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Abstract

This paper considers the problem of computing charge densities in a density functional theory
(DFT) framework. In contrast to traditional, diagonalization-based, methods, we utilize a technique
which exploits a Lanczos basis, without explicit reference to individual eigenvectors. The key ingredient
of this new approach is a partial reorthogonalization strategy whose goal is to ensure a good level of
orthogonality of the basis vectors. The experiments reveal that the method can be a few times faster
than ARPACK, the implicit restart Lanczos method. This is achievable by exploiting more memory
and BLAS3 (dense) computations while avoiding the frequent updates of eigenvectors inherent to all
restarted Lanczos methods.

1 Introduction

Matrix diagonalization constitutes the most time-consuming part of typical electronic structures calculation
codes. Many efforts have been put into avoiding diagonalization, or at least, reducing its cost. Thus, a
number of techniques bypass the need of diagonalization by attacking the original optimization problems
directly, see, e.g., [1] for an overview. Typical examples of this approach are the Car-Parrinello method [2]
and methods based on direct minimization of the Kohn-Sham energy functional [1]. While these methods
do not compute eigenvectors directly, they do solve a (nonlinear) optimization problem whose complexity
is comparable to that of solving a sequence of eigenproblems. In this paper we take a middle ground
approach. Individual eigenvectors are not explicitly obtained but a good basis of the invariant subspace
associated with the occupied states is computed, in which the charge density is expressed. When desired,
eigenvectors can be computed easily, making this method also useful for cases when not only occupied states
are needed but also many virtual (unoccupied) ones are needed. This happens frequently when Kohn-Sham
eigenstates are used to compute optical absorption spectra within the framework of time-dependent DFT
[3, 4].

In the proposed approach, approximate eigenvectors are only used implicitly, in the sense that there
is no attempt to compute them individually. Rather, we focus on the subspace which they generate.
Specifically, the charge density is viewed as the diagonal of the density matrix P [5, 6, 7]. Given any
basis v1, v2, . . . , vno

of the space spanned by the occupied states, the charge density can be obtained as
the diagonal of P ≡ V V T , where V = [v1, v2, . . . , vno

] denotes the matrix with column vectors v1, . . . , vno
.

Thus, the basic principle of the method is to focus on subspaces rather than on individual eigenvectors. We
first compute an orthonormal basis q1, . . . , qm whose span contains the span of V . This is done with the
help of a Lanczos procedure. Since this procedure is prone to a loss of orthogonality of the basis vectors
produced, an inexpensive form of re-orthogonalization is employed. Just as important an ingredient for the
overall procedure, is the convergence test which in this case measures how accurate a subspace span(V )
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we would get if we were to stop the Lanczos procedure at a given step. This test uses eigenvalues (only)
of the tridiagonal matrix obtained from the Lanczos algorithm and its cost is negligible relative to the rest
of the calculation.

It is important to compare this procedure, at the outset, with a competitive approach based on diag-
onalization by a restarted Lanczos procedure. For example, a procedure such as the one in the ARPACK
code can be used for this task [8]. In an implicitly restarted Lanczos procedure, eigenvectors are computed
one (or a few) at a time, i.e., the basis V is computed one vector at a time. The main drawback of this
method from a computational point of view is that eigenvectors are (implicitly) updated at every step,
or at frequent intervals, to check convergence. In addition, restarting causes the number of matrix-vector
multiplications to be quite high, because of the induced loss of optimality. In contrast, if we were to per-
form one single run (no restarts) of the Lanczos procedure, the eigenvectors would converge much faster in
principle because of the optimality of the underlying procedure. However, there are two issues to address.
First, there is the problem of loss of orthogonality. It is known that the vectors obtained from the Lanczos
procedure loose their orthogonality fairly rapidly [9] after the first few eigenvectors start converging. Re-
orthogonalizing these vectors can be quite expensive if full reorthogonalization is performed. Fortunately,
an inexpensive form of reorthogonalization exists which monitors loss of orthogonality with an inexpen-
sive recurrence relation and performs reorthogonalization only when needed. The second issue with the
non-restarted Lanczos procedure is that it would be difficult to know when to stop. Normally, we would
require that desired eigenvectors, namely those of the occupied states, be accurate enough. This would
mean that we would compute these eigenvectors at frequent intervals, or obtain by some means estimates
of their accuracies as the algorithm proceeds. We adopted a much less expensive alternative which consists
of checking the convergence of the sum of the no smallest eigenvalues, those corresponding to the no lowest
states. An advantage of this technique is that this number is fairly inexpensive to compute: it is simply the
sum of the smallest eigenvalues (without eigenvectors) of the tridiagonal matrix obtained from the Lanczos
procedure. At the m-th step of Lanczos, this cost is of the order of m2. We found that its cost is negligible
relative to the cost of the overall procedure.

