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Abstract 

The simuIation of core collapse supemovz calls for the time accucate solution of the (Euler) eqtrations for inviscid hydrodynamics coupled 
with the equations for neutrino transport. The time evdution is carried out by evolving h e  EuIer quaions explicitly and the neutrino transport 
equations implicitly. Neutrino transport is modeled by the multi-group B o l t m m  transport (MGBm and the multi-group flux limited diffusion 
(MGFLD) equations. An implicit time stepping scheme for the MGBT and MGFLD equations yields Jacobian systems that necessitate scaling 
and preconditioning. Two types of preconditioners, namely, a sparse approximate inverse (SPAI) precondltioner and a preconditianer based on the 
alternating direction implicit iteration (ADI-like) have been found to be effective for the MGFLD and MGBT formulations. This paper compares 
these two preconditioners. The AD1-like pmonditibner performs well with b o ~  MGBT and MGFtD systems. For the MGBT system tested, the 
SPAI pmconditioner did not give competitive results. However, since the MGBT system in our experiments had a high condition number before 
scaling and since we used a sequential platform, care must k taken in evaluating these resuIts. 
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The subject of our paper is the preconditioning of linear sys- 
tems resulting from a specific physical problem, which happens 
to be a problem of the greatest interest in astrophysics, namely 
simulating core collapse supernovre, The numerical simula- 
tion of this problem is beset with physical, mathematical, and 
computational challenges: a potpourri of nuclear and particle 
physics, hydrodynamics, radiation transport and general rela- 
tivity; a mathematical fomula~ion coupling the equations wf 
iwiscid hydrodynamics in three spatial dimensions with the 
neutrino transport equations in six-dimensional phase space; 

INI046551$ - see fmnl martcr Q 2006 Elsevier B.V. All rights reserved. 
dai:L0.1016/j,cpc.2006.O5.002 



and the need for ~omputational techniques that address effi- 
ciency md scalability on high p~onnance platforms. (In this 
context, "scalabIeJ'" roughly means that a method remains ef- 
fective as the system size increase.) Of the two concerns of 
efficiency md scalability, it is efficiency that we stress hsre. 
Although scalability is of overriding importance, it is outside 
the scopeof our paper even though %e still comment on it from 
time to h e .  

A majm bottleneck in most simIations is the numerical s& 
lution of linear systems. An efficient, scalak s01utio11 method 
becomes imperative. In the cse  that the solution method to 
solve a Iinear system is an iterative method, efficiency means 
that scaling and preconditioning are necessary. "Scaling- (not 
to be coofirsed wifa "scalaility") as used here means muIt@li- 
cation of the matrix rows by a scale factor, a form often called 
'"row scaIing'" We note thai "scaling" can also be in the form of 
column scaling, or both row and column scaling, 

Appropriate preconditioning yields a linear system that is 
equivalent to tBe original, though with better numerical prop- 
erties. The ponditianer one chooses is arrived at through a 
process parrly scientific and partly a matter of personal tkte 
and intuition, 

In this  port, we made use ~f two system matrices, one de- 
rived from the multigmup Bolmann mspnrt  WGBT) equa- 
tion (set work by D' Azavedo et al. [I]) and the other from the 
ntul~&oup flux Iimitd diffusion (MGKD) equation (s* work 
by Swesty et al. [2]). The matrices resulted from discrething 
the MGBT and MGELD eqmtibns in one s p h d  dinmsian. 
We note that these two matrices result from linear algebraic 
systems whose variables are ordered differently. In the MGBT 
case, the variables a ~ e  ordered according to the Mazacappa 
scheme (see [3]) and, in the MGFLD case, nmrding to the 
Swesty scheme (see [;?I). We also nate that the variables, in 
sow cases, comspmd to different physical realities. (Details 
regarding the equations from which the matrims are derived 
may be found, for the MGBT case, in [4,5], and [3]. and, for 
lhe MGFLD caw, in [2,6], and [7] .) 

In the iterarive soIutim of systems using either of these ma- 
trices, two preconditioner types were employed and compared: 
a sparse approximate inverse (SPAI) preconditioner (used in 
Swesty et a 1  PI) and a preconditioner based on the dtemat- 
ing direction implicit [iterative) mehod (used in D' Amedo et 
al, [I]), hewafter refme4 to an ADI-like precoraditioner or 
wen, more simply, an AD1 premfidifioncr. We shdl comment 
briefly on each of these pmonditioners. 

