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Abstract
The recently developed high-order accurate multiple image approximation to the reaction field for
a charge inside a dielectric sphere [J. Comput. Phys., 223 (2007) 846-864] is compared favorably to
other commonly employed reaction field schemes. These methods are of particular interest because
they are useful in the study of biological macromolecules by the Monte Carlo and Molecular
Dynamics methods.
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1 Introduction
Electrostatics plays a major role in the structure and function of a biomolecule. Electrostatic
interactions are long-range, and strongly dependent on the solvent environment surrounding
the biomolecule under study. When modeling a biological system numerically, it has been
challenging, however, to account for such environment in a manner that is computationally
efficient and physically accurate at the same time. As such, theoretical modeling of electrostatic
interactions has been and remains an important subject of theoretical and computational studies
of biomolecules.

Explicit representation of solvent molecules [1–3] offers a detailed and accurate description
of a macromolecule, yet all-atom simulations are expensive to perform due to the long-range
nature of the electric forces. Alternatively, in implicit solvent models [4,5], an aqueous solvent
is modeled as a continuum medium with a large dielectric constant (60 to 85) outside the
macromolecule. The macromolecule atoms themselves are explicitly modeled with assigned
partial charges embedded in a dissimilar continuum medium of a low dielectric constant (1 to
4) inside the macromolecule volume. The neglect of the explicit solvent molecules can
significantly reduce the computational cost. However, the implicit solvent models also have
fundamental limitations due to the fact that the important atomic details of how the solvent
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molecules interact with the surface of the macromolecule are ignored. In order to benefit the
efficiency of the implicit solvent models for replacing the solvent that gives rise to much of
the computational cost, while also directly modeling structural effects of the solvent in the
proximity of the macromolecule, there has been considerable recent interest in developing
hybrid explicit/implicit models [6–8]. In these hybrid models the macromolecule together with
a boundary layer or shell of the solvent molecules are considered explicitly within a cavity.
Outside the cavity, the solvent is treated implicitly as a dielectric continuum.

Electric charges within the cavity will polarize the surrounding solvent medium, which in turn
makes a contribution, called the reaction field, to the electric potential within the cavity. The
electric potential inside the cavity is expressed as Ψ=ΨS +ΨRF where ΨS is the potential due
to direct Coulomb interactions between source charges within the cavity, and ΨRF is the
reaction field. Fast and accurate calculation of such a reaction field will have a far-reaching
impact on computational simulations for chemical and biological systems involving
electrostatic interactions within a solvent.

In case of a spherical cavity, the reaction field can be calculated using the classical Kirkwood
series expansion [9,10]. Although in theory any desired degree of accuracy can be obtained
using the series expansion, its convergence rate is slow near the cavity boundary. For this
reason, a few image charge approaches have been proposed in which the reaction field is
represented in terms of the potential of a single image charge, including the Friedman image
approximation [11] and the Abagyan-Totrov modified image approximation [12]. However,
by using only one image charge these methods were limited in accuracy. Recently, a high-
order accurate approximation using multiple image charges was proposed [13] which was
found to perform about 20-30 times faster than the Kirkwood expansion in typical high
accuracy calculations. Moreover, combined with the fast multipole methods [14,15], the
multiple image approximation has the potential to calculate electrostatic interactions among
N charges inside the spherical cavity in O(N) operations.

In this paper, we shall compare this high-order accurate multiple image approximation with
other commonly employed reaction field schemes. A brief description of these image methods
to the reaction field is first given in Section 2, and a comparison of the numerical results is then
given in Section 3.

2 The image approximations
By linear superposition, the reaction field due to a single source charge q inside a spherical
cavity only needs to be considered. Without loss of generality, let us consider a sphere of
dielectric constant εi embedded in a homogeneous medium of dielectric constant εo. As shown
in Fig. 1, the sphere has radius a and is centered at the origin of the coordinates. The point
charge q is located on the x-axis at a distance rs < a from the center of the sphere.

2.1 The Kirkwood series expansion
The electrostatic potential Ψ(r) at a point r is given by the Poisson’s equation

where δ(r) is the Dirac delta function, and ε(r) is the dielectric constant. Using the classical
electrostatic theory, the reaction field of the spherical dielectric can be solved analytically [9,
16]. More precisely, with respect to a spherical coordinate system (r, θ, ϕ), due to the azimuthal
symmetry, the reaction field ΨRF(r) at an observation point r=(r, θ, ϕ) inside the sphere can
be expressed in terms of the Legendre polynomials of cos θ, namely,
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(1)

where Pn(x), n = 0, 1, 2, ⋯ , are the Legendre polynomials.

