Theory. Recently several molecules have been studied Ing tise RVB wave function;
we have always obtained total energies, bonding lengthdemiihg energies comparable
with more demanding multi configurational methods, and mesa@ases much better than
single determinantal schemes. Here we present the paratiigoase of benzene.
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1 Introduction

The variational approach, by providing an ansatz for theigdostate (GS) wave
function of a many body Hamiltonian, is one of the possiblgsv® analyze both
gualitatively and quantitatively a physical system. Mat@g starting from the ana-
lytical properties of the variational wave function one lidegin principle to under-
stand and explain the mechanism underling a physical phenom For instance,
the many body wave function of a quantum chemical system eagat the elec-
tronic structure of the compound and show what is the natiite chemical bonds.
On the other hand, a very good variational ansatz for a modatiktbnian helps
in predicting the ground state properties and the qualégticture of the system.
In particular, Pauling[1] in 1949 introduced for the firsing the concept of the
resonating valence bond (RVB) ansatz in order to describetiemical structure
of molecules such as benzene and nitrous oxide; the ideadd#hat concept is
the superposition of all possible singlet pairs configoraiwhich link the various
nuclear sites of a compound. He gave a numerical estimateeafesonating en-
ergy in accordance with thermochemical data, showing thleilgt of the ansatz
with respect to a simple Hartree Fock valence bond apprdash.decades later,
Anderson [2] in 1973 developed a mathematical descriptioheoRVB wave func-
tion, in discussing the ground state properties of a laftiegtrated model, i.e. the
triangular two dimensional Heisenberg antiferromagnesfon S = 1/2. His first
representation included an explicit sum over all the singgeérs, which turned out
to be cumbersome in making quantitative calculations, timalrer of configura-
tions growing exponentially with the system size. Muchnate1987, with the aim
to find an explanation to high temperature (HTc) supercotinticby means of the
variational approach, he found a much more powerful reptesen of the RVB
state[3], based on the Gutzwiller projectiérof a BCS state

P|V) = P Iy (ux + UkCL,TCT—k,¢)|0>7 (1)

which in real space and for a fixed numbérof electrons takes the form
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where thepairing function ¢ is the Fourier transform afy /u,.. The Cooper pairs
described by the BCS wave function are taken apart from etur oy the re-
pulsive Gutzwiller projection, which avoids doubly occegisites; in this way the
charge fluctuations present in the superconducting ansatmaen and the system
can become an insulator even when, according to band thesinguld be metallic.
The wave function (2) allows a natural and simple descnipdifta superconducting
state close to a Mott insulator, opening the possibilityddheoretical explanation
of high temperature superconductivity, a phenomenon deseal in 1986[4], but
not fully understood until now. Indeed, soon after this impot experimental dis-



covery, Anderson[3] suggested that the Copper-Oxygeneplaf cuprates could
be effectively described by an RVB state, and extensiveldpwgents along this
lines have subsequently taken place[5]. From the RVB ant&zlear that the
HTc superconductivity (SC) is essentially driven by the [Bawb and magnetic in-
teractions, with a marginal role played by phonons, in spitiaeir crucial role in
the standard BCS theory. As far as the magnetic propertesomcerned, the RVB
state is quite intriguing, because it represents an ingglgghase of an electron
model with an odd number of electrons per unit cell, with gaimg magnetic mo-
ment and without any finite order parameter, namely a corlyleifferent picture
from the conventional mean field theory, where it is impartanbreak the sym-
metry in order to avoid the one electron per unit cell conditincompatible with
insulating behavior. This rather unconventional RVB stattherefore calledpin
liquid.

The structure of the paper is organized as follows: in seciave present some
numerical Monte Carlo studies of lattice models, where ghiewn that, once the
Jastrow factor is included, the RVB wave function is abledpresent an excep-
tionally good ansatz for the description of the zero temioeeaproperties of the
systems studied, in very good agreement with the availatgeranental data. In
section 3, we apply the same variational wave function tantjua chemical sys-
tems, in particular to benzene, where we exploit the Paglilniga to study in a
more systematic way the role of the resonating valence bontlss molecule,
by performing realisti@b initio simulations. In the last section we make our final
conclusions and highlight the perspectives of this study.