The AD1 methad originad in the 1950s, with strong con- 
nections to the solution of the dbcrete Poisson equation. The 
AD1 method is aa optimal solution method but only under spe- 
cific conditions hat the discr~te Puisson matrix happens to sat- 
isfy (cf. 18, pp. 209-2491), For more general mtrices, the AD1 
method has evolved into a preconditioning method. It is one of 
a number of welI-known preconditioners, another of which is 
the incomplete LU decomposition WU). 

Over time, bardware improvements have resulted in archi- 
tectural designs unfricndIy to those ;ereconditioners h a t  make 
use of bjar~gular solves, which is characteristic of many of the 
classic preconditimets such ns ILU and, in particular, ADI. 

These hiangular solves are costIy sequential opedons that be- 
cQme a bottleneck on parallel platforms (cf. [I, p. 8181). This 
bottleneck opens up, to some extent, under pressure &om in- 
genious usera intent on parallelizing the solution of triangular 
systems. A discussion of issues involved in desmng parallel 
~oiolven for triangular systems may be faund in [9] and [la]. Cer- 
rain successful solvers m d e  usWf sielecrive imrm bee P 11) 
rrr pattitiorred inverses (see 1 1 21). 

An SPAI pwonditionm (see [ I  3)) is a matrix that appmxi- 
maks the inverse of the system matrix: no solutions of triangu- 
lar syskrns are required, avoiding this major bottleneck. Other 
advmbgeous properties of the typical SPA1 preconditiomr are 
(I] computation in parallel of the eIernets of each row or coI- 
m; and (2) sparsity. The field of SPAI premndirioners is un- 
dergoing liveIy development with many recent contributions for 
which references [14-181 are a sampling A good, overall dis- 
cussion may be found in  [ 1 91. 

This paper reports on Tests comparing the performance of 
SPA1 and ADI-like precondiiioners applied m two manices 
each representing a different class of equations. Studies on the 
use of the two preconditioners with a specific type of matrix 
have k n  reported independentIy, namely, the use of an AD1 
preconditioner with MGBT matrices in [l] and the use of SPAI 
pconditioners wwith MGFLD matrices in [2]. We studied the 
prfarmance of the two precorrditioners with a matrix of the 
type other than the one used in the published reports. The re- 
sult$ of our experiments show that AD1 perfom remarkably 
well on a sequential platform with either type of m&k. Tet, 
we also believe that SPA1 is a viable algorithm in the solution 
of large scale sysem, specially on paralIeI platfoms. 

This paper is arganizd as follows: Section 2 contains an 
ovewiew of the physics arrd also presents the stfircture of the 
matrices resulting from [he discretization of the MGBT and 
MGKD equations. Section 3 describes the SPAI and AD[-Eke 
precanditioners and the iterative metha& u d ,  and Section 4 
dacnies thenumerical experiments. Sections 5 and 6 describe 
the. results and conclude t h a  the SPA1 and ADI-like precondi- 
timers perform well for both types of matrices alrhough in the. 
MGBT case, careful analysis is requued to interpret the results. 
The mnclusion also oudim specific issues to address in future 
research. 

We note that the MGBT system in our experiments was nu- 
rnericlIy singular. Scaling appears to improve the condition but 
&es not replace a numericalIy singuIar sysfern wifh a numeri- 
cally nonsingular system. 

2. Physics overview 

Massive stars (with masses > ]OMa where Mo denoteathe 
mass of the sun) that have exhausted much of heir nudmr fuel 
end their live? in a mr~tsmphic grgvitatiod collapse. The evo- 
l ~ q n  of these stars may be explained, brieff y, in the following 
way (Mezzacappa et al. [20]). One may envision a pre-collapse 
supernova pragenitoi star as an onion-like structure, in  which 
the innermost iron care is surrounded by layers of silicon, oxy- 
gen, carbon, helium and, finally, hydrogen in the outermst 
layer. At any given instant, fusion reactions convert hydrogen 



to helium, helium to carbsn, and d on. As a result of the* 
reactions, the mass of the ifon c m  increases and this causes 
an increase in the gravitational force and consequently an in- 
crease in the density of the material in tha iron core. Prior to 
coIlapse the mre of the star approximately balances the inward 
pull pf gravity by the outward pressure due to electron quan- 
tum rnechani~d degeneracy. As the densig in the core slowly 
increase, the electrons and protons combine to form eIectrsn 
neutrinos and mwwons. This depletes the density of elkctrons, 
and thm reduces the e l m n  pre$sure, until the gravitational 
fi d d  completely overwhelms the outward pressure g&en t and 
the core collapses. 

