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Abstract

The Invar package is introduced, a fast manipulator of generic scalar polynomial ex-
pressions formed from the Riemann tensor of a four-dimensional metric-compatible
connection. The package can maximally simplify any polynomial containing tensor
products of up to seven Riemann tensors within seconds. It has been implemented
both in Mathematica and Maple algebraic systems.
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Program summary

Title of program: Invar Tensor Package

Catalogue identifier:

Program obtainable from: CPC Program Library, Queens University of Belfast, N.

Ireland

Reference in CPC to previous version: Computer Physics Communications 157

(2004) 173-180

Catalogue identifier of previous version: ADSP

Does the new version supersede the original program?: No. The original version runs

only in Maple and its purpose is to be a kernel for tensor manipulators. The present

versions run in Maple and Mathematica and are full tensor expression manipulators.

Computers: Any computer running Mathematica versions 5.0 to 5.2 or Maple ver-

sions 9 and 10
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Operating systems under which the new version has been tested: Linux, Unix, Win-

dows XP

Programming language: Mathematica and Maple

Memory required to execute with typical data: 30 Mb

No. of bits in a word: 64 or 32

No. of processors used: 1

No. of bytes in distributed program, including test data, etc.: Around 14 Mb

Distribution format: Uuencoded compressed tar file

Nature of physical problem: Manipulation and simplification of tensor expressions.

Special attention on simplifying scalar polynomial expressions formed from the Rie-

mann tensor on a four-dimensional metric-compatible manifold.

Method of solution: Algorithms of computational group theory to simplify expres-

sions with tensors that obey permutation symmetries. Tables of syzygies of the

scalar invariants of the Riemann tensor.

Restrictions on the complexity of the problem: The present versions do not fully ad-

dress the problem of reducing differential invariants or monomials of the Riemann

tensor with free indices.

Typical running time: Less than a second to fully reduce a monomial of the Riemann

tensor of degree 7 in terms of independent invariants.

1 Introduction

The Riemann tensor plays the most essential role in the geometrical descrip-
tion of curved manifolds. Therefore it is a central object of study in General
Relativity and Cosmology, containing all invariant (i.e. coordinate indepen-
dent) and local information about the spacetime. However, it is often very
difficult to manipulate expressions containing the Riemann tensor, due to its
nontrivial algebraic properties. In the last decade new mathematical ideas have
drawn much renewed attention to the subproblem of the algebraic scalars of
the Riemann tensors, but we are still far from having a simple and efficient al-
gorithm to manipulate generic expressions. Such an algorithm would be very
useful in several areas of Mathematics and Physics, for example in the fol-
lowing particular cases: the generic manipulation of Riemann-related tensors,
like Lanczos-type potentials for the Weyl tensor in General Relativity [1]; the
quantization of Lagrangians for gravity, which requires the computations of
scalar counterterms formed by perturbation of the metric and the Riemann
tensor [2]; the classification of metrics using the Cartan-Karlhede algorithm,
involving a number (7 at most) of derivatives of the components of the Rie-
mann tensor in some basis [3]. See also the Introduction of Ref. [4] for a list
of applications of the invariants of the Riemann tensor.

In this article we present for the first time the Invar tensor package, a fast
manipulator of expressions containing the Riemann tensor (or its associates
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Ricci, Weyl, etc.), focusing on the mentioned subproblem of scalar expressions.
Further generalizations will be reported in the future. The package has been
implemented for both Mathematica and Maple algebraic systems.

2 The problem

A metric gab on a d-dimensional manifold has a Riemann tensor with d2(d2 −
1)/12 independent components (assume d ≥ 3). Of these, d(d − 1)/2 change
under rotations of the frame used to define the components and hence have
no invariant meaning. The other Nd ≡ (d+ 3)d(d− 1)(d− 2)/12 components
have invariant meaning and can be combined into an infinite number of scalar
polynomials of the Riemann tensor (the so called invariants of the Riemann
tensor) [5]. In general it is possible to define differential invariants, in which
covariant derivatives (with respect to the Levi-Civita connection associated to
the metric g) of Riemann are considered, but we shall restrict ourselves to the
algebraic invariants of the Riemann tensor in this article.

