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Abstract

The effect of repeatedly smearing SU(3) gauge configurations is investigated. Six gauge
actions (Wilson, Symanzik, Iwasaki, DBW2, Beinlich-Karsch-Laermann, Langfeld; com-
bined with a direct SU(3)-overrelaxation step) and three smearings (APE, HYP, EXP)
are compared. The impact on large Wilson loops is monitored, confirming the signal-
to-noise prediction by Lepage. The fat-link definition of the “naive” topological charge
proves most useful on improved action ensembles.

1 Introduction

Smearing of gauge-links has been used on many occasions as a powerful tool to reduce the
UV-fluctuations of a gauge configuration [1, 2, 3, 4, 5]. In principle, such a UV-filtering may
be attempted either in the Monte Carlo process itself (by complementing the action with con-
tributions from W 1×2+2×1 and even larger Wilson loops) or in the observable (where replacing
the original links by smeared ones is just the simplest way to define a filtered observable).
Normally, the motivation for the first option is not to tame the noise in standard observables,
but to reduce cut-off effects. Nonetheless, an obvious question is whether there is an interplay
between the action used to generate a pure gauge ensemble and the effectiveness of a smearing
recipe to decrease the UV-fluctuations in a given observable.

Some expectation values depend in a rather sensitive way on the details of the smearing
procedure. As an example, Table 1 contains expectation values of a few Wilson loops without
smearing and after two smearing recipes have been applied. Obviously, the plaquette and larger
Wilson loops take rather different values in these three cases. However, since from the difference
of the rows one may compute the heavy-quark (HQ) force, and such a physical observable is
supposed to be unaltered by the smearing, the induced change in the W (R, T ) must take place
in a coherent manner for all R, T . Obviously, not only the core recipe (e.g. APE, HYP, EXP –
see below) but also the parameters used and the number of iterations will have an impact on
the quality of the result. Basic questions that one may have at this point include:

1 2 3 4 1 2 3 4 1 2 3 4

1 0.5937 0.9509 0.0399
2 0.3836 0.1902 0.9015 0.7551 0.0073 0.0011
3 0.2527 0.1014 0.0471 0.8399 0.6205 0.4551 0.0013 0.0002 0.0000
4 0.1673 0.0553 0.0229 0.0101 0.7843 0.5149 0.3416 0.2357 0.0002 0.0000 0.0000 0.0000

Table 1: Wilson loops 〈W (R, T )〉 with R, T ∈ {1, ..., 4} on a 124 lattice with Wilson glue at
β=6.0 (left), after one HYP-step with α=(0.3, 0.6, 0.75) and SU(3)-projection (middle) or the
same α without any projection (right). Statistical errors range from 1 to 10 in the last digit.
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1. For a given recipe, how can one identify useful combinations of parameter values and
iteration levels, and is there a specific signature of doing “too much” smearing ?

2. Optimizing parameter and iteration level w.r.t. a certain criterion, will the result depend
on the gauge action used, or will it be universal for a given lattice spacing ?

3. Is there a physics reason why some smearing recipes and/or parameters prove more effi-
cient in damping UV-fluctuations than other ?

The plan of this article is to first list and review the actions studied. Then the smearing
procedures are discussed, shifting technical details of the SU(3)-projection to the appendix.
The key physics point is an explicit test in the heavy-heavy case of the Lepage argument which
establishes a relationship between the decrease of the signal in large Wilson loops and the self
energy of an infinitely heavy quark. In order to give a fair comparison of different actions
approximately matched ensembles must be generated and I describe how the associated β-
values have been found with little CPU costs via the local force. With these at hand, I study
of the effect previewed in Table 1, combining all actions and smearing recipes. The result is
that for Wilson loops at fixed lattice spacing the effect of smearing is almost independent of
the gauge action used. Finally, I point out that on sufficiently fine lattices smearing allows for
a cheap definition of the field-theoretic topological charge, most notably on improved glue.

2 Action details

We consider gauge actions involving rectangular Wilson loops up to maximum side length 2.
The action involving nothing but the loop W 1×1 is the one due to Wilson [6]

S1×1 = β
∑

x,µ<ν

1− 1

3
Re trW 1×1

µν (x) . (1)

Under a change of the link Uµ(x) the acceptance is determined by the “local action”

S1×1
loc = −β

3
Re tr

(

S1×1
µ (x)† Uµ(x)

)

(2)

where µ is not summed over and the staple is the sum of all 3-link paths from x to x+µ̂

S1×1
µ (x) =

∑

±ν 6=µ

Uν(x)Uµ(x+ν̂)Uν(x+µ̂)† . (3)

For future reference we define the rescaled Wilson staple S̃1×1
µ = 1

6
S1×1
µ where the prefactor

simply reflects the 6 contributions to the sum in (3).
The class involving the loops W 1×1 and W 1×2+2×1 = W 1×2+W 2×1 has the generic form

S1×2+2×1 = β
∑

x,µ<ν

(1−8c1)
(

1− 1

3
Re trW 1×1

µν (x)
)

+ c̃1
(

2− 1

3
Re trW 1×2+2×1

µν (x)
)

. (4)

Under a change of Uµ(x) the acceptance is determined by the change of (no sum over µ)

S1×2+2×1
loc = −β

3
Re tr

(

[(1−8c1)S
1×1
µ (x) + c̃1S

1×2+2×1
µ (x)]† Uµ(x)

)

(5)

where S1×2+2×1
µ = S1×2

µ +S2×1
µ generates all planar 5-link paths from x to x+µ̂, viz.

