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Abstract

The simulation of core collapse supernova calls for the time accurate solution of the (Euler) equations for inviscid hydrodynamics coupled
with the equations for neutrino transport. The time evolution is carried out by evolving the Euler equations explicitly and the neutrino transport
equations implicitly. Neutrino transport is modeled by the multi-group Boltzmann transport (MGBT) and the multi-group flux limited diffusion
(MGFLD) equations. An implicit time stepping scheme for the MGBT and MGFLD cquations yiclds Jacobian systems that necessitate scaling
and preconditioning. Two types of preconditioners, namely, a sparse approximate inverse (SPAT) preconditioner and a preconditioner based on the
alternating direction implicit iteration (ADI-like) have been found to be effective for the MGFLD and MGBT formulations. This paper compares
these two preconditioners. The ADI-like preconditioner performs well with both MGBT and MGFLD systems. For the MGBT system tested, the
SPAI preconditioner did not give competitive results. However, since the MGBT system in our experiments had a high condition number before
scaling and since we used a sequential platform, care must be taken in evaluating these results.
® 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The subject of our paper is the preconditioning of linear sys-
tems resulting from a specific physical problem, which happens

T to be a problem of the greatest interest in astrophysics, namel
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simulating core collapse supernova. The numerical simula-
tion of this problem is beset with physical, mathematical, and
computational challenges: a potpourri of nuclear and particle
physics, hydrodynamics, radiation transport and general rela-
tivity; a mathematical formulation coupling the equations of
inviscid hydrodynamics in three spatial dimensions with the
neutrino transport equations in six-dimensional phase space;
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and the need for computational techniques that address effi-
ciency and scalability on high performance platforms. (In this
context, “scalable” roughly means that a method remains ef-
fective as the system size increase.) Of the two concerns of
efficiency and scalability, it is efficiency that we stress here.
Although scalability is of overriding importance, it is outside
the scope of our paper even though we still comment on it from
time to time.

A major bottleneck in most simulations is the numerical so-
lution of linear systems. An efficient, scalable solution method
becomes imperative. In the case that the solution method to
solve a linear system is an iterative method, efficiency means
that scaling and preconditioning are necessary. “Scaling” (not
to be confused with “scalability”) as used here means multipli-
cation of the matrix rows by a scale factor, a form often called
“row scaling”. We note that “scaling” can also be in the form of
column scaling, or both row and column scaling.

Appropriate preconditioning yields a linear system that is
equivalent to the original, though with better numerical prop-
erties. The preconditioner one chooses is arrived at through a
process partly scientific and partly a matter of personal taste
and intuition.

In this report, we made use of two system matrices, one de-
rived from the multigroup Boltzmann transport (MGBT) equa-
tion (see work by D’ Azevedo et al. [1]) and the other from the
multigroup flux limited diffusion (MGFLD) equation (see work
by Swesty et al. [2]). The matrices resulted from discretizing
the MGBT and MGFLD equations in one spatial dimension.
We note that these two matrices result from linear algebraic
systems whose variables are ordered differently. In the MGBT
case, the variables are ordered according to the Mezzacappa
scheme (see [3]) and, in the MGFLD case, according to the
Swesty scheme (see [2]). We also note that the variables, in
some cases, correspond to different physical realities. (Details
regarding the equations from which the matrices are derived
may be found, for the MGBT case, in [4,5], and [3], and, for
the MGFLD case, in [2,6], and [7].)

In the iterative solution of systems using either of these ma-
trices, two preconditioner types were employed and compared:
a sparse approximate inverse (SPAI) preconditioner (used in
Swesty et al. [2]) and a preconditioner based on the alternat-
ing direction implicit (iterative) method (used in D’ Azevedo et
al. [1]), hereafter referred to as an ADI-like preconditioner or
even, more simply, an ADI preconditioner. We shall comment
briefly on each of these preconditioners.

The ADI method originated in the 1950s, with strong con-
nections to the solution of the discrete Poisson equation. The
ADI method is an optimal solution method but only under spe-
cific conditions that the discrete Poisson matrix happens to sat-
isfy (cf. [8, pp. 209-249]). For more general matrices, the ADI
method has evolved into a preconditioning method. It is one of
a number of well-known preconditioners, another of which is
the incomplete LU decomposition (ILU).