When he core collapses, material from the outer edges of the 
core begins to fall inwards, thereby increasing the m e  density 
at a rapid rate. S in~e the consthwnts af the coreare nucleons, 
which are ferrslions, they cannot k squeezed into smaller val- 
urns indefinitely. Ooing so would vioIa& the Pauli exclusion 
principle. At slightly beyond the point whkp the wre deasity 
approaches nuclear density levels, the core bnurices, hereby 
generating a shuck wave which magates  from the innex re- 
gions of the core towards the outer regions. As matter is corn- 
pressed to high densities, electrons combine with protons from 
the dissociated nuclei to m a t e  electron neutrinos that escape 
from the coIlapsing cVme. The escaping neutrinos carry away a 
large fraction (approximately 99%) ofthe emgy m1eased dur- 
ing t k  collapse of the iron core. 

The: propagating shock heats the matter and dissociates 
heavy n d e i  into nnboutld neutrmg aid paims. In & process 
of doing so, the shcck expendkanergy and weakens and wmtu- 
ally rhe shock s l l s  prim to reaching the edge of the collapsing 
iron mpe. The core of the star behind the stalled shock is made 
up of the prda-neutron stm, consisting af the unshocked ma- 
teial inside the shack formation radius aad the mantle of hot 
gases above the prato-neutron star and below the stalIed shock 
front. As the mantle cools, three types of neutrinos, namely the 
elwtron, aau, and muan neutrinos and their antineutrino mun- 
te~parts are p r o d u d  by thermally induced ph-productidn re- 
actions. It is conjectured (see [?I]) that a tiny fraction of these 
mlewed neutrinos and antineutrinos are mpabsaikd by the 
mantle, thereby re-energizing t h ~  stalled sho~k,  It is thought 
that the newly invigorated shwk begins to move outwad once 
again as a result of the neutrino heating. Once the shock wave 
reaches the edge of the silicon Iayer the sfrock can initiate ax- 
pIodve burning of Iighter dements into heavier elements, These 
burning reacrians are cxathermic and provide. lhe energy needed 
to propel the shack outward through the. remaining layers of the 
star. 

The time scales of the progenitor evolution prior to collapse 
are on the urder of tens of b i b n s  of years during which all the 
hydrogen in the inner layers of the star is converted to hew- 
ier elements. In contrasr, the callapse OF the iron care of the 
progenitor and the ~00liIIg of the pmtc-neutron star via neu- 
trino emission spans a time of about ten secwlds, The goal of 
current computational research is to simulate this last rerr sec- 
onds of the star's life. 

Several computational chal1anges drive the simulation. The 
time and length scales required to caprure the physics ih the 

finat phase of the star span many orders of magnitude. The 
grid remluti~n, required to account for the length, and time 
wales, and the coupIing of the hydradynamics and neutrino 
transport equations is affected by two major factors, namely, 
( I )  the time scale for neutrino radiation transport being much 
small= than the hydradynamic time scale, and (2) the disrrib- 
ution of ~u tr inos  being, in general, a function of three spatial. 
one spectral, and two directional coorclinates. The solution of 
the radaticn hydrodynamics (RED) equations in three spatial 
dimensions will requite the evolution of the MGBT equation 
for each eriergy (sp&al) and angular (directional) location in 
the six-dimensional phase space' For the specific cam of an 
isotropic radiation field, the neutrino distribution is not a func- 
tion of the directional coordinates. This case also allows h e  
representation of the radiation flux as a @muon of the gm- 
diem of the radiation energy density, leading to the MGFLD 
app~oairnntion, Accordingly, a RHD simulation in three spatial 
dirnerrsions would require evolution of fhe MGFLD equations 
in a four-dimwsiorrd phase space. The tim scales for hydio- 
dynamics and radiation transport are of the order of the ritio af 
the time taken by sound to crass a computational cell tothe time 
taken by light to cross the same computational cell. Since the 
speed of sound at these extremely high densitim and tempera- 
tures is about a terrth of the speed of light, he time.scde of the 
equations of hydrodynamics is about tea tim t?ie tirne,scale of 
the radiation transport equations. ConsequentlyQ the system of 
R W  quatjons is evoIved by the operator splitting technique 
where every step d t h ~  evolution pmess  cmsisfx of an evo- 
lu~ion of the equations of hydrodgdcs  by an explicit time 
stepping scheme followed by an implicit time evolution of ei- 
ther MGBT or MGFLD equations, 