Throughout the paper, the descriptions of the algorithms rely on MATLAB notation. For example,
A(:, 1 : k) refers to the first k columns of matrix A and A(1 : k, :) to its first k rows. The symbol ‖x‖2
means the Euclidian norm of the vector x and, for a matrix A, ‖A‖2 is the induced norm of A.

2 Charge densities without eigenvectors

The charge density ρ(r) at a point r in space is commonly computed from the eigenvectors Ψi of the
Hamiltonian matrix H via the formula

ρ(r) =

no
∑

i=1

|Ψi(r)|
2, (1)

where the summation is taken over all occupied states of the system under study. For simplicity, we assume
no explicit spin dependence. In order to compute the charge density ρ(r) via (1), eigenvectors are normally
required. However, it is also possible to compute ρ(r) without explicitly resorting to using eigenvectors.

Let the vectors ψi be the discretizations of Ψi(r) with respect to r. Then, the charge densities are the
diagonal entries of the “functional density matrix”

P = Vno
V >no

with Vno
= [ψ1, . . . , ψno

]. (2)

Specifically, the charge density at the j-th point rj is the j diagonal entry of P . Observe that any orthogonal
basis V that spans the same subspace as the eigenvectors ψi, i = 1, . . . , no can be used.

In particular, consider the Heaviside function F , which is illustrated in Fig. 1. With λmax we denote
the largest eigenvalue of the matrix at hand, while λno

is the eigenvalue which corresponds to the last
occupied state of the system. Then, it is not difficult to see that

P = F(H).

Indeed, if we consider the spectral decomposition of the Hamiltonian

H = V ΛV >, where V = [ Vno
Ṽ ], V >no

Vno
= I,
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Figure 1: The Heaviside function.

then,

F(H) = V F(Λ)V >

= [ Vno
Ṽ ]

[

I 0
0 0

] [

V >no

Ṽ >

]

= Vno
V >no

.

One can approximate P using this expression and many linear-scaling methods have exploited this, see
e.g., [5, 6, 7, 10].

Observe that instead of the eigenvectors in V , all that is needed is a basis that spans the same subspace.
In this paper we follow this approach in using Krylov subspaces to approximate the Heaviside function of
the Hamiltonian. For a given unit vector q1, the Krylov subspace Km(A, q1) of a square matrix A, with
respect to q1 is defined as (see [11])

Km(A, q1) = span{q1, Aq1, A
2q1, . . . , A

(m−1)q1}. (3)

When A is a real symmetric matrix (A = A>), as is the case of the Hamiltonians considered in this paper,
the best known method for computing an orthonormal basis Qm for Km(A, q1) is the Lanczos algorithm,
proposed by C. Lanczos in 1950 [12] (see also [11, 13, 14] for a detailed description of the algorithm). Figure
2 provides an algorithmic description of the method. Note that, in exact arithmetic, the algorithm can be
recast as a simple three-term recurrence, namely,

βi+1qi+1 = Aqi − αiqi − βiqi−1 (4)

What is remarkable about this algorithm is that, in exact arithmetic, it is capable of computing an or-
thonormal basis of the above Krylov subspace, with the simple three term recurrence of (4). That is,
only three vectors are required in memory at any step. However, as is well known, roundoff errors cause
severe loss of orthogonality among the basis vectors (columns of matrix Qm), and some form of reorthog-
onalization must be applied. In standard electronic structures calculations where Hamiltonian matrices
can be very large and many eigenvectors must be computed, reorthogonalization costs become prohibitive
and dominate the overall calculation. However, as we will see in the following, clever reorthogonalization
techniques have been designed that can considerably reduce these costs.