S1×2
µ (x) =

∑

±ν 6=µ

Uν(x)Uν(x+ν̂)Uµ(x+2ν̂)Uν(x+µ̂+ν̂)† Uν(x+µ̂)† (6)

S2×1
µ (x) =

∑

±ν 6=µ

Uν(x)Uµ(x+ν̂)Uµ(x+µ̂+ν̂)Uν(x+2µ̂)† Uµ(x+µ̂)†

+
∑

±ν 6=µ

Uµ(x−µ̂)† Uν(x−µ̂)Uµ(x−µ̂+ν̂)Uµ(x+ν̂)Uν(x+µ̂)† . (7)
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The class of actions involving the Wilson loops W 1×1 and W 2×2 has the generic form

S2×2 = β
∑

x,µ<ν

(1−16c2)
(

1− 1

3
Re trW 1×1

µν (x)
)

+ c̃2
(

1− 1

3
Re trW 2×2

µν (x)
)

. (8)

Under a change of Uµ(x) the acceptance is determined by the change of (no sum over µ)

S2×2
loc = −β

3
Re tr

(

[(1−16c2)S
1×1
µ (x) + c̃2S

2×2
µ (x)]† Uµ(x)

)

(9)

where the new staple S2×2 is designed to generate those 7-link paths from x to x+ µ̂ which,
together with Uµ(x)

†, form a 2×2 square, viz.

S2×2
µ (x) =

∑

±ν 6=µ

Uν(x)Uν(x+ν̂)Uµ(x+2ν̂)Uµ(x+µ̂+2ν̂)Uν(x+2µ̂+ν̂)† Uν(x+2µ̂)† Uµ(x+µ̂)†

+
∑

±ν 6=µ

Uµ(x−µ̂)† Uν(x−µ̂)Uν(x−µ̂+ν̂)Uµ(x−µ̂+2ν̂)Uµ(x+2ν̂)Uν(x+µ̂+ν̂)† Uν(x+µ̂)† . (10)

Specific choices for c1 in the W 1×1+W 1×2+2×1 class include (c̃1=c1 unless stated otherwise)

c1 =











−1/12 (c̃1=c1, c̃1=c1/u
2
0) Symanzik (tree-level, tadpole) [7]

−0.331 Iwasaki (RG) [8]
−1.409 DBW2 (RG) [9]

(11)

with u0 ≡ (1
3
Re tr〈W 1×1〉)1/4, while the c2 in the W 1×1+W 2×2 ansatz that I am aware of are

c2 =

{

−1/48 (c̃2=c2, c̃2=c2/u
4
0) Beinlich-Karsch-Laermann (tree-level, tadpole) [10]

−0.538 Langfeld (HQ potential isotropy) [11] .
(12)

From (6, 7) and (10) it follows that S1×2+2×1
µ receives 18 contributions while S2×2

µ is built
from 12 terms. Disregarding the one-third matrix product needed to form the trace in tr(S†

µUµ)
(no sum) and counting only the multiplications for the staple, one gets 6 · 2 = 12 operations
with the Wilson action, while the Symanzik-Iwasaki-DBW2 actions lead to 6 · 2 + 18 · 4 = 84
matrix multiplications and for the Beinlich-Karsch-Laermann-Langfeld actions that figure is
6 · 2 + 12 · 6 = 84, too. From such a counting one expects that the new actions are roughly
a factor 7 more expensive (per sweep) than the Wilson gauge action, but of course the hope
is that this investment pays off by e.g. a better scaling behavior. In any case it is clear that
for the new actions the costs for a single-link update is dominated by the staple. In such a
situation a multihit Metropolis is almost competitive with a heatbath, since 1 or 10 hits bear
almost the same costs and after 10 hits the link is essentially in equilibrium.

A point worth mentioning is the observation that at standard β-values a “direct” overrelax-
ation step in the full SU(3)-group proves remarkably efficient, if properly implemented. With
the Wilson gauge action the current link is proposed to be replaced according to

Uµ(x) −→ U ′
µ(x) = PSU(3){S̃1×1

µ (x)}Uµ(x)
† PSU(3){S̃1×1

µ (x)}, (13)

with S̃1×1
µ defined below (3) and PSU(3) specified in the appendix. Unlike in SU(2) this proposal

must be subject to an accept/reject step. It turns out that at β = 6.0 the acceptance rate in
this overrelaxation step is 99%. However, if we would keep the proposal (13) with the improved
actions, the acceptance rate would degrade severely. Fortunately, the generalized proposal

Uµ(x) −→ U ′
µ(x) = PSU(3){S̃µ(x)}Uµ(x)

† PSU(3){S̃µ(x)}, (14)
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staple inside tr(.) Wβ=6.0 Sβ=4.439 Iβ=2.652 DBW2β=1.047 BKLβ=4.729 Lβ=0.796

(2) 0.99 0.84 0.68 0.55 0.96 0.83
(5), c1 = −1/12 0.99 0.99 0.99 0.99 0.96 0.83
(5), c1 = −0.331 0.99 0.99 0.99 0.99 0.96 0.83
(5), c1 = −1.409 0.99 0.99 0.99 0.99 0.96 0.83
(9), c2 = −1/48 0.99 0.84 0.68 0.55 0.99 0.99
(9), c2 = −0.538 0.99 0.84 0.68 0.55 0.99 0.99

Table 2: Acceptance probabilities in the “direct” overrelaxation step if the proposed flip (13, 14)
is w.r.t. the same staple as used in the gauge action (diagonal entries) or another one. These
figures are specific for the “overlap” projection procedure [13] as detailed in the appendix. The
rates have been determined from 100 sweeps on a 84 lattice, after thermalization.

