
ar
X

iv
:p

hy
si

cs
/0

61
10

21
v2

 [
ph

ys
ic

s.
op

tic
s]

 9
 J

an
 2

00
7

HoloTrap: Interactive hologram design for

multiple dynamic optical trapping

E. Pleguezuelos, A. Carnicer, J. Andilla, E. Mart́ın-Badosa,
M. Montes-Usategui

Universitat de Barcelona

Departament de F́ısica Aplicada i Òptica

Mart́ı i Franquès 1, 08028 Barcelona, Spain

Abstract

This work presents an application that generates real-time holograms to be dis-
played on a holographic optical tweezers setup; a technique that allows the ma-
nipulation of particles in the range from micrometres to nanometres. The software
is written in Java, and uses random binary masks to generate the holograms. It
allows customization of several parameters that are dependent on the experimental
setup, such as the specific characteristics of the device displaying the hologram,
or the presence of aberrations. We evaluate the software’s performance and con-
clude that real-time interaction is achieved. We give our experimental results from
manipulating 5 µm microspheres using the program.

Key words: Optical tweezers, Interactive manipulation, Digital Holography,
Spatial Light Modulators
PACS: 87.80.Cc, 87.80.y, 42.40.Jv, 42.79.Kr

PROGRAM SUMMARY

Title of program: HoloTrap
Computer for which the program is designed and others on which it has been
tested: General computer
Operating systems or monitors under which the program has been tested:
Windows, Linux
Programming language used: Java
Memory required to execute with typical data: up to 34 Mb including the
Java Virtual Machine
No. of bits in a word:8 bits

Email address: encarni.pleguezuelos@ub.edu (E. Pleguezuelos,).

Preprint submitted to Elsevier Science 2 February 2008

http://arXiv.org/abs/physics/0611021v2

No. of processors used: 1
Has the code been vectorized or parallelized?: No
No. of bytes in distributed program, including test data, etc.: 1118 KB
Distribution format: jar file
Nature of physical problem: To calculate and display holograms for
generating multiple and dynamic optical tweezers to be reconfigured
interactively
Method of solution: Fast random binary mask for the simultaneous
codification of multiple phase functions into a phase modulation device
Typical running time: Up to 10 frames per second
Unusual features of the program: None
References: The method for calculating holograms can be found in [M.
Montes-Usategui, et al. Opt. Express, 14 (2006) 2101-2107.]

1 Introduction

In this paper we describe an application that interactively generates multiple
dynamic holographic optical tweezers. The program allows the user to compute
holograms displayed in an optical tweezers setup, resulting in trap patterns
that are reconfigurable in real time. Experimental setup factors are application
parameters resulting in a completely customizable program.

Optical tweezers are generated by strongly focusing a laser beam, thus creating
an optical gradient that traps dielectric particles from micrometric samples
down to the nanometric scale [1], due to the transfer of light momentum to the
trapped particle. This technique has many applications in the manipulation
of biological samples [2] because it is harmless and the forces involved in
molecular and biological processes (which are in the same range as the forces
applied by optical tweezers -about pN) can be measured.

Holography allows the synthesis of a light wavefront by spatially modifying
the amplitude and phase of the beam [3]. Knowing how light propagates in the
setup allows us to determine the relationship between the field amplitudes in
any two planes along the optical train. In this way, we can calculate the holo-
gram that reconstructs a desired light distribution on another plane. The use
of digital holography in optical tweezers provides a lot of flexibility in the de-
sign of trap patterns. This technique has resulted in the introduction of large
arrays of optical traps and three-dimensional control [4], [5]. Moreover, the
shape and properties of the beam can be modified to generate non-Gaussian
beams such as vortex beams, which are capable of transferring angular mo-
mentum to the trapped particle [6], or non-diffracting beams [7].