We shall be primarily concerned with invariants formed by products of n
Riemann tensors with all indices contracted (which we will call invariants),
or products of n Riemann tensors and a single ǫ tensor (to be called dual

invariants), also with all indices contracted. In both cases we shall refer to n
as the degree of the invariant.

The main question is whether it is possible to find a basis of invariants in terms
of which all other invariants can be expressed. Ideally, that basis should have a
minimal number of members and those members should have minimal degree.
For dimension 4, Narlikar and Karmarkar [6] have given a set of N4 = 14
invariants such that, for generic Lorentzian metrics, it could be possible to
give any invariant in terms of the objects of the basis, but possibly involving
roots of high degree. For special metrics the expressions could become singular.
A basis of 17 objects have been given, using spinor theory, by Carminati
and Zakhary [7] which is guaranteed to stay regular for all combinations of
the 15 Petrov and 6 Segre types. Using the properties of 3 × 3 symmetric
matrices, Sneddon [8] has constructed a basis of 38 invariants such that any
other invariant can be given as a polynomial in that basis. For none of those
three sets it is known how to generate the expressions (called syzygies) for
given invariants in terms of the corresponding bases, though a partial solution
has been given recently by Carminati and Lim [9]. Those three sets are highly
specialized for 4d Lorentzian metrics, and it seems impossible to generalize
them to other cases.

In this article we develop completely new methods to deal with the same
problem. We shall construct a basis of invariants up to degree 7 in invariants
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and degree 5 in dual invariants, and implement very efficient algorithms to
express any other invariant within those limits in terms of that basis. We
shall see that our basis contains the 25 invariants of Sneddon’s basis with
lower degrees than those limits. Our method is purely tensorial, not based
on spinors, and hence the results are valid (or can be easily generalized) to
non-Lorentzian metrics and other dimensions. They can also be generalized to
differential invariants, or even to expressions with free indices. The method is
purely based on the Riemann tensor, and does not require its decomposition
into Ricci andWeyl parts, a dimensionally dependent decomposition. However,
to facilitate the comparison with the previous literature, mostly based on
that decomposition, we also provide tools to translate from Weyl invariants,
as shown in the appendix. We stress the fact that the basis is constructed
simultaneously with all syzygies.

3 Algorithms

A general polynomial expression in the Riemann tensor is first expanded into
a sum of monomial products of tensors, each one canonicalized independently.
Unfortunately, there is no known efficient (i.e. fast and with polynomic scaling
in degree) algorithm to manipulate in real time products of Riemann tensors.
Previous tensor computer algebra systems use a number of special rules for
restricted cases (c.f. the nearly 40 rules of MathTensor [10] for monomials
of degree three or less), or slow though rather general methods, for example
those of Tools of Tensor Calculus [11] (based on the construction of large linear
systems of equations [12]) and cadabra [13] (using Young tableaux decompo-
sitions). In any case, it is not possible to go beyond degree 4 in computations
taking less than a minute with these systems.

Here we employ a combined approach which uses different algorithms at four
different steps (called A, B, C, and D), depending on which of four sets of
properties of the Riemann tensor we use: We shall use efficient permutation-
group algorithms to canonicalize a given monomial in real time, with respect
to the permutation symmetries, into one of several thousand possible canon-
ical monomials (step A). Then we shall use a database of solutions in which
we have previously stored the canonical form of any of those monomials with
respect to harder symmetries (steps B, C and D), which cannot be handled ef-
ficiently in real time. The construction of the database with all those canonical
forms is carried out using essentially a brute force approach based on inten-
sive computer power to solve large systems of linear equations. At each of the
steps B, C and D new equations will be generated, decreasing the number of
independent invariants.