with the rescaled staple (normalization1 such that S̃µ(x)→1 if formally the links tend to unity)

S̃µ(x) =







[(1−8c1)S
1×1
µ (x) + c̃1S

1×2+2×1
µ (x)]/[6−48c1+18c̃1] forW 1×1+W 1×2+2×1

[(1−16c2)S
1×1
µ (x) + c̃2S

2×2
µ (x)]/[6−96c2+12c̃2] forW 1×1+W 2×2

(15)

works much better. Typical acceptance rates in this “direct” overrelaxation step at standard
β-values (those determined in section 5 to produce matched ensembles) are collected in Table 2.
The rates on the diagonal are satisfactory; it is hence advantageous to flip in a quenched SU(3)-
overrelaxation step with respect to the “effective” staple (15) of the gauge action used.

The data in this article have been generated with such a mixture of 4 “direct” overrelaxation
steps per 4-hit Metropolis update, separating configurations by 10 sweeps. While this is prob-
ably not quite competitive with the standard Cabibbo-Marinari update algorithm [12], it has
the great advantage of being easy to implement and represents a reasonable choice whenever
the CPU-costs are dominated by the measurement.

3 Smearing details

The smearing prescriptions considered in this article will be dubbed “APE”, “HYP” and
“EXP”, and they are defined as follows.

The APE procedure [1] replaces (in smearing step n) the existing set of links {U (n−1)} by

U (n)
µ (x) = PSU(3)

{

(1−α)U (n−1)
µ (x) +

α

6
S(n−1)
µ (x)

}

(16)

where S(n−1)
µ (x) denotes the 1×1 staple (3) built from {U (n−1)} links. The parameter α governs

the relative weight of the fluctuation and the projection PSU(3) may be applied optionally.
The HYP procedure has been introduced in [2] and defines the replacement via

V̄µ,νσ(x) = PSU(3)

{

(1−α1)U
(n−1)
µ (x) +

α1

2

∑

±ρ6=(µ,ν,σ)

U (n−1)
ρ (x)U (n−1)

µ (x+ρ̂)U (n−1)
ρ (x+µ̂)†

}

Ṽµ,ν(x) = PSU(3)

{

(1−α2)U
(n−1)
µ (x) +

α2

4

∑

±σ 6=(µ,ν)

V̄σ,µν(x) V̄µ,νσ(x+σ̂) V̄σ,µν(x+µ̂)†
}

U (n)
µ (x) = PSU(3)

{

(1−α3)U
(n−1)
µ (x) +

α3

6

∑

±ν 6=(µ)

Ṽν,µ(x) Ṽµ,ν(x+ν̂) Ṽν,µ(x+µ̂)†
}

(17)

1With PSU(3) in (14) as given in the appendix the rescaling is irrelevant, but with an improper one it matters.
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where I have taken the liberty to interchange α1 ↔ α3 compared to [2], i.e. our α1 denotes the
fluctuation weight in the first step. Again, α1, ..., α3 will be considered free parameters and the
projection will be treated as an option.

The EXP procedure has been introduced in [4] (there the resulting links are called “stout
links”) and is defined through (no summation over µ)

U (n)
µ (x) = exp

( α

2

{

[S(n−1)
µ (x)U (n−1)

µ (x)†−U (n−1)
µ (x)S(n−1)

µ (x)†]− 1

3
tr[...]

} )

U (n−1)
µ (x) (18)

where, in principle, any staple could be used, but we shall restrict ourselves to the simplest
choice, Sµ(x) = S1×1

µ (x). Upon expanding the exponential, one realizes that this is the re-
summed version of the ansatz (8) in Ref. [3]. The key feature of such a construct is that the
resulting links U (n) are differentiable w.r.t the input links U (n−1); hence the recipe (18) may be
used in a HMC [3, 4], which is not the case for (16, 17) unless the projection is abandoned.

4 Relationship with reduced HQ self energy

The naive view is that substituting the “thin” links in a Wilson loop with 4D-smeared “fat”
links replaces the static quark by a quasi-static one which is allowed to rattle inside the 3D-cube
perpendicular to the HQ line. However, as discussed in [14], at least for the time-like links in
the Wilson loop W (R, T ) it creates a legitimate – and in fact better – HQ action.

If the spatial links are subject to 3D smearing, the operator insertion takes place at a specific
time and the interpretation in the transfer matrix formalism goes through. If the spatial links
are subject to 4D smearing, positivity may be lost (cf. the short-distance behavior in Fig. 1,
top), but one can still learn something about the smearing process. If the interpretation [15]
that smearing reduces the divergent self energy (δm ∝ 1/a) of the heavy quark is correct, one
expects that in the ansatz for the expectation value of a Wilson loop at smearing level n

W (n)(R, T ) ≃ const e−µ(n)(R+T )−σ(n)RT (19)

the perimeter coefficient gets reduced while the squared string tension stays invariant, i.e.

µ(n) < µ(n−1) (20)

σ(n) = σ(0) . (21)

A simple way to test the hypothesis (20) is to look at the T -dependence of an elongated
(R≪T ) Wilson loop with a fixed R small enough that the perimeter part dominates in (19).
Such an object may be seen as the 2-point correlator of a “frozen” QQ-state (missing its
bound-state dynamics), hence a change of its effective mass will only reflect a change of the
HQ self energies. Fig. 1 (top) shows Meff(T )=

1
2
log(W (R, T−1)/W (R, T+1)) with fixed R=3,

without smearing and after one step of APE/HYP/EXP smearing, respectively. Obviously, the
effective mass plateau is lowered [more so under HYP than under EXP or APE] and there is
a correspondence between this self energy reduction and the factor by which the error-bar is
decreased and hence the plateau elongated – we shall come back to this point below.