Over time, hardware improvements have resulted in archi-
tectural designs unfriendly to those preconditioners that make
use of triangular solves, which is characteristic of many of the
classic preconditioners such as ILU and, in particular, ADL

These triangular solves are costly sequential operations that be-
come a bottleneck on parallel platforms (cf. [1, p. 818]). This
bottleneck opens up, to some extent, under pressure from in-
genious users intent on parallelizing the solution of triangular
systems. A discussion of issues involved in designing parallel
solvers for triangular systems may be found in [9] and [10]. Cer-
tain successful solvers make use of selective inverses (see [11])
or partitioned inverses (see [12]).

An SPAI preconditioner (see [13]) is a matrix that approxi-
mates the inverse of the system matrix: no solutions of triangu-
lar systems are required, avoiding this major bottleneck. Other
advantageous properties of the typical SPAI preconditioner are
(1) computation in parallel of the elements of each row or col-
umn; and (2) sparsity. The field of SPAI preconditioners is un-
dergoing lively development with many recent contributions for
which references [14-18] are a sampling. A good, overall dis-
cussion may be found in [19].

This paper reports on tests comparing the performance of
SPAI and ADI-like preconditioners applied to two matrices
each representing a different class of equations. Studies on the
use of the two preconditioners with a specific type of matrix
have been reported independently, namely, the use of an ADI
preconditioner with MGBT matrices in [1] and the use of SPAI
preconditioners with MGFLD matrices in [2]. We studied the
performance of the two preconditioners with a matrix of the
type other than the one used in the published reports. The re-
sults of our experiments show that ADI performs remarkably
well on a sequential platform with either type of matrix. Yet,
we also believe that SPAI is a viable algorithm in the solution
of large scale systems, especially on parallel platforms.

This paper is organized as follows: Section 2 contains an
overview of the physics and also presents the structure of the
matrices resulting from the discretization of the MGBT and
MGFLD equations. Section 3 describes the SPAI and ADI-like
preconditioners and the iterative methods used, and Section 4
describes the numerical experiments. Sections 5 and 6 describe
the results and conclude that the SPAI and ADI-like precondi-
tioners perform well for both types of matrices although in the
MGBT case, careful analysis is required to interpret the results.
The conclusion also outlines specific issues to address in future
research.

‘We note that the MGBT system in our experiments was nu-
merically singular. Scaling appears to improve the condition but
does not replace a numerically singular system with a numeri-
cally nonsingular system.

2. Physics overview

Massive stars (with masses > 10Mq where Mg denotes the
mass of the sun) that have exhausted much of their nuclear fuel
end their lives in a catastrophic gravitational collapse, The evo-
lution of these stars may be explained, briefly, in the following
way (Mezzacappa et al. [20]). One may envision a pre-collapse
supernova progenitor star as an onion-like structure, in which
the innermost iron core is surrounded by layers of silicon, oxy-
gen, carbon, helium and, finally, hydrogen in the outermost
layer. At any given instant, fusion reactions convert hydrogen
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to helium, helium to carbon, and so on. As a result of these
reactions, the mass of the iron core increases and this causes
an increase in the gravitational force and consequently an in-
crease in the density of the material in the iron core. Prior to
collapse the core of the star approximately balances the inward
pull of gravity by the outward pressure due to electron quan-
tum mechanical degeneracy. As the density in the core slowly
increases, the electrons and protons combine to form electron
neutrinos and neutrons. This depletes the density of electrons,
and thus reduces the electron pressure, until the gravitational
field completely overwhelms the outward pressure gradient and
the core collapses.

When the core collapses, material from the outer edges of the
core begins to fall inwards, thereby increasing the core density
at a rapid rate. Since the constituents of the core are nucleons,
which are fermions, they cannot be squeezed into smaller vol-
umes indefinitely. Doing so would violate the Pauli exclusion
principle. At slightly beyond the point where the core density
approaches nuclear density levels, the core bounces, thereby
generating a shock wave which propagates from the inner re-
gions of the core towards the outer regions. As matter is com-
pressed to high densities, electrons combine with protons from
the dissociated nuclei to create electron neutrinos that escape
from the collapsing core. The escaping neutrinos carry away a
large fraction (approximately 99%) of the energy released dur-
ing the collapse of the iron core.