In the case that the point charge is close to the boundary of the sphere, when calculating the
reaction field at a point also close to the boundary, the convergence rate by the Kirkwood series
expansion is slow due to rrs/a2 ≈ 1, requiring a great number of terms in the series expansion
to achieve high accuracy in the reaction field.

2.2 The Kirkwood image approximation
Assume that εi < εo. Then expanding the term (n +1)/(εin + εo(n + 1)) in (1) in terms of εin/
εo(n +1) < 1 yields

which enables us to write the reaction field given in (1) as

(2)

where for k=0, 1, 2, ⋯ , we have

In particular, the first term in (2) is

(3)

which is exactly the Legendre polynomial expansion of the Coulomb potential at the point r
inside the sphere due to a point charge of strength qK outside the sphere at the conventional
Kelvin image point rk=(rk, 0, 0) [16], namely,

where

The Kirkwood image approximation to the reaction field is then defined as
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(4)

Now let us consider the second term in (2) which can be written as

(5)

Similarly, the first series in (5) is exactly the Legendre polynomial expansion of the Coulomb

potential at the point r inside the sphere due to a point charge of strength  outside the sphere
at the Kelvin image point rk, where

On the other hand, using the integral identity

(6)

which is valid for all n ≥ 0, the second series in (5) can be written as

(7)

where

Note that  can be regarded as the density function of a continuous line charge extending
along the radial direction from the Kelvin image point rk to infinity. Also, the integrand in (7)
is exactly the Legendre polynomial expansion of the Coulomb potential at the point r inside
the sphere due to a charge of strength  outside the sphere at the point x=(x, 0, 0). Hence
we get

The Kirkwood image approximation (4) can then be improved by including B(1)(r) as a
correction potential, and the resulting image approximation is referred to by us as the improved
Kirkwood image approximation, namely,
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(8)

where

Furthermore, by evaluating the integral in (8) explicitly, a compact analytical form of the
improved Kirkwood image approximation can be obtained as

where ξ=rrs/a2.

2.3 The Friedman image approximation
Alternatively, expanding the term (n +1)/(εin + εo(n + 1)) in (1) in terms of εi/((εi + εo)(n +1))
< 1 results in

which enables us to write the reaction field given in (1) as

(9)

where for k=0, 1, 2, ⋯ , we have

In particular, the first term in (9) is

which is exactly the Legendre polynomial expansion of the Coulomb potential at the point r
inside the sphere due to a point charge of strength qF outside the sphere at the Kelvin image
point rk, namely,
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where

The Friedman image approximation to the reaction field is thus defined as

(10)

Next, let us consider the second term in (9) which is

Using the integral identity (6) again, R(1)(r) can be regarded as the potential of a continuous
line charge extending along the radial direction from the Kelvin image point rk to infinity with
the charge density function given by

namely,

(11)

Note that the line charge  is a constant multiple of the line charge .

Also, integrating (11) leads to a compact analytical form for R(1)(r) as

Consequently, the Friedman image approximation can be improved by including R(1)(r) as a
correction potential, and the resulting image approximation is referred to by us as the improved
Friedman image approximation, namely,

(12)
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Since the Friedman image approximation was proposed in 1975, the paper [11] has been cited
more than 140 times (Source: Web of Science, 2006), and the method has been applied in many
areas including molecular dynamics or Monte Carlo simulations [17–19].

2.4 The Abagyan-Totrov image approximation
The Friedman image approximation (10) or (12) provides insufficient accuracy. In particular,
when rs tends to zero so that the point charge is located in the center of the sphere, the reaction
field energy based on the Friedman image approximation (10) does not reproduce the Born
formula [12].

Based on the Friedman image approximation (10), Abagyan and Totrov proposed a modified
image approximation which is more accurate and less computationally intensive than the
improved Friedman image approximation (12). Instead of an exact expression for R(1)(r), a
position-independent correction potential Rcorr is added to the Friedman image approximation
(10) so that for the particular case of a charge in the center of the sphere one gets the exact
solution. The position-independent correction potential Rcorr is defined as

The Abagyan-Totrov modified image approximation to the reaction field is then defined as

(13)

The reaction field energy based on the Kirkwood image approximation (4), however,
reproduces the Born formula when rs tends to zero. This implies that, when the source is located
around the center of the sphere, the Kirkwood image approximation (4) should perform better
than the Friedman image approximation (10), which actually has been verified numerically in
Section 3. On the other hand, one can show that  as rs tends to zero, indicating
that for relatively small values of rs, the Kirkwood and the Abagyan-Totrov image
approximations are comparable in terms of their accuracy.

