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Abstract

In this paper we propose a general framework to deal with model approximation and analysis. We present a unified procedure which exploits
sampling, screening and model approximation techniques in order to optimally fulfill basic requirements in terms of general applicability and
flexibility, efficiency of estimation and simplicity of implementation. The sampling procedure applies Sobol’ quasi-Monte Carlo sequences,
which display optimal characteristics when linked to a screening procedure, such as the elementary effect test. The latter method is used to
reduce the dimensionality of the problem and allows for a preliminary sorting of the factors in terms of their relative importance. Then we apply
State Dependent Parameter (SDP) modelling (a model estimation approach, based on recursive filtering and smoothing estimation) to build an
approximation of the computational model under analysis and to estimate the variance based sensitivity indices. The method is conceptually
simple and very efficient, leading to a significant reduction in the cost of the analysis. All measures of interest are computed using a single set of
quasi-Monte Carlo runs. The approach is flexible because, in principle, it can be applied with any available type of Monte Carlo sample.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a mathematical or computational model of the
form,

Y = f (X1,X2, . . . ,Xk) = f (X),

where the input factors Xi have a domain of variability U ,
linked to the uncertainty about their precise value. We inter-
pret the term “factor” in a very broad sense: namely, a factor
is anything that can be subject to some degree of uncertainty
in the model. In global sensitivity analysis,1 all the Xi ’s are
treated as random variables characterized by specified distribu-
tions, implying that the output Y is also a random variable with
a probability distribution, whose characterization is the object
of the uncertainty analysis.

* Corresponding author.
E-mail address: marco.ratto@jrc.it (M. Ratto).

1 Sometimes also known as probabilistic sensitivity analysis.
0010-4655/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2007.07.011
The scope of sensitivity analysis (SA) is to rank the impor-
tance of the various sources of uncertainty in producing the
uncertainty in the output Y . Variance-based sensitivity indices
are the most popular measures of importance. The two key mea-
sures are the main effect

(1)Si = Vi/Y (Y ) = V
[
E(Y |Xi)

]
/V (Y )

and the total effect

(2)STi
= VTi

/V (Y ) = E
[
V (Y |X−i )

]
/V (Y ),

where X−i indicates the array of all input factors except Xi . It
can be shown [1] that these measures of importance are strictly
linked to rigorously specified sensitivity settings:

FP Factor privatization: here, we look for the factor that, once
“discovered” with its true value and constrained at this
value, would reduce the uncertainty in the output Y the
most and, therefore, make the model inference more robust.
The main effects provide the answer to the FP setting.

http://www.elsevier.com/locate/cpc
mailto:marco.ratto@jrc.it
http://dx.doi.org/10.1016/j.cpc.2007.07.011
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FF Factor fixing: here, we want to identify those factors that
have an irrelevant contribution to the uncertainty on the out-
put and, therefore, can be constrained to an arbitrary value
within their range of uncertainty. The total effects may be
used in the FF setting.

As discussed in [2], in addition to variance/uncertainty re-
duction, sensitivity measures can also be interpreted in the
context of regression and prediction analysis. If we were to
identify the univariate function g(Xi) of the single parameter
Xi that best approximates the original function f (X1, . . . ,Xk),
assuming a quadratic loss L = E((f (·) − g(Xi))

2), then it is
well known, from any standard text on statistics, that the func-
tion minimizing this loss is exactly the conditional expectation
E(Y |Xi). So, the best univariate approximation to the function
f (·) is also the one whose variance provides the main effect
sensitivity measure.

Jointly with the two interpretations mentioned above, two
main methodological approaches are followed in the literature
on the estimation of sensitivity indices: the classical approach
and the metamodelling approach. Both approaches are based on
Monte Carlo or quasi-Monte Carlo sampling techniques, where
the uncertainty ranges of the input factors in the vector X =
[X1, . . . ,Xk] are propagated through the computational model
Y = f (X).

The classical approach (FAST, extended FAST, Sobol’, im-
portance measures) is to estimate directly the conditional vari-
ances characterizing the sensitivity indices. Monte Carlo sam-
ples, normally generated with ad hoc designs (FAST samples,
Sobol’ samples, replicated Latin Hypercube samples), allow
for the direct computation, in a more or less efficient man-
ner, of the double-loop multidimensional integrals underlying
the sensitivity indices. Whilst quantitatively reliable and robust
in tackling the specified SA settings, these ‘classical’ methods
have a significant computational cost, requiring thousands of
model evaluations, which renders impractical their application
to expensive computational models.2 According to the latest ef-
forts at reducing the computational cost, e.g., [3], the number of
model realizations required to compute the whole set of main
and total effects is approximately N · k with N ≈ 500 → 1000.

In the alternative metamodelling approach, a metamodel or
‘emulator’ of the original computational model is estimated
first; then all the measures of interest, and the mapping of Y , are
based on this metamodel. While apparently a much more ambi-
tious and difficult task, this approach turns out to be much more
efficient than the classical alternatives. Intuitively, the higher
efficiency of the metamodelling approach can be explained by
the fact that it makes a better use of the information contained
in the Monte Carlo sample; in particular, that information re-
lated to the smoothness of the mapping Y versus the Xi ’s. This
facilitates the characterization of the Y behavior at any loca-
tion X = x∗, using information derived from nearby points.
In the classical methods, on the other hand, each MC run is
treated independently of the rest. So the ‘pattern recognition’

2 By ‘expensive’ we mean here models requiring several minutes, hours or
even days of CPU time to perform a single run.
procedure of the input–output mapping, that is always implicit
in metamodelling, greatly reduces the number of model eval-
uations needed to build an approximation to the model and,
subsequently, compute sensitivities.

The general framework of metamodelling and emulation is
originally formalized in [4]. Its application in SA has been
demonstrated in [2], where a Bayesian approach is applied
to produce a Gaussian process emulator of the computational
model and, subsequently, to compute sensitivity indices in an
extremely efficient way, with a computational cost of only a few
hundreds of runs for a reasonable number of input variables.
This computational efficiency is, however, linked to certain lim-
itations and hypotheses: namely, that the function f (·) needs to
be smooth and the number of input variables should not be very
high (<30).

In a parallel branch of research, the papers by H. Rabitz
and co-workers on High Dimensional Model Representation
(HDMR, Refs. [5,6]) can be seen as precursory applications of
the metamodelling approach in SA. There, the metamodel is
given by the so-called cut-HDMR expansion, obtained by eval-
uating the function f (X) on quadrature points falling on lines,
planes and hyper-planes passing through a ‘base’ point X0 in
the input factor space, and truncating the order of the hyper-
planes at a value l < k. Then, all the required integrals are com-
puted on the truncated cut-HDMR function. This helps to re-
duce the computational cost of the analysis, albeit still not suf-
ficiently to treat expensive models. Moreover, the cut-HDMR
approach still depends significantly on the dimensionality of the
problem (k). Subsequently, this same research group presented
the so-called Random Sampling-HDMR (RS-HDMR, see [7,
8]), where the HDMR terms are estimated by interpolating a
Monte Carlo sample of the mapping Y = f (X1, . . . ,Xk) with
orthogonal polynomials. These earlier references are, therefore,
the first implementations of the metamodelling concept within
the sensitivity context.