To test the hypothesis (21) it is useful to look at the symmetric diagonal Creutz ratio [16]

χ(x) ≡
√

χ+(x, x)χ−(x, x) (22)

χ+(R, T ) =
W (R, T )W (R+1, T+1)

W (R+1, T )W (R, T+1)
≃ e−σ

χ−(R, T ) =
W (R, T )W (R−1, T−1)

W (R−1, T )W (R, T−1)
≃ e−σ

5
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Figure 1: Top: Meff(T ) =
1
2
log(W (R, T−1)/W (R, T +1)) vs. T at R= 3 after one step with

projection and αAPE = 0.5, αHYP = (0.3, 0.6, 0.75), αEXP = 0.2. The thick links at the initial
and final time-slice result in a loss of overall positivity. For the relation of plateau-height and
-length cf. Fig. 2. Bottom: −log(χ(x)) vs. x without smearing and after one step as above. The
data stem from 500 configurations on a 123×18 lattice with the Wilson gauge action at β=6.0.
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Figure 2: Log of noise over signal in the Wilson loop shown in Fig. 1 (top), without smearing
and after one step of APE/HYP/EXP-smearing. The full line is a fit to the HYP-data with
range [10, 14]; the slopes of the dashed lines represent the prediction (23) based on the ∆EQQ

taken from Fig. 1 (top) at T =7. The error on the error is defined as as ((j2−j4)
2+(j4−j6)

2)1/2

with jn the jackknife error at binlength n. Configurations and parameters are those of Fig. 1.

which (for large x) is independent of µ. In Fig. 1 (bottom) −log(χ(x)) vs. x is shown, both for
the original loop and after one APE/HYP/EXP-step. The squared string tension is invariant
under smearing, but the error-bar changes. HYP reduces it more aggressively than APE and
EXP (for the parameters used in Fig. 1, the parameter dependence is addressed below).

In summary, Fig. 1 suggests that the reduced self energy of the quasi-static quark (i.e. its
divergent piece δm∼1/a) is responsible for the improved signal-to-noise ratio after smearing.

In fact, this discussion can be made more precise by virtue of an argument due to Lepage [15].
The key idea is rather than determining the variance of a correlator C(x) = 〈O†(x)O(0)〉 a
posteriori from its fluctuation one could estimate it in the MC via 〈O†(x)O(0)Õ†(0)Õ(x)〉.
Here, a different symbol has been chosen for the “copy” creation and annihilation operators
to exclude additional unwanted Wick contractions, i.e. the idea is that they couple to different
“flavors” (which, apart from the flavor number, have identical properties). In our case this
noise-squared estimator consists of two Wilson loops, with opposite orientation, on top of each
other. Asymptotically, it is dominated by two flux-tubes of length zero, i.e. by a state with
mass 2V (0) = 0 for unitary links. Thus, since the original correlator falls of with an effective
mass EQQ and its noise is asymptotically constant, the Lepage argument [15] predicts

signal

noise
(t) = const e−E

QQ
t (23)

and Fig. 2 shows that this expectation is indeed well satisfied. It is clear that the specific
recipes and parameters in Figs. 1,2 are irrelevant – the Lepage argument is a general one.
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original APE HYP EXP
W β=6.00 0.0576 (60) 0.0550(10) 0.0513(06) 0.0550(07)
S β=4.40 0.0692(115) 0.0594(21) 0.0555(13) 0.0589(16)

β=4.50 0.0494 (75) 0.0462(15) 0.0452(09) 0.0474(11)
β=4.60 0.0343 (51) 0.0388(10) 0.0376(07) 0.0398(07)

I β=2.65 0.0557 (72) 0.0552(16) 0.0527(11) 0.0559(12)
β=2.75 0.0396 (43) 0.0444(10) 0.0429(07) 0.0450(08)
β=2.85 0.0371 (35) 0.0384(10) 0.0371(08) 0.0391(09)

DBW2 β=1.01 0.0605 (53) 0.0604(15) 0.0602(12) 0.0628(13)
β=1.04 0.0466 (34) 0.0504(10) 0.0504(10) 0.0528(11)
β=1.07 0.0469 (31) 0.0491(12) 0.0478(09) 0.0502(10)

BKL β=4.70 0.0644(105) 0.0566(19) 0.0537(12) 0.0573(14)
β=4.75 0.0384 (97) 0.0527(19) 0.0500(11) 0.0532(13)
β=4.80 0.0645 (75) 0.0486(14) 0.0439(08) 0.0469(10)

L β=0.79 0.0562 (63) 0.0551(17) 0.0541(11) 0.0562(12)
β=0.80 0.0529 (53) 0.0505(13) 0.0490(09) 0.0512(10)
β=0.81 0.0430 (48) 0.0482(12) 0.0477(08) 0.0502(09)

Table 3: Details of the tuning process to get approximately matched lattices. Given is the force
F (R, T )= 1

4
log(W (R+1, T−1)/W (R+1, T+1)·W (R−1, T+1)/W (R−1, T−1)) on a 84 lattice

for R = T = 4. The columns APE/HYP/EXP give the result after one step with the same
parameters as in Fig. 1. The errors are from a jackknife with binlength 2, using 800 (W) or 200
(all other actions) configurations per run, after discarding 10 configurations for thermalization.