Spatial Light Modulators (SLMs), which are used to display digital holograms,

2

allow dynamic, computer-controlled modification of the complex transmit-
tance/ reflectance of the device. The relationship between the sample plane
and the hologram plane is an inverse Fourier transform, so, in general, the
hologram is complex. These devices are constrained to display a set of com-
plex transmittance values, so we should limit our hologram values to those
available from the modulator. Algorithms have to be designed to find an op-
timal solution constraining the hologram to the discrete set of values accessi-
ble. These algorithms are based on iterative methods [8], [9] or on extensive
search procedures [10]. Both approaches are time consuming and do not allow
real-time interaction with the sample, since they cannot be calculated and
displayed as fast as necessary. We recently proposed a method for calculating
holograms in order to generate optical tweezers. It is based on the random
mask encoding method for multiplexing phase-only filters [11], and is, to our
knowledge, the fastest method with 3D control of the trap. This is because it
is not iterative and the number of operations involved is lower than in other
direct methods, such as the gratings and lenses (or prisms and lenses) method
[12]. Another advantage of the algorithm is that it does not produce the ghost
traps or replicas reported in other methods [13].

Other possibilities –such as the generalized phase contrast approach [14] or
time sharing of the laser beam– allow real-time interaction with the sample,
but are limited to two-dimensional trap patterns and do not allow genera-
tion of non-Gaussian beams. The gratings and lenses method has also been
used to calculate the desired trap pattern for interactive hologram generation
applications[15], [16]. It has also been proposed direct programming of the
graphics card, allowing a faster update rate [17]. Other applications are de-
signed to be used with their commercial setup and do not allow customization
[18].

We present software developed to interact with trapped particles in real time.
The application calculates and displays the holograms that generate the trap
pattern according to the user’s commands. In section 2 we outline the exper-
imental setup, emphasizing the aspects that have to be taken into account in
the software design. The implemented algorithm is explained in section 3. The
developed application, written in JavaTM 2 Platform Standard Edition 5.0 is
detailed in section 4. The sample plane is be visualized on another monitor,
using the camera. The camera image can be integrated in the program. We
show how to do that in section 4.3. However, the camera driver is proprietary
and cannot be attached due to licensing restrictions. The performance of the
software and experimental results are given in section 5.

3

2 Holographic optical tweezers

In optical trapping, a highly focused laser beam exerts gradient forces on the
sample. Typically, an inverted microscope is modified to focus the beam, while
still being able to image the sample. Figure 1 shows our experimental setup.
The laser is a frequency-doubled Nd:YVO4 laser from Viasho Technologies.
The laser beam is expanded and collimated before being reflected by the Spa-
tial Light Modulator, a HoloEye LCR-2500. On reflection, the SLM modulates
the phase of the wavefront. The beam size is reduced using an auxiliary tele-
scopic system (lenses L1 and L2 in figure 1, to adapt it to cover the whole of
the objective’s aperture; which is important for stable trapping [1]. The beam
is fed into the inverted microscope (a Nikon TE2000) through a rear aperture,
usually used in fluorescence imaging, and focused in the sample plane by the
microscope objective (a Plan Fluor 100X Nikon oil-immersion objective with
numerical aperture 1.3).

Laser

Polarizer

SLM

Mirror
Analyzer

Telescope

Collimator

Mirror

Objective

Sample

Illumination

CCD

Microscope

L1 L2

Laser

Polarizer

SLM

Mirror
Analyzer

Telescope

Collimator

Mirror

Objective

Sample

Illumination

CCD

Microscope

L1 L2

Laser

Polarizer

SLM

Mirror
Analyzer

Telescope

Collimator

Mirror

Objective

Sample

Illumination

CCD

Microscope

L1 L2

Laser

Polarizer

SLM

Mirror
Analyzer

Telescope

Collimator

Mirror

Objective

Sample

Illumination

CCD

Microscope

L1 L2

Laser

Polarizer

SLM

Mirror
Analyzer

Telescope

Collimator

Mirror

Objective

Sample

Illumination

CCD

Microscope

L1 L2

Fig. 1. Holographic optical tweezers setup

The sample is placed at the focal plane of the objective, so the relationship
between the device and the sample is an inverse Fourier transform except for
multiplicative phase terms that do not affect our discussion [19]:

H(u, v) =

∞x

−∞

g(x, y)e
−i 2π

λf ′
(xu+yv)

dxdy, (1)

where H(u, v) is the hologram, g(x, y) the trap pattern, λ the wavelength of the
light and f ′ the focal length of the objective. The wavelength, the telescope, the
modulator and the objective determine the scale factor between our sample
plane and the hologram. This is left as a parameter in the application, as
explained in section 4.