In this paper, we propose a new method for global SA
which falls within the context of metamodelling and emula-
tion. It is based on an approach to State-Dependent Parame-
ter (SDP) modelling first suggested in [9], and the estimation
is performed with the help of the ‘classical’ recursive (non-
numerical) Kalman filter [10] and associated fixed interval
smoothing algorithms. In this case, the metamodel is based on
a truncated ANOVA-HDMR expansion (see Section 2) and, as
in the previously published approaches, it normally estimates
all the main effects with only a few hundred Monte Carlo real-
izations (�1000), almost independently of the dimensionality k

of the problem. It can be used to deal with non-smooth or even
discontinuous patterns in f (·) and an arbitrarily large number
of the input factors. It can also be extended to all the interaction
effects up to the second or third order.

The convergence and efficiency characteristics of metamod-
elling can depend strongly upon the properties of the Monte
Carlo sample, which should explore the U space in the best pos-
sible way. In this context, we will show that ‘pre-screening’ pro-
cedures, able to provide a proxy for the total effects with only
an handful of model realizations (the elementary effect test, see
Ref. [11]), are of crucial importance in order both to prepare
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the metamodelling analysis and to make the best use of the
sequential space-filling properties of the Sobol’ quasi-Monte
Carlo sequences [12]. Finally, the pre-screening procedure also
completes the analysis, by adding the relevant information for
the FF setting, which would otherwise be missing. In fact, no
metamodelling approach is yet capable of providing reliable
measures of total sensitivity.

2. HDMR and variance-based methods

Variance-based methods are described in detail in Refs. [1,
13] and can be defined by referring to a decomposition of the
function f itself into terms of increasing dimensionality (High
Dimensional Model Representation, HDMR, see Refs. [5,6,
14]), i.e.

f (X1,X2, . . . ,Xk)

(3)= f0 +
∑

i

fi +
∑

i

∑

j>i

fij + · · · + f12...k,

where each term is a function only of the factors in its index,
i.e. fi = f (Xi), fij = f (Xi,Xj ) and so on. The various terms
are defined as follows:

f0 = E(Y),

fi = E(Y |Xi) − f0,

(4)fij = E(Y |Xi,Xj ) − E(Y |Xi) − E(Y |Xj) − f0,

i.e. as discussed in Section 1, they provide the best approxi-
mation to f (·) in a least squares sense. If the input factors are
independent, all the terms of the decomposition are orthogonal
and the decomposition (3) is unique.

It is obvious that V (fi)/V = V (E(Y |Xi))/V ; in other
words, the main effect (1) equals the variance of the first order
term of the HDMR decomposition (ANOVA-HDMR), normal-
ized by the unconditional variance V . For independent input
factors, a decomposition scheme of the total unconditional vari-
ance V (Y ), equivalent to HDMR, can be derived [14,15]

(5)V (Y ) =
∑

i

Vi +
∑

i

∑

j>i

Vij + · · · + V12...k,

where

Vi = V
[
E(Y |Xi)

]
,

Vij = V
[
E(Y |Xi,Xj )

] − Vi − Vj ,

(6)

Vijl = V
[
E(Y |Xi,Xj ,Xl)

] − Vij − Vil − Vjl − Vi − Vj − Vl.

Normalizing by V from Eq. (5), we obtain the closed identity
for sensitivity indices:

(7)1 =
∑

i

Si +
∑

i

∑

j>i

Sij + · · · + S12...k.

The sensitivity indices are nicely scaled in the range [0,1] and,
for the main effects, we have

∑
i Si � 1, where the equality

holds for purely additive models.
For independent inputs, the total effect (2) can also be de-
fined as the sum of all effects containing the factor Xi , i.e.

STi
= Si +

∑

j>i

Sij +
∑

l>j>i

Sij l + · · · + S12...k.

This explains the difficulty of building a metamodel that pro-
vides an accurate estimation of the total indices. Unless only a
few, low order interaction terms are present, it is very easy to
miss some of these terms.

3. The method

We estimate the terms in the ANOVA-HDMR decomposi-
tion using a special recursive fixed interval smoothing algo-
rithm that estimates the parameters in a State-Dependent Pa-
rameter (SDP) formulation of the input–output mapping. The
methodology presented in this paper resembles ideas and tools
from signal processing and time series analysis: in particular,
it exploits an approach to non-stationary and non-linear signal
processing based on the identification and estimation of sto-
chastic models with time variable (TVP) or state dependent
(SDP) parameters (see Refs. [16–18] for a description of the
method and a full list of references on the background to its
development).

3.1. Sampling strategy

A particularly important aspect of any metamodelling exer-
cise concerns the sampling strategy. In our opinion, two main
requirements have to be fulfilled: (i) the sample must have op-
timal space-filling properties, (ii) the space-filling properties
must be maintained when the metamodelling process is per-
formed in a sequential manner. The first requirement is con-
nected to the efficiency of the estimation process, helping to
ensure that a representative metamodel requires the minimum
number of model runs. The second requirement ensures that
the optimal space filling properties are maintained in sequen-
tial processing, where the analyst adds new realizations within
a metamodelling exercise, in order to improve the model.

In most quasi-Monte Carlo computations, low-discrepancy
sequences are used because they provide the best convergence
properties: for example, the LPτ sequences of Sobol’ [12,19]
or Niederreiter [20]. Such sequences can be computed in a “su-
perfast” way [21] and can be generated by one subroutine. In-
deed, some low-discrepancy samples can provide optimal char-
acteristics: for example, the Latin Supercube Generator (LSS,
Ref. [22]) or Latin Hypercube samples coupled with some op-
timization algorithm (maximin LHs), as in [2]. Such optimal
properties are achieved at a given sample size, but sequentiality
is lost. Moreover, they require the implementation of computa-
tionally intensive algorithms.3

The topic of convergence properties and comparisons be-
tween quasi-Monte Carlo and Monte Carlo methods has been

3 In order to reduce the computational load, in Ref. [2] a suboptimal proce-
dure is applied, based on iterative acceptance–rejection of permutations of point
co-ordinates from a base LHs sample.
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extensively investigated. A conclusion from Ref. [23] is that
“No one of the sequences [. . .] can always be regarded as su-
perior to the others. Qualification of this kind depends strongly
on the problem considered”. The main advantage of a quasi-
Monte Carlo approach is its potential for improving the con-
vergence characteristics. The rate of stochastic convergence for
pure random Monte Carlo methods is N−1/2 while, for some
applications, the actual rate of convergence can be N−α with
α � 1 [21]. Moreover, “. . . it is not correct that the application
of quasi-Monte Carlo is expedient only for relatively low di-
mension k � 12 or 15” [21]. A rather spectacular example of
quasi-Monte Carlo, using the Sobol’ sequence at k = 360, is
from finance mathematics, as described in Ref. [24], where it is
clearly superior to Monte Carlo.