2 Lattice models

In order to mimic in a simple way the essential features ofah s&ongly corre-
lated material, a lot of lattice models have been conceivefdis One of the most
important is the¢ — J model, which takes into account not only the charge degrees
of freedom but also the magnetic superexchange interaction

1
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whereé¢; , = ¢ »(1 — n;,), (...) stands for nearest neighbor sites, an&ndS;
are density and spin at site respectively. In this case, the RVB wave function
has shown to be an accurate ansatz both for the chain, theegnadder and the
two dimensional (2D) square lattice[6], once a long rangrde factor has been
included besides the Gutzwiller projector. In particular the 2D lattice, there is
a rather clear evidence that the GS of the doped model is cupducting, with
an optimal doping around ~ 0.18; this result has been obtained by perform-



ing Green function Monte Carlo (GFMC) simulations withiretfixed node (FN)
approximation up to 242 sites at various doping, and by tatityy the order pa-
rameterP; = 2 lim, ., \/|A(r)], whereA(r) is the pair-pair correlation function.
If the state is a d-wave superconductBy, must be non vanishing in the thermo-
dynamic limit. At the variational level, the RVB state give#>; only 30 % higher
than the most accurate result calculated (see Fig. 1);ftrerthe superconducting
long range order is expected to remain stable against thegbian towards the GS
of the system. Moreover, the RVB state is accurate not omysfo but also for
magnetic systems as well. Indeed, it is able to capture betquasi long range an-
tiferromagnetic order of the— J chain and the spin gapped behavior of the two-leg
ladder. While the BCS part can allow strong superconduathmgge fluctuations,
the Gutzwiller and Jastrow parts control the charge caicglaespectively at short
and long distance, allowing a quantitative descriptionhef tmagnetic behavior in
low dimensional systems.
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Fig. 1. Superconducting order paramefey for the 2Dt — J model as a function of
doping, atJ/t = 0.4, calculated using variance extrapolation, using the ptege BCS
wave function defined in the text as an initial guess. Dataridkom Ref. [6]

One of the most non trivial questions which arise in a strpmgirelated regime
is whether the ground state of a system contaimniy repulsive interaction can
be superconductor. Surely such a state will not be found gyreean-field theory,
which needs an explicit or effective attractive interaatio order to display a pair-
ing strength among the electrons. Instead this questiorbeaaddressed at least
at the variational level, dealing directly with stronglyrcelated variational wave
functions which may exhibit a superconducting behavior bedlose to the true
GS of the system. Of course a clear indicator of the presehsaperconductiv-



ity is the SC order parametdt,, but since its value is of the same order as the
guasiparticle weight, it can be too small to be detected witbasonable numerical
precision. Therefore, with the aim of finding a good probesigperconductivity, E.
Plekhano\et al. [7] defined a new suitable quantifg., which measure thpairing
strength between two electrons added to the GS wave function,

Z. = |F(shortest distance)|/ > F%R), 4)

all distances

where F'(R) is related to the real space anomalous part of the equal tirmenG
function at zero temperature:

F(R) = (N = 2|¢;1Civr,| + Civrrcit|N). (5)

For instanceZ,. = 0 for Fermi liquids, instead’,. # 0 for superconductors but also
for non BCS systems which involve any kind of pairing. Thehaus in Ref. [7]
applied this scheme to the 2D Hubbard model

H=-1 Z 6;06]-70 + h.c. + UZ N4, — PN, (6)
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wherey is the chemical potential andl is the total number of particles. Carrying
out a projection Monte Carlo technique based on auxiliadgdiethey found that
the GS of the undoped 2D Hubbard model at half filling has a rasmshing pair-
ing strength, although the system is an insulator with amtsimagnetic long range
order. This means that it is not a band insulator, for whictshould be zero, but
an RVB Mott insulator with a strong d—wave pairing charactedeed the RVB
variational wave function is very close to the projected Giing the same pairing
strength and a good variational energy. Moreover, the maisirength decreases
with increasing doping, but it is still positive for the litihdoped Hubbard model,
suggesting that the system is ready to become supercomdocte the pairs can
condense and phase coherence can take place in the GS.

