
ar
X

iv
:0

70
4.

34
86

v2
 [

he
p-

la
t]

 1
9

O
ct

 2
00

7

An iterativemethod to compute the sign function of a non-Hermitianmatrix

and its application to the overlapDirac operator at nonzero chemical potential

J. Bloch a, A. Frommer b, B. Lang b, and T. Wettig a

aInstitute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
bDepartment of Mathematics, University of Wuppertal, 42097 Wuppertal, Germany

Abstract

The overlap Dirac operator in lattice QCD requires the computation of the sign function of a matrix. While this matrix is usually

Hermitian, it becomes non-Hermitian in the presence of a quark chemical potential. We show how the action of the sign function

of a non-Hermitian matrix on an arbitrary vector can be computed efficiently on large lattices by an iterative method. A Krylov

subspace approximation based on the Arnoldi algorithm is described for the evaluation of a generic matrix function. The efficiency

of the method is spoiled when the matrix has eigenvalues close to a function discontinuity. This is cured by adding a small number

of critical eigenvectors to the Krylov subspace, for which we propose two different deflation schemes. The ensuing modified Arnoldi

method is then applied to the sign function, which has a discontinuity along the imaginary axis. The numerical results clearly show

the improved efficiency of the method. Our modification is particularly effective when the action of the sign function of the same

matrix has to be computed many times on different vectors, e.g., if the overlap Dirac operator is inverted using an iterative method.

Key words: overlap Dirac operator, quark chemical potential, sign function, non-Hermitian matrix, iterative methods
PACS: 02.60.Dc, 11.15.Ha, 12.38Gc

1. Introduction

The only systematic nonperturbative approach to quan-
tum chromodynamics (QCD) is the numerical simulation
of the theory on a finite space-time lattice. For a long time,
the implementation of chiral symmetry on the lattice posed
serious problems [1], but these problems have recently been
solved in a number of complementary ways. Perhaps the
most prominent solution is the overlap Dirac operator [2]
which provides an exact solution of the Ginsparg-Wilson
relation [3]. However, the price one has to pay for this solu-
tion is the numerical computation of the sign function of a
sparse matrix A of dimensionN . Here and in the following,
computing some function f of a matrixA is a short-hand for
computing f(A) ·x, where x ∈ CN , i.e., determining the ac-
tion of f(A) on the vector x. Typically A is Hermitian, and
efficient methods to compute its sign function have been
developed for this case [4,5].
The phase diagram of QCD is currently being explored

experimentally in relativistic heavy ion collisions and the-
oretically in lattice simulations and model calculations [6].
To describe QCD at nonzero density, a quark chemical po-
tential is introduced in the QCD Lagrangian. If this chem-

ical potential is implemented in the overlap operator [7],
the matrix A loses its Hermiticity, and one is faced with the
problem of computing the sign function of a non-Hermitian
sparse matrix. On a small lattice, this can be done by per-
forming a full diagonalization and using the spectral ma-
trix function definition (see Eq. (4) below), but on larger
lattices one needs to resort to iterative methods to keep the
computation time andmemory requirements under control.
The purpose of this paper is to introduce such an iterative

method. In the next section we describe the non-Hermitian
problem in more detail and briefly discuss the sign func-
tion for non-Hermitian matrices. In Sec. 4 we propose an
Arnoldi-based method to make a Krylov subspace approx-
imation of a generic matrix function. The efficiency of this
method is poor when computing the sign function of a ma-
trix having eigenvalues with small absolute real parts. This
is caused by the discontinuity of the sign function along the
imaginary axis. In Sec. 5 we enhance the Arnoldi method
by taking into account exact information about these crit-
ical eigenvalues. We use the method to compute the sign
function occurring in the overlap Dirac operator of lattice
QCD, and in Sec. 6 we discuss the results obtained for two
different lattice sizes.

Preprint submitted to Elsevier 26 April 2007

http://arxiv.org/abs/0704.3486v2

2. The overlap operator and the sign function

The overlap formulation of the Dirac operator is a rig-
orous method to preserve chiral symmetry at finite lat-
tice spacing in a vector-like gauge theory. Its construction
is based on successive developments described in seminal
papers by Kaplan, Shamir, Furman, Narayanan and Neu-
berger [8–10,2]. In the presence of a non-zero quark chemi-
cal potential µ, the massless overlap Dirac operator is given
by [7]

Dov(µ) = 1 + γ5 sgn(Hw(µ)) , (1)

where sgn stands for the sign function, Hw(µ) = γ5Dw(µ),
Dw(µ) is the Wilson-Dirac operator at nonzero chemical
potential [11,12] with negative Wilson mass mw ∈ (−2, 0),
γ5 = γ1γ2γ3γ4, and γν with ν = 1, . . . , 4 are the Dirac
gamma matrices in Euclidean space. The Wilson-Dirac op-
erator is a discretized version of the continuum Dirac op-
erator that avoids the replication of fermion species which
occurs when a naive discretization of the derivative opera-
tor is used. It is given by

[Dw(µ)]nm = δn,m (2)

− κ
3
∑

j=1

(1 + γj)Un,jδn+ĵ,m − κ
3
∑

j=1

(1− γj)U
†

n−ĵ,j
δn−ĵ,m

− κ(1 + γ4)e
µUn,4δn+4̂,m − κ(1− γ4)e

−µU †

n−4̂,4
δn−4̂,m ,

where κ = 1/(8+2mw) and Un,ν is the SU(3)-matrix asso-
ciated with the link connecting the lattice site n to n+ ν̂.
The exponential factors e±µ are responsible for the non-
Hermiticity of the operator. The quark field at each lattice
site corresponds to 12 variables: 3 SU(3) color components
× 4 Dirac spinor components.
For µ 6= 0 the argument Hw(µ) of the sign function be-

comes non-Hermitian, and we need to define the sign func-
tion for this case. Consider first a given matrix A with no
particular symmetry properties and a function f . Let Γ be
a collection of closed contours in C such that f is analytic
inside and on Γ and such that Γ encloses the spectrum of
A. Then the function f(A) of the matrix A can be defined
by [13]

f(A) =
1

2πi

∮

Γ

f(z)(zI −A)−1dz , (3)

where the integral is defined component-wise and I denotes
the identity matrix.
From this definition it is easy to derive a spectral function

definition, even if the matrix is non-Hermitian. If the ma-
trix A is diagonalizable, i.e., A = UΛU−1 with a diagonal
eigenvalue matrix Λ = diag(λi) and U ∈ Gl(N,C), then

f(A) = Uf(Λ)U−1 (4)

with

f(Λ) = diag(f(λi)) . (5)

If A cannot be diagonalized, a more general spectral defini-
tion of f(A) can be derived from Eq. (3) using the Jordan
decomposition A = U(

⊕

i Ji)U
−1 with Jordan blocks

Ji =

















λi 1 · · · 0

0 λi
. . .

...
...

