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Abstract

We present an application of evolutionary algorithms to the curve-fitting prob-

lems commonly encountered when trying to extract particle masses from correlators

in Lattice QCD. Harnessing the flexibility of evolutionary methods in global opti-

mization allows us to dynamically adapt the number of states to be fitted along

with their energies so as to minimize overall χ2/(d.o.f.), leading to a promising new

way of extracting the mass spectrum from measured correlation functions.
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1 Introduction

Curve fitting plays a central role in the analysis of lattice simulation data.

One of the most important and common uses of curve fitting in lattice gauge

theory is the extraction of hadronic masses and matrix elements frommeasured

correlation functions.

The problem of extracting the mass spectrum from the correlators measured

in Lattice QCD simulations is well known [1,2]. The simulation produces data

Gi = G(ti) for the expectation values of the correlator G(t) at a finite number

of discrete (Euclidean) time steps ti, 1 ≤ i ≤ N . On the other hand, from

theory the exact form of the propagator is known to be given by an infinite

series 2

G(t) =
∞
∑

n=0

Zn e
−Ent , (1)

where we will assume that the energy levels are ordered, En ≤ En+1. The

problem is then to determine an infinite number of amplitudes Zn > 0 and

energies En > 0 from only a finite number of data points Gi, an obviously

ill-posed problem.

To make the problem well-posed, we have to add some further physical con-

straints. The piece of theoretical information that is normally used is that the

sequence of the Zn is bounded from above, and therefore the correlator will

be dominated by the lowest few terms at all but the smallest values of t due

to the exponential suppression by En. We can therefore truncate the series in

equation (1) after a finite number of terms, provided we only attempt to fit

2 For periodic boundary conditions, hyperbolic functions will appear instead of the

exponential. For a static particle, the energy is simply the particle mass.
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at t > tmin large enough for the truncation to include all terms that make a

significant contribution.

In doing so, we are faced with a choice: Either take a fixed number nmax of

terms of the sum in (1) and adjust tmin so as to obtain a good fit, or fix

tmin and vary nmax so as to extract the largest possible amount of significant

information. The problem with the first strategy is that we are throwing away

valuable information contained in the data points at t < tmin, leading to large

statistical errors if tmin is chosen too big. These need to be balanced against

large systematic errors arising if tmin is chosen too small for the given nmax[1].

In this paper we will therefore adopt the second approach and attempt to fit

all data points (excluding only the single point at t = 0 for practical reasons)

with a variable number nmax of exponentials.

Naively, one might want to try to simply run a series of fits using a state-of-the

art fitting method such as Levenberg-Marquardt [3,4] at a number of different

nmax, and with a variety of initial parameter values, and choose the fit that

produces the lowest χ2 per degree of freedom. This method can be made to

work in the case of one single correlator if the problem of finding an appropri-

ate starting point in a potentially multi-modal landscape is somehow solved.

However, for many questions in lattice QCD it is necessary to fit multiple

correlators, which may or may not share some of the energy levels En. In this

case, the fast combinatorial growth with nmax of the number of possibilities

of assigning shared or separate fit parameters En to the fitting functions for

the different correlators renders the application of this naive method to those

problems largely impossible. The problem of choosing appropriate initial pa-

rameter values further exacerbates this approach.
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The current state of the art using the variable-nmax approach is that taken

in [1] where it is used in the context of a Bayesian method [5] of constrained

curve fitting. The latter works by adding prior information about the fit pa-

rameters and using it to constrain the fit to a smaller subset of likely parameter

values out of the space of all possible values. Only those parameters whose

fitted values are largely independent of the priors used to constrain them are

considered to be determined by the data, while the others are disregarded as

having been imposed by the priors.

While it is thus possible to determine which fitted quantities are independent

of, or only weakly dependent on, the priors and thus determined from the data,

the idea of using some external knowledge as an input could be seen as incom-

patible with the notion of a first-principles determination of the quantities of

interest from QCD itself, without any recourse whatsoever to empirical mod-

els. Moreover, in some cases appropriate priors may not be available. Under

those circumstances, it becomes desirable to be able to extract some estimate

of the parameters to be fitted from the data themselves, and to use this es-

timate as a prior in the context of a Bayesian constrained fit. A number of

methods to do this, such as the sequential empirical Bayes method [6], have

been used in the existing literature.