Since its publication in 1994, the paper [12] has been cited more than 269 times (Source: Web
of Science, 2006). Applications of the Abagyan-Totrov modified image approximation can be
found in [12,20,21].

2.5 The high-order accurate multiple image approximation
In essence, the image approximations to the reaction field discussed in the previous subsections
all employ a single image charge to represent the reaction field with limited accuracy. Recently,
a high-order accurate multiple image (MI) approximation to the reaction field was proposed
[13] based on a little-known result dating back more than 120 years ago! First published in
1883 by C. Neumann [22] and later rediscovered in the 1990s independently by Lindell and
Norris [23,24], a point charge at the Kelvin image point together with a continuous line charge
extending from this Kelvin image point along the radial direction to infinity can be used to
represent the reaction field exactly, namely,

(14)
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where

The MI approximation to the reaction field is then obtained by representing the continuous line
charge  with discrete charges constructed through an appropriate numerical quadrature
[13]. More precisely, without losing any generality, let sm, wm, m=1, 2, ⋯ ,M, be Gauss
quadrature points and weights on the interval [−1, 1], which can be obtained with the program
ORTHPOL [25]. Then, the numerical quadrature for approximating the integral in (14) is

where xm=(xm, 0, 0), and for m=1, 2, ⋯ ,M,

Accordingly, the high-order accurate MI approximation to the reaction field is defined as

(15)

3 Numerical results
In this section, the image approximations to the reaction field described in the previous section
are numerically tested. For demonstration purpose, a unit dielectric sphere is adopted. Unless
otherwise specified, the dielectric constants of the unit dielectric sphere and the surrounding
medium are assumed to be εi=2 and εo=80, respectively. Also, the single point charge q is
located on the x-axis inside the sphere at a distance rs < a=1 from the center of the sphere. In
addition, the reaction field obtained by using the high-order accurate MI approximation with
201 discrete charges (M=200) is chosen as the exact reaction field to calculate the errors of the
image approximations.

3.1 Accuracy vs the observation point location
For two different source locations with rs=0.4 and 0.999, respectively, the image
approximations are used to calculate the reaction field at 21 observation points equally spaced
either on the x-axis or on the z-axis, from -1 to 1. For each selected observation point, the
relative errors of the image approximations in the reaction field are calculated and displayed
in Fig. 2, from which several phenomena can be observed.

a. All results clearly demonstrate that, for the particular choice of εi=2 and εo=80, the
reaction field obtained by using the high-order accurate MI approximation has the
highest accuracy, even with only one additional image charge being included (M=1),
regardless of where the source and the observation point are located.

Deng et al. Page 8

Comput Phys Commun. Author manuscript; available in PMC 2010 November 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



b. As mentioned in Section 2.4, in cases that the source charge is close to the center of
the sphere, the Kirkwood and the Abagyan-Totrov image approximations have
comparable accuracy (Fig. 2 (a)(b)). When the source charge is close to the boundary
of the sphere, the two approaches in general seem to still have comparable accuracy.
However, the Abagyan-Totrov image approach yields better approximation at those
observation points around the source charge (Fig. 2 (c)).

c. For the particular choice of εi=2 and εo=80, the Friedman image approximation can
achieve only an accuracy of around 1% error except when the source charge is close
to the boundary of the sphere and the observation point is close to the source at the
same time (Fig. 2 (c)). The improved Friedman image approximation has better
accuracy compared to the original one, but overall it is still not as efficient as the
Abagyan-Totrov modified image approximation.

d. Surprisingly, the improved Kirkwood image approximation improves the original
scheme only when the source is close to the boundary and the observation point is
close to the source (Fig. 2 (c)). In addition, the improved Kirkwood and the improved
Friedman image approximations are shown to have comparable accuracy.

3.2 Accuracy vs the source location
For each selected source location with rs varying from 0.01 to 0.999, the relative errors of the
image approximations in the reaction field are calculated at each of NF=8, 000 observation
points uniformly distributed within the sphere. Then the maximal relative error and the
normalized L2 error for each approximation scheme are calculated as