. . .
. . . 1

0 · · · 0 λi

















. (6)

Then,

f(A) = U

(

⊕

i

f(Ji)

)

U−1 , (7)

where

f(Ji) =





















f(λi) f (1)(λi) · · · f (mi−1)(λi)

(mi − 1)!

0 f(λi)
. . .

...
...

. . .
. . . f (1)(λi)

0 · · · 0 f(λi)





















(8)

with mi the size of the Jordan block, see [14]. The super-
scripts denote derivatives of the function with respect to
its argument.
Non-Hermitian matrices typically have complex eigen-

values, and applying Eq. (4) or (7) to the sign function in
Eq. (1) requires the evaluation of the sign of a complex
number. The sign function needs to satisfy [sgn(z)]2 = 1
and, for real x, sgn(x) = ±1 if x ≷ 0. These properties are
satisfied if one defines

sgn(z) ≡ z√
z2

= sgn(Re(z)) , (9)

where in the last equality the cut of the square root is
chosen along the negative real axis. Using the definition (9)
in the spectral definition (7) yields a matrix sign function
in agreement with that used in [15–18]. Indeed, based on
the general Jordan decomposition

A = U





J+

J−



U−1 , (10)

where J+ represents the Jordan blocks corresponding to
the eigenvalues with positive real part and J− those cor-
responding to the eigenvalues with negative real part, the
spectral definition (7) for the sign function becomes

sgn(A) = U





+I

−I



U−1 , (11)

see also [19]. This definition agrees with the result one ob-
tains when deriving Eq. (1) from the domain-wall fermion
formalism at µ 6= 0 in the limit in which the extent of the
fifth dimension goes to infinity [20].
For any square matrix A we have sgn(A)2 = I, and a

short calculation [7] shows that for this reason the overlap
operatorDov(µ) as defined in Eq. (1) satisfies the Ginsparg-
Wilson relation

{Dov, γ5} = Dovγ5Dov . (12)

2

If A is Hermitian, the polar factor pol(A) = A(A†A)−1/2

of A coincides with sgn(A), and this fact has been used
successfully to develop efficient iterative methods for com-
puting the action of the matrix sign function on a vec-
tor [21]. However, if A is non-Hermitian, then in general
sgn(A) 6= pol(A) and pol(A)2 6= I. Thus, for µ 6= 0, re-
placing sgn(Hw) by pol(Hw) in the definition of the overlap
operator in Eq. (1) not only changes the operator but also
violates the Ginsparg-Wilson relation, as can also be seen
in numerical experiments. We conclude that the definition
given in Eq. (1) is the correct formulation of the overlap
operator for µ 6= 0.

3. Direct and iterative methods

A numerical implementation of the sign function using
the spectral definition (4) is only possible for small matri-
ces, as a full diagonalization becomes too expensive as the
matrix grows. As an alternative, matrix-based iterative al-
gorithms for the computation of the matrix sign function
have been around for many years [15,17,22,23]. Although
these algorithms are much faster than the direct implemen-
tation of the spectral definition for medium-sized problems,
they still require the storage and manipulation (i.e., inver-
sions and/or multiplications) of the entire matrix. This is
feasible for medium-sized matrices, but becomes too expen-
sive for the very large matrices occurring in typical lattice
QCD simulations. E.g., even for an 83 × 8 lattice, which is
the minimum lattice size required for a physically relevant
problem, the matrix dimension is already 12·83 ·8 ≈ 50 000.
Even though these QCD matrices are sparse, the iterative
procedure computing the sign function fills the matrix as
the iterations proceed, and the method eventually becomes
prohibitively expensive.
Therefore, another iterative method is required which

does not produce an approximation to the full sign matrix
itself, but rather produces an approximation to the vec-
tor y = sgn(A)x, i.e., to the operation of the sign matrix
on an arbitrary vector. Many QCD applications only re-
quire the knowledge of this product for a number of selected
source vectors x. For instance, some low-energy properties
of QCD can be described by the lowest-lying eigenvalues
of the Dirac operator. These eigenvalues can efficiently be
found by an iterative eigenvalue solver like ARPACK [24],
which only requires the computation of matrix-vector mul-
tiplications. Analogously, the computation of the propaga-
tion of fermions can be well approximated by inverting the
Dirac operator on a selected number of source vectors bk,
i.e., the solution of the systemsDovx = bk. These inversions
are also performed using iterative linear solvers requiring
only matrix-vector multiplications.
Such iterative methods, mostly from the class of Krylov

subspace methods, are already extensively used for the so-
lution of eigenvalue problems, linear systems, and for func-
tion evaluations [25,26] with Hermitian matrices. There,
the ancestor of all methods is the Lanczos method, of which

many variants and improvements have been built over the
years. The Lanczos method makes use of short recurrences
to build an orthonormal basis in the Krylov subspace.
Krylov subspace methods are also used for non-

Hermitian matrices in the context of eigenvalue problems
(a popular example being the restarted Arnoldi method of
ARPACK), for the solution of linear systems, and even for
the evaluation of the exponential function [27,28]. The two
most widely used methods are the Arnoldi method and the
two-sided Lanczos method. In contrast to the Hermitian
case, the Arnoldi method requires long recurrences to con-
struct an orthonormal basis for the Krylov subspace, while
the two-sided Lanczos method uses two short recurrence
relations, but at the cost of losing orthogonality.
In the next section we present an Arnoldi-based method

to compute a generic function of a non-Hermitian matrix.
The application of the two-sided Lanczos method to this
problem will be investigated in a separate publication.

4. Arnoldi function approximation for a

non-Hermitian matrix

From the spectral definition (4) it follows that f(A) is
identical to some polynomial PK−1(A) of degree K − 1 <
N . Indeed, the unique interpolation polynomial PK−1(z),
which interpolates f(z) at the different eigenvalues λi of
A, satisfies f(A) = PK−1(A), as follows immediately from
Eq. (4). If A has non-trivial Jordan blocks, this is still true,
but interpolation is now in the Hermite sense, where at
each eigenvalue PK−1 interpolates f and its derivatives up
to order one less than the size of the largest corresponding
Jordan block, see [19].
Hence, for an arbitrary vector x,

y ≡ f(A)x = PK−1(A)x =

K−1
∑

i=0

ciA
ix . (13)

The idea is to construct an approximation to y using a
polynomial of degree k−1 with k ≪ N . One possibility is to
construct a good polynomial approximation Pk−1(A) such
that Pk−1(λi) ≈ f(λi). This would yield a single polyno-
mial approximation operating on any vector x to compute
f(A)x ≈ Pk−1(A)x. One such example is the expansion in
terms of Chebyshev polynomials up to degree k − 1. Al-
though Chebyshev polynomials are very close to the mini-
max polynomial for a function approximation over an ap-
propriate ellipse in the complex plane, one can do better for
matrix function approximations. First of all, one only needs
a good approximation to f at the eigenvalues of A, and
secondly, one can use information about the source vector
x to improve the polynomial approximation. The vector x
can be decomposed using the (generalized) eigenvectors of
A as a complete basis, and clearly some eigendirections will
be more relevant than others in the function approxima-
tion. Using a fixed interpolation polynomial does not use
any information about the vector x. Furthermore, the only

3

feature of A usually taken into account by such polynomial
approximations is the extent of its spectrum.
Indeed, there exists a best polynomial approximation

ŷ = Pk−1(A)x of degree at most k − 1, which is readily
defined as the orthogonal projection of y on the Krylov
subspace Kk(A, x) = span(x,Ax,A2x, . . . , Ak−1x). If Vk =
(v1, . . . , vk) is an N × k matrix whose columns form an

orthonormal basis in Kk, then VkV
†
k is a projector on the

Krylov space, and the projection is ŷ = VkV
†
k y.