A completely different state-of-the-art approach that does not rely on prior

information while allowing for extraction of a spectrum from multiple sets of

data for improved statistics is the variational method [7,8,9]. Here one sets out

by fixing a channel corresponding to a specific set of quantum numbers, and

finds a set of appropriate linearly independent operators Oi for the channel.

One then calculates all diagonal 〈OiOi〉 and off-diagonal 〈OiOj〉, i 6= j, corre-

lators between these operators, each operator having a corresponding form for
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the sink that annihilates the state created by the operator at the source. One

may then use the variational method on this cross-correlator matrix Cij(t) to

find a superposition of the original operators that corresponds to the lowest

energy state of the channel. Assuming a meson channel, the diagonal correla-

tor of this operator may be fit by a single exponential function whose mass in

the exponent is the ground state energy. Operators corresponding to excited

states, whose diagonal correlators ideally correspond to functions only of the

excited state masses, may be produced in a similar manner [10].

While very powerful, the variational method has a number of features that

limit the scope of its applicability. Firstly, the use of the variational method

is facilitated by the selection of operators such that the correlator matrix is

hermitian [8,11]. However, in lattice simulations it is often desirable to sup-

press unwanted but usually present contributions from high-frequency modes

by means of quark smearing of the operators [12,13,14]. In this case, hermitic-

ity of the correlator matrix requires smearing to be applied both at the source

and the sink of the correlator, which in most cases is very expensive compu-

tationally. Secondly, the variational approach also requires both source and

sink operators to have the exact quantum numbers of the channel of interest,

instead of the less stringent usual requirement that both operators overlap

with the state of interest and that at least one of them have its exact quan-

tum numbers. This requirement limits the selection of correlators that are

usable with the variational method. Finally, the variational method requires

all off-diagonal correlators to be calculated. The number of needed correlators

thus grows as N2, with N the number of operators in the channel of interest.

Since automated generation of group theoretical operators for a given sym-

metry channel [11,15,16] means that the number of operators that could be
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used may be rather large, this quadratic growth in computational complex-

ity imposes further limitations. Thus correlator selection may be done more

judiciously without the restrictions imposed by the variational method.

A different problem arises in the case where one desires to fit correlators cor-

responding to channels with different lattice quantum numbers. An example

of this occurs when the continuous rotational symmetries of a quantum theory

get broken when discretizing it to a lattice. In the continuum, the rotational

group has representations corresponding to arbitrary integer or half-integer

angular momenta J , but on the lattice one only retains the finite symmetry

of the octahedral group. A particle of angular momentum J will therefore

appear in one or more of the lattice channels labeled by those irreducible rep-

resentations of the octahedral group to which the value of J subduces [17].

Thus a particle of integral spin will appear in some known subset of the irreps

A1, A2, E, T1 and T2 of the octahedral group. Therefore, the extraction of

the physical spectrum is complicated by the fact that a physical state’s mass

may lie in several lattice symmetry channels. One needs to identify in which

irreps the physical state lies not only to aid in identifying its physical angular

momentum J via its subduction signature, but also to extract its mass as the

latter is contained in the data in all channels in which it appears. Since a

state either lies within a lattice symmetry channel or it does not, the process

of state identification and fitting requires an algorithm that is inherently dis-

continuous. As the number of resolvable states in lattice simulations increases,

the need for a systematic solution to this second problem will as well.

Evolutionary fitting algorithms, while widely used in other areas of research

[18,19,20,21,22,23,24,25], are not currently in common use in lattice QCD. In

this paper, we present an application of evolutionary algorithms [26,27,28,29]

6



to the problem of extracting mass spectra from hadronic correlators. We be-

lieve that the advantages of evolutionary algorithms are particularly pertinent

to this problem: evolutionary algorithms allow dynamic variation of the func-

tional form of the fit function (such as the number of states to be fitted) in a

natural way so as to minimize χ2 per degree of freedom; the data themselves

thus tell us how many states can be reliably extracted. In addition, evolution-

ary algorithms are inherently global optimizers and as such largely eliminate

any residual dependence of the result on the initial guesses used as starting

values, which may be a problem when using conventional local optimizers.

