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Abstract

Although mean field theories have been very successful to predict a wide range of proper-
ties for solids, the discovery of high temperature superconductivity in cuprates supported
the idea that strongly correlated materials cannot be qualitatively described by a mean field
approach. After the original proposal by Anderson [P. W. Anderson,Science 235, 1196
(1987)], there is now a large amount of numerical evidence that the simple but general
resonating valence bond (RVB) wave function contains just those ingredients missing in
uncorrelated theories, so that the main features of electron correlation can be captured by
the variational RVB approach. Strongly correlated antiferromagnetic (AFM) systems, like
Cs2CuCl4, displaying unconventional features of spin fractionalization, are also under-
stood within this variational scheme. From the computational point of view the remarkable
feature of this approach is that several resonating valencebonds can be dealt simultane-
ously with a single determinant, at a computational cost growing with the number of elec-
trons similarly to more conventional methods, such as Hartree-Fock or Density Functional
Theory. Recently several molecules have been studied by using the RVB wave function;
we have always obtained total energies, bonding lengths andbinding energies comparable
with more demanding multi configurational methods, and in some cases much better than
single determinantal schemes. Here we present the paradigmatic case of benzene.
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1 Introduction

The variational approach, by providing an ansatz for the ground state (GS) wave
function of a many body Hamiltonian, is one of the possible ways to analyze both
qualitatively and quantitatively a physical system. Moreover, starting from the ana-
lytical properties of the variational wave function one is able in principle to under-
stand and explain the mechanism underling a physical phenomenon. For instance,
the many body wave function of a quantum chemical system can reveal the elec-
tronic structure of the compound and show what is the nature of its chemical bonds.
On the other hand, a very good variational ansatz for a model Hamiltonian helps
in predicting the ground state properties and the qualitative picture of the system.
In particular, Pauling[1] in 1949 introduced for the first time the concept of the
resonating valence bond (RVB) ansatz in order to describe the chemical structure
of molecules such as benzene and nitrous oxide; the idea behind that concept is
the superposition of all possible singlet pairs configurations which link the various
nuclear sites of a compound. He gave a numerical estimate of the resonating en-
ergy in accordance with thermochemical data, showing the stability of the ansatz
with respect to a simple Hartree Fock valence bond approach.Few decades later,
Anderson [2] in 1973 developed a mathematical description of the RVB wave func-
tion, in discussing the ground state properties of a latticefrustrated model, i.e. the
triangular two dimensional Heisenberg antiferromagnet for spinS = 1/2. His first
representation included an explicit sum over all the singlet pairs, which turned out
to be cumbersome in making quantitative calculations, the number of configura-
tions growing exponentially with the system size. Much later, in 1987, with the aim
to find an explanation to high temperature (HTc) superconductivity by means of the
variational approach, he found a much more powerful representation of the RVB
state[3], based on the Gutzwiller projectionP of a BCS state

P |Ψ〉 = P Πk(uk + vkc
†
k,↑c

†
−k,↓)|0〉, (1)

which in real space and for a fixed numberN of electrons takes the form

P |Ψ〉 = P Σr,r′

[

φ(r− r
′)c†

r,↑c
†
r′,↓

]N/2
|0〉, (2)

where thepairing function φ is the Fourier transform ofvk/uk. The Cooper pairs
described by the BCS wave function are taken apart from each other by the re-
pulsive Gutzwiller projection, which avoids doubly occupied sites; in this way the
charge fluctuations present in the superconducting ansatz are frozen and the system
can become an insulator even when, according to band theory,it should be metallic.
The wave function (2) allows a natural and simple description of a superconducting
state close to a Mott insulator, opening the possibility fora theoretical explanation
of high temperature superconductivity, a phenomenon discovered in 1986[4], but
not fully understood until now. Indeed, soon after this important experimental dis-
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covery, Anderson[3] suggested that the Copper-Oxygen planes of cuprates could
be effectively described by an RVB state, and extensive developments along this
lines have subsequently taken place[5]. From the RVB ansatzit is clear that the
HTc superconductivity (SC) is essentially driven by the Coulomb and magnetic in-
teractions, with a marginal role played by phonons, in spiteof their crucial role in
the standard BCS theory. As far as the magnetic properties are concerned, the RVB
state is quite intriguing, because it represents an insulating phase of an electron
model with an odd number of electrons per unit cell, with vanishing magnetic mo-
ment and without any finite order parameter, namely a completely different picture
from the conventional mean field theory, where it is important to break the sym-
metry in order to avoid the one electron per unit cell condition, incompatible with
insulating behavior. This rather unconventional RVB stateis therefore calledspin
liquid.