The operation of any polynomial of A of degree smaller
than k on x is also an element of Kk, and the projection
ŷ corresponds to the polynomial which minimizes ∆ =
f(A)x−Pk−1(A)x, as ∆ ⊥ Kk(A, x). Clearly, this approx-
imation explicitly takes into account information about A
and x.
The problem, however, is that to find this best polyno-

mial approximation of degree k−1 one already has to know
the answer y = f(A)x. Therefore, we need a method to ap-
proximate the projected vector ŷ. This can be done by one
of the Krylov subspace methods mentioned in Sec. 3. Here,
we use the Arnoldi algorithm to construct an orthonormal
basis for the Krylov subspace Kk(A, x) using the long re-
currence

AVk = VkHk + βkvk+1e
T
k , (14)

where v1 = x/β, β = |x|,Hk is an upper Hessenberg matrix
(upper triangular + one subdiagonal), βk = Hk+1,k, and
ek is the k-th basis vector in Ck. The projection ŷ of f(A)x
on Kk(A, x) can be written as

ŷ = VkV
†
k f(A)x . (15)

Making use of x = βv1 = βVke1, Eq. (15) becomes

ŷ = βVkV
†
k f(A)Vke1 . (16)

From Eq. (14) it is easy to see that

Hk = V †
k AVk (17)

as V †
k Vk = Ik and vk+1 ⊥ Vk. Therefore it seems natural

to introduce the approximation [27]

f(Hk) ≈ V †
k f(A)Vk (18)

in Eq. (16), which finally yields

ŷ ≈ βVkf(Hk)e1 . (19)

This expression is just a linear combination of the k Arnoldi
vectors vi, where the k coefficients are given by β times
the first column of f(Hk). Saad [29] showed that the ap-
proximation (19) corresponds to replacing the polynomial
interpolating f at the eigenvalues of A by the lower-degree
polynomial which interpolates f at the eigenvalues of Hk,
which are also called the Ritz values of A in the Krylov
space. The hope is that for k not too large the approxima-
tion (19) will be a suitable approximation for y. The ap-
proximation of f(A)x by Eq. (19) replaces the computation
of f(A) by that of f(Hk), where Hk is of much smaller size
than A. The evaluation of (the first column of) f(Hk) can
be implemented using a spectral decomposition, or another
suitable evaluation method [15,17,22,23].

The long recurrences of the Arnoldi method make the
method much slower than the Lanczos method used for
Hermitian matrices. Nevertheless, our first results showed
consistent convergence properties when computing the ma-
trix sign function: as the size of the Krylov space increases,
the method converges to within machine accuracy. More
precisely, for the sign function the method shows a see-saw
profile corresponding to even-odd numbers of Krylov vec-
tors, as was previously noticed for the Hermitian case as
well [5]. This even-odd pattern is related to the sign func-
tion being odd in its argument. The see-saw effect is com-
pletely removed when using the Harmonic Ritz values as
described in Ref. [5] for Hermitian matrices and extended
to non-Hermitianmatrices in Ref. [28], and convergence be-
comes smooth. Alternatively, one can just as well restrict
the calculations to even-sized Krylov subspaces.
Unfortunately, in the case of the sign function the Arnoldi

method described above has a very poor efficiency when
some of the eigenvalues are small. In the case considered
in Fig. 3 (see Sec. 6 below), the size of the Krylov space
has to be taken very large (k ≈ N/2) to reach accuracies
of the order of 10−8 (see the m = 0 curve in the top pane
of Fig. 3). A discussion and resolution of this problem are
given in the next section.

5. Deflation

5.1. Introduction

For Hermitian matrices, it is well known that the compu-
tation of the sign function can be improved by deflating the
eigenvalues smallest in absolute value [5]. The reason why
this is crucial and specific to the sign function is the dis-
continuity of the sign function at zero. For non-Hermitian
matrices, the situation is analogous since the sign function
now has a discontinuity along the imaginary axis. A nec-
essary condition for the method described in Sec. 4 to be
efficient is the ability to approximate f well at the eigenval-
ues of A by a low-order polynomial. If the gap between the
eigenvalues of A to the left and to the right of the imagi-
nary axis is small, no low-order polynomial will exist which
will be accurate enough for all eigenvalues.
The idea is to resolve this problem by treating these crit-

ical eigenvalues exactly, and performing the Krylov sub-
space approximation on a deflated space.
In the Hermitian case, deflation is straightforward. The

function f(A) of a Hermitian matrix A with eigenvalues
λi and orthonormal eigenvectors ui (i = 1, . . . , N) can be
written as

f(A) =
N
∑

i=1

f(λi)uiu
†
i , (20)

and its operation on an arbitrary vector x as

f(A)x =

N
∑

i=1

f(λi)(u
†
ix)ui . (21)

4

Ifm critical eigenvalues ofA and their corresponding eigen-
vectors have been computed, one can split the vector space
into two orthogonal subspaces and write an arbitrary vec-
tor as x = x‖ + x⊥, where x‖ =

∑m
i=1(u

†
ix)ui and x⊥ =

x− x‖. Eq. (21) can then be rewritten as

f(A)x =
m
∑

i=1

f(λi)(u
†
ix)ui + f(A)x⊥ . (22)

The first term on the right-hand side of Eq. (22) can be
computed exactly, and the second term can be approxi-
mated by applying the Arnoldi method of Sec. 4 to x⊥.
As the vector x⊥ does not contain any contribution in the
eigenvector directions corresponding to the critical eigen-
values, the polynomial approximation no longer needs to
interpolate f at the eigenvalues closest to the function dis-
continuity to approximate f(A)x⊥ well. Therefore, after
deflation, lower-degree polynomials will yield the required
accuracy, and a smaller-sized Krylov subspace can be used
in the approximation. In theory, the orthonormality of the
eigenvectors guarantees that the Krylov subspace will be
perpendicular to x‖, but in practice numerical inaccuracies
could require us to reorthogonalize the subspaces during
the construction of the Krylov subspace.
For non-Hermitian matrices the (generalized) eigenvec-

tors are no longer orthonormal, and it is not immediately
clear how to deflate a critical subspace. The matrix func-
tions as defined in (4) or (7) involve the inverse of the ma-
trix of basis vectors, U , and no simple decomposition into
orthogonal subspaces can be performed.
In the remainder of this section, we will develop two alter-

native deflation schemes for the non-Hermitian case, using
a composite subspace generated by adding a small number
of critical eigenvectors to the Krylov subspace. This idea of
an augmented Krylov subspace method has been used in the
iterative solution of linear systems for some time, see, e.g.,
Ref. [30]. Since in computational practice one will never
encounter non-trivial Jordan blocks, we assume in the fol-
lowing, for simplicity, that the matrix is diagonalizable.