An additional appealing characteristic of the Lanczos algorithm is that the matrix A is only needed in
“functional” form, meaning that all that is needed is a routine to compute the product Aqi for any given
vector qi (line 3, Figure 2)). Thus, the matrix can either be accessible in stencil form or it can be stored in
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Lanczos

(*Input*) Matrix A ∈ R
n×n, starting vector q1, ‖q1‖2 = 1, scalar m

(*Output*) Orthogonal basis Qm ∈ R
n×m of Km(A, q1),

unit norm vector qm+1 such that Q>mqm+1 = 0

1. Set β1 = 0, q0 = 0
2. for i = 1, . . . ,m
3. wi = Aqi − βiqi−1

4. αi =< wi, qi >
5. wi = wi − αiqi
6. βi+1 = ‖wi‖2
7. if (βi+1 == 0) then stop

8. qi+1 = wi/βi+1

9. end

Figure 2: The Lanczos algorithm. The inner product for vectors is denoted by < ., . >.

sparse data structures [15]. We stress that this property of the Lanczos algorithm is particularly convenient
in electronic structure codes that are based on finite difference discretizations, where Hamiltonians are
available in stencil form, and so do not need to be explicitly stored.

We now show how one can use the Lanczos basis Qm to approximate the functional density matrix P
(see (2)). After m steps of the Lanczos algorithm on the Hamiltonian H and a random unit norm starting
vector q1 the following factorization holds

HQm = QmTm + βm+1qm+1e
>

m, (5)

where Tm is the tridiagonal symmetric matrix

T =















α1 β1

β1 α2 β2

. . .
. . .

. . .

βm−1 αm−1 βm

βm αm















, (6)

qm+1 is the last vector computed by Lanczos and em is the m− th column of the canonical basis (thus em

has 1 at the m−th entry and zeros elsewhere). If we were to run all n steps of Lanczos, then H = QnTnQ
>
n

and the functional density matrix P could be obtained as P = F(H) = QnF(Tn)Q
>
n . However, the cost

for computing a full Lanczos basis is O(n3), which is comparable to the cost of computing all eigenvectors
of the Hamiltonian H.

Instead, we can approximate F(H) by stopping Lanczos early for some m¿ n. In particular, let Tm =
UΛmU

> be the spectral decomposition of Tm. Furthermore, let U =
[

Uno
Ũ

]

, where Uno
∈ R

m×no are
eigenvectors of Tm that correspond to its smallest no eigenvalues. Then, we write

F(H) ≈ QmF(Tm)Q>m

= QmUF(Λm)U>Q>m

= Qm

[

Uno
Ũ

]

[

Ino
0

0 0

] [

U>no

Ũ

]

Q>m

= QmUno
(QmUno

)>. (7)

Thus, we approximate the charge densities ρ(ri), i = 1, . . . , n by the diagonal of matrix (7). These values
are equal to the squared norms of the rows of the matrix QmUno

.
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Partially Reorthogonalized Lanczos

(*Input*) Matrix A ∈ R
n×n, starting vector q1, ‖q1‖2 = 1, scalar m, tolerance tol

(*Output*) Partially Orthogonal basis Qm ∈ R
n×m of Km(A, q1)

1. Set β1 = 0, q0 = 0
2. for i = 1, . . . ,m
3. wi = Aqi − βiqi−1

4. αi =< wi, qi >
5. wi = wi − αiqi
6. βi+1 = ‖wi‖2
7. if (βi+1 == 0) then stop

8. qi+1 = wi/βi+1

9. Update level of orthogonality ηi for qi+1

10. if ηi > tol then reorthogonalize qi+1 again
all previous vectors q1, . . . , qi+1 using Gram-Schmidt

11. end

Figure 3: The Partially Reorthogonalized Lanczos algorithm. The inner product for vectors is denoted by
< ., . >.

2.1 Partially reorthogonalized Lanczos

In exact arithmetic the three term recurrence of the Lanczos algorithm should build an orthonormal basis
Qm of the Krylov subspace Km(H, q1) for arbitrarily large m. However, in floating point computations,
errors will cause the basis vectors to rapidly loose orthogonality [16]. As an example, consider the Hamil-
tonian (n = 17, 077) corresponding to Si10H16, produced by a real space pseudopotential discretization
code [17]. We test the orthogonality of the bases Qi, i = 1, . . . ,m, with m = 200 by computing the norm
‖Q>i Qi − Ii‖2, where Ii is the identity matrix of size i. The left plot in Figure 4 illustrates the rapid
deterioration of orthogonality among basis vectors.