The structure of the paper is organized as follows: in section 2 we present some
numerical Monte Carlo studies of lattice models, where it isshown that, once the
Jastrow factor is included, the RVB wave function is able to represent an excep-
tionally good ansatz for the description of the zero temperature properties of the
systems studied, in very good agreement with the available experimental data. In
section 3, we apply the same variational wave function to quantum chemical sys-
tems, in particular to benzene, where we exploit the Pauling’s idea to study in a
more systematic way the role of the resonating valence bondsin this molecule,
by performing realisticab initio simulations. In the last section we make our final
conclusions and highlight the perspectives of this study.

2 Lattice models

In order to mimic in a simple way the essential features of a real strongly corre-
lated material, a lot of lattice models have been conceived so far. One of the most
important is thet− J model, which takes into account not only the charge degrees
of freedom but also the magnetic superexchange interactions:

H = J
∑

<i,j>

(

Si · Sj −
1

4
ninj

)

− t
∑

<i,j>,σ

c̃†i,σ c̃j,σ +H.c., (3)

wherec̃i,σ = ci,σ(1 − ni,σ), 〈. . .〉 stands for nearest neighbor sites, andni andSi

are density and spin at sitei, respectively. In this case, the RVB wave function
has shown to be an accurate ansatz both for the chain, the two-leg ladder and the
two dimensional (2D) square lattice[6], once a long range Jastrow factor has been
included besides the Gutzwiller projector. In particular for the 2D lattice, there is
a rather clear evidence that the GS of the doped model is superconducting, with
an optimal doping aroundδ ∼ 0.18; this result has been obtained by perform-
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ing Green function Monte Carlo (GFMC) simulations within the fixed node (FN)
approximation up to 242 sites at various doping, and by calculating the order pa-
rameterPd = 2 limr→∞

√

|∆(r)|, where∆(r) is the pair-pair correlation function.
If the state is a d-wave superconductor,Pd must be non vanishing in the thermo-
dynamic limit. At the variational level, the RVB state givesaPd only 30 % higher
than the most accurate result calculated (see Fig. 1); therefore the superconducting
long range order is expected to remain stable against the projection towards the GS
of the system. Moreover, the RVB state is accurate not only for SC but also for
magnetic systems as well. Indeed, it is able to capture both the quasi long range an-
tiferromagnetic order of thet−J chain and the spin gapped behavior of the two-leg
ladder. While the BCS part can allow strong superconductingcharge fluctuations,
the Gutzwiller and Jastrow parts control the charge correlation respectively at short
and long distance, allowing a quantitative description of the magnetic behavior in
low dimensional systems.
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Fig. 1. Superconducting order parameterPd for the 2D t − J model as a function of
doping, atJ/t = 0.4, calculated using variance extrapolation, using the projected BCS
wave function defined in the text as an initial guess. Data taken from Ref. [6]

One of the most non trivial questions which arise in a strongly correlated regime
is whether the ground state of a system containingonly repulsive interaction can
be superconductor. Surely such a state will not be found by any mean-field theory,
which needs an explicit or effective attractive interaction in order to display a pair-
ing strength among the electrons. Instead this question canbe addressed at least
at the variational level, dealing directly with strongly correlated variational wave
functions which may exhibit a superconducting behavior andbe close to the true
GS of the system. Of course a clear indicator of the presence of superconductiv-

4



ity is the SC order parameterPd, but since its value is of the same order as the
quasiparticle weight, it can be too small to be detected witha reasonable numerical
precision. Therefore, with the aim of finding a good probe forsuperconductivity, E.
Plekhanovet al. [7] defined a new suitable quantityZc, which measure thepairing
strength between two electrons added to the GS wave function,

Zc = |F (shortest distance)|/
√

∑

all distances

F 2(R), (4)

whereF (R) is related to the real space anomalous part of the equal time Green
function at zero temperature:

F (R) = 〈N − 2|ci,↑ci+R,↓ + ci+R,↑ci,↓|N〉. (5)

For instanceZc = 0 for Fermi liquids, insteadZc 6= 0 for superconductors but also
for non BCS systems which involve any kind of pairing. The authors in Ref. [7]
applied this scheme to the 2D Hubbard model