5 Matching boxes via the local force

Our goal is to compare various smearing recipes on lattices generated with either the Wilson
gauge action or an improved one. In order to give a fair comparison, these lattices should be
matched, i.e. have the same spacing a in units of a physical scale. Ideally, this is done by
computing the HQ potential, but rather than moving on to compute various R×T “thin-link”
Wilson loops, I propose (specifically for the present investigation) two shortcuts.

The first one is to avoid the T →∞ extrapolation and to determine the force F (R, T ) =
1
2
(∂R+∂∗

R)Meff(R, T ) with Meff(R, T )= 1
2
log(W (R, T−1)/W (R, T+1)) at one fixed entry, and

I choose R=T =4. Since there is no T →∞ extrapolation, one can stay in a relatively small
volume and the finite-volume effect will be the same for all final (tuned) lattices.

The second shortcut is even less innocent. In order to get precise values for F (4, 4), one
is tempted to use smeared links. From the observation of Ref. [2] that (one step of) smearing
affects (for R > 2) mainly the additive constant in the HQ potential, one expects F (4, 4) to
be unchanged, since its arguments are large enough. This is indeed the plan; albeit with the
proviso that all three smearing recipes will be used to have a cross check.

Hence, the problem with measuring only F (4, 4) is that the fixed time separation does not
allow to select a definite state (ideally the groundstate), and the mixture of states that one has
at T =4 may vary with the gauge action and the type of link used at T =0. Therefore, having
several “thick” links as creation and absorption operators helps, since they couple differently
to excited states and one may hope that the problem is detected, if it is numerically sizable.

Table 3 gives details of the tuning process aimed at finding β-values which (approximately)
match a quenched βW =6.0 with the Wilson gauge action. The sections “I” and “BKL” refer
to the tree-level choice in (11, 12), i.e. c̃1=c1 and c̃2=c2 throughout.
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original APE HYP EXP
S 4.459 (44) 4.427(30) 4.439(17) 4.429(22)
I 2.555(298) 2.632(42) 2.652(31) 2.643(37)

DBW2 0.999(276) 1.026(28) 1.047(14) 1.041(14)
BKL — 4.720(13) 4.729(12) 4.726(12)
L 0.790 (14) 0.788(06) 0.796(06) 0.791(09)

Table 4: β-values needed with the Symanzik/Iwasaki/DBW2/Beinlich-Karsch-Laermann/
Langfeld actions to have an approximately matched lattice w.r.t. β = 6.0 with the Wilson
gauge action, from interpolating data of Table 3. The HYP-values will be used subsequently.

By linearly interpolating, for each action, the simulated couplings one finds the matched
(according to the local force at R = T = 4 criterion) β-values. Results are given in Table 4,
without smearing in the first column (where the error is largest) and with one APE/HYP/EXP-
step in subsequent columns. The unsmeared matched β-values are compatible with any smeared
counterpart, but also the agreement among the smeared ones is satisfactory. We rate this as a
sign that our interpolated matched couplings are essentially correct. Obviously, this does not
invalidate the theoretical concerns discussed above, but apparently our statistical precision is
not good enough to really suffer from this.

In [17] Necco gives an interpolation formula for log(r0/a) versus β for the Iwasaki- and the
DBW2-action, analogous to the one in [18] for the Wilson gauge action. Solving them, one
finds that a lattice with βW=6.0 is matched via βI=2.635 and βDBW2=1.034 when employing
one of the RG-motivated actions, respectively. My βI = 2.652(31) and βDBW2 = 1.047(14) are
consistent. In spite of the limitations mentioned above one may thus feel confident that the
β-values listed in Table 4 yield lattices which are reasonably (say: better than to 10%) matched.

6 Effect on square Wilson loops and the Creutz ratio

Whether an improved gauge action is worth the investment is usually decided on the basis of
the cut-off effects involved. Another practically relevant criterion might be whether such an
action is amenable to noise-reduction techniques like the APE/HYP/EXP-smearing discussed
above. Obviously, physical observables should depend as little as possible on the details of the
smearing process, e.g. the parameters employed.

Following Ref. [4], we shall first have a look at a few Wilson loops, comparing the effect of
changing the parameter(s) and/or the iteration level.

To this end I have prepared 100 lattices of size 124 for each gauge action, using the β-values
of the HYP column in Table 4. After this is done, one applies the smearing recipes discussed
in section 3, varying the parameters in a reasonable range. For HYP I choose to concentrate
on the direction of the “canonical” α-value introduced in [2], i.e. I consider six α-values,

APE : α ∈ {0.20, 0.40, 0.60, 0.80, 1.00, 1.20}
HYP : α ∈ {0.25, 0.50, 0.75, 1.00, 1.25, 1.50} · αstd

HYP with αstd
HYP = (0.3, 0.6, 0.75)

EXP : α ∈ {0.05, 0.10, 0.20, 0.35, 0.55, 0.80}
(24)

where I deviate from Ref. [2] in my notation αHYP=(αstep 1, αstep 2, αstep 3). I choose to apply 2n

smoothing steps between successive measurements, resulting in the smearing levels

ntot ∈ {1, 3, 7, 15} . (25)
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Figure 3: For each gauge action W1×1,W2×2,W4×4 is plotted versus the parameter number in
(24), 0 indicates the unsmeared starting point. Throughout 1 smearing step (APE, HYP with
projection) is applied. Best W1×1-parameters are αAPE≃0.7, αHYP≃(0.3, 0.6, 0.75), αEXP≃0.2.
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Figure 5: W1×1,W2×2,W4×4 versus the smearing parameter in the APE and HYP procedure
without projection, using 1 (left) or 3 (right) iterations, on Wilson backgrounds. Note the
difference to the first graph in Fig. 3.