We now give some details and examples of the procedures followed at each
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step:

Step A: Permutation symmetries. These are the permutation of indices
that maintain the tensor invariant modulo a minus sign. For the Riemann
tensor,

Rbacd = −Rabcd, Rcdab = Rabcd (1)

are examples of permutation symmetries. The Riemann tensor obeys the
cyclic symmetries which are not permutation symmetries, but multiterm
symmetries. The symmetries of the metric tensor gab and the totally anti-
symmetric tensor ǫabcd can also be fully described in terms of permutation
symmetries.
Computational group theory has the tools that one needs to address this

type of symmetries [14]. For example, the permutation symmetries of the
Riemann tensor are described by a subgroup of the symmetric group acting
on 4 points, because Riemann is a rank-4 tensor. The permutation symme-
tries of a product of n Riemann tensors is a permutation group acting on
4n points, which takes into account not only the permutation symmetries
of each tensor but also the permutation of factors. Let us call S the per-
mutation group of the Riemann invariants of a fixed degree. If there are
dummy indices in a tensor expression, there is a new kind of permutation
symmetries that comes from dummy index relabelling. Those are described
by another permutation group which we call D. All equivalent index con-
figurations of a Riemann invariant of degree n are described by a double
coset of S and D in the symmetric group S4n. A list of canonical invari-
ants is given by a transversal set of the double cosets of S and D in S4n.
There is no efficient way to generate a transversal set. We simply generated
randomly invariants until getting one representative for each double coset.
By using GAP [15], we confirmed that the transversal set is complete. This
strategy must be repeated for each degree. We succeeded in generating the
Riemann invariants up to degree 7 using a few GBytes of RAM memory.
We addressed two kinds of Riemann invariants: (1) a product of n Rie-

mann tensors, which we denote by In,r and (2) a product of n Riemann
tensors and a 4-index ǫ tensor, denoted by Dn,r, where n is the degree and
the index r gives the position of the invariant in the list sorted according to
a predefined order of permutations. The set In,r for all values of r for a fixed
n is a canonical transversal set with respect to the permutation symmetries
involved. The same holds for Dn,r. Those are the invariants that we need to
manipulate for the rest of the article. The number of invariants per degree
is shown in Table 1. Note for example for the degree 7 invariants the enor-
mous decrease from the complete set of 28! ∼ 3 · 1029 invariants to 19610
canonical ones.
As an example, the monomial of degree 6

Rbca
cRgdh

eRgfh
fRkba

iRkmd
lRmei

l
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Degree Invariants Dual invariants

1 1 1

2 4 5

3 13 35

4 57 288

5 288 3031

6 2070 –

7 19610 –

Table 1
Number of independent invariants and dual-invariants after imposing the permu-
tation symmetries.

is converted after step A into

I6,246 ≡ RabRcdRa
e
b
fRc

g
d
hRe

i
g
jRfjhi (2)

If we remove those invariants which are explicit products of invariants of
smaller degree, then the numbers decrease even more, and are those shown
in columns A of Table 2.

Step B: The cyclic symmetry. This is a multiterm symmetry involving
three instances of index configurations of the Riemann tensor:

Rabcd +Racdb +Radbc = 0, (3)

which expresses the fact that the Riemann tensor has vanishing totally an-
tisymmetric part; that is, (3) is equivalent to R[abcd] = 0 applying (1). Using
this symmetry on the tensors of each of the canonical invariants obtained
after step A we generate many new equations relating three invariants of the
same degree, hence reducing the number of independent invariants to those
in columns B of Table 2. A simple example, applying the cyclic symmetry
on the last Riemann tensor of I6,246, defined in (2), is

I6,246 − I6,243 − I6,245 = 0,

so that the invariant I6,246 is not independent after step B. Note that so
far our results concerning the non-dual invariants are valid for the Riemann
tensor of any metric in any dimension. Those for the dual invariants are
only valid in 4 dimensions.