H = −t
∑

<i,j>,σ

c̃†i,σc̃j,σ + h.c. + U
∑

i

ni,↑ni,↓ − µN, (6)

whereµ is the chemical potential andN is the total number of particles. Carrying
out a projection Monte Carlo technique based on auxiliary fields, they found that
the GS of the undoped 2D Hubbard model at half filling has a non vanishing pair-
ing strength, although the system is an insulator with antiferromagnetic long range
order. This means that it is not a band insulator, for whichZc should be zero, but
an RVB Mott insulator with a strong d–wave pairing character: indeed the RVB
variational wave function is very close to the projected GS,giving the same pairing
strength and a good variational energy. Moreover, the pairing strength decreases
with increasing doping, but it is still positive for the lightly doped Hubbard model,
suggesting that the system is ready to become superconductor, once the pairs can
condense and phase coherence can take place in the GS.

The accuracy of the RVB ansatz close to the Mott insulator transition (MIT) has
been pointed out also by Capelloet al. [8], who undertake a variational Monte Carlo
study of the phases of thet − t′ 1D Hubbard model with nearest and next nearest
neighbor hopping terms. The phase diagram of this model is known from bosoniza-
tion and density-matrix renormalization group calculations, therefore it represents
a good test case for the RVB variational wave function. Whent′/t . 0.5, the pres-
ence of a long range Jastrow factor acting on a BCS state is a crucial ingredient to
recover the insulator with one electron per unit cell and without a broken transla-
tional symmetry, i.e. an highly non trivial charge gapped state. On the other hand,
oncet′/t & 0.5 andU/t is small, thesame wave function after optimization is able
to describe the metallic state with strong superconductingfluctuations, namely a
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state with a finite spin gap. The distinction between the metallic and the insulating
state can be made both by using the Berry phase[9] and by analyzing the behavior
of the spin and charge structure factor asq → 0; in all cases, the RVB state with an
appropriate Jastrow factor reproduces very well the known phases.

Not only the conducting properties of a strongly correlatedmodel can be repro-
duced by the RVB ansatz, but also the magnetic behavior. For instance, in the case
of thet− t′ 1D Hubbard model, the variational wave function drives the transition
from the metallic to a dimerized insulator onceU/t increases. For the 2D spin 1/2
AFM Heisenberg model on a triangular lattice

H = J
∑

<i,j>

Si · Sj + J ′
∑

<<i,j>>

Si · Sj , (7)

with J being the intra chain coupling andJ ′ the inter chain one, the RVB wave
function displays a stable spin liquid behavior, due to the strong frustration of the
system in the regime withJ ′/J = 0.33. Moreover forJ = 0.374meV , the model
is able to represent a real system, theCs2CuCl4 compound studied by Coldea
et al.[10,11] who performed neutron scattering experiments in order to determine
the low lying magnetic excitations. It turns out that the experimental data show
an unconventional behavior of the magnetic structure of thecompound, with spin-
1/2 fractionalized excitations and incommensurability. The numerical study carried
out in Ref. [12] highlights that the incommensurability comes from the frustration
of the system and it is well described by the RVB ansatz. The most impressive
correspondence between the experimental data and the numerical simulations is in
the spin-1 excitation spectrum (see Fig.2), obtained by GFMC calculations with an
RVB state used as a guiding function. As also shown in the sameFig. 2, it is evident
that size effects are small and the comprairson between the numerical simulation
and the experiment is particularly meaningful in this case.This is possible within
a Quantum Monte Carlo (QMC) scheme that allows to work with large enough
systems sizes.

3 Realistic systems

As we have seen in the preceding section, the RVB wave function can represent
very well the GS of some strongly correlated systems, which are described by a
suitable lattice model, as in the case ofCs2CuCl4. Furthermore, following the
seminal idea of Pauling, the applicability of the RVB ansatzis not limited to the
strongly correlated regime close to the Mott transition or to spin frustrated models,
but can be extended to describe the electronic structure andthe properties ofreal-
istic systems. Indeed the quantum chemistry community has quite widely used the
concept of pairing in order to develop a variational wave function able to capture
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Fig. 2. Comparison of the lowest triplet excitations, evaluated by neutron scattering experi-
ments onCs2CuCl4 compound[11], with the QMC results, obtained using the lattice fixed
node approximation and the projected BCS state to approximate the signs of the ground
state wave function[12]. There is no fitting parameter in theabove comparison.