5.2. Schur deflation

We construct the subspace Ωm + Kk(A, x), which is the
sum of the subspace Ωm spanned by the eigenvectors cor-
responding to m critical eigenvalues of A and the Krylov
subspace Kk(A, x). The aim is to make an approximation
similar to that of Eq. (19), but to treat the contribution
of the critical eigenvalues to the sign function explicitly so
that the size of the Krylov subspace can be kept small.
Assume thatm critical eigenvalues and right eigenvectors

ofA are determined using an iterative eigenvalue solver like
the one implemented in ARPACK. From this one can easily
construct m Schur vectors and the corresponding m × m
upper triangular matrix Tm satisfying

ASm = SmTm , (23)

where Sm = (s1, . . . , sm) is the N × m matrix formed by
the orthonormal Schur vectors and the diagonal elements
of Tm are the eigenvalues corresponding to the Schur vec-
tors. These Schur vectors form an orthonormal basis of the
eigenvector subspace Ωm, which is invariant under opera-
tion of A.
After constructing the m-dimensional subspace Ωm we

run a modified Arnoldi method to construct an orthogonal
basis of the composite subspace Ωm + Kk(A, x). That is,
each Arnoldi vector is orthogonalized not only against the
previous ones, but also against the Schur vectors si. In
analogy to (14), this process can be summarized as

A
(

Sm Vk

)

=
(

Sm Vk

)





Tm S†
mAVk

0 Hk



+ βkvk+1e
T
m+k .

(24)
Here, the columns v1, . . . , vk of Vk form an orthonormal
basis of the space K⊥

k (A, x), which is the projection of the
Krylov subspaceKk(A, x) onto the orthogonal complement
Ω⊥ of Ωm. In particular, v1 = x⊥/β, where x⊥ = (1 −
SmS†

m)x is the projection of x onto Ω⊥ and β = |x⊥|.
Again, Hk is an upper Hessenberg matrix.
Note that the orthogonality of K⊥

k with respect to Ωm

has to be enforced explicitly during the Arnoldi iterations,
as the operation of A on a vector in the projected Krylov
subspace K⊥

k in general gets a contribution belonging to
Ωm, i.e., K⊥

k is not invariant under the operation of A. This
is a consequence of the non-orthogonality of the eigenvec-
tors of A.
Defining

Q =
(

Sm Vk

)

and H =





Tm S†
mAVk

0 Hk



 , (25)

H satisfies a relation similar to Eq. (17), namely

H = Q†AQ , (26)

and the function approximation derived in Sec. 4 can be
used here as well. We briefly repeat the steps of Sec. 4.
The operation of the matrix function f(A) on the vector
x can be approximated by its projection on the composite
subspace,

f(A)x ≈ QQ†f(A)x , (27)

and because x lies in the subspace,

f(A)x ≈ QQ†f(A)QQ†x . (28)

As H satisfies Eq. (26), we can introduce the same approx-
imation as in Eq. (18),

f(H) ≈ Q†f(A)Q , (29)

and substituting Eq. (29) in Eq. (28) we construct the func-
tion approximation

f(A)x ≈ Qf(H)Q†x . (30)

Because of the block structure (25) of the composite Hes-
senberg matrix H , the matrix f(H) can be written as

5

f(H) =





f(Tm) Y

0 f(Hk)



 . (31)

The upper left corner is the function of the triangular Schur
matrix Tm (which is again triangular), and the lower right
corner is the (dense) matrix function of the Arnoldi Hes-
senberg matrixHk. The upper right corner reflects the cou-
pling between both subspaces and is given by the solution
of the Sylvester equation

TmY − Y Hk = f(Tm)X −Xf(Hk) (32)

with X = S†
mAVk, which follows from the identity

f(H)H = Hf(H). Combining (30) and (31), we obtain

f(A)x≈
(

Sm Vk

)





f(Tm) Y

0 f(Hk)









S†
m

V †
k



x

= Smf(Tm)S†
m x+

(

Sm Vk

)





Y

f(Hk)



V †
k x . (33)

Note that V †
k x = βe1. Therefore only f(Tm) and the first

column of Y and f(Hk), i.e., the first m + 1 columns of
f(H), are needed to evaluate (33). This information can be
computed using the spectral definition (4) or some other
suitable method [15,17,22,23]. In the case of the sign func-
tion we chose to use Roberts’ iterative method [16]

Sn+1 =
1

2

[

Sn + (Sn)−1
]

(34)

with S0 = A, which converges quadratically to sgn(A).
Roberts’ method is applied to compute sgn(Tm) and
sgn(Hk). The matrix Y is computed by solving the
Sylvester equation (32) using the method described in
Appendix A.
In the implementation one has to be careful to com-

pute the deflated eigenvectors to high enough accuracy, as
this will limit the overall accuracy of the function approx-
imation. When computing f(A)x for several x, the partial
Schur decomposition (23) and the triangular matrix f(Tm)
need to be computed only once. Only the modified Arnoldi
method must be repeated for each new vector x.
We summarize our algorithm for approximating f(A)x:
(i) Determine the eigenvectors for m critical eigenvalues

of A using ARPACK. Construct and store the corre-
sponding Schur matrix Sm and the upper triangular
matrix Tm = S†

mASm. The columns of Sm form an
orthonormal basis of a subspace Ωm.

(ii) Compute the triangular matrix f(Tm) using (34).
(iii) Compute x⊥ = (1 − SmS†

m)x.
(iv) Construct an orthonormal basis for the projected

Krylov subspace K⊥
k (A, x⊥) using a modified Arnoldi

method. The basis is constructed iteratively by or-
thogonalizing each new Krylov vector with respect to
Ωm and to all previous Arnoldi vectors, and is stored
as columns of a matrix Vk. Also build the upper
Hessenberg matrix H = Q†AQ with Q = (Sm, Vk).

(v) Compute (column m + 1 of) f(H) using Roberts’ it-
erative method (34) on Hk and solving the Sylvester
equation (32) for Y as described in Appendix A.

(vi) Compute the approximation f(A)x ≈ Qf(H)Q†x us-
ing formula (33).

If f(A)x has to be computed for several x, only steps (iii)-
(vi) need to be repeated for each vector x.