The accuracy of the RVB ansatz close to the Mott insulatarsiteon (MIT) has
been pointed out also by Cape#ical. [8], who undertake a variational Monte Carlo
study of the phases of the— ¢’ 1D Hubbard model with nearest and next nearest
neighbor hopping terms. The phase diagram of this modelag/krirom bosoniza-
tion and density-matrix renormalization group calculasiptherefore it represents
a good test case for the RVB variational wave function. When< 0.5, the pres-
ence of a long range Jastrow factor acting on a BCS state isceatmgredient to
recover the insulator with one electron per unit cell anchaiit a broken transla-
tional symmetry, i.e. an highly non trivial charge gappeatestOn the other hand,
oncet’/t 2 0.5 andU/t is small, thesame wave function after optimization is able
to describe the metallic state with strong supercondudturguations, namely a



state with a finite spin gap. The distinction between the hietnd the insulating
state can be made both by using the Berry phase[9] and byzanglthe behavior
of the spin and charge structure factoras> 0; in all cases, the RVB state with an
appropriate Jastrow factor reproduces very well the knomasps.

Not only the conducting properties of a strongly correlateadel can be repro-
duced by the RVB ansatz, but also the magnetic behaviornstaince, in the case
of thet — ¢' 1D Hubbard model, the variational wave function drives th@sition
from the metallic to a dimerized insulator onb¢t increases. For the 2D spin 1/2
AFM Heisenberg model on a triangular lattice

H:JZSZ--S]'—G-J/ Z S; - S, (7)
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with J being the intra chain coupling and the inter chain one, the RVB wave
function displays a stable spin liquid behavior, due to tinerg frustration of the
system in the regime withi’/J = 0.33. Moreover forJ = 0.374meV, the model
is able to represent a real system, the,C'uCl, compound studied by Coldea
et al.[10,11] who performed neutron scattering experiments gepto determine
the low lying magnetic excitations. It turns out that the exmental data show
an unconventional behavior of the magnetic structure ottmpound, with spin-
1/2 fractionalized excitations and incommensurabilitye humerical study carried
out in Ref. [12] highlights that the incommensurability cesrfrom the frustration
of the system and it is well described by the RVB ansatz. Thetrmpressive
correspondence between the experimental data and the isahs&mulations is in
the spin-1 excitation spectrum (see Fig.2), obtained by GHdlculations with an
RVB state used as a guiding function. As also shown in the $ag@, it is evident
that size effects are small and the comprairson betweenutmemcal simulation
and the experiment is particularly meaningful in this cadgs is possible within
a Quantum Monte Carlo (QMC) scheme that allows to work witlgdaenough
systems sizes.

3 Realistic systems

As we have seen in the preceding section, the RVB wave fumcim represent
very well the GS of some strongly correlated systems, whrehdgscribed by a
suitable lattice model, as in the case @$,CuCl,. Furthermore, following the
seminal idea of Pauling, the applicability of the RVB angatmnot limited to the
strongly correlated regime close to the Mott transitioncospin frustrated models,
but can be extended to describe the electronic structur¢henproperties ofeal-
istic systems. Indeed the quantum chemistry community has qidielywsed the
concept of pairing in order to develop a variational wavection able to capture
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Fig. 2. Comparison of the lowest triplet excitations, eaddd by neutron scattering experi-
ments ornC'soCuC'ly compound[11], with the QMC results, obtained using thédatfixed
node approximation and the projected BCS state to appraeith@ signs of the ground
state wave function[12]. There is no fitting parameter ingheve comparison.

the most significant part of the electronic correlationhaligh only in 1987 Ander-
son discovered the link between the explicit resonatingn@ bond representation
and the projected-BCS wave function, already in the 50’ déyuat al. [13] intro-
duced the product of pairing functions as ansatz in quantuemestry. Their wave
function was calledantisymmetrized geminal power (AGP) that has been shown
to be the particle conserving version of the BCS ansatz [t4jcludes the sin-
gle determinantal wave function, i.e. the uncorrelatetestas a special case and
introduces correlation effects in a straightforward wéyptigh the expansion of
the pairing function (in this context called geminal): thfere it was studied as a
possible alternative to the other multideterminantal epphes, but his success to
describe correlation was very much limited, because - wie\ee} the Jastrow term
was not included.