Fig. 3 shows, for each action, the Wilson loopsW1×1,W2×2,W4×4 after 1 smearing step (with
projection back to the gauge group) as a function of the smearing parameter. The plaquette
gets increased for small α reaching a maximum around αAPE ≃ 0.7, αHYP ≃ αstd

HYP, αEXP ≃ 0.2;
for larger parameters it decreases again. This holds for the larger Wilson loops, too, albeit
the maximum may be shifted towards larger α (for APE and HYP). What all recipes have in
common is that excessive parameters drive all loops to 0 (disorder) rather than to 1 (order).

Fig. 4 is the same after 7 smearing steps. For small α all Wilson loops are driven more
efficiently to 1 than before, but beyond a certain “critical” parameter the descent to disorder
is more pronounced, too. For APE and HYP this culminating α is barely changed compared
to the previous figure, for EXP it is smaller.

Fig. 5 demonstrates a dramatic change in the behavior of any Wilson loop under smearing,
if the projection in the APE or HYP recipe is abandoned. The graphs have been obtained with
Wilson glue, but other actions yield the same type of monotonic decrease in α.

Fig. 6 shows the Wilson loops W1×1,W2×2,W4×4 (with projection in the APE and HYP
cases) versus the iteration level for the second set of parameters in (24). With such small
α-values one always observes a benevolent pattern.

Fig. 7 shows that with somewhat larger parameters (throughout the fifth one out of the set
(24)) iterating the smearing is not really a good idea. Note that these parameters are to the
right of the maximum in Fig. 3, for “sub-critical” α-values no such breakdown has been seen.

It is worth emphasizing how little the smearing “profile” depends on the gauge action, for
matched ensembles. A maximum value of P =〈W1×1〉might be used as a criterion to “optimize”
the APE/HYP/EXP-parameters (the rather similar values with 1 and 7 iterations are found in
the captions). Of course, such a criterion is arbitrary, but at least the result is universal, i.e.
(to a good extent) independent of the gauge action used (for fixed physical spacing).

More interesting than the behavior of the Wilson loop itself is how the mean and the error
of a physical observable derived from it evolve under smearing, i.e. whether different recipes
yield consistent results. For that aim let us consider the squared string tension σ =− log(χ)
defined via the symmetric Creutz ratio (22), using the same gauge configurations as before.

Fig. 8 plots − log(χ(5)) versus the parameter α in (24) after 3 smearing steps. Moderate
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Figure 6: For each gauge action W1×1,W2×2,W4×4 is plotted versus the number of smearing
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Figure 8: For each gauge action the squared string tension σ=− log(χ(5)) is plotted versus the
parameter number in (24), 0 indicates the unsmeared starting point. Throughout 3 smearing
steps have been applied. Data with negative central values have been removed.
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Figure 9: For each gauge action the squared string tension σ=− log(χ(5)) is plotted versus the
number of smearing steps, 0 indicates the unsmeared starting point (where improved actions
give a smaller error than the Wilson action). Throughout the second parameter in (24) is used.
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parameters suffice to tremendously reduce the noise and and different recipes prove consistent
within errors. However, as the smearing parameter is raised beyond a reasonable level (typically
something of the order of the “critical” parameter that achieved the maximum in the plaquette),
the error may grow again. When repeating this with a higher iteration level basically the same
behavior emerges, although the onset of systematic distortions with large parameters gets more
pronounced. There are two more points that deserve a comment. First, I find it astonishing
that the projection-free APE and HYP recipes manage to decrease the error in a physical
observable, even though we have just seen that they drive the plaquette to 0 rather than 1.
Does this indicate that the naive interpretation is wrong, and what one gets is not disorder but
some type of anti-ferromagnetic ordering ? Obviously, this calls for further investigation, but it
seems non-trivial to address this issue in a gauge-invariant manner without invoking extreme
requests for CPU time. Finally, comparing the unsmeared values, one notices that all improved
actions have an error bar which is smaller than the one with the Wilson action. Hence an
improved action may lead to a smaller error (with identical statistics) in a gluonic observable,
but it is clear that this is not competitive with the effect of smearing.

Fig. 9 plots − log(χ(5)) versus the number of smearing steps for the second parameter in the
set (24). Here, a “plateau” includes 1 to ∼7 iterations – further out consistency is lost. With
a larger parameter a similar picture emerges, but the “plateau” ends earlier. Numerically, a
value σ≃0.06(1) corresponds to a string tension

√
σ≃490(40)MeV, if a−1=2GeV is assumed.

Hence a statistical accuracy of 8% can be achieved with 100 lattices of size 124.
In summary, these figures indicate a trade-off situation between a statistical error on one

side and a systematic error on the other. Smearing reduces the former, but when applied in
excess (either through too large a parameter or too many iterations) it introduces clear artifacts.
It would be interesting to test how much of these can be attributed to the loss of locality. The
good news is that a detailed optimization of the parameters is not needed – smearing proves
beneficial as long as one can explicitly demonstrate that one is in the two-fold plateau; i.e. as
long as a even larger parameters and/or higher iteration levels do not alter the result.