Furthermore, based as they are on the Darwinian principle of adaptation by

mutation and natural selection [30], evolutionary fitting methods excel at ex-

tracting information from data without the need for any external prior infor-

mation. Finally, evolutionary fitting is able to fit multiple correlator datasets

with either identical or differing quantum numbers.

In this paper we aim to introduce lattice theorists to the possibilities and fea-

tures of evolutionary fitting algorithms and to present some preliminary results

from our practical implementation of such an algorithm. Section 2 gives a gen-

eral overview of the concepts and ideas of evolutionary algorithms. Section 3

details an evolutionary algorithm that can be used to fit a single hadronic

correlator, and section 4 outlines the adaptations to the algorithm that are

necessary in order to fit across multiple datasets. Some possible variations of

the basic algorithm are explained in section 5.
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2 Evolutionary Algorithms

Evolutionary computing and genetic algorithms [26,27] are a very active field

in computer science and numerical optimization (cf. e.g. the review [28] and

references therein). By borrowing concepts from evolutionary biology, evolu-

tionary computing is able to harness the power of natural selection by mutation

and selective breeding for the purpose of solving function optimization and re-

lated problems. The nomenclature is borrowed from evolutionary biology as

well: candidate solutions are called “organisms”, whose internal encodings are

their “genotypes”, the target function is referred to as “fitness”, and each step

of the algorithm produces a new “generation”.

A number of fine distinctions between “genetic algorithms”, “evolution strate-

gies”, “evolutionary programming” and related evolutionary algorithms and

methods is sometimes employed in the literature [29]; here we will use the term

“evolutionary algorithm” broadly to mean any global optimization method

that relies on some form of random mutation combined with selective breed-

ing in a population of candidate solutions [28]. From this point of view, an

evolutionary algorithm consists of the following ingredients:

• A search space G,

• a fitness function f : G → R, assumed to be bounded from above,

• a mutation function Mη : G → G, and

• a selection function Sη′ : G
N → GN

Here N is the (fixed) size of the population. Both the mutation and the se-

lection function depend on some uncorrelated white noise η, η′ that acts as a
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source of randomness. The update step on a population Pτ ∈ GN is then

Pτ+1 = Sη′(Mη(Pτ )) . (2)

The mutation function acts on each individual in a population separately,

while the selection function performs comparisons in fitness between individ-

uals, and may also involve crossover or “sexual” reproduction, which creates

a new individual from a pair of “parent” individuals.

The simplest selection procedure to use is straightforward “elitist” selection

of the fittest Nelite < N individuals from a population of size N , followed by

repopulation with their pairwise offspring (where a child is formed by random

interpolation between the parameter values from either parent for each pa-

rameter). More sophisticated selection procedures (such as “roulette wheel”,

“rank” or “tournament” selection [28]) could be used instead. Adding addi-

tional, less fit, members to the elite on the basis of genetic distance may be

helpful in maintaining genetic diversity and avoiding premature convergence.

If we require that the mutation function leaves the fittest individual in a

population alone, thereby ensuring

max
p∈Mη(P )

f(p) ≥ max
p∈P

f(p) , (3)

and that the selection procedure never decreases the maximum fitness within

a population,

max
p∈Sη(P )

f(p) ≥ max
p∈P

f(p) , (4)

it follows that the sequence fτ = maxp∈Pτ
f(p) is bounded from above and

monotonically increasing, and hence will converge.

Evolutionary algorithms are inherently global optimizers, as opposed to local
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optimizers such as steepest descent or Newton methods. This global nature

is largely due to their inherent parallelism, since all organisms in a popula-

tion search the fitness landscape in parallel, and also because crossover allows

information learned by different organisms to be combined and propagate

throughout the population. Another important feature of evolutionary algo-

rithms is their ability to optimize by varying discrete parameters (such as the

functional form of a candidate solution) in a natural and straightforward way,

something which local optimizers relying on certain smoothness assumptions

about the target function cannot easily do.