For an unpolarized system containing electrons (the firstV/2 coordinates are
referred to the up spin electrons) the AGP wave functiong[sm% pairing matrix
determinant, which reads:

\I/Agp(rl, e rN) = det ((I)Agp(ri, rj+N/2)) forl < i,j < N/Q, (8)



and the geminal function is expanded over an atomic basis:

(I)AGP(VT,H): Z )\f{?%,z(ﬁ)éﬁb,m(ri), %)

l,m,a,b

where indices, m span different orbitals centered on atoms, andi,; are coor-
dinates of spin up and down electrons respectively. It isipesto generalize the
AGP many body wave function in order to deal also with a patdisystem. The
geminal function may be viewed as an extension of the simplevave function
and in fact it coincides with HF only when the numbérof non zero eigenvalues
of the A matrix is equal taV/2. It should be noticed that Eq. 9 is exactly the pairing
function in Eq. 2, apart from the inhomogeneity of the formanich reflects the
absence of the translational invariance of a generic m@ecompound. One of
the main advantages of dealing with an AGP wave functionsi€@mputational
cost. Indeed one can prove that expanding the geminal by@ddore terms in the
sum of Eq. 9 is equivalent to introduce more Slater determsgia the many body
wave function, i.e. to have a multireference total wave fiom; similar to those
obtained in configuration interaction (Cl) or coupled ctugiCC) theories. But the
computational cost of the AGP ansatz still remains the samege one needs to
compute always just angle determinant. This property is expected to be impor-
tant for large scale simulations, since the number of detemts necessary for a
satisfactory accuracy increases fast with the system kmiing very much the
applicability of Cl and CC methods.

The simplest example which shows the essence of the AGPzassla¢H, molecule.
It is well known from textbooks that molecular orbital (MMeory at the HF level
fails in predicting the binding energy and the bond lengthef just because it
overestimates the ionic terms contribution in the total evéunction if the anti-
bonding molecular orbitals are not included. In spite o§tlihe correct geminal
expansion reads

Cacp(r,1') = AR (NG1(1) + 67, (r') + A < B, (10)

where\ can be tuned to regulate the weight of the different resngaiontributions
and fulfill the size consistency when the two nuclei are itdigi apart from each
other \ — 0). Notice also that the chemical bond is represented in thergd by

a non vanishing value of between the orbitals centered on the two different sites
between which the bond is formed.

Let us consider now gas of hydrogen dimers: in this case the geminal will contain
not only the terms in Eq. 10, valid for just two sites, but alke contributions
from all the nuclei in the system. It is clear that the AGP waugction will allow
strong charge fluctuations around edéhpair, and therefore molecular sites with
zero and four electrons are permitted, leading to poor tranal energies. For this



reason, the AGP alone is not sufficient, and it is necessamyrtaduce a Gutzwiller-

Jastrow factor in order to dump the expensive charge fluongmtMoreover only

the AGP-Jastrow (AGP-J) wave function is the real count¢qfethe RVB ansatz

of strongly correlated lattice models, since the projeti® essential to get the
correct distribution of the pairing in the compound. The AG®ave function has
shown to be effective both in atomic [15] and in molecularteyss[16]. Both the

geminal and the Jastrow play a crucial role in determiniegrémarkable accuracy
of the many body state: the former permits the correct treatraf the nondynamic
correlation effects, the latter allows the local conseorabf charge in a complex
molecular system and also to fulfill the cusp conditions Whtake the geminal
expansion rapidly converging to the lowest possible v energies.

The study of the AGP-J variational ansatz with the inclugibtwo and three body
Jastrow factors is possible by means of QMC techniques,ind@a deal explicitly
with correlated wave functions. The optimization procegumecessary to reach the
lowest variational energy within the given variationalddem, is feasible also in
a stochastic Monte Carlo framework, after the recent dgretnts in this field
([17,18]).