2.1. The structue efthe matrices 

As a first step in developing a worfcing simulation, we km- 
sider the relatively simple case of a spheri~ally syrnrnetri~ star. 
Tlre gavming equations for hydrodynamic transport and neu- 
trino transpart involve one spa~tial dimension (see 12,201) along 
the rdia l  direction. For this s a t ,  the MGBT equations are in 
three-dimensional phase space and the MGFLD equations are 
fa two-dimensional phase space, and storing the Jacabians does 
nor wmd the m m w y  adable on present-day computers. 
This aspect helps focus a~tentign on the pmfarmaace af precon- 
ditionep per se by side-stepping the questions associated with 
storing the Jncobim versus generating the elements of the Jam- 
bian on the fly, which is an issue that must be addressed in  the 
simulation of the MGBT and MGFLD equations in higher spa- 
tial dimensions, h additioq, as noted earlier? the performance 
d iterative methods with the precopditioners oxamined in this 
paper is based an sequential computation and application of me 
precunditiosers, 

The sparsity pattern of the MGFL,D and MGBT rnattriees is 
showh in Fig. 1. (Btsausb of differing sizes of the maoices, 
the sparsity patterns are not identical, but are close enough that 
acsifgle p a m  will suffice for ow purposes. Details are given 
below.) In this pattern, the dense diagonal blocks represent cou- 
pling buween the various energy groups of neutrinos in the 
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Fig. I. The sparsity pattern of MGDT and MGFLD matrices. The dense diag- 
onal bI&s represent coupling between the various energy groups, angles, or 
v-S pairs at the same spatial twatlon. Thc two outlying diagonals denote cou- 
pling between neighboring spatial lmt ions.  The major differenu: between the 
two types of syslems is In the site or the cenler Mocks (34 x 34 for MGBT 
matrix and 20 x 20 for MGFLD matrix). 

MGFLD case and coupling between angle and energy groups 
in the MGBT case at a given spatial location. The two out- 
lying bands denote coupling between neighboring spatial grid 
points, where the number of bands, in general, depends on the 
spatial discretization stencil used. Spatial derivatives were ap- 
proximated by the second-order central difference operator in 
both the MGFLD and MGBT cases. 

2.2. Conditiotl numbers and scaling 

The condition numbers of the Jacobians resulting from both 
systems of equations range from approximately lo5 for the 
MGFLD matrix to approximately for the MGBT equa- 
tions. We reduced the condition number of both types of matri- 
ces by row-scaling the ekrnents, that is, by dividing all elements 
of a row by a preselected nm-zero positive scalar. 

Scaling is, in fact, a preconditioning, but we choose not to 
describe it that way because we do it one time onIy and then 
appIy, within the iterative method, a general preconditioner to 
the scaled matrix. It is these general preconditioners that are the 
subject of this report. 
h our experiments, we made use of one MGBT matrix (the 

30-1 matrix in [ l ]  consisting of 102 x 102 blocks each of size 
34 x 34) and one MGFLD matrix (the 256 block matrix in [2] 
consisting of 256 x 256 blocks each of size 20 x 20) as sam- 
ples representative of these two classes of matrices. These two 
matrices were chosen because they contain approximately the 
same number of non-zeroes. Table 1 shows the effect of row- 
scaling these two matrices by the magnitude of largest element 
in the row. The condition numbers were estimated via Matlab's 
condition number approximation function for sparse matrices. 
(In the case of the MGFLD matrix, since it was diagonally dom- 
inant, the largest element was on the main diagonal.) 