The propagating shock heats the matter and dissociates
heavy nuclei into unbound neutrons and protons. In the process
of doing so, the shock expends energy and weakens and eventu-
ally the shock stalls prior to reaching the edge of the collapsing
iron core. The core of the star behind the stalled shock is made
up of the proto-neutron star, consisting of the unshocked ma-
terial inside the shock formation radius and the mantle of hot
gases above the proto-neutron star and below the stalled shock
front. As the mantle cools, three types of neutrinos, namely the
electron, tau, and muon neutrinos and their antineutrino coun-
terparts are produced by thermally induced pair-production re-
actions. It is conjectured (see [21]) that a tiny fraction of these
released neutrinos and antineutrinos are re-absorbed by the
mantle, thereby re-energizing the stalled shock. It is thought
that the newly invigorated shock begins to move outward once
again as a result of the neutrino heating. Once the shock wave
reaches the edge of the silicon layer the shock can initiate ex-
plosive burning of lighter elements into heavier elements. These
burning reactions are exothermic and provide the energy needed
to propel the shock outward through the remaining layers of the
star.

The time scales of the progenitor evolution prior to collapse
are on the order of tens of billions of years during which all the
hydrogen in the inner layers of the star is converted to heav-
ier elements. In contrast, the collapse of the iron core of the
progenitor and the cooling of the proto-neutron star via neu-
trino emission spans a time of about ten seconds. The goal of
current computational research is to simulate this last ten sec-
onds of the star’s life.

Several computational challenges drive the simulation. The
time and length scales required to capture the physics in the

final phase of the star span many orders of magnitude. The
grid resolution, required to account for the length and time
scales, and the coupling of the hydrodynamics and neutrino
transport equations is affected by two major factors, namely,
(1) the time scale for neutrino radiation transport being much
smaller than the hydrodynamic time scale, and (2) the distrib-
ution of neutrinos being, in general, a function of three spatial,
one spectral, and two directional coordinates. The solution of
the radiation hydrodynamics (RHD) equations in three spatial
dimensions will require the evolution of the MGBT equation
for each energy (spectral) and angular (directional) location in
the six-dimensional phase space. For the specific case of an
isotropic radiation field, the neutrino distribution is not a func-
tion of the directional coordinates. This case also allows the
representation of the radiation flux as a function of the gra-
dient of the radiation energy density, leading to the MGFLD
approximation. Accordingly, a RHD simulation in three spatial
dimensions would require evolution of the MGFLD equations
in a four-dimensional phase space. The time scales for hydro-
dynamics and radiation transport are of the order of the ratio of
the time taken by sound to cross a computational cell to the time
taken by light to cross the same computational cell. Since the
speed of sound at these extremely high densities and tempera-
tures is about a tenth of the speed of light, the time scale of the
equations of hydrodynamics is about ten times the time scale of
the radiation transport equations. Consequently, the system of
RHD equations is evolved by the operator splitting technique
where every step of the evolution process consists of an evo-
lution of the equations of hydrodynamics by an explicit time
stepping scheme followed by an implicit time evolution of ei-
ther MGBT or MGFLD equations.

2.1. The structure of the matrices

As a first step in developing a working simulation, we con-
sider the relatively simple case of a spherically symmetric star.
The governing equations for hydrodynamic transport and neu-
trino transport involve one spatial dimension (see [2,20]) along
the radial direction. For this case, the MGBT equations are in
three-dimensional phase space and the MGFLD equations are
in two-dimensional phase space, and storing the Jacobians does
not exceed the memory available on present-day computers.
This aspect helps focus attention on the performance of precon-
ditioners per se by side-stepping the questions associated with
storing the Jacobian versus generating the elements of the Jaco-
bian on the fly, which is an issue that must be addressed in the
simulation of the MGBT and MGFLD equations in higher spa-
tial dimensions. In addition, as noted earlier, the performance
of iterative methods with the preconditioners examined in this
paper is based on sequential computation and application of the
preconditioners.

The sparsity pattern of the MGFLD and MGBT matrices is
shown in Fig. 1. (Because of differing sizes of the matrices,
the sparsity patterns are not identical, but are close enough that
a single pattern will suffice for our purposes. Details are given
below.) In this pattern, the dense diagonal blocks represent cou-
pling between the various energy groups of neutrinos in the
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Fig. 1. The sparsity pattern of MGBT and MGFLD matrices. The dense diag-
onal blocks represent coupling between the various energy groups, angles, or
v—1 pairs at the same spatial location. The two outlying diagonals denote cou-
pling between neighboring spatial locations. The major difference between the
two types of systems is in the size of the center blocks (34 x 34 for MGBT
matrix and 20 x 20 for MGFLD matrix ).