Step C: Dimensionally dependent identities. Antisymmetrization over
more than d indices in dimension d gives zero. This simple fact can be
used to generate new relations (Lovelock type [16]), which will be therefore
valid only for dimensions smaller or equal to d. From now on we restrict
ourselves to dimension 4, and hence generate new equations among the in-
variants by antisymmetrizing over five indices the independent invariants
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that were output by steps A and B. For example, antisymmetrizing over
the contravariant indices b, c, e, f, h of (2) gives a linear relation among 12
of the 270 independent invariants of degree 6 after step B.
This step requires solving large systems of linear equations. For example,

for the degree 7 invariants, we generated about 4 equations for each inde-
pendent invariant, producing a system of more than 5000 equations with
integer coefficients for 1639 unknowns. Though the initial integers and the
final rational numbers had only a few digits, some intermediate integer num-
bers had more than 900 digits. One may reduce the number of equations
and still get the correct answer, but the number of equations cannot be too
close to the number of independent invariants (1639 for degree 7).

Step D: Signature dependent identities. Now we have two collections of
invariants: those containing the totally antisymmetric tensor (the “duals”)
and those not containing it (the “non-duals”). We can relate them by ex-
pansion of the product of two ǫ tensors using the formula

ǫa1...anǫb1...bn = σ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δa1b1 . . . δanb1
...

...

δa1bn . . . δanbn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4)

where σ represents the sign of the determinant g of the metric. That means
now that the result will depend on that sign. We follow the convention

ǫ0123 =
√

|g|, and hence ǫ0123 = σ/
√

|g|.
This allows us to generate new equations by multiplying pairs of dual

invariants with degrees n1 and n2. This generates a polynomial in non-
dual invariants of total degree n1 + n2. In general this polynomial contains
an invariant of degree n1 + n2 and hence a high degree invariant can be
expressed in terms of the product of two lower degree dual invariants (the
latter play the role of “square roots” of the former). In this way the degree
of the elements of the basis can be reduced (see an application of this in
appendix B for the Narlikar and Karmarkar basis). However, this method
highly depends on the dimension of the manifold, and on the signature
of the metric (through the sign σ). As an example, starting from D3,2 ≡
−RabRcdRac

efǫbdef we find

σ D2
3,2 = 4I6,11 + 16I6,19 + 4I6,23.

For definitions of all canonical invariants see the package files.

7



Degree A A∗ B B∗ C C∗ D D∗

1 1 1 1 0 1 0 1 0

2 3 4 2 1 2 1 2 1

3 9 27 5 6 3 2 3 2

4 38 232 15 40 4 1 3 1

5 204 2582 54 330 5 2 3 2

6 1613 – 270 – 8 – 4 –

7 16532 – 1639 – 7 – 3 –

Table 2
Number of independent invariants or dual-invariants (denoted with a star) after
imposing the different types of relations: A) permutation symmetries, B) cyclic
symmetry, C) dimensionally dependent relations (for dimension 4), and D) signature
dependent relations (for a metric of negative determinant).

4 Implementation

We have implemented the Invar tensor package on Mathematica and Maple
computer algebra systems. The Mathematica implementation is on top of the
xTensor package [17] and the Maple implementation on top of the Canon
tensor package [18]. The underlying commands for tensor manipulation of
these packages are fully available, such as metric contraction, conversion of
Riemann to Weyl and vice-versa. Both versions share a database with the
syzygies up to degree 7 (degree 5 for duals). The invariants are stored as
permutations in the disjoint cyclic notation.

The main command of the Invar package, RiemannSimplify, canonicalizes
tensor expressions with Riemann invariants up to degree 7 and dual invari-
ants up to degree 5. The canonicalization process follows the steps described
in Table 2. Each symmetry kind is used one at a time: first the permuta-
tion symmetries, second the cyclic symmetries, third the dimension depen-
dent identities, and finally signature dependent identities. There is an option
in RiemannSimplify that prevents the use of the dimension dependent iden-
tities, for users that wish to work with manifolds of generic dimension.