5.3. LR-deflation

An alternative deflation in the same composite subspace
Ωm +Kk(A, x) can be constructed using both the left and
right eigenvectors corresponding to the critical eigenval-
ues. This deflation algorithm is a natural extension of the
method described in Sec. 5.1 from the Hermitian to the
non-Hermitian case. A similar idea has been used for the
iterative solution of linear systems [31,32].
Assume that m critical eigenvalues of A have been com-

puted together with their corresponding left and right
eigenvectors by some iterative method like the one pro-
vided by ARPACK. The right eigenvectors satisfy

ARm = RmΛm (35)

with Λm the diagonal eigenvalue matrix for the m criti-
cal eigenvalues and Rm = (r1, . . . , rm) the matrix of right
eigenvectors (stored as columns). Similarly, the left eigen-
vectors obey

L†
mA = ΛmL†

m , (36)

where Lm = (ℓ1, . . . , ℓm) is the matrix containing the left
eigenvectors (also stored as columns). For a non-Hermitian
matrix, the left and right eigenvectors corresponding to dif-
ferent eigenvalues are orthogonal (for degenerate eigenval-
ues linear combinations of the eigenvectors can be formed
such that this orthogonality property remains valid in gen-
eral). Furthermore, if the eigenvectors are normalized such

that ℓ†iri = 1, then clearly L†
mRm = Im, and RmL†

m is an
oblique projector on the subspace Ωm spanned by the right
eigenvectors.
Let us now decompose x as

x = x‖ + x⊖ , (37)

where x‖ = RmL†
mx is an oblique projection of x on Ωm

and x⊖ = x− x‖.
Applying f(A) to the decomposition (37) yields

f(A)x = f(A)RmL†
mx+ f(A)x⊖ . (38)

The first term on the right-hand side can be evaluated ex-
actly using

f(A)RmL†
mx = Rmf(Λm)L†

mx , (39)

which follows from Eq. (35), while the second term can be
approximated by applying the Arnoldi method described in
Sec. 4 to the vector x⊖. An orthonormal basis is constructed
in the Krylov subspace Kk(A, x⊖) using the recurrence

AVk = VkHk + βkvk+1e
T
k , (40)

6

where v1 = x⊖/β and β = |x⊖|. By construction, x⊖ has
no components along the m critical (right) eigendirections,
and successive operations of A will yield no contributions
along these directions either, henceKk(A, x⊖) does not mix
with Ωm. In principle, numerical inaccuracies accumulated
during the Arnoldi iterations might make it necessary to
occasionally re-extract spurious components along the crit-
ical eigendirections. However, this turned out not to be nec-
essary in our numerical calculations.
Applying the Arnoldi approximation (19) to Eq. (38)

yields the final approximation

f(A)x ≈ Rmf(Λm)L†
mx+ βVkf(Hk)e1 . (41)

Note that again only the first column of f(Hk) is needed
to evaluate Eq. (41). As before, f(Hk) has to be computed
using some suitable method. The function sgn(Hk) can be
efficiently computed using Roberts’ algorithm (34).
We summarize our algorithm for approximating f(A)x

in the LR-deflation scheme:
(i) Determine the left and right eigenvectors for m criti-

cal eigenvalues of A using ARPACK. Store the corre-
sponding eigenvector matrices Lm and Rm.

(ii) Compute f(λi) (i = 1, . . . ,m) for the critical eigen-
values.

(iii) Compute x⊖ = (1 −RmL†
m)x.

(iv) Construct an orthonormal basis for the Krylov sub-
spaceKk(A, x⊖) using the Arnoldi recurrence. The ba-
sis is constructed iteratively by orthogonalizing each
new Krylov vector with respect to all previous Arnoldi
vectors, and is stored as columns of a matrix Vk. Also
build the upper Hessenberg matrix Hk = V †

k AVk.
(v) Compute (the first column of) f(Hk) using Roberts’

iterative method (34).
(vi) Compute the approximation to f(A)x using Eq. (41).
If f(A)x has to be computed for several x, only steps (iii)-
(vi) need to be repeated for each vector x.

5.4. Discussion

We briefly compare both deflation schemes. Al-
though both schemes use the same composite subspace
Ωm + Kk(A, x), they yield different function approxima-
tions resulting from a different subspace decomposition.
In the Schur deflation, the composite subspace is decom-

posed in a sum of two orthogonal subspaces which are cou-
pled byA, while in the LR-deflation the subspaces no longer
mix, at the expense of losing orthogonality of the two sub-
spaces.
Accordingly, both schemes introduce different approxi-

mations to f(A)x: the Schur deflation approximates the
orthogonal projection of the solution vector on the total
composite space using Eq. (29), while the LR-deflation
first extracts the critical eigendirections and only approx-
imates the orthogonal projection of the residual vector on
the Krylov subspace using Eq. (19). Therefore, in the Schur
deflation the components of f(A)x along the Schur vec-
tors becomemore accurate as the Krylov subspace becomes

larger, while in the LR-deflation the components of f(A)x
along the critical eigendirections can be computed exactly,
independently of the size of the Krylov subspace. This is
probably the reason for the observation that, for fixed m
and k, the LR-deflation is slightly more accurate than the
Schur deflation, see Fig. 4 below.
Numerically, the LR-deflation has two advantages over

the Schur deflation. First, its Arnoldi method does not re-
quire the deflated directions to be (obliquely) projected out
of the Krylov subspace because the subspaces do not mix.
Second, this absence of coupling between the subspaces
means that the LR-scheme has no analog of the Sylvester
equation (32).
A downside of the LR-deflation is that both left and

right eigenvectors need to be computed in the initializa-
tion phase, whereas the Schur deflation only needs the right
eigenvectors. Hence, the Schur deflation will have a shorter
initialization phase, unless one needs to operate with both
f(A) and its adjoint f(A)†, in which case both sets of eigen-
vectors are needed anyways (for the latter, the roles of left
and right eigenvectors are interchanged).
In the next section, we will present numerical results

obtained with our modified Arnoldi method.

6. Results

We implemented the modified Arnoldi method proposed
in the previous section to compute the sign function occur-
ring in the overlap Dirac operator (1) of lattice QCD.
First we discuss the critical eigenvalues of the γ5-Wilson-

Dirac operator Hw(µ), which are needed for deflation and
have to be computed once for any given SU(3) gauge con-
figuration. Deflation is needed because of the existence of
eigenvalues close to the imaginary axis. In Fig. 1 we show
the spectrum of Hw(µ) for a 44 lattice and a 64 lattice,
using the same parameters as in Ref. [7], i.e., mw = −2
and gauge coupling βg = 5.1. These complete spectra were
computed with LAPACK [33]. This is a very costly calcu-
lation, especially for the 64 lattice, which was done for the
sole purpose of this numerical investigation but cannot be
performed routinely during production runs.
Although the eigenvalues of interest for deflation in the

case of the sign function are those with smallest absolute
real parts, we decided to deflate the eigenvalues with small-
est magnitude instead. Numerically the latter are more eas-
ily determined, and both choices yield almost identical de-
flations for the γ5-Wilson operator at nonzero chemical po-
tential. The reason for this is that, as long as the chemical
potential does not grow too large, the spectrum looks like
a very narrow bow-tie shaped strip along the real axis (see
Fig. 1), and the sets of eigenvalues with smallest absolute
real parts and smallest magnitudes will coincide.
In practice we compute the eigenvalues ofHw with small-

est magnitude with ARPACK. This package has an option
to retrieve the eigenvalues with smallest magnitude without
performing an explicit inversion, which would be very ex-