The introduction of the Spatial Light Modulator allows us to design the shape
of the beam by spatially modifying the amplitude and phase of the light dis-
tribution in the plane where the modulator is placed. There are different kinds

4

of SLM, such as liquid crystal displays (LCDs) in which the grey level sent
to each pixel of the modulator is translated into a change in amplitude and
phase of the incident beam at that point, thus achieving spatial control of
the light distribution. The modulation also depends on the polarization of the
input and output light. It is necessary to know the modulation response for
each grey level. This can be achieved by characterizing the device modulation
with the polarization conditions [20] in which it will be used. The most com-
mon configuration is phase-only modulation, which has the least amplitude
variation.

LCDs are unable to modulate the whole complex plane [21]. Figure 2 shows
the experimental characterization of the LCD we use, a HoloEye LCR-2500. It
shows the complex transmittance value that corresponds to each grey level. It
is almost a phase modulation from 0 to 2π, although there is a small amplitude
modulation. The hologram values have to be built using the available modula-
tion values. To do this, the minimum Euclidean distance between the phase in
each pixel and the available phase values is calculated, and the nearest phase
modulation value is used to display the theoretical hologram value.

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

-1,0

-0,5

0,0

0,5

1,0

Im
ag

in
ar

y

Real

 Gray levels

Fig. 2. Experimental complex modulation values of the SLM as a function of the
gray level

To summarize, our synthesized hologram is a grey-level image that results in
a local modification of the phase of the incident wavefront, and will generate
a given trapping pattern in the focal plane of the objective (where the sample
is located).

5

3 Fast method of hologram calculation

In order to generate holograms in real time we have to use direct methods of
calculation as opposed to iterative methods. Direct methods consist of gener-
ating the hologram from analytic solutions, that is, determining analytically
the inverse Fourier transform of the trap pattern taking into account that one
is limited in general to phase functions due to modulation constraints. Holo-
graphically we have the ability to set the three-dimensional position of each
trap. A trap centred at (a, b) can be described as g(x, y) = δ(x−a, y− b). The
hologram that generates this distribution is its Fourier transform, that is:

HD(u, v) = F−1(g(x, y)) = exp (i
2π

λf
(u · a + v · b)). (2)

If the trap is focused at a depth z from the focal plane, the required function
is a quadratic phase term such as:

HZ(u, v) = exp (i
2π

λz
(u2 + v2)), (3)

whose Fourier transform is another quadratic phase function.

To generate a vortex, which can transfer angular momentum to the trapped
particle [22], the following phase function is needed:

HV (u, v) = exp (i · l tan− 1(
v

u
)), (4)

this function modifies the wavefront to convert it to a Laguerre-Gaussian
mode, which carries angular momentum. The quantity l is called the topo-
logical charge and is related to the orbital angular momentum of each photon
by L = l~.

In these examples the solution is a pure phase function, so codifying it us-
ing phase-only modulation is straightforward: simply choose the closest phase
given by the device. However, if N traps are required, the hologram is a sum
of as many phases as traps displayed, resulting in a complex function that
cannot be directly displayed with a phase-only modulation:

H(u, v) =
N

∑

k=0

(HDk + HLk + HV k) 6= exp (iφ(u, v)). (5)

The method for the codification of the hologram cannot be time-consuming
if we require it to be implemented in real time. Our approach, more detailed

6

in [11], defines as many different domains Ik of the modulator as traps to be
displayed. Each domain consists of a set of modulator pixels that shows a phase
function. In this way, each set is in charge of generating a single trap. The
hologram (equation 6) consists in the multiplication of the phase functions,
Hk(u, v), (as in equations 2 and 3) by spatially disjoint binary masks, mk(u, v)
- the set of pixels of the domains Ik.

H(u, v) =
N

∑

k=0

mk(u, v) · Hk(u, v), (6)

where

mk(u, v) =











1 if (u, v) ∈ Ik

0 elsewhere.

The domains Ik do not overlap, and together they cover the whole modulator.
For example, we can generate the domains by randomly deciding which pixels
will belong to each trap. This is a good choice since the mask that defines
every sub-hologram is not a geometric function: the convolution of the shape
of the trap with the Fourier transform of the mask would result in noise
distributed through the resulting plane [11]. As can be seen, the solution is
as fast as generating the Ik domains each time a trap is added or deleted,
and computing the arguments of the complex exponentials Hk(u, v) to display
the hologram. Figure 3 shows an example of a hologram in which half of the
pixels display a linear phase function and the other half a quadratic phase.
The resulting light distribution would be two different traps placed off-centre,
at two different depths.