the most significant part of the electronic correlation. Although only in 1987 Ander-
son discovered the link between the explicit resonating valence bond representation
and the projected-BCS wave function, already in the 50’ s Hurley et al. [13] intro-
duced the product of pairing functions as ansatz in quantum chemistry. Their wave
function was calledantisymmetrized geminal power (AGP) that has been shown
to be the particle conserving version of the BCS ansatz [14].It includes the sin-
gle determinantal wave function, i.e. the uncorrelated state, as a special case and
introduces correlation effects in a straightforward way, through the expansion of
the pairing function (in this context called geminal): therefore it was studied as a
possible alternative to the other multideterminantal approaches, but his success to
describe correlation was very much limited, because - we believe - the Jastrow term
was not included.

For an unpolarized system containingN electrons (the firstN/2 coordinates are
referred to the up spin electrons) the AGP wave function is aN

2
× N

2
pairing matrix

determinant, which reads:

ΨAGP (r1, ..., rN) = det
(

ΦAGP (ri, rj+N/2)
)

for 1 ≤ i, j ≤ N/2, (8)
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and the geminal function is expanded over an atomic basis:

ΦAGP (r↑, r↓) =
∑

l,m,a,b

λl,m
a,b φa,l(r↑)φb,m(r↓), (9)

where indicesl, m span different orbitals centered on atomsa, b, andi,j are coor-
dinates of spin up and down electrons respectively. It is possible to generalize the
AGP many body wave function in order to deal also with a polarized system. The
geminal function may be viewed as an extension of the simple HF wave function
and in fact it coincides with HF only when the numberM of non zero eigenvalues
of theλ matrix is equal toN/2. It should be noticed that Eq. 9 is exactly the pairing
function in Eq. 2, apart from the inhomogeneity of the formerwhich reflects the
absence of the translational invariance of a generic molecular compound. One of
the main advantages of dealing with an AGP wave function is its computational
cost. Indeed one can prove that expanding the geminal by adding more terms in the
sum of Eq. 9 is equivalent to introduce more Slater determinants in the many body
wave function, i.e. to have a multireference total wave function, similar to those
obtained in configuration interaction (CI) or coupled cluster (CC) theories. But the
computational cost of the AGP ansatz still remains the same,since one needs to
compute always just asingle determinant. This property is expected to be impor-
tant for large scale simulations, since the number of determinants necessary for a
satisfactory accuracy increases fast with the system size,limiting very much the
applicability of CI and CC methods.

The simplest example which shows the essence of the AGP ansatz is theH2 molecule.
It is well known from textbooks that molecular orbital (MO) theory at the HF level
fails in predicting the binding energy and the bond length ofH2, just because it
overestimates the ionic terms contribution in the total wave function if the anti-
bonding molecular orbitals are not included. In spite of this, the correct geminal
expansion reads

ΦAGP (r, r′) = λφA
1s(r)φ

A
1s(r

′) + φA
1s(r)φ

B
1s(r

′) + A ↔ B, (10)

whereλ can be tuned to regulate the weight of the different resonating contributions
and fulfill the size consistency when the two nuclei are infinitely apart from each
other (λ → 0). Notice also that the chemical bond is represented in the geminal by
a non vanishing value ofλ between the orbitals centered on the two different sites
between which the bond is formed.

Let us consider now agas of hydrogen dimers: in this case the geminal will contain
not only the terms in Eq. 10, valid for just two sites, but alsothe contributions
from all the nuclei in the system. It is clear that the AGP wavefunction will allow
strong charge fluctuations around eachH pair, and therefore molecular sites with
zero and four electrons are permitted, leading to poor variational energies. For this
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reason, the AGP alone is not sufficient, and it is necessary tointroduce a Gutzwiller-
Jastrow factor in order to dump the expensive charge fluctuations. Moreover only
the AGP-Jastrow (AGP-J) wave function is the real counterpart of the RVB ansatz
of strongly correlated lattice models, since the projection is essential to get the
correct distribution of the pairing in the compound. The AGP-J wave function has
shown to be effective both in atomic [15] and in molecular systems[16]. Both the
geminal and the Jastrow play a crucial role in determining the remarkable accuracy
of the many body state: the former permits the correct treatment of the nondynamic
correlation effects, the latter allows the local conservation of charge in a complex
molecular system and also to fulfill the cusp conditions which make the geminal
expansion rapidly converging to the lowest possible variational energies.