MGFLD case and coupling between angle and energy groups
in the MGBT case at a given spatial location. The two out-
lying bands denote coupling between neighboring spatial grid
points, where the number of bands, in general, depends on the
spatial discretization stencil used. Spatial derivatives were ap-
proximated by the second-order central difference operator in
both the MGFLD and MGBT cases.

2.2. Cendition numbers and scaling

The condition numbers of the Jacobians resulting from both
systems of equations range from approximately 10° for the
MGFLD matrix to approximately 100 for the MGBT equa-
tions. We reduced the condition number of both types of matri-
ces by row-scaling the elements, that is, by dividing all elements
of a row by a preselected non-zero positive scalar.

Scaling is, in fact, a preconditioning, but we choose not to
describe it that way because we do it one time only and then
apply, within the iterative method, a general preconditioner to
the scaled matrix. It is these general preconditioners that are the
subject of this report.

In our experiments, we made use of one MGBT matrix (the
30-1 matrix in [1] consisting of 102 x 102 blocks each of size
34 x 34) and one MGFLD matrix (the 256 block matrix in [2]
consisting of 256 x 256 blocks each of size 20 x 20) as sam-
ples representative of these two classes of matrices. These two
matrices were chosen because they contain approximately the
same number of non-zeroes. Table | shows the effect of row-
scaling these two matrices by the magnitude of largest element
in the row, The condition numbers were estimated via Matlab’s
condition number approximation function for sparse matrices.
(In the case of the MGFLD matrix, since it was diagonally dom-
inant, the largest element was on the main diagonal.)

Some comments on the algebraic properties of the MGBT
matrix are appropriate. This “30-1" matrix corresponds to early

Table 1

A comparison of the estimated condition numbers of the MGBT and MGFLD
matrices. The MGFLD matrix was diagonally dominant and scaled by the mag-
nitude of elements on the main diagonal. The MGBT matrix was row-scaled by
the magnitude of the largest element in each row

MGBT (30-1) MGFLD (256 block)
cond(Agriginal) 2.05 % IO'{“ 1.50 x 10°
cond(Ascaed) 327 x 10° 1.78 x 104

core bounce with complex physics, specifically, to a typical
timestep around the time of bounce of the inner core at super-
nuclear densities. Later timesteps would contain non-zero con-
tributions from neutrino pair creation and annihilation, which
are strongly suppressed (but calculated) in this earlier matrix.
The maximum norm (also known as the £, norm) of the first
32 rows of each 34 x 34 diagonal dense block varies from ap-
proximately 10~!7 to 1078, The maximum norm of the 33rd
row is approximately 10'?, however, and that of the last row
is approximately 1. The large difference in magnitude between
the first 32 row vectors and the last two row vectors is the rea-
son for the large condition number of the MGBT matrix. Based
on the way it was constructed, this **30-1" matrix is not analyti-
cally singular, although very ill-conditioned before row scaling,
and could therefore be described as being numerically singular.

The large condition number of the MGBT matrix means,
however, that care must be taken in interpreting the solution
of the scaled system, which is nonsingular. For, let £ be the
solution of the (nonsingular) scaled system. Then £ is also a so-
lution of the original system, but there is no unique solution,
due to numerical singularity. The correct solution cannot result
from algebraic laws alone; any solution must also be validated
by the physical principles and the physical constraints out of
which the problem arose.

3. Preconditioners

The efficient iterative solution of a linear system, Ax = b
where A € R"*" and x, b € R", usually requires precondition-
ing.

The preconditioned matrix equation, in its most general
form, is
M AMR ' Mpx = M['b = Ai=b (1)
where

A=M['AMy', F=Mpx, b=M]"b

and MEI‘ MEI € R"*" denote left and right preconditioners
respectively. The goal of using preconditioners is to obtain a
preconditioned system A% = b that has better numerical proper-
ties. In general, the guiding principles for developing precondi-
tioners are often based more on intuition than on mathematical
rigor. Whatever the intuitive idea, a standard desideratum is that
ME]ML_I ~ A~L. In the numerical experiments described be-
low, preconditioners are limited to just the left preconditioner,
e, ME' = I. Thus, subsequent discussion will focus only on

ME' which will be referred 1o as M.
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3.1. SPAI preconditioners

A sparse approximate inverse (SPAI) preconditioner (see
[13.19]) is a sparse matrix M ~!, which approximates A~ in
some sense. The sparsity pattern of M~ is chosen according to
some algorithm, One commonly available algorithm to choose
the sparsity pattern is that used in software developed by Grote
et al. (see [22]). Another algorithm, employed in the numerical
experiments reported here, is to predetermine the locations of
non-zero elements of the preconditioner based on some heuris-
tic, such as the one described further below.