(16)

and

(17)

respectively, where ΨRF(ri)and  denote the actual reaction potential and its image
approximation at an observation point ri, respectively. The approximation errors using different
image methods are shown in Fig. 3. As can be seen, the high-order accurate MI approximation
is much more accurate than all other image methods, regardless of the source charge location.
For most cases, the Abagyan-Totrov image approximation is much more accurate than both
the Friedman image approaches and the improved Kirkwood image approximation, but when
the source is near the boundary of the sphere, the improved Kirkwood or Friedman image
approximation becomes comparable to the Abagyan-Totrov image approximation. Also, the
MI method, the Kirkwood and the Abagyan-Totrov image methods are sensitive to the source
location and they are all much more accurate when the source is near the center of the sphere
than when the source is near the boundary of the sphere.
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3.3 Accuracy vs the dielectric constants
In this test, the dielectric constant of the surrounding medium is fixed as εo=80, but that of the
dielectric sphere varies between εi=1 and εi=7. For each selected value of εi, the relative errors
of the various image approximations in the reaction field are calculated at each of the same
NF=8, 000 observation points inside the sphere. Then the corresponding maximal relative error
for each approximation scheme is calculated like in (16). The test is repeated for four different
source locations with rs=0.4, 0.6, 0.8 and 0.999, respectively, and the results are plotted in Fig.
4, from which the following facts can be observed.

a. For large values of εi (say εi > 5), , the accuracy that can be achieved by the Friedman,
the improved Friedman and the improved Kirkwood image approximations all is
around 10%, and the Abagyan-Totrov image approximation is typically accurate to
only a few percent error as well, indicating that these approaches can only provide
very limited accuracy in practice when the dielectric constant of the spherical cavity
is relatively large (say εi ≥ 3) while, at the same time, the dielectric constant of the
surrounding solvent is relatively small (say εo ≤ 70). On the other hand, the high-order
accurate MI approximation can still achieve an accuracy of less than 1% error when
only one additional image charge is adopted.

b. For small values of εi (say εi < 2), the improved Kirkwood or Friedman image
approximation is more accurate than other single charge image approximations,
particularly when the source charge is close to the boundary of the sphere.

c. For all cases with εi ≥ 1.25, the results obtained using the high-order accurate MI
approximation has the highest accuracy, even with only one additional image charge
being included.

d. When εi=1, the improved Kirkwood or Friedman image approximation is more
accurate than the high-order MI image approximation with M=1, but still less accurate
than the high-order accurate MI approximation with M=2 or M=3, depending on
where the source charge is located.

3.4 Accuracy vs the number of discrete image charges
As demonstrated already, typically the high-order accurate MI approximation is more accurate
than all other commonly employed image approximation approaches, even with only one
additional image charge being included. Moreover, like the Kirkwood series expansion, in
theory any desired degree of accuracy can be achieved using the MI approximation by including
a sufficient number of discrete image charges. One natural concern with this MI approach,
however, is the number of discrete image charges required to achieve a certain order of degree
of accuracy in the reaction field within the whole dielectric sphere. This number should be
small if compared to the number of terms needed to achieve the same order of degree of
accuracy in the Kirkwood series expansion to make the MI approximation useful in the practice.

To address this issue, for each of several selected source locations, the relative errors of the
MI approximation with different numbers of discrete images in the reaction field are calculated
at each of the same NF=8, 000 observation points uniformly distributed inside the sphere. And
then the maximal relative error for each selected number of images is calculated and displayed
in Fig. 5. As can be seen, only a small number of discrete image charges, five or less than five
(including the point image charge at the conventional Kelvin image point) for most cases, are
needed for a 10−4 accuracy.

As the final remark, it should be pointed out that the high-order accurate approximation using
multiple image charges was found to perform about 20-30 times faster than the Kirkwood series
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expansion in typical high accuracy calculations. For more details the readers may consult Ref.
[13].

4 Conclusions
In this paper, the recently developed high-order accurate MI approximation and other
commonly employed single image approximations were compared to calculate the reaction
field due to a point charge inside a dielectric sphere embedded in a homogeneous dielectric
medium. Overall, the MI approximation including one additional image charge performed well
compared to the single image approximations, regardless of the source location. Only when
the dielectric constant of the sphere is very small compared to that of the surrounding medium,
two to three additional charges may be needed for the MI approximation to perform better than
the improved Kirkwood or Friedman image approximation.
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Fig. 1.
A point charge and a dielectric sphere.
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Fig. 2.
The approximation errors of the image approximations in the reaction field at 21 observation
points equally spaced on the x-axis or the z-axis, from [−1, 1].
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Fig. 3.
The dependence of the accuracy of the image approximations on the source location.
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Fig. 4.
The dependence of the accuracy of the image approximations on the dielectric constant of the
sphere. The dielectric constant of the surrounding medium is εo=80.
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Fig. 5.
The dependence of the accuracy of the MI approximation on M +1, the number of the total
discrete image charges, including the point image charge at the conventional Kelvin image
point.
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