In this paper, we propose the use of Sobol’ sequences be-
cause of their simplicity and because we attach a high value to
sequentiality. Moreover, since quasi-Monte Carlo sequences are
deterministic, we can exploit the known properties of the Sobol’
samples to make the best use of them. More specifically, we
take advantage of the property that, if the input factors are pre-
sorted in such a way that the most important ones correspond to
the first columns of the Sobol’ sequence, optimal convergence
rates (≈ N−α , with α approaching 1) can be achieved [23,25].

3.2. Factor screening and pre-sorting

In order to perform the required pre-sorting, we apply the
elementary effect test (EET, Ref. [11]), which is an extension
and modification of [26]. The method varies one factor at a time
across a certain number of levels selected in the space of the
input factors. For each variation, the elementary effect for the
factor is computed as the incremental ratio:

eei = Y(x1, x2, . . . , xi + �xi, . . . , xk)

�xi

(8)− Y(x1, x2, . . . , xi, . . . , xk)

�xi

.

A number, r , of stepwise trajectories are used to scan the factor
space, where each curve consists of k + 1 points that allow for
the computation of one elementary effect for each of the k input
factors. In total, for each factor, r different estimates of elemen-
tary effects eei are computed. Then the elementary effect tests
EET i are computed, as the mean of the absolute values |eei |
over the r repetitions EET i = 1/r

∑r
1 |eei,r |. The EET i ’s are

used to rank the importance of the factors. Here, EET i has sim-
ilarities with the STi

index, in the sense that it tends to produce
a ranking of the factors very similar, or identical, to that based
on the STi

indices, but at an extremely small computational cost
(of the order 8 · (k + 1), as a rule of thumb). In a similar manner
to the total index, EET i does not distinguish between main ef-
fects and interactions, but highlights the importance of an input
factor regardless of the effect type.

To summarize, performing a small number of additional
model runs to compute the EET i ’s, has the following advan-
tages: it can
1. effectively treat the FF setting, adding fundamental infor-
mation to the whole analysis;

2. make the best use of the simple quasi-random sampling
strategy, by exploiting optimally its sequential, space fill-
ing properties;

3. reduce the dimensionality of the metamodelling process
by eliminating the factors flagged as unimportant by the
EET i ’s.

This latter aspect would also be able to offset the dimensionality
limitation of the Gaussian emulator in [2].

3.3. Setting up the SDP Model for HDMR estimation

Let us start by considering the first order HDMR representa-
tion of the computational model,

(9)

Yt − f0 = f1(X1,t ) + f2(X2,t ) + · · · + fk(Xk,t ) + o(XX′).

This can be considered as a State Dependent Regression (SDR)
model (see Ref. [17], p. 135 et seq.), i.e.:

Yt − f0 = XT
t pt + et

= p1,tX1,t + p2,tX2,t + · · · + pk,tXk,t + et ,

(10)et = N(0, σ 2),

where we may assume that all terms of high order can be ap-
proximated by a Gaussian white noise process with zero mean
and variance σ 2, i.e. the truncated HDMR is viewed as a sto-
chastic non-linear system. This can be justified by a version
of the central limit theorem [27], since the truncated terms
can be considered as the sum of a large number of indepen-
dent random variables with zero mean and arbitrary probability
distribution.4 We adopt here the time series notation, but with
the index t spanning the sequence of Monte Carlo evaluations,
t = 1, . . . ,N .

Each State Dependent Parameter (SDP) pi,t in the SDR
(10) is a function of the corresponding input factor Xi,t . If we
compare these SDPs with the corresponding fi(Xi,t ) in (9),
then fi(Xi,t ) = pi,tXi,t . Estimating the SDPs pi,t is, therefore,
equivalent to providing a mapping of the first order terms of the
HDMR decomposition (9). While intuitively clear, the formu-
lation (10) can have singularity problems when the support of
Xi contains a zero. This could be avoided by introducing a rank
transformation of Xi , shifted by a constant (e.g., 1). However,
the SDR parameters may then lose their ‘physical’ meaning, so
it is probably better to simply reformulate the problem by intro-
ducing constant unity regressors: i.e.

Yt − f0 = 1T
t pt + et = p1,t + p2,t + · · · + pk,t + et ,

(11)et = N(0, σ 2),

where now fi(Xi,t ) = pi,t .
In order to estimate the pi,t , it is necessary to characterize

the variability of pi,t in some stochastic manner. In general this

4 These terms are as many as 2k − 1 − k.
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is accomplished by assuming that the evolution of each SDP
can be characterized by one member of the Generalized Ran-
dom Walk (GRW) class on non-stationary random sequences
(see, e.g., Refs. [28,29]). In the present context, for instance,
the integrated random walk (IRW) process turns out to provide
the best results because it ensures that the estimated SDP re-
lationship has the smooth properties of a cubic spline. Given
this IRW characterization of the pj,t ’s, either of the SDR mod-
els (10) or (11) can then define the observation equation in an
overall State-Space (SS) formulation of the form:

Observation equation: Yt = Ztpt + et ,

State equations: pi,t = pi,t−1 + di,t−1,

(12)di,t = di,t−1 + ηi,t ,

where Zt is either Xt as in (10) or 1t as in (11); while et and
ηi,t , i = 1,2, . . . , k, are zero mean white noise inputs with vari-
ance σ 2 and σ 2

ηi,t
, respectively. Here, the ηi,t (‘system distur-

bances’ in systems terminology) provide the stochastic stimulus
for parametric change in the model and they are assumed to
be independent of each other (i.e. their covariance matrix Q is
purely diagonal) and independent of the observation noise ei,t .

Given this state space formulation of the SDP model, it
seems straightforward, at first sight, to estimate the SDPs,
which are surrogate state variables in the model (12), using the
recursive Kalman Filter (KF) and an associated recursive Fixed
Interval Smoothing (FIS) algorithm (see, e.g., Refs. [10,30]).
The latter FIS algorithm then yields an estimate p̂i,t |N of pi,t at
each data sample, where N is the number of data samples (here,
Monte Carlo realizations). However, the fact that no ‘temporal’
order actually exists in the present context might imply seri-
ous problems for recursive state estimation based on the above
model (12), which is formulated in normal time series terms,
with t denoting the temporal order.

Fortunately, this lack of inherent temporal ordering in the
Monte Carlo realizations is not a problem because we know
that the parameters are state dependent. Consequently, the data
can be re-ordered so that the parameters can be well estimated
under the assumption that they are varying in a manner that
satisfies the IRW model assumption in the sorted space. More-
over, it is logical that this sorting of the data for each parameter
pi,t should be carried out with respect to the corresponding in-
put factor Xi,t , on which the parameter is assumed to depend.
Since each SDP is dependent on a different input factor, how-
ever, it requires a different sorting strategy to the other SDPs.
Hence the ‘backfitting’ procedure, as described in Refs. [16,17],
is exploited.