Once the sparsity pattern of the SPAI preconditioner has
been determined, the elements of the matrix M ! are computed
by minimizing |M~'A — I||F, where | - || is the Frobenius
norm (see [23, p. 55] ot [24, p. 8]). Minimizing |M~'A — I|| ¢
is equivalent to minimizing ||(M"')_,-A —¢ej||2 for each row of
the preconditioner, with j =1,2,...,n and e; the unit vector
with 1 as the jth component. Minimizing the || - |2 norm is a
least squares problem. In practice, since least squares solvers
assume the unknown to be a right vector of the system of linear
equations, we obtain M~ by minimizing I|AT(M“1,}}" —ejll2,

where A consists of those rows of A corresponding to the de-
sired sparsity pattern in row j of M1,

The goal of SPAI is to obtain, in a cost-effective way, an
approximate inverse that is sparse and also is an effective pre-
conditioner. A sparse preconditioner would decrease the com-
putation time per step, and an effective preconditioner would
decrease the number of iterations needed for an iterative solver
to achieve convergence.

In some cases, the true inverse is observed to possess a pat-
tern of dominant values (as was determined in the MGFLD
matrices studied in [2]), such as along diagonals equally spaced
from the main diagonal. (We use the term dominant here to re-
fer to any of several values in a row, each of whose magnitudes
is greater than the sum of the magnitudes of the other, non-
dominant values in that row.) In a case such as this, it seems
reasonable to force the SPAI sparsity pattern to reflect the pat-
tern of the true inverse. For our numerical experiments, we used
a predetermined sparsity pattern based on an examination of the
actual inverses of the two matrices. We call such an SPAI pre-
conditioner a “predetermined sparsity pattern” preconditioner.
Computing the inverse is not, in general, practical, but tests in
[2] have shown that a sparsity pattern coming from the inverse
of a small matrix can be successfully applied to a larger matrix
of the same class.

We also used the Barnard—Grote SPAI package! to obtain
SPAI matrices for both the MGBT and MGFLD matrices. This
package uses a heuristic to determine the optimal number of
elements per row based on an input tolerance, and then com-
putes a matrix with this sparsity pattern. Determining the spar-
sity pattern, however, incurs an overhead that is absent when a
predetermined sparsity pattern algorithm was used with a very
limited number of elements (e.g., 3 or 5) per row. In the case of
the MGFLD matrix, the SPAI preconditioner from the Barnard—

I See http:/fwww.sam.math_ethz.ch/~grote/spail.

Grote package gave about the same convergence results as the
SPAI preconditioner with the predetermined tridiagonal pat-
tern mentioned below. In the case of the MGBT matrix, the
Barnard-Grote SPAI preconditioner performed poorly after the
first few iterations and even started to diverge. We attribute this
poor performance to the numerical singularity of the original
MGBT matrix as well as to the lack of a sharply defined spar-
sity pattern of dominant values in the actual inverse.

3.2. ADI-like preconditioners

The ADI-like preconditioning developed by D’Azevedo et
al. [1], can be summarized in two steps: (1) solve a block di-
agonal system, neglecting the spatial coupling, and (2) solve
the tridiagonal system, involving the spatial differencing terms,
while neglecting the dense diagonal blocks (retaining only the
main diagonal).

The system matrix A (see Fig. 1) can be decomposed in
a particular way into the sum of matrices B, C, and Dyjck,
as follows. Given a value for the center block size m, B is
the matrix consisting of the mth diagonal below the main di-
agonal of A, C is the matrix consisting of the mth diago-
nal above the main diagonal of A, Dpjgex = A — B = C, and
T =diagonal(A) + B + C. The first step of this precondition-
ing consists of solving the system Dploekz1 = ri where ry is
the residual rp = b — Ax; and the second step involves solving
the system T'z» = pr where pr = rp — Azy. Together z; and
z» form the correction to obtain a new value of x;. (The Mat-
lab code can be found in [1]. For a detailed discussion on ADI
methods, see Chapter 7 of [8].)