7 Effect on field-theoretic topological charge

Knowing that smearing reduces the UV-fluctuations and given the relation between UV-fluctua-
tions and large renormalization factors and/or cut-off effects, one may ask whether smearing
reduces the latter. An observable from which one can learn something in this respect without
having to take the continuum limit is the “naive” field-theoretic topological charge

qnai[U ] =
1

4π2

∫

dx tr(F12F34 − F13F24 + F14F23) =
1

32π2

∫

dx tr(ǫµνσρFµνFσρ) . (26)

I have implemented (26) with Fµν defined as the hermitean part of −iUµν = −iI+aFµν + ...
where Uµν(x) is the mean of the four plaquettes in the (µ, ν)-plane with starting point x. The
goal is to see what happens if one replaces Uµν by one which is constructed from smeared links.

Using the same 100 lattices (for each action) of size 124 as in the previous section, I decided
to stay with a single parameter fixed at near-optimal values (according to theW (1, 1) criterion),
αAPE=0.5, αHYP=(0.3, 0.6, 0.75), αEXP=0.2 and three smearing levels ntot ∈ {1, 3, 7}.

Fig. 10 shows the time evolution of the bare topological charge (26) after 7 smearing steps.
The APE/HYP varieties without projection tend to drive qnai[U ] to zero for any gauge back-
ground; these symbols are shown only for the Wilson action. The results of all other recipes
tend to cluster near non-integer values n/Z with n∈Z and Z a function of the smearing recipe
(the order is 1<ZHYP<ZAPE≪ZEXP for our parameters, i.e. HYP and APE with projection
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Figure 10: Time history of the bare topological charge (26) on the matched 124 lattices after
7 smearing steps in the definition of Fµν (parameters as in Fig. 11). The projection-free APE/
HYP-varieties always give a number very close to zero (omitted in the improved action panels).
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Figure 11: Histograms of the semi-renormalized topological charges after 3 (light) and 7 (dark)
steps of HYP-smearing. The appropriate Z-factors have been applied, but not the “cast-to-
integer” operation. The smearing parameter is αHYP=(0.3, 0.6, 0.75).
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Figure 12: Correlation of the unrenormalized topological charges after 1 step of APE- or HYP-
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require only moderate rescaling). This suggests a renormalization factor Z such that Zq[U ]
tends to cluster near integer values. Define – for a given smearing recipe and a given definition
of Fµν in (26) – the charge renormalization factor Z as the solution of

min
Z>1

(χ2) where χ2 =
∑

U

(

Z qnai[U ]− nint(Z qnai[U ])
)2

. (27)

Having Z at hand, one may define the renormalized “naive” field-theoretic topological charge

qren[U ] = nint(Z qnai[U ]) (28)

which, by construction, is an integer. Employing such a definition one sees well-defined charge
histories in each graph of Fig. 10. Obviously, we recover the standard wisdom that – at a fixed
physical lattice spacing – the Wilson gauge action accomplishes topology changes more easily
than the Symanzik, Iwasaki and DBW2 action (in this order). The same phenomenon happens
for the W 2×2-actions; the larger c2 the more difficult is it to tunnel into another sector.

Coming back to the definition (27, 28), the prime question is whether the assigned charge
qren[U ] is really a property of the gauge background U . Fig. 11 contains the histograms of Zq
after 3 and 7 HYP-steps (Z depends both on the smearing level and the gauge action). Here,
the valleys between the peaks are sufficiently depleted, and the cast-to-integer operation in (28)
makes sense. Unfortunately, there is no real valley structure at the levels 0 and 1. Hence the
question is to which extent such an integer-valued charge qren[U ] is a genuine function of the
background U and to which extent it is an artifact of the smearing procedure.

The key to this issue is to compare different smearing recipes. Fig. 12 relates the unrenor-
malized APE- and HYP-charges after 1 and 7 smearing steps. In the former case there is some
correlation between the unrenormalized qnai[U ], but there is no clustering whatsoever. In the
latter case, i.e. after a few more smearing steps, the two rescaled Zqnai cluster predominantly
near the same integers. With 100 configurations in each ensemble, on 87/98/100/100/97/100
the 7-APE-step and 7-HYP-step charges agree after renormalization. Thus, for a−1 ≃ 2GeV
and an improved gauge action the two charges agree almost on a configuration-by-configuration
basis and this suggests that such a charge is indeed a function of the background U .

Still, this does not mean that the renormalized “naive” field-theoretic charge (27, 28) is as
much a clean concept as the fermionic charge defined through the index of the Dirac operator
qind = 1

2
tr(γ5D) [19, 20] with D any Dirac operator that satisfies the Ginsparg-Wilson rela-

tion [21]. However, (27, 28) has the virtue of being cheap in terms of CPU-time; the O(3...7)
smearing steps cost less than the hundreds of cooling steps that have been used in the past, and
results are competitive with those of the cooling era (see e.g. Ref. [22] for a nice example). An
issue that deserves further study is whether too much smearing eventually destroys the charge.

8 Summary

The goal of this work has been a comparison of the newly proposed EXP smearing [4] against
the well established APE and HYP procedures [1, 2] on various gauge backgrounds.

I started by scanning through (part of) the space of parameters and iteration levels to see
which combinations drive the plaquette and larger Wilson loops to 1 rather than 0 and to see
whether the choice of the gauge action would have a big influence. The result is that standard
parameters around αAPE ≃ 0.65, αHYP ≃ (0.3, 0.6, 0.75), αEXP ≃ 0.15 prove nearly optimal, at
least if O(1..3) iterations are performed. Obviously, the plaquette criterion is rather arbitrary,
but for a−1≃2GeV the result is universal, i.e. independent of the gauge action.
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The only physics point of this paper has been an explicit test of the Lepage argument in
the heavy-heavy case. This argument establishes a connection between the signal-to-noise ratio
of an observable involving a static quark and the HQ self energy, and our Fig. 2 shows that it
passed the test with flying colors. Hence a future optimization strategy tailored to HQ physics
might be to reduce the HQ self energy as much as possible. The key insight is that in the case
of large Wilson loops various smearing recipes differ in the signal generated, not in the noise.