Some comments on the algebraic properties of the MGBT 
matrix are appropriate. This "30-1" matrix corresponds to early 

Table I 
A comparison of the estimated condition numben of the MGBT and MGFLD 
matrices. The MGFLD matrix was diagonally dominant and scaled by the mag- 
ntude of elements on the main diagonnl. The MGBT matrix was row-scaled by 
the magnitude of the Iargest element in each row 

MGBT (30-1 ) MGFLD (256 black) 

core bounce with complex physics, spedficalIy, to a typical 
timestep around the time of bounce of the inner core: at super- 
nuclear densities. Larer timesteps would contain non-zero con- 
tributions from neutrino pair creation and annihilation, which 
are strongly suppressed (but calculated) in this earlier matrix. 
The maximum norm (also known as the l ,  norm) of the first 
32 rows of each 34 x 34 diagonal dense black varies from ap 
proximately to lo-'. The maximum norm of the 33rd 
row is approximately l0I9, however, and that of the last row 
is approximately 1. The large difference in magnitude between 
the first 32 row vectors and the last two row vectors is the rea- 
son for the large condition number of the MGBT matrix. Based 
on the way it was constructed, this "30-1" matrix is not andyti- 
cally singular, although very ill-conditioned before row scaling, 
and could therefort be described as being numerically singular. 

The large condition number of the MGBT matrix mans, 
however, that care must be taken in  interpreting the solution 
of the scaled system, which is nonsingular. For, let P be the 
soIution of the (nonsingular) scaled system. Then P is also a so- 
lution of the original sysrem, but there is no unique solution, 
due to numerical singularjty. The correct solution cannot result 
from algebraic laws alone; any solution must also be validated 
by the physical principles and the physical constraints out d 
which the problem m s e .  

3. Preconditioners 

The efficient iterative solution of a linear system, Ax = b 
where A E RnX" and x ,  b G Rn , usually requires precondrtion- 
ing. 

The preconditioned matrix equation, in its mast general 
fom, is 

where 

and ML', ~ i '  E Rn x n  denote left and right preconditioners 
respectively. The goal of using preconditioners is to obtain a 
preconditioned system A i  = 6 that has better numerical proper- 
ties. In general, the guiding principles for developing precondi- 
tioners are often based more on intuition than on mathematical 
rigor. Whatever the intuitive idea, a standard desideratum is that 
M;' ML' x A - I +  In the numerical experiments described be- 
low, preconditioners are limited to just the left preconditioner, 
is., ~i~ = I .  Thus, subsequent discussion will focus only on 
ML' which will be referred to as M-' . 



3. I .  SPAI preconditioners 

A sparse approximate inverse (SPAI) precanditioner (see 
[ 13,191) is a sparse matrix M-', which approximates A-' in 
some sense. Tht sparsity p a t h  of M- ' is chosen according to 
some algorithm. One cornrnonly available algorithm to choose 
rhe sparsity pattern is that used in software developed by Grote 
e t d . (see €221). Andher algorithm employed in the numerical 
experiments reported here, is to predetermine the locations of 
non-zero elements of t h ~  preconditioner based on sQme heuris- 
tic, such as the one described further belaw. 

Once the sparsity pattern of the SPA preconditioner has 
been determined, the elements of he  matrix M-' ae computed 
by minimizing ] ~ M - ' A  - I l lF ,  where 11 . 1 1 ~  is The Embenius 
norm (see (23, p. 551 or [24, p. 81). Minimizing [I M-' A - 
is equivalent to minimizing [I ( M - l ] I ~  - e j  112 for each row of 
the preconditioner, with j =; 1,2,. . . . n and e j  the unit vator 
with 1 as the jth component. Minimizing the 11 2 112 norm is a 
least s q m  problem. In practice, since least: squares mIvers 
assume the unknown to be aright vector of the system of linear 
equations, we obtain M-' by minimizing I I A ~ ( M - ' I $  - ejll2. 
where consists of those rows of A corresponding to the de- 
sired sparsity pattern in row j of M - I  . 

The goal of SPAT is to o b ~ i n ,  in a cost-effective way, an 
approximate inverse that is sparse and dso L an effetive pre- 
conditioner. A sparse preconditioner would decrease the corn- 
putation time per step, and an effective precmditianer would 
decrease the number af iterations needed for an iterative solver 
to achieve m,nvergence. 

In some cases, the true inverse is observed to p x s s  a pat- 

Grme package gave a b u t  the same convergence results as h e  
SPAI preconditioner with t h ~  predetermined Widiagonal pat- 
tern mentioned below. In  the case of the MGBT matrix, the 
Bmnard-Grote SPAI preconditioner performed poorly after the 
first few iterations and even started to diverge. We attribute this 
poor perf~rmance to the numerical singularity of the original 
MGBT matrix as well as to the lack of a sharply defined spar- 
sity pattern of dominant values in the actual inverse. 