7

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-6 -4 -2 0 2 4 6

Im
(z

)

Re(z)

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-6 -4 -2 0 2 4 6

Im
(z

)

Re(z)

Fig. 1. Spectrum of Hw(µ) in Eq. (1) for a 44 lattice (top pane)
and a 64 lattice (bottom pane), with µ = 0.3 and mw = −2. Note
the difference in scale between real and imaginary axes. The gauge
fields were generated using the Wilson plaquette action with gauge
coupling βg = 5.1 [7].

pensive in this case. However, the use of this option requires
the eigenvalues to be near the boundary of the convex hull
of the spectrum. From Fig. 1 it is clear that the eigenval-
ues closest to the origin are deep inside the interior of the
convex hull and do not satisfy this requirement. Therefore
we opted to compute the eigenvalues with smallest magni-
tude of the squared operator H2

w. Clearly the eigenvalues
with smallest magnitude will be the same for both oper-
ators, as |λ2| = |λ|2. The eigenvalues of H2

w are given by
z2 = x2 − y2 + 2ixy, where x and y are the real and imag-
inary parts of the eigenvalues z of Hw. The spectra of H2

w

for the 44 and 64 lattices are shown in Fig. 2, and clearly
the eigenvalues with smallest magnitudes are now close to
the boundary of the convex hull of the spectrum so that
ARPACK can find them more easily. Since in this approach
we square the matrix, there is the potential danger that
small eigenvalues get spoiled just by the additional numer-
ical round-off introduced when applying A twice. However,
this should be noticeable only if these eigenvalues are com-
parable in size to the round-off error. Our calculations are
not affected by this problem.
Obviously there is a trade-off between the number of

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-5 0 5 10 15 20 25 30

Im
(z

2)

Re(z2)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-5 0 5 10 15 20 25 30

Im
(z

2)

Re(z2)

Fig. 2. Spectrum of H2
w(µ) for a 44 lattice (top pane) and a 64 lattice

(bottom pane), with µ = 0.3 and βg = 5.1.

deflated eigenvalues and the size of the Krylov subspace.
A useful piece of information in this context is the ratio
of the magnitude of the largest deflated eigenvalue over
the largest overall eigenvalue, which is given in Table 1 for
different numbers of deflated eigenvalues. A comparison of
the values for both lattice sizes indicates that the number
of eigenvalues with a magnitude smaller than a given ratio
increases proportionally with the lattice volume. This is
consistent with a spectral density of the small eigenvalues
proportional to the lattice volume. This property is also
apparent in Figs. 1 and 2, as the contours enclosing the
spectra remain unchanged when the volume is increased.
As a first guess we therefore expect that scalingm with the
volume should yield comparable convergence properties of
the method for various lattice sizes.
The convergence of the method is illustrated in Fig. 3,

where the accuracy of the approximation is shown as a func-
tion of the Krylov subspace size for two different lattice
sizes. The various curves correspond to different numbers
of deflated eigenvalues. The results in the figure were com-
puted using the LR-deflation scheme. The Schur deflation
yields similar results.
Without deflation (m = 0) the Krylov subspace method

would be numerically unusable because of the need of large

8

0 200 400 600 800 1000 1200 1400 1600

Krylov subspace size

1x10-10

1x10-8

1x10-6

0.0001

0.01

1

e
rr

o
r

m=0

2

4

8

16

32

64

0 500 1000 1500 2000 2500 3000

Krylov subspace size

1x10-10

1x10-8

1x10-6

0.0001

0.01

1

e
rr

o
r

m=0

16

32

64

128

Fig. 3. Accuracy of the modified Arnoldi method for y = sgn(A)x.
The non-Hermitian matrix is A = γ5Dw(µ), where Dw(µ) is the
Wilson-Dirac operator (2) at chemical potential µ = 0.3, and
x = (1, 1, . . . , 1). Top pane: 44 lattice with dim(A) = 3072, bot-

tom pane: 64 lattice with dim(A) = 15552. The relative error
ǫ = ‖ỹ − y‖/‖y‖ is shown as a function of the Krylov subspace size
k for various numbers of deflated eigenvalues m using the LR-defla-
tion. In order to compute the error ǫ, the exact solution y was first
determined using the spectral definition (4) and the full spectral
decomposition computed with LAPACK.

Krylov subspaces. Clearly, deflation highly improves the
efficiency of the numerical method: as more eigenvalues are
deflated, smaller Krylov subspaces are sufficient to achieve

m max |λdefl|/max |λall|

44 lattice 64 lattice

2 0.0040 0.0016

4 0.0056 0.0026

8 0.0119 0.0035

16 0.0183 0.0052

32 0.0351 0.0084

64 0.0631 0.0155

128 — 0.0286

Table 1
Ratio of largest deflated eigenvalue over largest eigenvalue for various
numbers of deflated eigenvalues m for a 44 and a 64 lattice.

0 200 400 600 800 1000

Krylov subspace size

1x10-10

1x10-8

1x10-6

0.0001

0.01

e
rr

o
r

Schur

LR

proj

6
4
 lattice

m=128

4
4
 lattice

m=32

Fig. 4. Comparison of the accuracies achieved with both defla-
tion schemes and the exact projection of y on the composite space
Ωm + Kk(A, x). The relative error ǫ = ‖ỹ − y‖/‖y‖ is shown as a
function of the Krylov subspace size k. For both lattice sizes the ac-
curacy of the LR-deflation is slightly better than that of the Schur
deflation. Furthermore, the accuracy of the modified Arnoldi ap-
proximation is very close to the best possible approximation in the
composite subspace.

a given accuracy.
Furthermore, the deflation efficiency grows with increas-

ing lattice volume. To reach an accuracy of 10−8 for the
44 lattice with 25 (≈ 0.0081N) deflated eigenvalues, one
requires a Krylov subspace size k ≈ 570 (≈ 0.19N). How-
ever, to reach the same accuracy for the 64 lattice with a
comparable deflation of 128 (≈ 0.0082N) critical eigenval-
ues, one only requires k ≈ 700 (≈ 0.045N). Although the
matrix size N is more than 5 times larger for the 64 lattice,
the Krylov subspace only has to be expanded by a factor
of 1.2 to achieve the same accuracy (when m is scaled pro-
portional to N so that the ratio of Table 1 remains approx-
imately constant for both lattice sizes).
In Fig. 4 we compare the accuracy of the two deflation

schemes described in Sec. 5.2 and 5.3. For an equal number
of deflated eigenvalues and equal Krylov subspace size, the
LR-deflation seems systematically slightly more accurate
than the Schur deflation.
To assess the quality of the modified Arnoldi approxima-

tion, it is interesting to compare the approximations (33)
and (41) for f(A)x with the best approximation in the com-
posite subspace, which corresponds to the orthogonal pro-
jection (27) of f(A)x on Ωm +Kk(A, x),

yproj = QQ†y =

m
∑

i=1

(s†iy)si +

k
∑

i=1

(v†i y)vi . (42)