While evolutionary algorithms have not yet become a standard tool in lattice

QCD, they have previously been used for the purpose of nonperturbative Lan-

dau gauge fixing [31,32,33,34] and (in combination with an accept-reject step

to achieve detailed balance) as a simulation algorithm [35,36]. In other fields

of physics, evolutionary fitting algorithms have been used among other things

to discriminate between different SUSY models [18], to analyze resonances

in p(γ,K+)Λ reactions [19], to fit stellar spectra [20], to determine the mass

loss rate of stellar winds [21], to search for extrasolar planets [22,23], to build

diatomic potentials using a variational method [24], and to solve black-box

system characterization problems in engineering [25]. In most of these cases,

just as in this work, it has been observed that combining the evolutionary

algorithm with a conventional (local) optimization step gave the best results.

We believe that the flexibility and global nature of evolutionary algorithms

makes them an excellent tool for the purpose of curve fitting, especially when

the exact form of the fitting function (such as the number of exponentials to

use in our case) is subject to some kind of data-dependent uncertainty.
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3 Evolutionary Fitting of a Single Correlator

In this and the following section we present some details of our version 3 of

an evolutionary algorithm for fitting correlation functions in lattice QCD.

For the purpose of fitting a diagonal meson correlator 4 , the search space is

G =
{

G ∈ C(R)

∣

∣

∣

∣

∃nmax > 0, Zn > 0, En > En−1 > 0 :

G(t) =
nmax
∑

n=0

Zn

(

e−Ent+e−En(T−t)
)

}

,

where T is the temporal extent of the periodic lattice. The fitness function is

f(G) = −χ2(G)/ndof(G), where the correlated χ2 [39,40] is

χ2(G) =
∑

ti,tj

(Gi −G(ti))(σ
−1)ij(Gj −G(tj)) , (5)

with the covariance matrix defined by

σij = GiGj −Gi Gj , (6)

and where

ndof (G) = (tmax − tmin + 1)− 2nmax (7)

is the number of degrees of freedom of the fit given by G. 5

An organismG ∈ G can therefore be represented by a list of nmax pairs (Zn, En),

3 For a practical implementation, we have chosen Python [37], augmented by

SciPy [38], because of its object-orientation and the flexible list and tuple types it

natively provides.
4 For baryonic and off-diagonal correlators, the functional form needs some adjust-

ments. Nevertheless, the general method works the same in those cases.
5 Where a fitness function f : G → [0; 1] is desired, functions such as f(G) =

e−χ2(G)/ndof (G) or f(G) = 1/(1 + χ2(G)/ndof (G)) can be used instead.
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and it is this representation on which the mutation and breeding algorithms

outlined below work.

There are two kinds of mutation steps needed to search the entire search

space G. The first amounts to increasing or decreasing nmax of an individual

organism. When making these length mutations it is valuable to keep the sum

∑

n Zn of all amplitudes fixed. 6 One reason for this is that the coefficient sum

G(0) =
∑

n Zn can become relatively stable across the population early on, so

that changing nmax by simply dropping the pair (Znmax
, Enmax

) or adding a

random pair will tend to produce an unfit organism, regardless of whether some

potentially desirable organism of the new length exists. Moreover, a situation

can occur where spurious near-degenerate states are kept because the change

in overall amplitude from just removing a single one of them increases χ2 more

than is offset by the simultaneous increase in ndof caused by the mutation. The

second type of mutation performs a random modification of a pair (Zn, En).

A natural way to implement this is the addition of a pair of independent

Gaussian random variables to the original pair.

Since mutations can become somewhat disruptive of already accumulated ge-

netic information in the later stages of evolution, it may be useful to make

the rate of mutation dependent on χ2/ndof in such a way as to increase the

search area early on, before contracting it to a more local search around the

optima already found as the algorithm converges.