At each iteration of this backfitting algorithm, it is neces-
sary to optimize the hyper-parameters associated with the state
space model (12), namely the white noise variances σ 2 and
σ 2

ηi,t
. In fact, by a simple reformulation of the KF and FIS

algorithms, each SDP and its stochastic IRW process model
can entirely characterized by one Noise Variance Ratio (NVR)
hyper-parameter, where NVRi = σ 2

ηi,t
/σ 2. These NVR values

are, of course, unknown a priori and need to be optimized:
for example, in the above references, this is accomplished by
maximum likelihood optimization using prediction error de-
composition [31]. If any NVR estimate obtained in this manner
is insignificantly different from zero, then no pattern is actually
recognized, implying a flat fi term, i.e. a negligible main effect
for factor Xi .

The Gaussian hypothesis for input and observation white
noise inputs is not essential, since the above procedure pro-
vides an optimal linear predictor for Y because the estimates
of the pi,t (i.e. p̂i,t |N = f̂i (Xi,t |N)) are obtained by orthogo-
nal projections with respect to the observation noise ei,t (i.e. all
other HDMR terms), perfectly matching the orthogonality con-
dition of HDMR. Moreover, under the Gaussian hypothesis, the
linear predictor becomes exactly the conditional expectation, as
required in (1). At the same time, the recursive filtering and
smoothing procedures also provide, in a natural way, standard
errors of the estimated state dependent parameters, that allow
for testing the relative significance of the FIS estimates p̂i,t |N
and, hence, the estimated fi(Xi,t |N) patterns.

In order to get the flavor of the SDP estimation results, let us
consider a simple function

(13)Y = X1 · X2 + X3

with

Xi ∼ U(−1,1)

and perform an analysis using a Sobol’ LPτ sample of dimen-
sion 256. This model has only one non-zero main effect for X3
and one 2nd order interaction term for (X1,X2). In Fig. 1 we
show the SDP estimation of the first order HDMR terms f1, f2
and f3. We also report the estimated 95% error band, indicating
high significance of the estimation for f3.

The algorithm for SDP model estimation can be seen as a
special form of non-parametric estimation and, as such, can
be compared with other non-parametric methods, such as the
Generalized Additive Modelling (GAM) approach of Ref. [32].
However, in both conceptual and algorithmic terms, the SDP
approach is significantly different from this earlier approach
and seems more appropriate to the estimation of nonlinear, sto-
chastic models. Moreover, the recursive methodology, on which
SDP estimation is based, is couched in optimal maximum likeli-
hood estimation terms that seem more elegant and flexible than
the scatter-plot smoothing procedures used by Hastie, Tibshi-
rani and others. Nonetheless, the backfitting procedure used
here is similar to that used in GAM and so its convergence
properties are similar to those of the GAM algorithms (see,
e.g., [32]).

It should also be noted that, in the above SDR model es-
timation procedure, the stochastic model for each SDP can
be based on any member of the GRW family and is not lim-
ited to the IRW model. For instance, Random Walk (RW) or
Smoothed Random Walk (SRW) models might be identified as
being preferable in certain circumstances because they yield
less smooth estimates. Indeed, if any sharp changes or jumps
seem possible following any initial identification phase in the
analysis, then these can be handled using ‘variance interven-
tion’ (see Ref. [28]), i.e. the NVR at some specific locations is
allowed to assume a large value in order to follow sharp changes
in Y . Moreover, in the case of heteroscedastic behavior (i.e.
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Fig. 1. SDR estimation of the first-order HDMR of the simple model (13). (a)–(c) Scatter plots of Y versus Xi (grey dots), with the smoothed estimates of the
fi + f0 functions (solid lines) and their 95% error bands (dashed lines). (d)–(f) Detail of the estimated fi functions (solid lines) with estimated 95% error bands
(dashed lines) and analytic fi functions (dotted lines).
change in variance) in the observation noise, this can be fur-
ther modelled in a SDP manner, e.g., by making the NVR a
function of some state (see Refs. [33,34]). In the specific case
discussed here, the NVR will simply depend on Xi . This can
then be inserted easily into the KF and FIS algorithms. In prac-
tice, these extensions enable the SDR models to adapt to such
situations, typical in non-linear systems, where one single, con-
stant ‘smoothing parameter’ NVR does not allow us to follow
appropriately the observed patterns of the f (·) mapping.

3.3.1. Extension to interaction terms
Considering the analogies of SDR model estimation with

signal extraction and its associated frequency domain consider-
ations, the extension of the SDP approach to the estimation of
the interaction terms in the HDMR requires a generalization of
the ordering concept applied for the main effects. For example,
in order to estimate a second order effect Vij , we need to define
a sorting strategy that implies a low frequency characteristic for
the couple (Xi,Xj ) of input factors under consideration, while
all other combinations have a ‘white’ spectrum. From this, as
for the main effects, a smoothing procedure on the ‘2D-sorted’
output signal Y will allow us to separate a low frequency com-
ponent, attributable to the couple (Xi,Xj ), from the remainder
of the Y spectrum. Moreover, since each interaction effect will
have a different sorting, the backfitting procedure has to be ex-
ploited for the interaction effects as well.

In order to visualize this, let us consider again the simple
model (13) and perform the analysis of the second order in-
Fig. 2. Sorting trajectory in the (X1,X2) plane.

teraction term (X1,X2). Since we want to compute the V12

interaction effect, the 2D sorting requires exploration of the
(X1,X2) plane along a closed trajectory, like the one shown in
Fig. 2, with the sorting of the sample points carried out as they
fall within the band delimited by two adjacent lines. This allows
for the identification of an ordering where (X1,X2) has low fre-
quency characteristics, while X3 maintains the white spectrum
(Fig. 3). The corresponding sorted output signal Y can then be
analyzed to identify the 2nd order interaction term (Fig. 4).

Considering the above procedure within the SDP formalism,
the HDMR terms of order higher than one can be expressed
as:
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Fig. 3. Sorted sample used to compute the (X1,X2) interaction.

Fig. 4. Upper panel: Sorted output signal (grey line) and smoothed low frequency component (black line) attributable to the (X1,X2) interaction. Lower panel:
Smoothed low frequency component (solid line) with standard error (dashed lines) and sorted analytic (X1,X2) interaction (dotted line). Standard error lines are
plotted around the zero line for ease of reading.
(14)
∑

j>i

pij,t (sij ) +
∑

l>j>i

pij l,t (sij l) + · · · + h.o.t.,

where each state-dependent parameter pI,t (sI ), I = i1, . . . , il ,
follows a stochastic IRW process and depends on a state vari-
able sI that moves according to the generalized ordering strat-
egy along the co-ordinates of the group of factors indexed by I .
In the test example discussed later in Section 4 of this paper,
the HDMR decomposition is always truncated at the second or-
der and the portion of variance left out by this truncation will
always be specified.

The definition (14) can be further generalized by assum-
ing that the interaction terms are made of a parametric re-
gressor ψI (XI ), e.g., like those obtained by following the RS-
HDMR approach [7,8], multiplied by a state-dependent para-
meter:
∑

j>i

pij,t (sij ) · ψij (Xi,t ,Xj,t )

(15)

+
∑

l>j>i

pij l,t (sij l) · ψijl(Xi,t ,Xj,t ,Xl,t ) + · · · + h.o.t.