The relative accuracy of this projection is also shown in
Fig. 4. It is encouraging to note that the modified Arnoldi
approximation is quite close to the exact projection yproj.
In Table 2 we show the CPU time used by the modified

Arnoldi method for the Schur and LR-deflation schemes.
The times needed to construct the orthonormal basis in the
Krylov subspaces according to Eqs. (24) and (40) and to

9

compute the sign function of the Arnoldi Hessenberg ma-
trices are tabulated separately. The tabulated times were
measured for an m = 32 deflation for the 44 lattice and
m = 128 for the 64 lattice.
The larger CPU times required by the Schur defla-

tion mainly reflect the additional orthogonalization of the
Arnoldi vectors with respect to the Schur vectors. The time

44 lattice, m = 32

Schur deflation

initialization time: 14.1 s

k Arnoldi sgn(H) total

100 0.18 0.03 0.23

200 0.59 0.21 0.81

300 1.22 0.52 1.75

400 2.05 1.08 3.16

500 3.12 1.79 4.93

600 4.37 2.90 7.31

700 5.88 4.57 10.49

800 7.56 6.69 14.28

900 9.50 9.38 18.92

1000 11.63 12.68 24.36

44 lattice, m = 32

LR-deflation

initialization time: 27.5 s

k Arnoldi sgn(Hk) total

100 0.12 0.03 0.15

200 0.45 0.20 0.66

300 1.01 0.49 1.51

400 1.77 1.02 2.82

500 2.76 1.69 4.47

600 3.94 2.77 6.74

700 5.36 4.40 9.79

800 6.96 6.44 13.44

900 8.84 9.10 17.98

1000 10.84 12.33 23.21

64 lattice, m = 128

Schur deflation

initialization time: 884 s

k Arnoldi sgn(H) total

100 2.03 0.05 2.13

200 5.16 0.22 5.45

300 9.27 0.56 9.91

400 14.59 1.15 15.85

500 20.95 2.09 23.17

600 28.12 3.35 31.61

700 36.81 5.17 42.15

800 46.32 7.39 53.88

900 56.83 10.37 67.39

1000 68.29 13.88 82.39

64 lattice, m = 128

LR-deflation

initialization time: 1713 s

k Arnoldi sgn(Hk) total

100 0.66 0.03 0.75

200 2.39 0.15 2.62

300 5.16 0.42 5.69

400 9.01 0.94 10.06

500 13.96 1.73 15.84

600 20.03 2.80 22.98

700 27.09 4.44 31.70

800 35.09 6.49 41.78

900 44.38 9.10 53.70

1000 54.74 12.36 67.34

Table 2
CPU time (in seconds) for varying Krylov subspace size k. Top row:

44 lattice with m = 32, bottom row: 64 lattice with m = 128. Left
panes: Schur deflation, right panes: LR-deflation. The time required
by the initial calculation of the critical eigenvectors is given in the
header of each block. The time needed to construct the Arnoldi basis
in the Krylov subspace (column 2) is approximately proportional to
Nk(k+2m) for the Schur deflation andNk2 for the LR-deflation. The

time used by Roberts’ method (34) to compute the sign function of
the Hessenberg matrix (column 3) is O(k3). The total time (column
4) also includes the evaluation of Eq. (33) for the Schur deflation and
Eq. (41) for the LR deflation. These timings were measured on an
Intel Core 2 Duo 2.33GHz computer using optimized ATLAS BLAS
routines [34].

needed to compute the sign of the Hessenberg matrix is
also slightly larger for the Schur deflation as it involves the
additional solution of the Sylvester Equation (32). For the
same reasons, varying m for a given lattice size will only
significantly change the timings for the Schur deflation
(this m-dependence is not shown in the table).
To summarize, the LR-deflation scheme has a somewhat

better accuracy and requires less CPU time per iteration
than the Schur deflation. The one advantage of the Schur
deflation is that it only requires the initial computation
of the right eigenvectors, while the LR-deflation requires
the computation of both left and right eigenvectors. The
time needed to compute the critical eigenvectors of Hw(µ)
is given in the headers of the four blocks in Table 2. The
choice of deflation scheme depends on the number of vectors
x for which sgn(Hw)x needs to be computed. This will be
the topic of future work on nested iterative methods for
non-Hermitian matrices occurring during the inversion of
the overlap operator. Of course, as mentioned in Sec. 5.4, if
one needs to apply both sgn(Hw) and its adjoint, then the
LR-deflation will be the better choice.

7. Conclusion

In this paper we have proposed an algorithm to approx-
imate the action of a function of a non-Hermitian matrix
on an arbitrary vector, when some of the eigenvalues of the
matrix lie in a region of the complex plane close to a dis-
continuity of the function.
The method approximates the solution vector in a com-

posite subspace, i.e., a Krylov subspace augmented by the
eigenvectors corresponding to a small number of critical
eigenvalues. In this composite subspace two deflation vari-
ants are presented based on different subspace decompo-
sitions: the Schur deflation uses two coupled orthogonal
subspaces, while the LR-deflation uses two decoupled but
non-orthogonal subspaces.
The subspace decompositions are then used to compute

Arnoldi-based function approximations in which the con-
tribution of the critical eigenvalues is taken into account
explicitly. This deflation of critical eigenvalues allows for a
smaller size of the Krylov subspace and is crucial for the
efficiency of the method.
For the sign function, deflation is particularly important

because of its discontinuity along the imaginary axis. The
method was applied to the overlap Dirac operator of lat-
tice QCD at nonzero chemical potential, where deflation
was shown to clearly enhance the efficiency of the method.
If the overlap Dirac operator has to be inverted using some
iterative method, each iteration will require the computa-
tion of sgn(Hw)x for some vector x. In such a situation the
cost for computing the critical eigenvectors, which is done
just once, is by far outbalanced by the smaller costs for
each evaluation of the sign function. However, an impor-
tant question that deserves further study is how the optimal
number m of deflated eigenvectors depends on the volume

10

and how this influences the initialization time. This ques-
tion could become performance relevant for large volumes.
As mentioned above, our next steps include the appli-

cation of the two-sided Lanczos method to the problem of
approximating f(A)x for a non-Hermitian matrix, and the
investigation of nested iterative methods for non-Hermitian
matrices. Work in these directions is in progress.