The ADI-lib preconditioning developed by DvAzevedo at 

al. I], can be summarid in two steps: (I] solve a block di- 
agonal system, neglecting he spatial coupling, and (2) solve 
the tridiagonal system, involving the spatial differencing terms, 
while neglecting the dense diagonal bIocks (refining anl y the 
main diagand). 

The systsm matrix A (see Fig. 1) cad be decamposed in 
a pmicular way into the sum of matrices B, C, and &,k, 
as follows. Given a value for the center block size m, B is 
the matrix consisting of the mth diagonal below the main di- 
agand of A, C is the matrix consisting d the mth diago- 
nal above the main diagonal of A, b l m k  = A - B - C, and 
T = diaganalCA) + B + C. The first step of this precondition- 
ing consists of solving the system &tockzl = rk where rk is 
the residual rk = b -  AX^ and the second step invoJves solving 
the system Tz2 = pk where pk = rk - Azl. Together 21 and 
g form the cormtian to obtain a new value of 5. (The Mat- 
lab code can be found in [I]. Por a detailed discus$ion on AD1 
methods, see Chapter 7 of [8].) 

tern d dominant values (as was determind in the MGFLD 
matrices studied in 1211, such as along diagonals equally spaced 4. Iterative solvers 

from the main diagonal. (We use the term dominant here to re 
fer to any of several values in a row, each of whose magnitudes 
is greater than the sum of the magnitudes of the other, non- 
dominant values in that row.) In a case such as this, it seems 
reasonable to force the SPA1 sparsity pattern to reflect the pa- 
fern of the ~ l e  inverse. For our numerical experiments, we used 
a predetermilred sparsity panem based on an examina~on of the 
actual inverses of the two malricts. We call such. an SPA1 pre- 
conditioner a "predetermined spasity pattern" preconditioner. 
Computing the inverse is not, in general, practical, but tests in 
[2] haw shown that a sparsity pattern coming from the inverse 
of a wall matrix can b successfidly applied to a larger matrix 
of the same class. 

We dso used the Barnmd-Grote SPA1 to obtain 
SPA1 matrices for bofh the MGBT and MGFLD man-ices. This 
package uses a heuristic to determine the optimal number of 
elements per row based an an input tolerimce, and then corn- 

In the numerical experiments described helaw, .the systems 
of equations were solved by using three iterative methods: 
the fixed-point iteration (used in [I]), the generalized minimal 
residual method QGMRES), and the Biconjugate Gradient Sta- 
bilized (BiCGS tab) method. 

The fixed-point iteration is r k  = & - Axk where xk = xk- 1 + 
M - I  rk- 1 and M-' was the cbasen precanditiwer. This is also 
known as Richardson's method (see 125, p. 36 I]). Both W- 
RES and BiCGStab ate Krylov subspace methods. GMRES 
computes a new approximation at each step such that. the norm 
of the residual is minimized. The BiCGStab algorithm is a 
variant of the Conjugate Cfrxliefit Squared (CGS) algorithm in 
which a residual vector is minimized over a different subspace 
than for GMRES. Details can be found in standard references, 
such as Saad I%] or Greenbaum 1261. Also see Press et d. [27] 
for a general introduction. 

puks a matrix with this sparsity pattm. Determining the spar- 
5. Numerical experiments 

sity pattern, however, incurs an overhead that is absent when a 
sparsity pattern algorithm was used with a very 

As noted earlier, in our experiments we made use of row- 
limited number of dements Ce.g., 3 or 5 )  per %OW- In the case of 
the MGFLD matrix, tbeSPAI preconditioner from the Barnard- scaled versions of one MGBT matrix (he  30-1 matrix in [I]) 

and one MGFLD matrix (the 256 block in 121) as represents- 

See littpJI~~~w.sarn.mth,~hz.~~~cclspil. 