6 This may be accomplished, for instance, by sharing the amplitude of a removed

term between the remaining amplitudes, and by decreasing the amplitudes of the

existing exponentials so as to keep the overall amplitude fixed when adding a new

term.
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Mutation steps can also be combined with a finite number of steps of a local

optimization routine (such as Levenberg-Marquardt). 7 We have found that

the addition of this latter step can greatly accelerate convergence by giving

beneficial mutations an improved chance of survival. 8

Putting these ingredients together, we arrive at the following mutation algo-

rithm:

(I) Generate a random number p ∈ [0; 1].

(II) If p < plen0 (1− e−αlenχ2/ndof ) (where plen0 , αlen are tunable parameters):

(a) Generate a random number p′ ∈ [0; 1].

(b) If p′ < (1 − 1/nmax), decrease nmax by one, removing one randomly

chosen exponential (Zn, En) from the fit, and redistributing the am-

plitude in Zn between the neighboring exponentials.

(c) Else increase nmax by one and add a new, randomly generated (Zn, En)

pair to the fit, decreasing the amplitudes of the pre-existing exponen-

tials so as to keep the total amplitude fixed.

(III) Generate a random number p′′ ∈ [0; 1].

(IV) If p′′ < pparm0 (where pparm0 is a tunable parameter):

(a) Generate nmax pairs of Gaussian deviates (∆Zn,∆En) with zero

mean and standard deviation σ = σparm
0 (1 − e−αparmχ2/ndof ) (where

σparm
0 and αparm are tunable parameters).

7 Specifically, we take the functional form implied by the genotype and do a fixed

number of steps of the Levenberg-Marquardt routine using the genotype’s parameter

values as the initial values. The new genotype’s values are set to the result. Some

random subset of the parameter values can be kept fixed in the routine if desired.
8 This kind of strategy has sometimes been referred to as a hybrid genetic or

memetic algorithm [41].
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(b) Replace (Zn, En) by (Zn + ∆Zn, En + ∆En), unless this would lead

to a negative new value for En or Zn.

(V) Optionally perform a local (e.g. Levenberg-Marquardt) optimization on

the fit with probability plocal0 .

This mutation procedure depends on a number of tunable parameters. In

a number of numerical tests on a set of synthetic data, we found that the

point to which the algorithm ultimately converged did not depend on the

values of these parameters, indicating good stability of the answer. The rate

of convergence, on the other hand, did depend on the particular parameters

chosen, although the dependence was small for “sensible” parameter choices.

Generally, plen0 should not be too small, in order to explore the full solution

space; we found that plen0 = 0.5 worked well. αlen did not appear to have a

crucial influence on convergence, and was set to αlen = 0.2 in subsequent runs.

Since element mutations can be rather disruptive of already achieved partial

convergence, pparm0 has to be chosen reasonably small; we found pparm0 = 0.1

a sensible choice. The convergence rate did not appear to strongly depend on

αparm and σparm
0 , which were set to αparm = 0.1 and σparm

0 = 0.5, respectively.

On the other hand, performing a local optimization step can never be harmful,

and plocal0 should be set as large as computational resources allow. It should be

pointed out that the optimal choice of parameters will likely depend on the

particular fitting problem investigated in each case, since the fitness landscapes

can conceivably look very different for different data.

The breeding or crossover function returns a child organism from two parent

organisms (par1 and par2), and works as follows:

(I) Let nchild
max = max(npar1

max , n
par2
max).
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(II) Generate nchild
max pairs of independent uniformly distributed random num-

bers (xi, yi) ∈ [−δ; 1 + δ].

(III) For n < min(npar1
max , n

par2
max), choose the fit parameters of the child to be

(Zchild
n , Echild

n ) = (xnZ
par1
n + (1 − xn)Z

par2
n , ynE

par1
n + (1 − yn)E

par2
n ); for

other n, choose them equal to the longer parent’s fit parameter values.