Appendix A. Sylvester equation

In this appendix we describe a particularly simple algo-
rithm to solve the special Sylvester equation

TY − Y H = C , (A.1)

where T is anm×m upper triangular matrix,H is an n×n
upper Hessenberg matrix, and the right-hand side C and
the unknown matrix Y arem×nmatrices. Classical meth-
ods to solve the Sylvester equation when T and H are full
matrices are formulated in [35,36]. For triangular H and T
the Sylvester equation can easily be solved by direct substi-
tution, see, e.g., [14]. In principle, this algorithm could also
be applied to Eq. (A.1) if the upper Hessenberg matrixH is
first transformed into triangular form using a Schur decom-
position. Here we present a more efficient approach, which
can be regarded as a natural extension of the algorithm for
the triangular Sylvester equation when one of the matrices
is upper Hessenberg instead of triangular. Blocking would
also be possible (cf., e.g., [37]), but since the solution of the
Sylvester equation accounts only for a small portion of the
overall time we did not pursue this issue further.
Written out explicitly, the element (i, j) of the matrix

equation (A.1) is

m
∑

k=i

Tikykj −
max(j+1,n)
∑

k=1

yikHkj = cij (A.2)

for i = 1, . . . ,m and j = 1, . . . , n.
This matrix equation can be solved row by row from

bottom to top, since Eq. (A.2) can be solved for row i once
rows i+ 1, . . . ,m are known,

Tiiyij −
max(j+1,n)
∑

k=1

yikHkj = c̃ij (A.3)

with c̃ij = cij −
∑m

k=i+1 Tikykj .
Inside row i one can solve for the element yi,j+1 as a

function of the elements to its left,

yi,j+1 = − 1

Hj+1,j

[

c̃ij − Tiiyij +

j
∑

k=1

yikHkj

]

(A.4)

for columns j = 1, . . . , n−1. From Eq. (A.4) it follows that
all elements of row i can be written as

yij = ajyi1 + bj , (A.5)

where the coefficients aj and bj can be computed explicitly
from the recurrence relations

aj+1 = − 1

Hj+1,j

[

−Tiiaj +

j
∑

k=1

akHkj

]

,

bj+1 = − 1

Hj+1,j

[

c̃ij − Tiibj +

j
∑

k=1

bkHkj

]

,

(A.6)

starting from a1 = 1, b1 = 0. After substituting Eq. (A.5)
with the known coefficients (A.6), element (i, n) of
Eq. (A.3) can be solved for yi1,

yi1 =
c̃in − Tiibn +

∑n
k=1 bkHkn

Tiian −∑n
k=1 akHkn

. (A.7)

Once yi1 is known, all other elements yij of row i can be
computed using Eq. (A.5) with coefficients (A.6).

Acknowledgments

This work was supported in part by DFG grants
FOR465-WE2332/4-2 and Fr755/15-1. JB would like to
thank Thomas Kaltenbrunner for useful discussions.

References

[1] H. B. Nielsen, M. Ninomiya, Nucl. Phys. B 185 (1981) 20, Nucl.
Phys. B 193 (1981) 173, Phys. Lett. B 105 (1981) 219.

[2] R. Narayanan, H. Neuberger, Nucl. Phys. B 412 (1994) 574,
Nucl. Phys. B 443 (1995) 305; H. Neuberger, Phys. Lett. B 417
(1998) 141.

[3] P. H. Ginsparg, K. G. Wilson, Phys. Rev. D25 (1982) 2649.

[4] H. Neuberger, Phys. Rev. Lett. 81 (1998) 4060.

[5] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, H. A.
van der Vorst, Comput. Phys. Commun. 146 (2002) 203.

[6] For a recent review, see M. Stephanov, Proc. of Science LAT2006
(2006) 024.

[7] J. Bloch, T. Wettig, Phys. Rev. Lett. 97 (2006) 012003.

[8] D. B. Kaplan, Phys. Lett. B288 (1992) 342.

[9] Y. Shamir, Nucl. Phys. B406 (1993) 90.
[10] V. Furman, Y. Shamir, Nucl. Phys. B439 (1995) 54.

[11] P. Hasenfratz, F. Karsch, Phys. Lett. B125 (1983) 308, Phys.
Rept. 103 (1984) 219.

[12] J. B. Kogut, et al., Nucl. Phys. B225 (1983) 93.

[13] N. Dunford, J. Schwartz, Linear Operators, Part I: General
Theory, Interscience Publishers, 1958.

[14] G. H. Golub, C. F. Van Loan, Matrix Computations, The Johns
Hopkins University Press, 1989.

[15] E. D. Denman, A. N. Beavers, Appl. Math. Comput. 2 (1976)
63.

[16] J. Roberts, Internat. J. Control 32 (1980) 677.
[17] C. Kenney, A. Laub, SIAM J. Matrix Anal. Appl. 12 (1991) 273.

[18] N. Higham, Linear Algebra and its application 212/213 (1994) 3.

[19] R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge
University Press, Cambridge, 1994.

[20] J. Bloch, T. Wettig, arXiv:0709.4630 [hep-lat].

[21] A. Boriçi, Phys. Lett. B 453 (1999) 46, J. Comput. Phys. 162
(2000) 123.

[22] C. Kenney, A. Laub, IEEE Trans. Autom. Control 40 (1995)
1330.

[23] N. J. Higham, Num. Algorithms 15 (1997) 227.

[24] http://www.caam.rice.edu/software/ARPACK.
[25] H. A. van der Vorst, J. Comput. Appl. Math. 18 (1987) 249.

[26] V. Druskin, A. Greenbaum, L. Knizhnerman, SIAM J. Sci.
Comput. 19 (1998) 38.

11

[27] E. Gallopoulos, Y. Saad, On the parallel solution of parabolic
equations, in: R. D. Groot (Ed.), Proceedings of the International
Conference on Supercomputing 1989, Heraklion, Crete, June 5-
9, 1989, ACM press, 1989.

[28] M. Hochbruck, M. E. Hochstenbach, Subspace extraction for
matrix functions, preprint (2005).

[29] Y. Saad, SIAM Journal on Numerical Analysis 29 (1992) 209.
[30] Y. Saad, SIAM J. Matrix Anal. Appl. 18 (1997) 435.
[31] R. Morgan, W. Wilcox, Deflated iterative methods for linear

equations with multiple right-hand sides, Tech. rep., Baylor
University (2004).

[32] A. Hasenfratz, P. Hasenfratz, F. Niedermayer, Phys. Rev. D72
(2005) 114508.

[33] http://www.netlib.org/lapack.
[34] http://math-atlas.sourceforge.net.
[35] R. H. Bartels, G. W. Stewart, Commun. ACM 15 (1972) 820.
[36] G. H. Golub, S. Nash, C. F. Van Loan, IEEE Trans. Autom.

Control 24 (1979) 909.
[37] E. S. Quintana-Ort́ı, R. A. van de Geijn, ACM Trans. Math.

Softw. 29 (2) (2003) 218.

12