Next I evaluated the squared string tension defined via the Creutz ratio at R=T ≃0.5 fm.
The main finding is that any smearing recipe drastically reduces the noise and a detailed tuning
of parameters and/or iteration level is neither needed nor useful. Instead there is a broad two-
dimensional plateau in which changing the two does not significantly alter the central value or
the error. Only at absurdly high levels systematic effects get visible, presumably due to the
reduced locality in terms of the original links. In summary, moderate smearing suggests itself
as a simple and efficient means to damp the UV-noise in standard gluonic observables.

Finally, I have focused on the “naive” field-theoretic topological charge. Here, the power of
any smearing recipe depends a lot on the gauge action used. The good news is that the lattice
spacings where the smearing details implicit in the definition (26, 27, 28) prove irrelevant are
accessible; for the Iwasaki action it is around a≃0.1 fm, for other actions not much below.

Acknowledgments: It is a pleasure to acknowledge useful correspondence with Silvia Necco as
well as the benefits from a discussion with Rainer Sommer, Michele Della Morte and Francesco
Knechtli on the Lepage argument. Computations were done on a PC at DESY Zeuthen. This
work has been supported by the DFG in the framework SFB/TR-9.

Appendix: Projection details

Here I spell out the projection procedure introduced in [13]. For related ideas see [23, 24].
The idea is to define the projection step Vµ(x) → Wµ(x) via the overlap-type recipe

Wµ(x) =
Vµ(x) [Vµ(x)

†Vµ(x)]
−1/2

[det(numerator)]1/3
(29)

which leads to an eigenvector decomposition problem of the hermitean operator X≡V †V .
In principle, one might find the eigenvalues x1, ..., x3 of X (following Cardano) by forming

a = −tr(X)

b = X11X22 +X22X33 +X33X11 −X12X21 −X23X32 −X31X13

c = − det(X)

p = b− a2

3

q =
2a3

27
− ab

3
+ c

and continuing with

if p = 0 then u1 =











0 if q = 0

(1
2
+ i

√
3
2
) 3
√
q) if q > 0

3
√−q if q < 0











and

x1 = u1 − a
3

x2 = (−1
2
+ i

√
3
2
)u1 − a

3

x3 = (−1
2
− i

√
3
2
)u1 − a

3

(30)

else u1 = 3

√

− q
2
+ 2

√

q2

4
+ p3

27

v1 = − p
3u1

and

x1 = u1 + v1 − a
3

x2 = (−1
2
+ i

√
3
2
)u1 + (−1

2
− i

√
3
2
)v1 − a

3

x3 = (−1
2
− i

√
3
2
)u1 + (−1

2
+ i

√
3
2
)v1 − a

3

(31)
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where the roots in (31) must be taken over the body of complex numbers, though the result
x1, ..., x3 is real.

A practical problem emerges whenever X is close to unity (what is generic after a few
smearing iterations), as the naive implementation cannot separate the eigenvalues any more.
In order to reduce numerical extinction, one should implement

Y =
1

2
(V †−1)(V −1) + h.c. + (V †−1) + (V −1)

(

= X−1
)

(32)

rather than X and trade, for the same reason, the quantities a, b, c for alternative ones designed
to involve only “small” numbers in the case X≃1:

a3 = −Y11 − Y22 − Y33

(

= a+3 ≃ 0
)

(33)

b3 = Y11Y22 + Y22Y33 + Y33Y11 − Y12Y21 − Y23Y32 − Y31Y13 − 2a3
(

= b−3 ≃ 0
)

(34)

c1 = −Y11Y22Y33 − Y12Y23Y31 − Y32Y21Y13

+Y11Y23Y32 + Y22Y31Y13 + Y33Y12Y21 − b3 − a3
(

= c+1 ≃ 0
)

(35)

p = b3 −
a23
3

+ 2a3 (36)

q =
2a33
27

− 2a23
3

+ a3 −
a3b3
3

+ b3 + c1 (37)

before one proceeds with (30, 31), where again y1 = u1 [+v1] − a3
3
, etc. should be formed rather

than x1, x2, x3. Knowing the eigenvalues (minus 1) with good precision, it is easy to find the
eigenvectors of X by solving the characteristic equation

Y vi = yivi (i ∈ {1, .., 3}) (38)

and after normalizing them one forms

W =
V

3
∑

i=1
vi

1√
yi+1

v†i

[det(numerator)]1/3
. (39)

Of course this costly projection procedure is only needed if the argument is potentially far
away from SU(3); whenever V is known to be close to SU(3) (e.g. in the MC a newly proposed
link is projected to SU(3) before it is subject to the accept/reject-test, but here the deviation
is just due to round-off errors) one may project via an approximate procedure, e.g. via

V −→ V ′ =
3

2
V − 1

2
V V †V , V ′ −→ V ′′ = V ′

(

1− 1

3
(det V ′ − 1)

)

. (40)

Finally, it is worth mentioning that the same eigenmode decomposition technique (simplified
by a=0) has been used in the matrix exponentiation in the EXP recipe (18).
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