The generic regressor ψI (XI ) can be made of simple expres-
sions like monomials. For example, in a second order term, we
can take ψij (Xi,t ,Xj,t ) = Xi,t · Xj,t and the interaction term
takes the simple form pij,t (sij ) · Xi,t · Xj,t . This generalized
formulation shows how the SDP approach introduces a signifi-
cant degree of flexibility by allowing the regression coefficients
in a ‘standard’ parametric model approximation to be state de-
pendent, in order to follow more precisely local curvature and
non-linearity, which might otherwise require the use of high or-
der basis expansions in the full parametric RS-HDMR.
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In this context, an efficient use of RS-HDMR in combina-
tion with SDP modelling is to apply a low order basis expansion
for the RS-HDMR (e.g., second-order polynomials) and refine
such a ‘coarse’ polynomial regression with SDP, where signif-
icant corrections are identified according to the ML estimation
of the NVR’s. Subsequently, this non-parametric correction can
guide the choice of the most suitable basis for a full parametric
model approximation (e.g., RBF instead of polynomials) that
best accounts for the SDP estimation results.

3.3.2. Extension to dependent inputs
The extension of the present metamodelling methodology to

the case when the input factors are not independent is straight-
forward. In this case, the expressions (3)–(4) can still be written,
but its uniqueness is lost, while the variance decomposition
(5) no longer holds. Therefore, the decomposition into addi-
tive functional components which are no longer unique can be
judged of less use in the present context. However, using the
same generalized sorting strategy described before, one can still
estimate single conditional expectation terms:

(16)f c
I = E(Y |XI )

as

(17)Yt = pI,t (sI ) + et , et ∼ N(0, σ 2).

In Eq. (16), the c exponent indicates that the functional approx-
imation for the group of factors I = i1, . . . , il is ‘closed’ over
the entire set of contributions from order 1 to order l within the
group. In this case, the estimation of (17) shows the overall de-
gree of explanation of the output Y provided by the group of
factors indexed by I . Indeed, the quantity V (f c

I )/V (Y ) is well
known in statistics as ‘correlation ratio’ or ‘non-parametric R2’,
as a measure of the explanatory power of covariates in regres-
sion.

3.3.3. Estimating sensitivity indices
Once the smoothed estimates of the HDMR terms f̂I

have been obtained, the estimation of sensitivity indices SI =
V [E(Y |XI )]/V (Y ) is straightforward. As discussed in [35],
three estimators can be applied for this purpose. Given the size
N of the Monte Carlo sample, the estimator used here is:

(18)ŜI = N−1 ∑N
s=1(f̂I (xI,s) − f̄ )2

σ 2
Y

,

where f̄ = N−1 ∑
f̂I (xI,s) and σ 2

Y = N−1 ∑
(ys − Ȳ )2. In [35]

the error estimate for (18) is also provided, by showing that
N1/2(ŜI − SI ) is asymptotically normal with mean zero and
variance (1 − SI )

2V [y∗2 − u2], where y∗ and u are the stan-
dardized output and residual, respectively, i.e. y∗

s = (ys −
μY )/σY and us = (ys − f̂I (xI,s))/(σY (1 − ŜI )

1/2). Hence, the
standard error of the estimate of SI is given by:

(19)SE(ŜI ) = (1 − ŜI ) · std
[
y∗
s

2 − u2
s

]
/N1/2.
3.4. Parameterization

The metamodelling exercise is completed by parameterizing
the HDMR terms estimated in the SDR

Y = f (X1, . . . ,Xk)

= f0 +
∑

1�i�k

fi(Xi) +
∑

1�i<j�k

fij (Xij ) h.o.t.

The HDMR representation is associated with the decomposi-
tion of the space of square integrable functions L2(supp(f ),μ),
where μ is a probability measure on supp(f ). Under the as-
sumption of independent input factors, this is equivalent to de-
composing supp(f ) into a product space and L2 as a direct sum.

Since each HDMR term is square-integrable, we can write
f as

f (X1, . . . ,Xk) = f0 +
∑

1�i�k

∞∑

n=1

αi
nu

i
n

(20)

+
∑

1�i<j�k

∞∑

n1+n2=2

α
ij
n1n2u

i
n1

⊗ u
j
n2 + · · · ,

where {ui
n}n∈N is an orthonormal basis of L2(supp(Xi),μi).

As far as the variance is concerned, it is straightforward to
show that if fi = ∑∞

n=1 αi
nu

i
n, then var(fi) = ∑∞

n=1(α
i
n)

2. Let
us suppose that fi does not significantly contribute to model’s
output, i.e. |fi |2 < ε. If we compute the variance, we obtain
var(fi) < ε, which implies that all the αi

n coefficients are negli-
gible and, therefore, there is no need to parameterize fi .

Using the SDR estimation results, for each sample size N ,
we denote by f̂i (N) the non-parametric approximation of fi .
Note that, once the sample size N has been selected, the func-
tional elements become R

N vectors. For each f̂i (N) define

f̂ M
i (N) =

M∑

n=1

αi
nu

i
n(N)

so that

lim
M→∞ f̂ M

i (N) = f̂i (N).

In order ensure parsimony, the Maximum Likelihood esti-
mation of the NVR for each SDP can be exploited to estimate
the number of α terms needed to obtain a good parameteriza-
tion of fi . It is straightforward to show (e.g., Ref. [36]) that the
50% cutoff frequency ω∗

i of each IRW process is linked to the
NVR by the relationship NVRi = 4(1 − cos(2πω∗

i ))
2. The cor-

responding period T ∗
i = 1/2πω∗

i can be compared to N and the
ratio M∗

i = N/T ∗
i gives an order of magnitude for the degrees

of freedom associated with the SDR, as well as of the number
of α terms to be used. If M∗

i 
 1 there will be no need for pa-
rameterizing fi .

So, after choosing the basis for the parameterization (poly-
nomials, Fourier expansions, radial basis functions), one has
simply to compute a number (∝ M∗

i ) of αi terms for each fi ,
fi,j , etc. In the case of polynomial expansions, the final results
obtained will be fully in line with the approach of Refs. [7,8]
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while, at the same time, helping to avoid over-fitting. In par-
ticular, using M∗

i , one can improve the standard polynomial
estimation by using a stepwise procedure to select the optimal
subset ui

j , j = 1, . . . ,M∗
i , that provides the best approxima-

tion to the non-parametric fi amongst the larger set of basis
elements ui

j , j = 1, . . . ,M , with M/M∗
i = 2 → 4. An exam-

ple of this kind can be found in [37], where a linear wavelet
functional approximation is adopted and the model structure
selection criterion is based on the Predicted Residual Sums of
Squares (PRESS) statistic.