Fig. 3. Hologram calculated using the random binary masks method

This method is –to our knowledge– the fastest way to generate simple trap
patterns. The most common fast method for the generation of optical tweezers
(the gratings and lenses method) consists of generating the analytic hologram

7

from equation 5 and discarding the amplitude information. This method is
slower than our random binary masks method because the calculation time
increases with the number of traps and requires the computation of trigono-
metric functions [12]. Due to the discarded amplitude information, the in-
tensity distribution among the traps may be different from that expected.
Another advantage of our random binary masks method is that the trap pat-
tern generated does not present replicas [13]. While other methods tend to
concentrate the energy not located in the traps in bright spots, resulting in
false traps, the random binary masks method distributes the remaining energy
in noise, due to the convolution with each random mask. The downside is that
the efficiency of the traps is lower than that achieved with other methods.

4 Description of the program

The software we present calculates and displays holograms to generate opti-
cal tweezers allowing real-time interaction with samples. Each change in the
number or position of the trap requires recalculation of the hologram. The
program responds quickly enough to provide close to video-rate feedback from
the sample.

The reason for using Java is that development costs are low. Moreover Java
allows easy generation of the Graphical User Interface (GUI) and easy inte-
gration with C++ generated dlls; the most generalized hardware driver dis-
tribution method. Another advantage of using Java is simple remote control
of the experiment over the Internet. If the computer controlling the camera
acts as a web server, you just have to transform the program generated into
a servlet and use the Remote Method Invocation (RMI) classes.

The source code is distributed into three different classes. The first class,
TRBase, generates the GUI and handles the events related to the input pa-
rameters. It also initiates the second class, PanelCoord, the panel in which the
user clicks and drags to generate and move a trap, and so this class monitors
these mouse events and calls to the third class, FrameHolo. This third class
calculates and displays the hologram using the mouse coordinates and the
input parameters. The documentation of the application, in which the differ-
ent classes and implemented methods are detailed, can be found in the folder
/html zipped within the application jar file. This documentation can be also
found in our website [23].

8

4.1 Graphical User Interface

A screen capture of the GUI can be found in figure 4. This program allows
user control of several variables and initial data:

• The hologram size, in pixels. If the size is set to 1024×768, which is our
SLM full resolution, the hologram is calculated with half the number of and
zoomed to fill the modulator, reducing computation time.

• The scale factor between the Spatial Light Modulator plane and the visual-
ization plane. The scale can be modified by changing the Row and Column
factors. This scale factor can be found experimentally, or deduced from the
different experimental parameters: telescope, SLM, objective, and field of
view [24].

• The Init button asks for a file containing a precalculated map of the phase
modulation and a phase aberration correction (see section 4.2). In our case,
the aberration is a distortion of the wavefront due to the curvature of the
modulator surface. There is an example of a phase-only function map and
a null aberration correction attached in the .jar file to check the required
format. To run the application using these two ideal condition files, after
pressing the Init button, just press OK on the dialog box ”Use the default
aberration and modulation files”. Each time a hologram is generated, the
correction is added and then the nearest grey value is assigned using the
precalculated map.

• A selector allows you to choose the manipulated trap if more than one trap
is generated. The selected trap is indicated by a red circle, whereas the
unselected traps are in green.

• A slider allows you to modify the trap depth, from -5µm to 5µm. The
”Depth Factor” text field allows you to modify the available depth range.

• By changing the integer in the ”lvortex” text field (see figure 4) an optical
vortex carrying angular momentum is generated by adding a vortex phase
function (equation 4) with the specified topological charge.

• The Delete trap button deletes the selected trap. This involves a reconfigu-
ration of the random binary masks, which have to be recalculated.

• The hologram is calculated by the method selected in the Radio Button.
The default calculation method is random binary masks, but gratings and
lenses is also available.