4. Iterative solvers

In the numerical experiments described below, the systems
of equations were solved by using three iterative methods:
the fixed-point iteration (used in [1]), the generalized minimal
residual method (GMRES), and the Biconjugate Gradient Sta-
bilized (BiCGStab) method.

The fixed-point iteration is ry = b — Axg where xp = x;_1 +
M~r_y and M~ was the chosen preconditioner. This is also
known as Richardson’s method (see [25, p. 361]). Both GM-
RES and BiCGStab are Krylov subspace methods. GMRES
computes a new approximation at each step such that the norm
of the residual is minimized. The BiCGStab algorithm is a
variant of the Conjugate Gradient Squared (CGS) algorithm in
which a residual vector is minimized over a different subspace
than for GMRES. Details can be found in standard references,
such as Saad [24] or Greenbaum [26]. Also see Press et al. [27]
for a general introduction.

5. Numerical experiments

As noted earlier, in our experiments we made use of row-
scaled versions of one MGBT matrix (the 30-1 matrix in [1])
and one MGFLD matrix (the 256 block in [2]) as representa-
tive samples of the two classes of matrices studied in [1] and
in [2]. We report the results of these specific representative
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Fig. 2. The sparsity pattern of the dominant entries of a representative 200 x 200
block along the diagonal of the inverse of the MGFLD matrix.

matrices and note, in particular, that the inversion of these ma-
trices produces the solution of the linearized transport problem
at a single time step taken from extended temporal evolution of
MGBT and MGFLD systems coupled to hydrodynamics. The
couplings exhibited in each of these matrices span a variety
of thermodynamic conditions and are calculated from realis-
tic physical models of the interactions of the neutrino radiation
field with the stellar matter. Although the specific magnitude
and structure of the coupling patterns will change if other time
steps are chosen for examination, we expect that the results we
obtain here are representative for a large portion of the coupled
physics simulations.

An examination of the actual inverse of the MGFLD matrix
showed that the dominant values were on diagonals spaced at
20 element intervals on either side of the main diagonal (Fig. 2).
Various SPAI preconditioners, all with a predetermined sparsity
pattern, were tested in [2] with different numbers of diago-
nals. The preconditioner that generally gave the best results in
our tests was a tridiagonal matrix with a main diagonal and
additional diagonals spaced 20 elements away on either side
of the main diagonal. (Henceforth, we refer to this matrix as
the tridiagonal SPAI matrix.) The tridiagonal SPAI matrix per-
formed as well as a pentadiagonal and a 9-diagonal SPAI matrix
(both with the same diagonal spacing), and the computational
overhead was cheaper. As noted earlier, the convergence using
the SPAI preconditioner from the Barnard—Grote package was
quite similar to the convergence using the tridiagonal SPAI pre-
conditioner.

The actual inverse of the MGBT matrix, in contrast, did not
reveal a pronounced pattern that could be used to construct
SPAI preconditioners (Fig. 3), unlike the case for the inverse of
the MGFLD matrix. An SPAI preconditioner obtained from the

T
L
o

Barnard—Grote package was applied to the MGBT matrix. With
default values for the input tolerance, this preconditioner caused
the convergence to stagnate after a few iterations. In contrast,
using the predetermined sparsity pattern of a 34 x 34 block di-
agonal matrix for our SPAI preconditioner led to convergence,
although at a slower rate than the ADI-like preconditioner.

6. Results

Figs. 4(a)-4(d) compare the results of using tridiagonal SPAI
and ADI-like preconditioning on the MGFLD matrix with GM-
RES, BiCGStab, and Richardson’s fixed-point iterative meth-
ods. For our numerical experiments, the GMRES restart para-
meter was 30 (the Matlab default). An ADI-like preconditioner
for MGBT matrices, as described in [1], was effective. The
same preconditioner, suitably modified, was also effective for
the MGFLD matrix we investigated. In addition, we made use
of the Barnard—-Grote SPAI package to obtain an alternative
SPAI matrix. It gave results comparable to those from the tridi-
agonal SPAI preconditioner at the cost of additional overhead
to determine the sparsity pattern.

Since a flop count is dependent on the efficiency of an al-
gorithm’s implementation and CPU timing is dependent on a
platform’s user load, we decided to make use of two invariant
measures: the number of matrix—vector products (“matvecs”)
and the number of iterations. Both matvecs and iterations are
invariant across platforms and whether running an algorithm on
a sequential platform or in parallel.