tive samples of the two classes of matrices studied in El] and 
in [2], We report the resulb of these specific representative 
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Fig. 2. The sparsity paitemof thedwnirrmt entries ofarepresentative 
blcck along the diagonal of rhe inverse of the MMGFLa mairk 

matrices and note, in pa~$cular, fhat the inversion of these ma- 
trices produces the solution of the l i n e a r i d  trampart problem 
at a single rimestep taken horn extended temporal evolurZon of 
MGBT and MGFLD systems coupled to hydrodynmics, The 
couplings exhibited in each of these matrices span a variety 
of thermodynamic conhtions a d  are cal~ulated from realis- 
tic physical lnodels of the interactions of the neutrino radiation 
field with the stellar matter. Although the specific magnitude 
and structure of the coupling patterns will change if other time 
skps are chosen for e x h a t i o n ,  we: edpect that the resul-cs we 
obtain here are representative for a large pmion of t h ~  coupled 
physics simulations. 

An examination of the actual inverse of the MGFLD rnawix 
showed Ehat the dqrhan t  values were on diagonals spaced at 
20 element intervals on either side of the main cliagonal (Fjg, 2). 
Various SPAI precandftioners, all with a predetermined sparsity 
pattern, were wad in 121 with &£&.rent mmbms of diap- 
ads. The preconditioner that generally gave> the best results in 
our tests was a tridiagdnal matria with a main dagona1 a d  
addidma1 diagonals spaced 20 dements away on either side 
of the main diagonal. (Henceforh, we refer to this matrix as 
the tridiagonal SPA1 matrix.) The ttidiagonal SPA1 matrix per- 
formed as well as a penudiagonal and a %diagonal SPAI matrix 
(bath with the same diagonal spacing), and the computational 
overhead was cheaper. As noted earlier, the convergence using 
the SPA1 preconditioner from the Bmard-Grote package was 
quite similar to the convergence using the tridiagonal SPAI pre- 
conditioner. 

The actual inverse of the MGBT &x, in contrast, did nDt 
reveal a pronounced pattern that could be used to cconsmct 
SPA1 preconditioners (Fig. 31, unlike the case for the inverse of 
the MGFLD matrix. An SPAI preconditiontx obtained fmrn the 

Bama~d-Rote package w-as applied to the MGBT matrix. With 
default vduw for the input tolerance, this preconditioner caused 
the convergence to stagnate after a few iterations. In contrast, 
using rhe predetermined sparsity pattern of a 34 x 34 block di- 
agonal matrix for our SPAI preconditioner 1 4  to convergence, 
afthoug h at a slower rate than the ADLLike ~ m d i t i o n e r .  

Figs. 4(aj44d) compare the rwub of using uidiapnd SPAI 
and ADIIike preconditioning on the MGFZD matrix with GM- 
RES , BiCGStab, and Richardson's fixed-point iterative mzth- 
ods. For our numerical ex~erirnents. the GMRES restart para- 
meter was 30 (the MMab abdchurlt). A n  AoI-like pmnditimer 
for MGBT matriew, as described in [I], was effdve. The 
same p~onditioner, suitably modified, was also effective for 
the MGFLD matrix we investigated. In addition, we made use 
of the Barnard-Grote SPAI package to obtain an alternative 
SPAT matrix. It gave cesuIts comparable to lhose from the tridi- 
agonal SPAI prmnditioner at the cost of additional overhead 
to determine the sparsity pattm. 

Since a flop count is dependent oa the efficiency of an al- 
gorithm's irnplementatim and CPU timing is dependent on a 
platform's user load, we decided to make use of two invdan t 
measures: 'the number of matrix-vector products C'matvecs'') 
and the number of iterations. Both matvecs and iteratians are 
invariant across platforms and whether m n i n g  an algorithm on 
a sequential platfom or in parallel. 

Figs. 5(a)-(5d) compare ADI-like and block diagonal SPA1 
precanditianing on the MGBT matrix also with GMRES, 
BiCGStab, and fixed-paint iterakiotxs. The plds show the ap- 
parent superiority of ADZ-lib precodtianiag. However, much 
of this apparent superiority derives from the tridi agonal solve 
as was noted in Swesty et al. [21 where similar results were ab- 
mined without the use of the costly block preconditioning step. 

We note that the convergence behavior on display in Fig. 5 
shows stagnation in the convergence af the SPAI pecorrdi- 
timed MGBT system. Stagnation could be related to numerical 
singularity, rather than the SPAI preconditiotrer per se. 