4.2 Calculating and displaying a hologram

This section details the computational process of generating a hologram, see
figure 5. First, the application is initiated and the user enters the desired pa-
rameters (such as hologram size or scale factors). The central panel in the ap-

9

Fig. 4. Application user interface

plication controls the event handling of the user interaction. When the mouse
is clicked on the panel, the mouse coordinates are obtained. The random mask
is calculated, resulting in the whole modulator, because there is one single trap
in this first step. With the mouse coordinates, a phase grating corresponding
to the trap is calculated (equation 2) and the hologram is displayed. Each time
another trap is added, the random binary masks have to be calculated and
then each set of pixels show the corresponding phase function. If the mouse
is dragged or the depth slider is moved, the coordinates of the selected trap
change. A change in the coordinates of a single trap means that only the pixels
of the mask corresponding to that trap have to be recalculated.

To generate traps in real time, the algorithm has to be fast, but there are
also other considerations that affect the performance of the process. We have
optimized the process of adaptation of the hologram to the modulation values
by generating a map of the correspondence between all the possible phase
values between 0 and 2π and the nearest phase given by a grey level. In
general this is not a linear relationship. The phase value assigned to each grey
level is stored in a file that the program reads as an initial parameter. An
example of an ideal phase assignment can be found in the map ideal.txt file
distributed in the jar. Once the analytical phase value is calculated, the map
provides the grey level to be displayed. An incorrect assignment can cause
variations in the reconstructed trap pattern.

Another experimental issue that affects the calculation time is the possible ex-
istence of aberrations in the optical system, which can be corrected with the
SLM when generating the trap pattern. In our case, the modulator reflected
wavefront is distorted because the device is not flat. We can correct this aber-

10

Init
application

Enter
parameters

on mouse
clicked

Get mouse
coordinates

Generate
random mask

Calculate
hologram based
on coordinates

Display
hologram

on mouse
clicked

on mouse
dragged

Get mouse
coordinates

Get mouse
coordinates

Add new trap

Move trap

Init
application

Enter
parameters

on mouse
clicked

Get mouse
coordinates

Generate
random mask

Calculate
hologram based
on coordinates

Display
hologram

on mouse
clicked

on mouse
dragged

Get mouse
coordinates

Get mouse
coordinates

Add new trap

Move trap

Fig. 5. Program Flowchart

ration by adding a fixed phase pattern to each hologram. As an example, the
file phaberr 1024x768.txt is a null aberration correction attached in the jar
file, that shows the format of the aberration file for the specified hologram
size.

In order to ensure a fast response of the displayed hologram, two main fac-
tors have to be taken into account. First, the hologram generation has to be
as fast as possible, including algorithm calculation, addition of the aberra-
tion correction and adaptation to the modulation. Second, speed of access to
the graphic hardware has to be ensured. Our approach is to take advantage
of the V olatileImage class in the Java SDK. The hologram is stored as a
hardware-accelerated off-screen image, in such a way that rendering opera-
tions are accelerated through the graphics card. Thus, hologram is displayed
without using the CPU. This class parallelizes the display of the hologram
and the calculation processes, with the CPU performing the calculation.

4.3 Camera control

The image of the sample can be displayed on another monitor to control ma-
nipulation. Our program is enhanced if the camera image is incorporated into
the interactive interface, although it can be used with the image separated

11

from it. In this section we explain how we integrated our video stream man-
agement, as a guide for users on how to embed their own. We used a QICam
Fast 1934 from QImaging Corp. [25] camera. It is not compliant with the
IIDC Digital Camera Specification (DCAM), which is the standard protocol
FireWire cameras should follow, so the SDK provided by the manufacturer had
to be used. This is a drawback to distributing the camera-integrated version
of the program, and so a version without a camera accompanies the paper. If
a DCAM-compliant camera is used, the Java API for FireWire jlibdc1394 [26]
can be incorporated into the program instead of the camera SDK, making it
suitable for all DCAM-compliant cameras.

The Qimaging libraries have to be used with a C++ compiler, so the Java
Native Interface (JNI) class [27] is needed to embed the camera library into
the Java structure. JNI is a common trick for gaining compatibility with native
methods across a Java virtual machine. We need the following native functions:

public native int initCamera(); (Detects the camera)
public native int initGrab(); (Initiates the recording)
public native int doGrab(byte[] pix); (Saves the image into a pixel array)
public native int StopGrab(); (Stops recording)

Each native Java method has its corresponding function in C++. The process
of calling from a Java program code contained in the proprietary library is
[27]:

- Declaration of the native methods in the Java application, in our case the
methods listed above.