Figs. 5(a)-(5d) compare ADI-like and block diagonal SPAI
preconditioning on the MGBT matrix also with GMRES,
BiCGStab, and fixed-point iterations. The plots show the ap-
parent superiority of ADI-like preconditioning. However, much
of this apparent superiority derives from the tridiagonal solve
as was noted in Swesty et al. [2] where similar results were ob-
tained without the use of the costly block preconditioning step.

We note that the convergence behavior on display in Fig. 5
shows stagnation in the convergence of the SPAI precondi-
tioned MGBT system. Stagnation could be related to numerical
singularity, rather than the SPAI preconditioner per se.

Certain other features are important to note:

e For MGFLD matrices, SPAT is a tridiagonal matrix whereas
for the ADI preconditioning matrix dense sub-blocks re-
quire a costly processing to implement.

e For the MGBT case, the SPAI preconditioner has, however,
dense sub-blocks, but no preprocessing is required.
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Fig. 4. The performance of the SPAT and ADI-like preconditioners for the 256 x 256 block Jacobian matrix from the MGFLD equations (labeled as nexp256_1.0e0).
The plots compare the reduction in the residual versus the number of iterations and the number of matrix-vector products (“matvecs”).

e SPAI parameters have to be computed prior to beginning
any iterative solution process, whereas the ADI precondi-
tioner requires no comparable parameters but does require
an LU factorization.

7. Conclusions

Our primary objective was to compare, on a sequential plat-
form, the use of two different preconditioners applied to lin-
ear systems involving two different matrices related to similar
physical phenomena. As has already been noted, the original
MGBT and MGFLD matrices, although similar in size and
sparsity, were significantly different in conditioning, but the
scaled matrices used in our tests were quite similar in their con-
ditioning. We see our results as providing motivation for addi-
tional work addressing issues beyond the scope of this project,
in particular, how an efficient implementation of the algorithms
and the preconditioners on a parallel machine would vary the
results.

Figs. 4 and 5 do not reflect the set-up and overhead time
required to compute the SPAI preconditioner. But these set-up
and overhead times are, in fact, quite minor since there is no
cost associated with determining the sparsity pattern of a pre-

determined pattern SPAI preconditioner and only the relatively
minor overhead of solving, for each row of the preconditioner,
ak x n least squares system where 1 is the number of non-zeros
in that row of the preconditioner and & the number of values
taken from the corresponding rows of the system matrix. Pre-
determined patterns, when they are identifiable, lead to lower
set-up and overhead costs, in comparison with the work needed
for the LU factorization of the dense diagonal blocks, which are
necessary for the ADI-like preconditioning.

Our tests do show the apparent success of using ADI-like
preconditioning for both MGBT and MGFLD matrices (using
the schemes mentioned in Section | for ordering the variables).
For the MGBT matrix, the use of the SPAI preconditioner re-
sults in a stagnation or very slow convergence, in comparison to
the use of the ADI-like preconditioner. For the MGFLD matrix,
however, the SPAI preconditioner did not stagnate, but con-
verged steadily, yet at a somewhat slower rate than with the
ADI-like preconditioner, no matter which of the two measure-
ments of matvecs or iterations was used.

The steady convergence leads us, therefore, to suggest that,
for an MGFLD matrix, the definite superiority of ADI-like pre-
conditioning over SPAI is still inconclusive. One of the reasons
for this statement is the inherent advantage on parallel plat-
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Fig. 5. The performance of the SPAl and ADI-like preconditioners for the 34 x 34 block Jacobian matrix from the MGBT equations (labeled as 30-1). The plots
compatre the reduction in the residual versus the number of iterations and the number of matrix—vector products {“matvecs”).

forms in the multiplication of matrices, a feature of SPAI pre-
conditioning, as compared to the backward and forward solves
needed to implement ADI-like preconditioners, even with im-
proved parallel implementations. This potential savings is not
apparent in Figs. 4 and 5 and, we suggest, is one topic for fu-
ture investigation.

We also believe our results encourage further studies with
matrices of different sizes to address questions related to the
scalability of the two preconditioners with either type of ma-
trix. Some scalability tests were reported in [2, pp. 380-383]
for SPAI preconditioners and three sizes of MGFLD matrices,
and these tests show essentially the same number of iterations
needed for convergence for all three sizes of matrices. Further
studies are needed with ADI-like preconditioners on MGFLD
matrices and with the use of both preconditioners on similarly-
sized MGBT matrices.
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