The user has access to all tables of independent invariants and reducing equa-
tions. Besides, there are commands to convert Riemann invariants from ten-
sor notation to In,r and Dn,r notation (RInv[n,r] and DualRInv[n,r] in the
package) and vice-versa. It is also possible to relate the Narlikar and Kar-
markar basis with these invariants (see appendix B).

Tensors are indexed objects such as Riemann[a,-b,-c,-d], which stands for
Ra

bcd. Contravariant indices are positive and covariant are negative. For ex-
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ample, the expression

ǫa b c dRa b
e f Rc e f

g Rd
h i j Rg iRh j +

(ǫa b c dRa b
e f Rc d e f) (R

g h i j Rg iRh j)

8

is identically zero in dimension 4 as can be verified by employing the command

expr = epsilon[a,b,c,d]*

R[-a,-b,e,f]*R[-c,-e,-f,g]*R[-d,h,i,j]*R[-g,-i]*R[-h,-j]+

1/8*(epsilon[a,b,c,d]*R[-a,-b,e,f]*R[-c,-d,-e,-f])*

(R[g,h,i,j]*R[-g,-i]*R[-h,-j]);

RiemannSimplify[ expr ]

in the Mathematica implementation of the Invar package, or by

RiemannSimplify( expr );

0

in the Maple implementation.

The list of independent dual invariants of degree 3 and the respective tensor
expressions can be generated by the following command in Mathematica

Do [ If [ InvSimplify[ DualRInv[3,i] ] == DualRInv[3,i],

Print[ DualRInv[3,i] -> InvToRiemann[ DualRInv[3,i] ] ]

],

{ i, MaxDualIndex[ 3 ] } ]

and in Maple

for i to MaxDualIndex( 3 ) do

if RiemannSimplify( DualRInv[3,i] ) = DualRInv[3,i] then

print( DualRInv[3,i] = InvToRiemann( DualRInv[3,i] ) )

end if

end do;

DualRInv3,7 = R a1 a2
a1

a3Ra2
a4 a5 a6Ra4

a7
a7

a8 ǫa3 a5 a6 a8

DualRInv3,20 = R a1 a2 a3 a4Ra1 a2
a5 a6Ra3 a4

a7 a8 ǫa5 a6 a7 a8

The complete list of commands is described in the appendix C for the Mathe-
matica implementation and in the appendix D for the Maple implementation.
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5 Conclusions

We have described a systematic procedure to obtain all relations (called syzy-
gies) among the scalar invariants of the Riemann tensor. The procedure relies
on a fast algorithm that canonicalizes Riemann monomials using the per-
mutation symmetries of the Riemann tensor. The cyclic relations and the
dimension and signature dependent identities are calculated using antisym-
metrization methods. The resulting system of equations is solved and stored
in a database using the disjoint cyclic notation for permutations. Once the
database has been produced and optimized, this approach allows much faster
simplifications than real time methods and requires much less memory. Both
approaches use exponential algorithms, but our method does it only once, and
including the dimensionally-dependent identities (not included in the previ-
ously mentioned real-time systems). After loading the database, expressions
with scalar invariants are quickly simplified in terms of independent invariants
of minimum degree.

The Invar tensor package, implemented both in Mathematica and Maple on
top of the xTensor and Canon tensor packages respectively, allows the user to
manipulate the database of invariants and syzygies. The database is the same
for both implementations.

The method used to build the database can be generalized straightforwardly
to find syzygies among differential invariants and monomials of the Riemann
tensor with free indices. We are currently analyzing such extensions.
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by the Spanish MEC under the research project FIS2005-05736-C03-02. Part
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A Independent invariants

The final list of 25 independent invariants is given in table A.1. The invariants
are internally handled in the Invar package as permutations of the indices
of a product of Riemann tensors (and a 4-index ǫ tensor for duals), as given
in the ‘Only Riemann’ column. When the contracted Riemann tensors are
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Invariant Only Riemann Riemann and Ricci