A number of existing reorthogonalization schemes are often employed to remedy the problem. The
simplest of these consists of a full reorthogonalization approach, whereby the orthogonality of the basis
vector qi is enforced against all previous vectors at each step i. This means that the vector qi, which in
theory is already orthogonal against q1, . . . , qi−1, is orthogonalized (a second time) against these vectors.
In principle we no longer have a 3-term recurrence but this is not an issue as the corrections are small
and usually ignored (see however Stewart [18]). The additional cost at the m-th step will be O(nm). So,
if reorthogonalization is required at each step, then we require an additional cost of O(nm2) which are
consumed the by Gram-Schmidt process. In general all basis vectors need to be available in main memory,
therefore rendering the method impractical for bases of large dimension,

An inexpensive alternative to full reorthogonalization is partial reorthogonalization. In contrast to full
reorthogonalization, this scheme performs a reorthogonalization step only when it is deemed necessary.
The goal is not so much to guarantee that the vectors are exactly orthogonal, but to ensure that they are
at least nearly orthogonal. Typically, the loss of orthogonality is allowed to grow up to roughly the square
root of the machine precision, before a reorthogonalization is performed. A result by Simon ([19]) ensures
that we can get fully accurate approximations to the Ritz values (eigenvalues of the tridiagonal matrix
Ti) in spite of a reduced level of orthogonality among the Lanczos basis vectors. Furthermore, a key to
the successful utilization of this result is the existence of clever recurrences which allow us to estimate the
level of orthogonality among the basis vectors [20, 21]. It must be stressed that the cost of updating the
recurrence is a very modest one. Thus, we can cheaply and efficiently probe the level of orthogonality of
the current vector (say qi) and determine whether a reorthogonalization step against previous basis vectors
is required.

Although not utilized in the present paper, an important side benefit of this procedure, is that it
becomes unnecessary to store all basis vectors in main memory. We can instead use secondary storage and
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Figure 4: Levels of orthogonality of the Lanczos basis for the Hamiltonian (n = 17077) corresponding to
Si10H16. Left: Lanczos without reorthogonalization. Right: Lanczos with partial reorthogonalization. The
number of reorthogonalizations was 34 with an additional 3400 inner vector products.

bring these vectors back to main memory, say a few at a time, when they are needed for reorthogonalization.
The rationale is that previous vectors will only be needed infrequently, so the cost of accessing secondary
storage will not hamper overall performance significantly. In addition, due to the simple access pattern,
there are many ways to dampen the cost of accessing secondary storage by overlapping computations with
read/writes from disk.

Implementations of Lanczos with partial reorthogonalization are available in MATLAB [22] as well as
in FORTRAN [22, 23]. In our experiments we have used the PLAN software package by K. Wu and H.
Simon [23]. The right plot in Figure 4 illustrates the level of orthogonality for the same Hamiltonian
as in the previous example (Si10H16). We used the default orthogonality threshold, tol = SQRT(EPS),
where EPS is the machine precision (tol ≈ 10−16 for double precision arithmetic). The number of required
reorthogonalizations was 34, compared to 200 for full reorthogonalization, which induced 3400 additional
inner vector products.

3 The Algorithm

A method which utilizes the Lanczos algorithm in order to approximate the charge densities must include
a test of convergence. It is desirable that this test be inexpensive to perform, as well as accurate, in the
sense that it should not lead to unnecessarily long runs or premature termination.

A natural test would be to monitor the progress of the approximate diagonal of F(H). However,
equation (7) indicates that this entails computing the matrix product QiUno

at each step i, i > n0. Since
Qi is n × i and Uno

is i × n0 the cost at each step is in the order O(i2nn0). Therefore, the overall cost
is O(m3nn0). If a large Lanczos basis Qm is required for convergence, this cost will grow rapidly and
dominate the overall cost of the method.

An alternative method is to monitor the eigenvalues of the tridiagonal matrices Ti, i = 1, . . . ,m. The
cost for computing only the eigenvalues of Ti is O(i2). If we were to apply the test at every single step of
the procedure, the total cost for all m Lanczos steps would be O(m3), which can be quite high. This cost
can be reduced drastically, to the point of becoming negligible relative to the overall cost, by employing
a number of simple strategies. Foremost among these is the fact that the test need only be applied very
infrequently.