Benzene is the largest compound we have studied so far; ar todepresent its
'A,, GS we have used a very simple one particle basis set: for tHe, AQs1p
double zeta (DZ) Slater set centered on the carbon atoms hsidiagle zeta (SZ)
on the hydrogen. For the 3-body Jastrow, a 1s1lp DZ Gausdiaesired only on
the carbon sites has been chosen. We started from a non tiegd2éody Jastrow
wave function, which dimerizes the ring and breaks the ftiational symmetry,
leading to the Kekulé configuration. As we expected, thlugion of the resonance
between the two possible Kekulé states lowers the vanaliglonte Carlo (VMC)
energy by more than 2 eV. The wave function is further impddweadding another
type of resonance, that includes also the Dewar contribsitonnecting third near-
est neighbor carbons. As reported in Tab. 1, the gain withe@sto the simplest
Kekulé wave function amounts to 4.2 eV, but the main improgst arises from
the further inclusion of the three body Jastrow factor, Whadows to recover the
89% of the total atomization energy at the VMC level. The mairefffof the three
body term is to keep the total charge around the carbon sitapgroximately six
electrons, thus penalizing the double occupation ofitherbitals.

A more clear behavior is found by carrying out diffusion Me@arlo (DMC) sim-
ulations: the interplay between the resonance among diftestructures and the
Gutzwiller-like correlation refines more and more the nalaface topology, thus
lowering the DMC energy by significant amounts. Therefoiis @trucial to insert
into the variational wave function all these ingredientsiider to have an adequate
description of the molecule. For instance, in Fig. 3 we regue density surface
difference between the non-resonating 3-body Jastrow fuaation, which breaks
the C rotational invariance, and the resonating Kekulé stmggtwhich preserves
the correct4,, symmetry: the change in the electronic structure is sigamficThe



best result for the binding energy is obtained with the KekDewar resonating
3 body wave function, which recovers thg, 6% of the total atomization energy
with an absolute error of 0.84(8) eV. As Pauling [1] first geshout, benzene is a
genuine RVB system, indeed it is well described by the AGRxnenunction.

p(r) resonating Kekule - p(r) non resonating

0.05
0.025

-0.025
-0.05

Fig. 3. Electron density (atomic units) projected on thenplaf Cs Hg. The surface plot
shows the difference between the resonating valence bowe fiaction, with the correct
Ay, symmetry of the molecule, and a non-resonating one, whishtif&symmetry of the
Hartree—Fock wave function.

Table 1

Binding energies ireV obtained by variationalXy »;¢) and diffusion A pc) Monte
Carlo calculations with different trial wave functions feenzene. In order to calculate the
binding energies yielded by the two—body Jastrow, we usedtbmic energies reported in
Ref. [15]. The percentaged\{ r;c (%) and A parc(%)) of the total binding energies are
also reported. Data are taken from Ref. [16].

Avive Avme(%)  Apve  Apuc(%)

Kekulé + 2body -30.57(5) 51.60(8) - -
resonating Kekulé + 2body -32.78(5) 55.33(8) - -
resonating Dewar Kekulé + 2body -34.75(5) 58.66(8) -5@.8% 95.95(18)
Kekulé + 3body -49.20(4) 83.05(7) -55.54(10) 93.75(17)
resonating Kekulé + 3body -51.33(4) 86.65(7) -57.25(9) .69€L5)
resonating Dewar Kekulé + 3body -52.53(4) 88.67(7) -5@%1 98.60(13)
full resonating + 3body -52.65(4) 88.869(7) -58.30(8) 981B)
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4 Conclusions