I1,1 Rab
ab R

I2,1 Rab
a
cRb

d
cd RabRab,

I2,2 RabcdRabcd RabcdRabcd

D2,2 RabcdRab
ef ǫcdef RabcdRab

ef ǫcdef

I3,1 Rab
a
cRb

d
d
eRc

f
ef −RabRa

cRbc,

I3,2 Rab
a
cRb

d
c
eRd

f
ef RabRcdRacbd,

D3,2 Rab
a
cRb

defRd
g
g
hǫcefh −RabRcdRac

ef ǫbdef

I3,5 RabcdRab
efRcdef RabcdRab

efRcdef

D3,13 RabcdRab
efRcd

ghǫefgh RabcdRab
efRcd

ghǫefgh

I4,1 Rab
a
cRb

d
d
eRc

f
f
gRe

h
gh RabRa

cRb
dRcd,

I4,5 Rab
a
cRb

defRc
g
efRd

h
gh RabRcdRac

efRbdef

I4,7 Rab
a
cRb

d
c
eRd

f
e
gRf

h
gh RabRcdRa

e
b
fRcedf

D4,7 Rab
a
cRb

d
c
eRd

fghRf
i
i
jǫeghj −RabRcdRa

e
b
fRce

ghǫdfgh

I5,2 Rab
a
cRb

d
c
eRd

f
f
gRe

h
h
iRg

j
ij RabRa

cRb
dRefRcedf

D5,2 Rab
a
cRb

d
d
eRc

f
f
gRe

hijRh
k
k
lǫgijl −RabRa

cRb
dRefRce

ghǫdfgh

I5,8 Rab
a
cRb

d
c
eRd

f
e
gRf

h
h
iRg

j
ij −RabRa

cRdeRb
f
c
gRdfeg

I5,33 Rab
a
cRb

d
c
eRd

fghRe
i
ghRf

j
ij RabRcdRa

e
b
fRce

ghRdfgh

D5,76 Rab
a
cRb

d
c
eRd

f
e
gRf

hijRh
k
k
lǫgijl −RabRcdRa

e
b
fRc

ghiRegf
jǫdhij

I6,6 Rab
a
cRb

d
d
eRc

f
f
gRe

hijRg
k
ijRh

l
kl RabRa

cRb
dRefRce

ghRdfgh

I6,8 Rab
a
cRb

d
c
eRd

f
e
gRf

h
h
iRg

j
j
kRi

l
kl RabRa

cRb
dRefRc

g
d
hRegfh

I6,47 Rab
a
cRb

d
d
eRc

f
e
gRf

hijRg
k
ijRh

l
kl −RabRa

cRdeRb
f
c
gRdf

hiReghi

I6,242 Rab
a
cRb

d
c
eRd

fghRe
i
ghRf

j
i
kRj

l
kl RabRcdRa

e
b
fRc

g
d
hReg

ijRfhij

I7,14 Rab
a
cRb

d
d
eRc

f
e
gRf

h
g
iRh

j
j
kRi

l
l
mRk

n
mn −RabRa

cRb
dRefRe

gRc
h
d
iRfhgi

I7,55 Rab
a
cRb

d
d
eRc

f
f
gRe

h
g
iRh

jklRi
m

klRj
n
mn RabRa

cRb
dRefRc

g
d
hReg

ijRfhij

I7,391 Rab
a
cRb

d
c
eRd

fghRe
i
ghRf

j
i
kRj

l
l
mRk

n
mn −RabRa

cRdeRb
f
c
gRd

h
e
iRfh

jkRgijk

Table A.1
All independent invariants for dimension 4, up to degrees 7 (non-duals) and 5
(duals).

transformed into Ricci the canonicalized expressions give a relative sign in
several cases (‘Riemann and Ricci’ column).
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B The Narlikar and Karmarkar basis

This basis does not contain dual invariants, which increases the degree of the
elements of the basis from 6 to 7. It is equivalent to the invariants I1,1, I2,1,
I2,2, D2,2, I3,1, I3,2, D3,2, I3,5, D3,13, I4,1, I4,5, I5,2, D5,2 and I6,6, if D2,2 6= 0. As
shown below, D2,2 is a pure Weyl invariant, and hence it does not vanish for
non-flat spacetimes (not even for curved vacuum spacetimes).