The study of the AGP-J variational ansatz with the inclusionof two and three body
Jastrow factors is possible by means of QMC techniques, which can deal explicitly
with correlated wave functions. The optimization procedure, necessary to reach the
lowest variational energy within the given variational freedom, is feasible also in
a stochastic Monte Carlo framework, after the recent developments in this field
([17,18]).

Benzene is the largest compound we have studied so far; in order to represent its
1A1g GS we have used a very simple one particle basis set: for the AGP, a 2s1p
double zeta (DZ) Slater set centered on the carbon atoms and a1s single zeta (SZ)
on the hydrogen. For the 3-body Jastrow, a 1s1p DZ Gaussian set centered only on
the carbon sites has been chosen. We started from a non resonating 2-body Jastrow
wave function, which dimerizes the ring and breaks the full rotational symmetry,
leading to the Kekulé configuration. As we expected, the inclusion of the resonance
between the two possible Kekulé states lowers the variational Monte Carlo (VMC)
energy by more than 2 eV. The wave function is further improved by adding another
type of resonance, that includes also the Dewar contributions connecting third near-
est neighbor carbons. As reported in Tab. 1, the gain with respect to the simplest
Kekulé wave function amounts to 4.2 eV, but the main improvement arises from
the further inclusion of the three body Jastrow factor, which allows to recover the
89% of the total atomization energy at the VMC level. The main effect of the three
body term is to keep the total charge around the carbon sites to approximately six
electrons, thus penalizing the double occupation of thepz orbitals.

A more clear behavior is found by carrying out diffusion Monte Carlo (DMC) sim-
ulations: the interplay between the resonance among different structures and the
Gutzwiller-like correlation refines more and more the nodalsurface topology, thus
lowering the DMC energy by significant amounts. Therefore itis crucial to insert
into the variational wave function all these ingredients inorder to have an adequate
description of the molecule. For instance, in Fig. 3 we report the density surface
difference between the non-resonating 3-body Jastrow wavefunction, which breaks
theC6 rotational invariance, and the resonating Kekulé structure, which preserves
the correctA1g symmetry: the change in the electronic structure is significant. The
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best result for the binding energy is obtained with the Kekulé Dewar resonating
3 body wave function, which recovers the98, 6% of the total atomization energy
with an absolute error of 0.84(8) eV. As Pauling [1] first pointed out, benzene is a
genuine RVB system, indeed it is well described by the AGP-J wave function.

-0.05

-0.025

 0

 0.025

 0.05

-6 -4 -2  0  2  4  6 -6-4
-2 0

 2 4
 6

ρ(r) resonating Kekule - ρ(r) non resonating

x

y
-6 -4 -2  0  2  4  6 -6-4

-2 0
 2 4

 6

-0.05

-0.025

 0

 0.025

 0.05

1/a0
2

ρ(r) resonating Kekule - ρ(r) non resonating

x

y

1/a0
2

Fig. 3. Electron density (atomic units) projected on the plane ofC6H6. The surface plot
shows the difference between the resonating valence bond wave function, with the correct
A1g symmetry of the molecule, and a non-resonating one, which has the symmetry of the
Hartree–Fock wave function.

Table 1
Binding energies ineV obtained by variational (∆VMC) and diffusion (∆DMC) Monte

Carlo calculations with different trial wave functions forbenzene. In order to calculate the
binding energies yielded by the two–body Jastrow, we used the atomic energies reported in
Ref. [15]. The percentages (∆VMC(%) and∆DMC(%)) of the total binding energies are
also reported. Data are taken from Ref. [16].

∆VMC ∆VMC(%) ∆DMC ∆DMC(%)

Kekulé + 2body -30.57(5) 51.60(8) - -

resonating Kekulé + 2body -32.78(5) 55.33(8) - -

resonating Dewar Kekulé + 2body -34.75(5) 58.66(8) -56.84(11) 95.95(18)

Kekulé + 3body -49.20(4) 83.05(7) -55.54(10) 93.75(17)

resonating Kekulé + 3body -51.33(4) 86.65(7) -57.25(9) 96.64(15)

resonating Dewar Kekulé + 3body -52.53(4) 88.67(7) -58.41(8) 98.60(13)

full resonating + 3body -52.65(4) 88.869(7) -58.30(8) 98.40(13)
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4 Conclusions