4. Analytical examples

In this section we consider three examples that show some of
the main characteristics of the proposed method. We start first
with the Sobol’ g-function, which illustrates various features
of the proposed estimation approach. Sensitivity and metamod-
elling exercises of different complexity can be designed by tun-
ing both the dimensionality k and the relative importance of the
different factors in this function. This then demonstrates the ad-
vantages of the pre-sorting strategy, as well as the capabilities
of the SDR modelling in dealing with high-dimensional models
(k = 100).

The second example deals with the function of Oakley and
O’Hagan [2]; while the third example involves the metamod-
elling of the complex Level E model. The subsequent sub-
sections provide a summary of the results obtained in all these
examples, while the detailed results are available from the first
author.

The computational cost of correctly addressing the different
levels of analysis are considered from the standpoints of:

• the FF setting, using the elementary effect test;
• the FP setting, where we only require that the SDR esti-

mation clearly identifies the most important factors with
respect to an indistinguishable ensemble of intermediately
important and irrelevant main effects;

• the full estimation of all main effects, where we require
that no irrelevant main effect is over-estimated (i.e. their
estimated Si must be 
 1%) and

max
i

(MSEi ) < 1 → 2,

where MSEi = V (fi(N) − fi)/V (f ) is the mean squared
error of the SDR estimate of fi , normalized by the total
variance;

• the full estimation of all second order effects, keeping the
same requirements as for the main effects.

4.1. An analytical example: the Sobol’ g-function

The Sobol’ g-function is defined as follows:

(21)Y =
k∏

i=1

gi(Xi), where gi(Xi) = |4Xi − 2| + ai

1 + ai

with ai � 0 and Xi ∼ U(0,1). This is a strongly non-linear and
non-additive model: it is has been used in the past to test global
SA methods [38]. The value for k can be chosen to analyze
the dependence of the method on the number of input factors.
Moreover, by tuning the spectrum of parameters ai , the relative
importance of the Xi ’s can be modified. The importance of an
input factor is higher when ai is small, so factors with ai = 0
will have the maximum sensitivity indices; while ai = 99 cor-
responds to almost null sensitivity.

Two cases with k = 15 are considered. First, it is necessary
to test the performance of the Sobol’ samples when the factors
are not ordered according to their importance and the subse-
quent improvement obtained by the pre-sorting strategy based
on the elementary effect test. Moreover, in order to evaluate
the capability of dealing with high dimensional systems, ex-
tended examples at k = 100 are discussed, adding 85 factors
with ai = 99, i.e. almost dummy factors.

4.1.1. Case 1
Consider first the ai spectrum shown in Table 1 (k = 15).

This spectrum of ai values provides a model following a Pareto
law, with a few important factors and the remaining ones with
negligible sensitivity. Moreover, this model has a quite high ad-
ditive component, since the sum of first order effects covers
75% of the total output variance. This implies a relatively small
contribution of interactions; a quite clear separation of the sin-
gular effects; and, in most cases, a faster convergence of the
metamodels. Table 1 shows the FF setting: here, we can cor-
rectly tackle the FF setting with 128 runs (8 · (k + 1)) exactly
identifying the least important factors. This allows us to pre-
sort parameters and arrange the columns of the Sobol’ sample
in a decreasing order of input factor importance. Table 2 shows
that, for this model, the FP setting is very easily handled with
and without pre-sorting; while, by introducing the pre-sorting
exercise, the computational cost necessary to estimate all the
first order fi terms, to the same accuracy as in the non-sorted
case, reduces from 1024 to 256; and from 4096 to 1024 for the
second order terms. The same improvement can be appreciated
also by looking at the convergence rate N−α of the MC inte-
gral of f , where the ‘slope’ α rises from 0.91 to 0.95. Table 2
shows that the metamodel based on the HDMR, truncated at the
second order terms, covers more than 97% of the entire model
variance, which implies that this second order truncation can be
considered as an excellent metamodel.

Table 3 shows the results of the extended model with 100
factors: we can see that the convergence rates are reduced. Tak-
ing 8 · (k + 1) = 808 model evaluations to compute the elemen-

Table 1
Case 1: ai spectrum and treatment the FF setting

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
ai 99 99 4.5 4.5 99 99 1 99 0 99 1 9 0 9 99

FF setting, 128 runs

STi
0.00 0.00 0.02 0.02 0.00 0.00 0.14 0.00 0.47 0.00 0.14 0.01 0.47 0.01 0.00
11 12 5 6 13 14 3 15 2 9 4 7 1 8 10

ee 0.02 0.01 0.33 0.27 0.02 0.02 0.56 0.01 1.20 0.01 0.71 0.12 1.27 0.10 0.02
11 14 6 5 12 15 2 9 3 13 4 7 1 8 10

For FF setting we show analytic STi
’s with ranks in bold and (ee) elementary

effects with ranks in bold.
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Table 2
Convergence tests for Case 1. Exponent α of the convergence rate N−α of the
integral of the g-function. Runs required for each analysis; R2 of the 1st and
2nd order metamodels (theoretical value in brackets)

Pre-sorting α Type of analysis

conv. rate FP 1st order HDMR 2nd order HDMR

no 0.9142 64 1024 4096
76.8% (75.2%) 96.4% (97.25%)

yes 0.9521 128 256 1024
77.7% (75.2%) 97.5% (97.25%)

Table 3
Convergence tests for Case 1, 100 factors extension. Exponent α of the con-
vergence rate N−α of the integral of the g-function. Runs required for each
analysis; R2 of the 1st and 2nd order metamodels (theoretical value in brack-
ets)

Pre-sorting α Type of analysis

conv. rate FP 1st order HDMR 2nd order HDMR

no 0.82 2048 8196
77.2 (75%) –

yes 0.85 512 8196
75.4% (75%) –

cut 0.965 64 256 1024
76.3% (75%) 96.4% (97.1%)

tary effect tests provides a correct picture of the FF setting. The
number of realizations needed to make a good first order meta-
model rises to 8196 for both the pre-sorted and the unsorted
samples. Using pre-sorting raises the rate of convergence from
0.82 to 0.85 and allows for a reduction in the computational
cost for FP from 2048 to 512 realizations. However, pre-sorting
is not effective for more rapid fi estimation. On the other hand,
cutting the 92 factors identified as irrelevant in FF, allows the
full metamodel to converge in 1,024 runs, thus reducing the
total cost of the analysis by a factor 4. Reducing the dimen-
sionality of the problem also allows for an improvement of the
convergence ‘slope’ with respect to the sorted case in Table 2.

4.1.2. Case 2
Here, we consider the more difficult spectrum

(22)
a1�i�k = [1,99,0.3,1.5,3,9,1.8,8,0,0,4.5,0.5,0.2,0.01,0]

that provides a model with 4 input factors sharing the same level
of sensitivity. This then decreases gradually for the remaining
ones, with the result that only one, out of 15 factors, is really
unimportant. Non-additivity and interactions also play a major
role in this case, since the first order effects only cover 38% of
the total output variance. Needless to say, this situation presents
more difficulties for metamodelling (compare, e.g., the conver-
gence rates in Tables 2 and 4).