- The loading of the library containing the native code implementation, by
calling the function System.load(”JNIQCam.dll”), where ’JNIQCam.dll’ is
our generated library name (even it does not exist yet). The Java application
has to be compiled at this point without being executed. This library is not
the proprietary library, but one generated by the user, defining what each
native method does.

- Generation of the header (.h) file that contains the interface assigning the
Java methods to the C native functions. As an example, the functions are
defined in this header as:

JNIEXPORT jint JNICALL Java initCamera(JNIEnv *, jobject);
JNIEXPORT jint JNICALL Java initGrab(JNIEnv *, jobject);
JNIEXPORT jint JNICALL Java doGrab(JNIEnv *, jobject, jbyteAr-
ray);
JNIEXPORT jint JNICALL Java StopGrab(JNIEnv *, jobject);
This file is the communication channel between the two languages.

- Creation of the C++ functions. The library (JNIQCam.dll) has to contain
the C++ source calling to the camera library. As an example, our C++
method that disconnects the camera is:

12

JNIEXPORT jint JNICALL Java tr StopGrab(JNIEnv *, jobject){
delete [] pixels;
if(hCamera != NULL)
{
QCam CloseCamera(hCamera);
}
QCam ReleaseDriver();
return 0;
}
In this example we free the image memory through the delete order. The

calling to CloseCamera(hCamera) frees the hCamera object, hCamera is
the object initiated in the method initCamera, which contains the camera
properties and prevents other applications accessing the camera. Next, the
camera driver is released with the command ReleaseDriver().

- Compilation and execution of the code.

If the user had the same camera, a .dll file should be generated and the com-
mented lines in the .java source, marked as ”//Comment if there is no QICam
available”, should be uncommented.

5 Performance of the software

Figure 4 shows a screen capture of the program. The tests were carried out
on a Pentium IV HT, 3.2 Ghz, with lite versions of the program, where not
all the options were available. These lite versions can be obtained from our
website [23].

The speed of the software when generating holograms in response to a mouse
drag is about 10 fps (frames per second). This value measures the number of
holograms displayed per second on the modulator. The full resolution sized
holograms are achieved by calculating holograms of 512×384 pixels and resiz-
ing them into 1024×768 pixels. The adaptation mapping that we have created
from the experimental phase modulation values does not affect the speed of
the hologram generation. In contrast, the inclusion of the aberration correc-
tion affects slightly the performance by decreasing the hologram calculation
speed. The time response does not increase with the number of traps, because
the number of pixels the phases have to be computed for (the number of pixels
defining each mask) decreases as the number of traps increases.

Figure 6 shows screen shots of experimental manipulation of polystyrene beads
of 5µm diameter. A first microsphere is captured and dragged close to another,
which is trapped and moved with a second trap.

13

(a)

(b)

(c)

Fig. 6. Screen shots showing the experimental manipulation of polystyrene beads,
5µm diameter

6 Concluding remarks

We have presented an application for calculating and displaying holograms in
real time to generate multiple reconfigurable optical tweezers. The applica-
tion allows the user to generate, delete or modify optical traps interactively.
We used the random binary masks method because of its speed. The soft-
ware takes into account different parameters given by the experimental setup,

14

and so it is not limited to a single configuration. The different options have
been detailed, including the adaptation to the modulation and the correction
of possible aberrations. The scale factor and the hologram size can also be
modified. Some strategies for accelerating hologram calculation and display
are explained. A second version of the program takes advantage of the propri-
etary libraries of the camera used in order to embed the image provided by
the camera and the program. The viability of the software is comparable to
that of other applications in the literature. We include an example of optical
manipulation using this program. In future work we would like to make the
software compatible with IICAM-compliant FireWire cameras.

ACKNOWLEDGMENTS

This work has been funded by the Spanish Ministry of Education and Science,
under grants FIS2004-03450 and NAN2004-09348-C04-03.

References

[1] A. Ashkin, Optical trapping and manipulation of neutral particles using lasers,
Proc. Natl. Acad. Sci. USA, 94 (1997) 4853-4860.

[2] K. C. Neuman and S. M. Block, Optical trapping, Rev. Sci. Instrum., 75, (2004)
2787-2809.

[3] R. Tudela, I. Labastida, E. Mart́ın-Badosa, S. Vallmitjana, I. Juvells, and A.
Carnicer. A simple method for displaying Fresnel holograms on liquid crystal
panels, Opt. Commun., 214 (2002) 107-114.