In this paper we have described a very powerful variational ansatz that has been
introduced to understand the properties of strongly correlated materials just after
the discovery of HTc superconductivity. We have shown that the RVB wave func-
tion paradigm is not only useful for describing the GS and lowlying excitations of
lattice models, such as Heisenberg ort− J model, but is also suited for approach-
ing realistic systems, by considering explicitly the long range Coulomb repulsion
and the full quantum mechanical interaction among electrons within the Born-
Oppenheimer approximation. Moreover, by using the same type of wave function
both for lattice model and realistic system, it is possible to have some insight in
the electron correlation behind the latter and to check the reliability of the model
in predicting the properties of a real compund. For instancethe benzene molecule
can be idealized by a six site ring Heisenberg model with one electron per site, in
order to mimic the out of plane bonds of the real molecule, coming from thepz
electrons and leading to an antiferromagnetic superexchange interaction between
nearest neighbor carbon sites. We have studied in this case the spin–spin correla-
tions

C(i) = 〈Sz
0S

z
i 〉, (11)

where the indexi labels consecutively the carbon sites starting from the reference
0, and the dimer–dimer correlations

D(i)=D0(i)/C(1)2 − 1,

D0(i)= 〈(Sz
0S

z
1)(S

z
i S

z
i+1)〉. (12)

Both correlation functions have to decay in an infinite ring,when there is neither
magnetic (C(i) → 0 ), nor dimer (D(i) → 0) long range order as in the true spin
liquid ground state of the 1D Heisenberg infinite ring.

Indeed, as shown in the inset of Fig.(4), the dimer–dimer correlations of benzene
are remarkably well reproduced by the ones of the six site Heisenberg ring, whereas
the spin–spin correlation of the molecule appears to decay faster than the corre-
sponding one of the model. Though it is not possible to make conclusions on long
range properties of a finite molecular system, our results suggest that the benzene
molecule can be considered closer to a spin liquid, rather than to a dimerized state,
because, as well known, the Heisenberg model ground state isa spin liquid and
displays spontaneous dimerization only when a sizable next-nearest frustrating su-
perexchange interaction is turned on.[19]

As any meaningful variational ansatz, the RVB approach naturally brings a new
way of understanding the many-body problem, as for instancethe Hartree-Fock
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Fig. 4. Spin–spin correlation function for benzene (full squares) and for the Heisenberg
model (empty circles). In the inset, also the dimer–dimer correlation function is reported
with the same notation. For the benzene molecule, these correlation are obtained by a coarse
grain analysis in which the “site” is defined to be a cylinder of radius1.3 a0 centered on
the carbon nuclei, with a cut off core (i.e. we considered only the points with|z| > 0.8 a0).
All the results are pure expectation values obtained from forward walking calculations.

theory helped to interpret the periodic table of elements, or to establish on theo-
retical grounds the band theory of insulators. With the RVB paradigm, many un-
usual phenomena now appear to be possibly explained in a simple and consistent
framework: the role of correlation in Mott insulators, or the explanation of HTc
superconductivity, and finally the fractionalization of spin excitations, which was
supposed to take place only in quasi-one dimensional systems, and instead it has
been recently detected in higher dimensions.[10] All thesephenomena cannot be
understood not even qualitatively within a mean field Hartree–Fock theory, as the
important ingredient missing in the latter approach is justthe correlation, that can
lead to essentialy new effects.

In our opinion the RVB wave function is a natural extension ofthe Hartree-Fock
one, to which it reduces whenever the correlation term is switched off. In some
sense the determinantal part is useful to represent the electronic density and all
the one body properties of an electronic system. On the otherhand the Jastrow
term is necessary to take correctly into account the density–density correlation,
N(r) =< n0nr >. The long range behavior ofN(r) discriminates a metal, dis-
playing Friedel oscillations at4kF wherekF is the Fermi momentum, from an
insulator, which shows an exponentially localized correlation N(r) ≃ exp(−r/ξ),
whereξ is the corresponding characteristic length. The Jastrow correlation can be-
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come non trivial when the determinantal part acquires a non conventional meaning.
For instance, the determinantal part in the RVB wave function could describe a su-
perconductor or a metal, but the presence of the Jastrow factor is able to turn the
system into an insulator, by correlating the electrons in a non trivial way. On the
other hand, superconductivity can naturally become stablein a system with only
repulsive interactions, despite the BCS theory would require an effective attraction
mediated by the phonons.

For all the above reasons we believe that it is the right time to make an effort to
study complex electronic systems by means of this new paradigm, especially for
discovering new challenging effects in which the role of correlation is dominant.
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