Cenin  ather features are important to note: 

For MGFLD maerices, SPA1 is a tridiagonal matfix whereas 
for the AD1 preconditioning matrix dense sub-blocks re- 
quire a cast!~ processing to implement. 
Fm the MGB T case, the SPA1 preconditioner has, however, 
dense sub-block$, but no preprocessing is required. 

Fig. 3. The sparsity pattern of the dominant entries jn the upper kfi comer, mid-matrix, and lawcr right &r of rhe invprqe of the MGBT matrix. 
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Fig.4.Tl1~ prformance of !he SPAI and ADI-hk pre~onditionm for the 256 x256 block Jacobim rnauix from the M G K D  equations (labeled as naxp256-I.CkO>. 
f he plats compare the reduction in the midual vems thenumber of Itemtionsand thenumberof matrix-vector p r o d m  ("matvevecs"). 

SPAI parameters have ro be computed prior to beginning determind pattern SPAI preconditianer and on1 y the relativeIy 
any iterative solution process, whereas the AD1 precondi- minor overhead of solving, for each row of the preconditioner, 
timer requires. no comparabk parameters but does require a k x n least square$ system where n i s  the number of non-zeros 
an LU factorization. in that row of the preconditioner and k the number of values 

7. Conclusions 

Our primary objective was to compm, on a sequentid plat- 
form, the use of two different pteconditioners applied to lin- 
ear systems involving two different mawises related to similar 
physical phenomena. As has already been nos, the original 
MGET and MGKD matrices, although similar in size and 
sparsity, were significantly different in conditioning, but the 
scaled matrices used in our tests were quite similar i n  their con- 
ditioning. We see our results as providing motivation for addi- 
tianal work addressing issues beyond the scope of this project, 
in pariicuIar, how an efficient impkmtation of the algorithms 
and the preconditioners on a paraI1eI machine wouId vary the 
results. 

taken from the corresponding rows of the systern matrix. Pre- 
determined patterns, when they are identifiabie, lead 10 lower 
sst-up and overhead costs, in camparison with hthe work needed 
for the LU factorization of the dense diagonal blocks, which are 
necessary for the ADI-like preconditioning. 

Our tests do show the apparent success of using ADI-like 
pxonditioning for both MGBT and MGFLD maffices (wing 
the schemes mentioned in Section I for ordefirig the variables). 
Far the MGBT matrix, tbe use of W SPAI precanditioner m- 
sults in a stagnation or very slow convergence, in comparison PO 
the use af the ADT-li ke preconditioner. For the MGFLD matrix, 
however, the SPA1 peconditioner did not stagnate, but con- 
verged steadily, yet at a somewhat slower rate than with the 
ADI-like preconditianer, na mamr w h i ~ h  of the two measure 
ments of matvecs or iterations was used. 

Figs. 4 and 5 do not reflect the set-up and overhead rime The steady convergence leads us, therefore, to suggest that, 
required m wanpute the SPA1 precmditioner. But these set-up for an MGEL;D matrix, the definite superiority of ADI-like pre- 
and overhead times are, in fact, quite dm sin& there is no canditianing oyer SPA1 is still incondwive. One of the reasons 
cost associated with determining the sparsity pattern of a pre- for this statement is the inherent advantage an parallel plat- 
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f ig .  5. The performance of rhe SPA1 and ADI-like preconditionem for the 34 k 34 bldJaoobian matrix from the MGBT equations (lobeled as 30-1). The plots 
compare the reduction in the residual versus the number ellterarioas and the number of matiik-vettot prbdu~ts ("rnatvecs"). 

forms in the mu1tiplication of matrices, a feature of SPAI pre- 
conditioning, as compared to the backward and forward solves 
needed to implement ADI-like preconditioners, even with irn- 
proved parallel implementations. This potential savings is not 
apparent in Figs. 4 and 5 and, we suggest, is one topic for fu- 
ture investigation. 

We also believe our results encourage further studies with 
matrices of different sizes to address questions related to the 
scalability of the two preconditioners with either type of ma- 
trix. Some scalability tests were reported in [2, pp. 380-3831 
for SPAI preconditioners and three sizes of MGFLD matrices, 
md these tests show essentialIy he same number of iterations 
needed for convergence for a11 three sizes of matrices. Further 
studies are needed with ADI-like preconditianers on MGFLD 
matrices and with the use of bath precarlditiarrers on similarly- 
sized MGBT matrjces. 
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