[4] G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik,
Assembly of 3-dimensional structures using programmable holographic optical
tweezers, Opt. Express, 12 (2004) 5475-5480.

[5] Y. Roichman and D. Grier, Holographic assembly of quasicrystalline photonic
heterostructures, Opt. Express, 13 (2005) 5434-5439.

[6] P. Prentice, M. MacDonald, T. Frank, A. Cuschier, G. Spalding, W. Sibbett, P.
Campbell, and K. Dholakia. Manipulation and filtration of low index particles
with holographic Laguerre-Gaussian optical trap arrays. Opt. Express, 12 (2004)
593-600.

[7] S. H. Tao, X.-C. Yuan and B. S. Ahluwalia. The generation of an array of
nondiffracting beams by a single composite computer generated hologram. J.
Opt. A.: Pure Appl.Opt. 7 (2005) 40-46.

[8] R. W. Gerchberg and W. O. Saxton, A practical algorithm for the determination
of the phase from image and diffraction plane pictures, Optik, 35 (1972) 237246.

15

[9] V. Soifer, V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive
Optical Elements Computation (Taylor & Francis Ltd, London, 1997).

[10] M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, Synthesis of digital
holograms by direct binary search, App. Opt., 26 (1987) 2788-2798.

[11] M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Mart́ın-Badosa, Fast
generation of holographic optical tweezers by random mask encoding of Fourier
components. Opt. Express, 14 (2006) 2101-2107.

[12] J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani, Multi-functional optical
tweezers using computer-generated hologram, Opt. Comm., 185 (2000) 77-82.

[13] M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman and D. Grier, Optimized
holographic optical traps, Opt. Express, 19 (2005) 5831-5845.

[14] P. Rodrigo, V. Daria, and J. Glckstad. Real-time interactive optical
micromanipulation of a mixture of high-and low-index particles. Opt. Express,
12 (2004) 1417-1425.

[15] J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson,
K. Karunwi, J. Cooper, ZJ. Laczik, M. Padgett. Interactive approach to optical
tweezers control. Appl. Opt., 10 (2006) 897-903.

[16] G. Whyte, G. Gibson, J. Leach and M. Padgett. An optical trapped microhand
for manipulating micron-sized objects. Opt. Express, 14 (2006) 12497-12502.

[17] M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani and W. Osten. Fast
digital hologram generation and adaptative force measurement in liquid-crystal-
display-based holographic tweezers. Appl. Opt., 45 (2006) 888-896.

[18] BioRyx R© 200 http://www.arryx.com/bioryxsoftware.html

[19] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

[20] E. Mart́ın-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana, Complex
modulation characterization of liquid crystal devices by interferometric data
correlation, Meas. Sci. Technol., 8 (1997) 764-772.

[21] R. Tudela, E. Mart́ın-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A.
Carnicer. Full complex Fresnel holograms displayed on liquid crystal devices, J.
Opt. A: Pure Appl. Opt., 5 (2003) S189-S194.

[22] J. E. Curtis, B. A. Koss and D. G. Grier, Dynamic holographic optical tweezers,
Optic Communications, 207 (2002) 169-175.

[23] Holotrap documentation http://www.ub.edu/optics/holotrap

[24] E. Mart́ın-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos
and I. Juvells, Design strategies for optimizing holographic optical tweezers
setups. Submitted to JOPA, available at http://arxiv.org/abs/physics/0701037

[25] Qimaging Coorporation, http://www.qimaging.com/

16

http://www.arryx.com/bioryxsoftware.html
http://www.ub.edu/optics/holotrap
http://arxiv.org/abs/physics/0701037
http://www.qimaging.com/

[26] Java API for FireWire, http://jlibdc1394.sourceforge.net/

[27] Java Native Interface,
http://java.sun.com/j2se/1.4.2/docs/guide/jni/index.html

17

http://jlibdc1394.sourceforge.net/
http://java.sun.com/j2se/1.4.2/docs/guide/jni/index.html

	Introduction
	Holographic optical tweezers
	Fast method of hologram calculation
	Description of the program
	Graphical User Interface
	Calculating and displaying a hologram
	Camera control

	Performance of the software
	Concluding remarks
	References