In this paper we have described a very powerful variationgb& that has been
introduced to understand the properties of strongly cateel materials just after
the discovery of HTc superconductivity. We have shown thatRVB wave func-
tion paradigm is not only useful for describing the GS and Igwg excitations of
lattice models, such as Heisenberg er J model, but is also suited for approach-
ing realistic systems, by considering explicitly the lomgpge Coulomb repulsion
and the full quantum mechanical interaction among elestmithin the Born-
Oppenheimer approximation. Moreover, by using the same dfpvave function
both for lattice model and realistic system, it is possilolddve some insight in
the electron correlation behind the latter and to check ¢fiahility of the model
in predicting the properties of a real compund. For instaheébenzene molecule
can be idealized by a six site ring Heisenberg model with deetr®n per site, in
order to mimic the out of plane bonds of the real molecule,iognfrom thep,
electrons and leading to an antiferromagnetic superexghareraction between
nearest neighbor carbon sites. We have studied in this basgptn—spin correla-
tions

C(i) = (S557), (11)

where the index labels consecutively the carbon sites starting from theregice
0, and the dimer—dimer correlations

D(i)=Do(i)/C(1)* = 1,
Do(2) = {(S5.57) (57 551))- (12)

Both correlation functions have to decay in an infinite rimgpen there is neither
magnetic (C(i) — 0), nor dimer (O(i) — 0) long range order as in the true spin
liquid ground state of the 1D Heisenberg infinite ring.

Indeed, as shown in the inset of Fig.(4), the dimer—dimeretations of benzene
are remarkably well reproduced by the ones of the six siteétdierg ring, whereas
the spin—spin correlation of the molecule appears to deasteif than the corre-
sponding one of the model. Though it is not possible to makelosions on long
range properties of a finite molecular system, our resuljgast that the benzene
molecule can be considered closer to a spin liquid, ratrear th a dimerized state,
because, as well known, the Heisenberg model ground statespén liquid and
displays spontaneous dimerization only when a sizable meatest frustrating su-
perexchange interaction is turned on.[19]

As any meaningful variational ansatz, the RVB approachm#jubrings a new
way of understanding the many-body problem, as for instaheeHartree-Fock
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Fig. 4. Spin—spin correlation function for benzene (fullags) and for the Heisenberg
model (empty circles). In the inset, also the dimer—dimareadation function is reported
with the same notation. For the benzene molecule, theselaton are obtained by a coarse
grain analysis in which the “site” is defined to be a cylindérawius1.3 ay centered on
the carbon nuclei, with a cut off core (i.e. we considered ¢im points with/z| > 0.8 ag).

All the results are pure expectation values obtained franvdiod walking calculations.

theory helped to interpret the periodic table of elementgpaestablish on theo-

retical grounds the band theory of insulators. With the R\é@agigm, many un-

usual phenomena now appear to be possibly explained in desangd consistent

framework: the role of correlation in Mott insulators, oetkxplanation of HTc

superconductivity, and finally the fractionalization ofrspxcitations, which was

supposed to take place only in quasi-one dimensional sgstend instead it has
been recently detected in higher dimensions.[10] All th@isenomena cannot be
understood not even qualitatively within a mean field Hafeock theory, as the
important ingredient missing in the latter approach is fhstcorrelation, that can
lead to essentialy new effects.

In our opinion the RVB wave function is a natural extensiorttaf Hartree-Fock
one, to which it reduces whenever the correlation term igchwed off. In some
sense the determinantal part is useful to represent th&@tex density and all
the one body properties of an electronic system. On the dthed the Jastrow
term is necessary to take correctly into account the ders$#ysity correlation,
N(r) =< ngn, >. The long range behavior df(r) discriminates a metal, dis-
playing Friedel oscillations atkr wherekr is the Fermi momentum, from an
insulator, which shows an exponentially localized cotieta/N (r) ~ exp(—r/¢),
where( is the corresponding characteristic length. The Jastroveladion can be-
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come non trivial when the determinantal part acquires a nomentional meaning.
For instance, the determinantal part in the RVB wave fumatiould describe a su-
perconductor or a metal, but the presence of the Jastroorfectble to turn the
system into an insulator, by correlating the electrons i@ tivial way. On the

other hand, superconductivity can naturally become stabdesystem with only

repulsive interactions, despite the BCS theory would negam effective attraction
mediated by the phonons.

For all the above reasons we believe that it is the right timmake an effort to
study complex electronic systems by means of this new pgmadespecially for
discovering new challenging effects in which the role ofretation is dominant.
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