Pure Ricci invariants:

I1 ≡ R = I1,1, (B.1)

I2 ≡ RabRab = I2,1, (B.2)

I3 ≡ RabRa
cRbc = −I3,1, (B.3)

I4 ≡ RabRa
cRb

dRcd = I4,1, (B.4)

Pure Weyl invariants:

J1≡W abcdWabcd = I2,2 − 2I2,1 +
1

3
I21,1, (B.5)

J2≡W abcdWab
efWcdef

= I3,5 − 6I3,2 + 6I3,1 −
1

2
I1,1I2,1 + 7I1,1I2,1 −

17

18
I31,1, (B.6)

J3≡W abcdWab
efWcd

ghWefgh −
1

4
J2
1 =

σ

16
D2

2,2, (B.7)

J4≡W abcdW efghWabefWcd
ijWghij −

5

12
J1J2

=−
5σ

96
D2,2(−2D3,13 − 4D3,2 +D2,2I1,1), (B.8)

Mixed invariants:

K1≡RabRcdWacbd = I3,2 − I3,1 −
7

6
I1,1I2,1 +

1

6
I31,1, (B.9)

K2≡RabRcdWac
efWbdef

= I4,5 + 2I4,1 −
4

3
I1,1I3,2 − 3I1,1I3,1 − I22,1 +

41

18
I21,1I2,1 −

5

18
I41,1, (B.10)

K3≡RabRcdWac
efWbd

ghWefgh −
1

4
J1K1 +

1

12
(I2 − I21 )J2

=−
σ

16
D2,2D3,2, (B.11)

K4≡RabRa
cRdeRd

fWbecf

=−2I5,2 −
7

6
I1,1I4,1 +

1

2
(I2,1 + I21,1)I3,2 −

1

6
(I2,1 − 11I21,1)I3,1
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+
2

3
I1,1I

2
2,1 −

4

3
I31,1I2,1 +

1

6
I51,1, (B.12)

K5≡RabRa
cRdeRd

fWbe
ghWcfgh =

=−2I6,6 −
4

3
I1,1I5,2 +

1

2
(I2,1 + I21,1)I4,5 +

1

4
(2I2,1 − I2,2)I4,1

−
13

18
I21,1(I4,1 + I1,1I3,1) +

1

3
(I1,1I2,1 − I31,1 − 2I3,1)I3,2 +

1

3
I23,1

−
1

6
I1,1I2,2I3,1 +

7

9
I1,1I2,1I3,1 +

1

24
(3I22,1 − I41,1)I2,2 −

1

4
I32,1

+
7

18
I21,1I

2
2,1 +

1

36
I41,1(I

2
1,1 − 8I2,1), (B.13)

K6≡RabRa
cRdeRd

fWbe
ghWcf

ijWghij −
1

4
J1K4 +

1

12
(I4 − I22 )J2

=
σ

32
D2,2(4D5,2 −D3,2(I

2
1,1 + I2,1)). (B.14)

C Main commands in the Mathematica implementation

This appendix lists the main commands of the Invar tensor package in the
Mathematica implementation version. This version is written on top of the
xTensor package [17].

InvSimplify[expr, sl] is the general simplifier of scalar invariants in expr

when expressed with heads RInv and DualRInv. The optional argument sl is
an integer specifying the simplification level: 1 (only permutation symmetries),
2 (also cyclic symmetries), 3 (also dimensionally-dependent identities) and 4
(also signature-dependent identities), which correspond to columns A, B, C
and D of table 2, respectively. Its default value is 4.

RiemannToInv[expr] converts the algebraic expression expr containing Rie-
mann and Ricci tensors into an expression with objects with head RInv and
DualRInv. Conversely, InvToRiemann[expr] transforms those objects in expr

into their corresponding Riemann expressions.

RiemannSimplify[expr] is equivalent to the consecutive action on expr of
RiemannToInv, then InvSimplify, and then InvToRiemann.