The performance of the various steps of the analysis is as
follows (see Table 4):

• the FF setting is correctly addressed using 128 model runs;
• the FP setting is correctly addressed using 256 model runs

with pre-sorting and no sorting;
Table 4
Convergence tests for Case 2. Exponent α of the convergence rate N−α of
the integral of the g-function; for the sorted case we show the average over
replicated sortings obtained with the elementary effect method and in brackets
the value for the ‘best’ ordering. Runs required for each analysis; R2 of the 1st
and 2nd order metamodels (theoretical value in brackets)

Pre-sorting α Type of analysis

conv. rate FP 1st order HDMR 2nd order HDMR

no 0.73 256 2048 4096
39.7% (37.9%) 69.3% (73.2%)

yes 0.72 (0.84) 256 1024 2048
39.1% (37.9%) 73.8% (73.2%)

Table 5
Convergence tests for Case 2, 100 factors extension. Exponent α of the con-
vergence rate N−α of the integral of the g-function. Runs required for each
analysis; R2 of the 1st and 2nd order metamodels (theoretical value in brack-
ets)

Pre-sorting α Type of analysis

conv. rate FP 1st order HDMR 2nd order HDMR

no 0.613 1024 16,000
45.7% (37.9%) –

yes 0.702 2048 8192
42.7% (37.9%) –

cut 0.74 256 1024 2048
39.1% (37.9%) 73.8% (73.2%)

• the correct estimation of the whole spectrum of fi ’s is
achieved with 1024 (with pre-sorting) and 2048 (no pre-
sorting) runs;

• the correct estimation of the whole spectrum of fi,j ’s is
achieved with 2048 (with pre-sorting) and 4096 (no pre-
sorting) runs;

• the slope of the convergence rates are similar in the pre-
sorted (0.72) and non-sorted cases (0.72): this is due to the
fact that, in this example, the Pareto law is not satisfied and
the elementary effect test cannot detect the optimal order-
ing (i.e. in ascending order of ai ), which would allow for a
much larger slope (0.84).

Extending the model to 100 factors (Table 5), we can see
that taking 8 · (k + 1) = 808 model evaluations to compute
the elementary effect tests, as well as eliminating the 85 fac-
tors identified as irrelevant, allows us to reduce the total cost
of the analysis by a factor of 8–16 for the first order HDMR.
Moreover, in the 100-dimensional case, the convergence slope
increases from 0.6–0.7 to 0.74, after reducing the dimensional-
ity.

4.2. The analytic function of Oakley and O’Hagan

This section considers the results obtained with the ana-
lytic function used in [2] and compares the performance of the
present SDP method with the Gaussian emulator approach of
Ref. [2]. The function has 15 input factors, each with a normal
distribution N(0,1), and it has the following analytic form:

(23)Y = aT
1 X + aT

2 sin(X) + aT
3 cos(X) + XTMX.
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Fig. 5. FF setting for the Oakley–O’Hagan function: analytic total indices STi
and re-scaled elementary effect tests EET obtained with 128 model evaluations.
Table 6
Convergence tests for the Oakley–O’Hagan function. Exponent α of the conver-
gence rate N−α of the integral of the function. Runs required for each analysis
and % coverage of the metamodel (theoretical coverage in brackets)

Pre-sorting conv. rate Type of analysis

FP 1st order HDMR 2nd order HDMR

no 0.89 512 512 2048
68.8% (71.1%) 96.3% (100%)

yes ≈1 256 512 1024
76.2% (71.1%) 104% (100%)

The analysis is based on the same parameter values for the vec-
tors ai and the matrix M as those used in [2]. Concerning the
FP setting, the 15 input factors can be divided into three groups:
[X1–X5] have a negligible main effect; [X6–X10] have an ‘in-
termediate’ main effect (3–5%); and [X11–X15] have the largest
main effects (around 10%). Moreover, the quadratic component
of the function produces non-negligible second order interac-
tion terms for any of the 15 input factors. This implies that the
none of them can be ‘fixed’ according to the FF setting (see
Fig. 5).

Table 6 presents the convergence tests for the methodology
presented in this paper:

• the FF setting is correctly addressed using 128 model real-
izations;

• the FP setting is correctly addressed using 256 model real-
izations (pre-sorting) and 512 model realizations (no sort-
ing);

• the correct estimation of the whole spectrum of fi ’s is
achieved with 512 model realizations (with and without
pre-sorting);

• the correct estimation of the fi,j ’s (and hence of the full
model) needs 1024 model realizations for the pre-sorted
case and 2048 for the non-sorted one;

• the slope of the convergence rate is 0.89 for the non-sorted
case and rises up to almost 1 with pre-sorting.

In order to compare the results with [2], we can compute
the maximum absolute errors for the main effect sensitivity
indices estimated by the Gaussian emulator using a maximin
LHs sample of 250 model runs, which is as small as 0.007
(second order effects are not analyzed in Ref. [2]). While the
SDP approach is able to correctly handle the FP setting with
the same number of runs, in order to reach the same preci-
sion in the estimation of the sensitivity indices, 1024 realiza-
tions are needed using pre-sorting (2048 without pre-sorting).
In order to make a clearer comparison, however, we replicated
the Gaussian emulator analysis with the same quasi-random
sample used for the SDP estimates, using the Gaussian Em-
ulation Machine (GEM) available at http://www.tonyohagan.
co.uk/academic/GEM/index.html. Note that GEM analysis is
limited to a maximum sample size of 400, therefore we used
the sample size of 256 model evaluations for this comparison.
In this case, it can be seen that the precision of GEM and SDP
estimates for main effects is very similar, with a maximum ab-
solute error of 0.017 for GEM and 0.019 for SDP. At that same
sample size 256, moreover, the maximum absolute error of the
GEM estimates of the total effects is 0.0415, almost identical
to the maximum error of the SDP estimates (obtained by sum-
ming the first order effect and all second order effects for each
factor) which is 0.0419. Finally, looking in detail at second or-
der effects, the largest analytic value is 2.3%, corresponding to
the (X1,X11) interaction. All the remaining interaction effects
are confined between 0% and 1.7%. For the (X1,X11) inter-
action term, the SDP estimate gives 2.6%, which is also clearly
distinguishable to be above the estimates of the remaining inter-
action terms, while GEM gives an estimate of only 1%. Overall,
however, neither GEM nor SDP are able to correctly estimate
the full pattern of second order effects with this sample size.
This is not surprising, since such pattern is not Pareto-like, but
presents a bunch of terms in a ‘grey’ area of small but non-
negligible importance. The absence of a small group of effects
clearly dominating above the rest, with the partial exception of
the couple (X1,X11) whose importance is however very small
(2.3%), impedes to get the full exact metamodel with only 256
model evaluations.