A very simple technique is to monitor the eigenvalues of the tridiagonal matrix Ti at fixed intervals,
i.e. when MOD(i, s) = 0, where s is a stride. Of course, large values of s will induce infrequent conver-

gence tests, thus reducing the cost from O(m3) to O(m3

3s
). On the other hand, a large stride may inflict
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Charge Densities with Partial Lanczos

(*Input*) Matrix A ∈ R
n×n, starting vector q1, ‖q1‖2 = 1,

scalars m,n0, s ≥ n0, tolerance tol
(*Output*) Charge densities ρ(ri), i = 1, . . . , n
1. Set β1 = 0
2. Set l = 1, Σold = 0
3. repeat

4. Perform Partial Lanczos steps l : l + s (lines 3-10, Figure 3)
5. Compute only the n0 smallest eigenvalues of µj of Tl+s

6. Sort eigenvalues µj in ascending order and compute Σnew =
∑n0

j=1 µi

7. l = l + s+ 1
8. if |(Σnew − Σold)/Σold| ≤ tol then goto 11
9. Σold = Σnew

10. until (l > m)
11. Compute the eigenvectors Vno

corresponding to the n0 algebraically smallest
eigenvalues µj of Tl using inverse iteration

12. Approximate charge densities ρ(ri) by the squares of the norms of the
rows of matrix QlVno

Figure 5: Algorithm for approximating charge densities by means of Partial Lanczos.

unnecessary O(s) additional Lanczos steps before convergence is detected.
Though not implemented in this paper, a better strategy is to use the bisection algorithm (see [11]

Sec. 8.5) to track the latest eigenvalue that has converged. Here the important property that is exploited
is the following: the Lanczos procedure is a variational technique in the sense that when an eigenvalue
converges, later steps can only improve it. In addition, convergence tends to occur from left to right in the
spectrum, meaning that typically the smallest eigenvalue converges first followed by the second smallest,
etc. This suggests a simple procedure based on the bisection algorithm. We will first track the smallest
eigenvalue until it converges, then the second until it converges, etc., until the no-th eigenvalue converges.
Computing the i-th eigenvalue by a bisection procedure incurs only an O(m) cost. Again, the checking can
be performed infrequently. In addition, as the procedure progresses, the initial interval to bisect becomes
quite small as previous information can be exploited to narrow it.

When convergence has been detected (say at step l ≤ m) then the charge densities are approximated
as the squares of the norms of matrix QlUno

. Figure 5 provides an algorithmic description of the proposed
technique. Line 4 is essentially the Lanczos algorithm with partial reorthogonalization (see Figure 3).

3.1 Implementation issues

Although the final length l ≤ m of the Lanczos basis Ql can become much larger than the number no

of desired eigenvalues, we only require the eigenvectors that correspond to these eigenvalues. This can
be accomplished with a cost O(nol) using inverse iteration on matrix (Tl − µjI), j = 1, . . . , n0 (see [24],
routine xSTEIN).

Clearly, virtually all of the memory required by the proposed algorithm is consumed in storing the
Lanczos basis Ql. Thus, when computing the norms of the rows of matrix QlVno

we would like to avoid
computing the latter matrix explicitly. Observe that we could compute each row at a time, thus essentially
minimizing the amount of the required additional memory. In particular, the i−th row of Ql is multiplied
from the right by matrix Vno

. This is a BLAS 2 type operation. However, with a modest increase in
the required memory, a more efficient BLAS 3 implementation is also possible. We partition the basis Ql

row-wise in bn
l
c chunks of dimension l × l (see Figure 6). Then, at each step l rows of matrix QlVno

are
computed.

We mentioned earlier the possibility to develop an out-of-core code, whereby the Lanczos vectors are
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Figure 6: BLAS 2 (left) and BLAS 3 (right) implementations for computing the rows of matrix QlVno
.

saved periodically to secondary storage and recalled only when needed in a reorthogonalization step. Our
current implementation is not out-of-core. Rather, all Lanczos basis vectors are always kept in main
memory. As it will be shown in the experiments section that follows, in the test cases that we considered
(involving Hamiltonians of dimension around n = 105 and n0 ≤ 496 eigenvalues) memory requirements
never exceeded 5 GBytes. These memory requirements can be considered to be well within the range of
standard high performance workstations and certainly rather small for high end systems, similar to the ones
housed at MSI1. However, for much larger Hamiltonians (say n = O(106)) and thousands of eigenvalues, we
can anticipate a ten-fold increase in memory requirements. For such cases, an out-of-core implementation
of the proposed method will be mandatory.