Invs[sl, d] gives a list off all independent invariants of degree d after sim-
plification level sl. DualInvs[sl, d] does the same for dual invariants.

MaxIndex[d] and MaxDualIndex[d] return the maximum value that the index
n can assume in RInv[d, n] and DualRInv[d, n] respectively.

These are functions of xTensor which can be useful in the Invar package:
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DefManifold[M, dim, {a, b, c, ...}, s] defines a manifold M of dimen-
sion dim and associates the abstract indices {a, b, c, ..., s} to it.

DefMetric[σ, g[-a, -b], CD, {";", "∇"}] defines the metric g on the
manifold M, such that its determinant has sign σ. Its Levi-Civita connection CD

is also defined, as well as the associated curvature tensors RiemannCD[-a,-b,-c,d],
RicciCD[-a,-b], RicciScalarCD[] and WeylCD[-a,-b,-c,-d], and the to-
tally antisymmetric tensor epsilong[-a,-b,-c,-d] (in dimension 4).

ContractMetric[expr, g] simplifies contractions with the metric g in the
expression expr.

RiemannToWeyl[expr] expands Riemann tensors into Weyl, Ricci and RicciS-
calar parts. WeylToRiemann[expr] performs the opposite task.

RiemannToRicci[expr] converts contracted Riemann tensors into Ricci ten-
sors, and contracted Ricci into RicciScalar.

D Main commands in the Maple implementation

This appendix lists the main commands of the Invar tensor package in the
Maple implementation version. This version is written on top of the Canon
package [18]. The arguments between square brackets are optional.

RiemannSimplify(expr,[opt]) is a general simplifier of scalar invariants. It
contracts any metric tensor in expr, simplifies contractions of the Weyl tensor,
converts products of Riemann tensors into RInvs and DualRInvs whenever
possible, reduces them using cyclic and dimension dependent identities, and
simplifies contractions the Riemann tensor into Ricci and Ricci scalars. The
option opt controls the simplifying level. The default is DDI, which means
that the dimension dependent identities are employed. The option Cyclic

tells RiemannSimplify to use only the cyclic identities.

RiemannToInv(expr) converts the algebraic expression expr that has Rie-
mann tensors into an expression with RInvs and DualRInvs. InvToRiemann(
expr) converts the algebraic expression expr that has RInvs and DualRInvs
into an expression with Riemann tensors.

RiemannToRicci(expr) simplifies contractions of Riemann tensors into Ricci
tensors or Ricci scalars. RicciToRiemann converts Ricci tensors into Riemann
tensors.

WeylToRiemann(expr) converts Weyl tensors into Riemann tensors. Riemann
ToWeyl(expr) converts Riemann tensors into Weyl tensors.
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MaxIndex(degree) and MaxDualIndex(degree) return the maximum value
that the index n can assume in RInv[degree,n] and DualRInv[degree,n]

respectively.

It follows a short description of commands of the Canon package useful in the
context.

TensorDefine(T, n, S, [B]) defines the symmetries of a tensor. T is the
tensor name, n is the number of indices, S is a set of permutations, and B is the
base. For example, the tensor A with 3 indices and antisymmetric in the last
two indices is defined in the following way: TensorDefine(A,3,[-1,[[2,3]]],
[1,2,3]). Totally symmetric or antisymmetric tensors can be defined by us-
ing the option Symmetric or AntiSymmetric as the third argument. The list
of built-in tensors is: Riemann tensor R[a,b,c,d], Ricci tensor R[a,b], Ricci
scalar R[ ], totally antisymmetric tensor epsilon[a,b,c,d], metric tensor
g[a,b], Weyl tensor C[a,b,c,d].

Canonical(expr) uses the permutation symmetries of the built-in tensors
(or tensors defined by the user) to canonicalize the tensor expression expr.
No further simplification is performed. Most commands of the package uses
Canonical internally.

AbsorbMetric(expr) simplifies contractions with the metric tensor.
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