It is worth emphasizing, moreover, that the inclusion of the
FF setting in the current approach has a significant added value.
Already, at 128 runs, the analysis of the elementary effect tests
tells the analyst that none of the 15 parameters has such a small
effect that it can be fixed. So, combining this result with the
estimation of first order effects only, one already knows that the
[X1–X5] group will have non-negligible interaction effects (and
in fact the total effect of the group [X1–X5] is about 20% of the
total variance of Y ).

http://www.tonyohagan.co.uk/academic/GEM/index.html
http://www.tonyohagan.co.uk/academic/GEM/index.html
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Table 7
List of uncertain input factors for the Level E model

Notation Definition Distribution Range Units

X1 = T Containment time Uniform [100, 1000] yr

X2 = kI Leach rate for Iodine Log-Uniform [10−3, 10−2] mol/yr

X3 = kC Leach rate for Np chain nuclides Log-Uniform [10−6, 10−5] mol/yr

X4 = v(1) Water velocity in the first geosphere layer Log-Uniform [10−3, 10−1] m/yr

X5 = l(1) Length of the first geosphere layer Uniform [100, 500] m

X6 = R
(1)
I

Retention factor for Iodine in the first layer Uniform [1, 5] –

X7 = R
(1)
C

Retention factor for the chain elements in the first layer Uniform [3, 30] –

X8 = v(2) Water velocity in the second geosphere layer Log-Uniform [10−2, 10−1] m/yr

X9 = l(2) Length of the second geosphere layer Uniform [50, 200] m

X10 = R
(2)
I

Retention factor for Iodine in the second layer Uniform [1, 5] –

X11 = R
(2)
C

Retention factor for the chain elements in the second layer Uniform [3, 30] –

X12 = W Stream flow rate Log-Uniform [105, 107] m3/yr
Table 8
Maximum absolute errors of normalized SDP sensitivity estimates S∗

i
(N) =

V̂
(N)
i

/V̂ asympt for the Level E model over all time points and all input factors.
For the pre-sorted case, we show the average over three replicas

N. or runs MAE sort MAE no sort

256 0.079 0.084
512 0.078 0.048

1024 0.073 0.025
2048 0.038 0.022
4096 0.024 0.015
8192 0.012 0.0077

5. The Level E model

The Level E model predicts the radiological dose to humans,
over geological time scales, due to the underground migration
of radionuclides from a nuclear waste disposal site. It has been
used both as a benchmark for Monte Carlo computation [39]
and as a benchmark for SA methods [40]. See [41] for a review
and [1] for an in-depth analysis of the model.

The scenario considered in the model tracks the one-
dimensional migration of four radionuclides (129I and the chain
237Np → 233U → 229Th) through two geosphere layers charac-
terized by different hydro-geological properties. The processes
being considered in the model are radioactive decay, disper-
sion, advection and chemical reaction between the migrating
radionuclides and the porous medium. Sometimes, after the
steel canister containing the waste has lost its integrity (the
time of containment failure is indicated by the factor T ), the
release of radionuclides to the geosphere depends only on the
leach rates (k(·)) and the initial inventory levels.

The output quantity of interest Y(t) is the annual radiolog-
ical dose due to the four radionuclides. The simulated time
frame for applications presented here ranges from 6 · 103 to
1 · 107 years. The predictive uncertainty about Y(t) is due to
uncertainties in the twelve input factors, as listed in Table 7.

Amongst the twelve parameters, X4 (= v(1)) and X12 (= W )
have the largest main effect over the simulated period. The
asymptotic values estimated using standard SA tools (Sobol’
method) were compared, taking 1,872,000 realizations, with the
SDP estimation having total costs up to 8192. After only 1024
runs, which is a very small sample size for this kind of model,
the sensitivity pattern is estimated correctly.

The maximum absolute errors of all the main effect sensitiv-
ity indices, across all the time co-ordinates considered for the
output Y(t), are shown in Table 8. It is clear that the conver-
gence of the estimates to the asymptotic values is more difficult
in this case than in the previous ones. The estimation of the sen-
sitivity patterns are already acceptable between 1024 and 2048
runs and become very good with 4096 runs and higher. Since
the dimensionality of the problem is relatively small (k = 12)
no particular advantages were obtained by pre-sorting.

Comparing SDR total costs with the classical Sobol’ sensi-
tivity indices technique, 40,000 model realizations are required
to reach an accuracy comparable to the cheaper SDP model es-
timation of 1024 model runs, i.e. the SDP modelling approach
reduces the computational time by a factor 40 in this case. Con-
versely, 1024 realizations for the Sobol’ estimates are much
too few, with absolute errors for the sensitivity indices that can
reach 0.7–0.8, i.e. totally unreliable estimates.

6. Conclusions

The use of SDP models is a powerful tool for a fast and
accurate estimation of truncated HDMR expansions of compu-
tational models. All the estimates are performed with a unique
sample, which can be any standard Monte Carlo sample. For
optimal convergence, the SDP estimation is performed using
Sobol’ LPτ quasi-random number generators and is accompa-
nied by a pre-sorting procedure based on the elementary effect
test. This allows for the optimal exploitation of the sequential
characteristics of LPτ sequences and significantly faster con-
vergence. Moreover, the pre-sorting procedure can also lead to
a reduction of dimensionality, by eliminating irrelevant input
factors from the analysis.

We have tested the method with different models and differ-
ent levels of detail: the FF setting can be tackled efficiently by
applying the elementary effect tests at the cost of 8 · (k + 1)

model realizations. For models having up to 10–15 input fac-
tors, 256 runs are sufficient to handle the FP setting, while
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256–1024 runs are needed for correct estimates of the entire
spectrum of main effects fi . In the case of second order HDMR
terms, 1024–2048 realizations are required. The highest com-
putational costs are linked to strong non-additivity and non-
monotonicity of the model, as in the Case 2 g-function or the
Level E model.

The dependence of the computational cost of the method on
the number k of input factors is mild for k up to ∼20. In prin-
ciple, the method can be applied also for very high dimensional
systems. We have treated successfully two examples with the
number of factors k = 100. In this case, however, the rate of
convergence becomes much smaller and the pre-sorting pro-
cedure becomes essential to reduce the dimensionality of the
problem.

A comparison with the method of Ref. [2] was also per-
formed on the analytic function used in that paper. The two
methods provided very similar results, in terms of maximum
absolute errors with respect to analytic values of main and total
effects, while SDP performed slightly better in highlighting the
most significant two-way interaction.

Finally, we can discuss how far both the FP and FF settings
can be tackled by any of the methods in the emulation context.
All of them are capable of correctly handling the FP setting (i.e.
computing main effects) in an extremely efficient way. This is
due to the fact that the correct estimation of the main effects is
not affected by the interactions terms of higher order. On the
other hand, for any emulator to work properly for the FF set-
ting as well, the hypothesis that the interactions in the model
does not have to exceed an order of 2 or 3 is always required.
While explicitly stated for the present method and for the cut-
HDMR and RS-HDMR methods [5,7,8], this hypothesis is also
implicit for all other types of emulators. In fact, a few hundreds
of Monte Carlo runs are unable to ‘activate’ high order interac-
tions and so any emulator would, in all cases, reflect only the
active interactions up to the 2nd/3rd order. The consequence
of this is that total indices can be underestimated with the risk
of wrongly fixing factors. Separately addressing the FF setting
is therefore essential and the elementary effect test provides an
extremely cheap solution.
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