4 Experiments

We are interested in testing the proposed technique for a wide range of Hamiltonian sizes as well as for a
large number of computed eigenvalues. Note that for a given Hamiltonian H with size n, if the number of
occupied states no of the molecular system under study is large, the dimension m of the Krylov basis has to
become also large. This will inevitably cause an increase in the number of required reorthogonalizations, as
well as increased memory requirements for storing the Krylov basis. We designed the following experiments
in order to explore the limits of the algorithm and compare it with a state-of-the-art eigenvalue method
such as ARPACK [8].

The test systems are silicon and germanium clusters with 10 to 100 atoms. They are constructed as
undistorted fragments of the bulk structures, and therefore retain tetrahedral coordination. The cluster
is passivated by attaching hydrogen atoms. Optical properties of these compounds are well known from
theoretical analysis [4, 25], and they are ideal for the study of small quantum dots. We solve the Kohn-
Sham equations on a regular grid in real space and write the effective Hamiltonian as a n × n matrix
Hij = H(ri, rj) [17]. The grid has n points. Finite difference expansion of the Laplace operator and the
limited range of non-local terms in the pseudopotentials ensure that Hij is a highly sparse matrix.

All experiments were run on an SGI Origin 2000 system, equipped with 12 MIPS R12000 processors.
Each processor had 8 MB cache and the total system memory was 23 GB. Our experiments run on one
cpu and in single user mode. The operating system was IRIX 6.5. PLAN2 is written in FORTRAN 77 as is
ARPACK3. The compilation flags were -TARG:platform=IP27 -r12000 -64 -O3.

1Minnesota Supercomputing Institute (http://www.msi.umn.edu).
2http://crd.lbl.gov/∼kewu/planso.html
3http://www.caam.rice.edu/software/ARPACK/
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Figure 7: Left: Structure of Hamiltonian (n = 17077, nnz=875923) for Si10H16. Right: Structure of
Hamiltonian (n = 97569, nnz=5156379) for Si34H36.

Partial Lanczos ARPACK

no MATVECS REORTHS. MEMORY MB secs MATVECS RESTARTS MEMORY MB secs

28 539 16 72 24 592 27 7.5 58
50 930 35 124 61 1039 31 13.3 187
150 1940 97 259 273 2129 21 40 1111
200 2190 114 292 360 2676 20 53 1847

Table 1: Costs for Partial Lanczos and ARPACK for Si10H16.

In order to select the dimension of the Lanczos basis in ARPACK we conducted a parametric study,
experimenting with different sizes. In line with the choice widely used by users of ARPACK we found that
this dimension is best set to twice the number of sought eigenvalues. We point out that this choice is also
adopted in the popular MATLAB routine eigs, which is an mex interface to the ARPACK library. On the other
hand, for PLAN we let the Lanczos basis to increase until convergence was achieved.

Si10H16 For this cluster (Si10H16) the number of required (algebraically smallest) eigenvalues is neig=28.
Furthermore we conducted experiments for n0 = 50, 150 and 200.

Si30H36 For this cluster (Si30H36) the number of required (algebraically smallest) eigenvalues is neig=86.
Furthermore we conducted experiments for n0 = 100, 150 and 200.

Ge87H76 The number of occupied states for (Ge87H76) is neig=212. Furthermore we conducted experiments
for n0 = 300 and 424.

Ge99H100 The number of occupied states for (Ge99H100) is neig=248. Furthermore we conducted experi-
ments for n0 = 350 and 496.

Figures 7 and 8 illustrate the sparsity pattern of the Hamiltonians for the above clusters.
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Figure 8: Left: Structure of Hamiltonian (n = 94341, nnz=5963003) for the Ge87H76 cluster. Right:
Structure of Hamiltonian (n = 94341, nnz=6332795) for the Ge99H100 cluster.

Partial Lanczos ARPACK

no MATVECS REORTHS. MEMORY MB secs MATVECS RESTARTS MEMORY MB secs

86 1440 36 1098 605 1537 24 131 2877
100 1810 50 1380 907 2164 32 152 4800
150 2880 96 2195 2191 3085 32 229 9993
200 3580 129 2729 3431 3803 30 305 16099

Table 2: Costs for Partial Lanczos and ARPACK for Si34H36.

4.1 Discussion

Tables 1-4 illustrate the results. For PLAN we tabulate the number of Matrix-Vector products (MATVECS),
the number of reorthogonalizations (REORTHS), the amount of main memory (in MBytes) and the run times
(in seconds). It it reminded that the dimension of the Lanczos basis for PLAN is equal to the number of
MATVECS. For ARPACK we tabulate the number of Matrix-Vector products (MATVECS), the amount of main
memory (in MBytes), the number of restarts of the method and the run times (in seconds).

Concerning run times PLAN is roughly 4.5-5.5 times faster than ARPACK. The difference in performance
is particularly evident when large number of eigenvalues are requested. It is important to observe that
although there exists a difference in the number of MATVECS between PLAN and ARPACK, in favor of the
former, this is small and cannot account for the overall difference in performance.

The key is the small number of reorthogonalizations required by PLAN in all test cases (at least twenty
times less than the dimension of the Lanczos basis). Observe that although the dimension of the Lanczos
basis for PLAN is significantly larger than the one used by ARPACK (roughly 6-9 times larger across all test
cases) the Lanczos basis vectors are rarely required by PLAN, due to the small number of reorthogonaliza-
tions. On the other hand, in ARPACK all basis vectors are needed at each restart. Therefore, in our test
cases PLAN incurs far less traffic to memory than ARPACK, which accounts for the difference in performance.

On the other hand, we must point out that should a large number of reorthogonalizations be required
in PLAN, we can expect the difference in performance between ARPACK and PLAN to be diminished or even
reversed. However, our experience with a variety of Hamiltonians, arising from real space discretizations of
different clusters, indicates that PLAN can achieve a five-fold increase of performance compared to ARPACK
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Partial Lanczos ARPACK

no MATVECS REORTHS. MEMORY MB secs MATVECS RESTARTS MEMORY MB secs

212 2710 88 1951 1993 2867 20 306 12145
300 4010 153 2887 4448 4673 25 432 28359
424 5740 252 4132 9804 6059 23 611 51118

Table 3: Costs for Partial Lanczos and ARPACK for Ge87H76.

Partial Lanczos ARPACK

no MATVECS REORTHS. MEMORY MB secs MATVECS RESTARTS MEMORY MB secs

248 3150 109 2268 2746 3342 20 357 16454
350 4570 184 3289 5982 5283 24 504 37371
496 6550 302 4715 13714 6836 22 714 67020

Table 4: Costs for Partial Lanczos and ARPACK for Ge99H100.

across these cases.

5 Conclusion

By focussing on obtaining a good orthonormal basis of the subspace associated with the no lowest eigen-
values of the Hamiltonian rather than individual eigenvectors, the method discussed in this paper can lead
to a significant reduction in arithmetic cost. In a few sample cases, the execution time was close to 6 times
lower than that obtained by a standard implicitly restarted Lanczos procedure, as the one implemented in
ARPACK. This can be achieved by using a Lanczos code with partial reorthogonalization.

One question that remains is whether or not it is possible to utilize the formalism exploited in this
paper in a different approach that will not depend on a large Lanczos basis. It is clear that at minimum
a basis of size no vectors is required. It is perfectly possible to perform the computation with exactly no

vectors in memory. The algorithm for this is the well-known subspace iteration, [9, 14], see also [26] for
related methods, based on minimizing traces. The reason this algorithm is no longer used in practice is
that it is exceedingly slow. As can be seen the main issue is one of trading arithmetic cost for memory cost.
In this paper we showed that if a sufficiently large memory is available, then the overall computational cost
can be drastically reduced.

However, we should point out that not everything has been exploited to reduce memory costs further.
Instead of using Lanczos directly on the Hamiltonian H we could, for example, apply it on π(H) instead
where π is a low degree polynomial whose goal is to speed-up convergence. Preliminary results with this
approach are encouraging.

Acknowledgments This work would not have been possible without the availability of excellent source
codes for diagonalization. Specifically, our experiments made use of the PLAN code developed by Wu and
Simon [23] and the ARPACK code of Lehoucq, Sorensen, and Yang [8].
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