The fit parameter values of the child organism are therefore chosen in a hy-

percube spanned by the parent’s fit values. Allowing for the possibility of

extrapolation instead of interpolation by introducing a parameter δ is neces-

sary to avoid rapid contraction towards central points. In agreement with [18],

we found δ = 0.2 sufficient to prevent this contraction. “Parthenogenesis” or

“cloning” of an existing individual is possible by breeding an organism with

itself.

Putting these elements together, we arrive at the following basic evolutionary

step to generate the next generation from a given population:

(I) All organisms except the fittest one are subjected to mutations according

to the mutation algorithm stated above.

(II) Selection and breeding are carried out as follows:

(a) The fittest Nelite organisms are selected.

(b) Another Ndiversity organisms are selected at random in order to main-

tain genetic diversity and avoid premature convergence.

(c) For each possible combination of the selected organisms (including

those containing the same organism twice), a child organism is cre-

ated according to the breeding algorithm above, and these child or-

ganisms form the next generation.

(d) Nmutant copies of organisms from the elite are added to the population
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and are subjected to targeted mutations as a form of local search

around the elite.

By not subjecting the fittest organism to mutations and including partheno-

genesis in the breeding step, we ensure that inequalities (3) and (4) are fulfilled,

and that thus the algorithm will eventually converge.

The basic evolutionary step is repeated until χ2/ndof converges below a chosen

threshold [χ2/ndof ]max, or until a chosen maximum number τmax of generations

has been exceeded with no improvement in the best overall genotype for the

last τstatic generations.

In order to be able to get a handle on the overall stability of the evolutionary

fit, and also as an aid in a possible parallelization, we add a final wrinkle by

partitioning the total population into “islands” of equal size, each of which

forms a separate population to which the basic evolutionary step is applied

independently of the other islands. To avoid individual islands with particu-

larly unfavorable starting conditions getting stuck, a weak coupling between

islands is introduced by replacing the least fit organism on each island with a

randomly chosen immigrant from a randomly chosen island with probability

pmig before carrying out the selection step. We find that the lowest-lying states

are identified rather consistently across all islands fairly early on; only for the

most massive states discrepancies in number, energy and amplitude are found

between different islands, sometimes even in late generations, indicating that

the identification of these states is somewhat uncertain.

Our main program thus employs a multi-island ecosystem for the evolutionary

optimization and then tries to improve on the results of the best evolutionary

fit by performing a Levenberg-Marquardt optimization upon it. If sufficiently
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many islands are being used, it is possible to do this as a constrained fit where

desired, with the average and standard deviation of the parameter values de-

rived from bootstrapping [42] the best island fits being employed as priors.

Real parameter errors may be determined by bootstrapping the data config-

urations and rerunning the fit algorithm. However, as this could in principle

produce different functional forms for different bootstrap configurations, and

as this procedure may be quite expensive, one may choose instead to apply a

Levenberg-Marquardt fit to the bootstrap configurations using the final func-

tional form obtained from the evolutionary algorithm, as one would do in a

conventional fit.

We have settled on the latter procedure for our implementation, and have

found that the final Levenberg-Marquardt fit always returned within errors

(as estimated by the bootstrapped Levenberg-Marquardt procedure) of the

evolutionary fit, indicating that the evolutionary fit was already close to opti-

mal. The errors from the bootstrapped Levenberg-Marquardt fit were usually

(though not always, depending on how well genetic diversity between islands

was preserved in each case) comparable to those estimated from the difference

between the fits obtained on different islands. 9 In the following, we use the

error estimates from the final bootstrapped Levenberg-Marquardt fit as our

estimate of the error in the fitted parameters.

To demonstrate the viability of our method, we have run a fit on two sets

of synthetic data consisting of 200 artificial correlators for 48 timesteps, each

constructed from a signal consisting of a sum of exponentials with known

9 For the purpose of these single correlator tests, we used a large ecosystem with

100 islands.
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Fig. 1. Result of a fit to a set of pion-like synthetic correlators. Shown is a plot of

the mass against the excitation number of the state. The horizontal lines are the

input values used to create the synthetic data; the data points and errors are the

fit results.

masses and amplitudes, and Gaussian noise. In one case (“pion-like”, figure 1)

the amplitude of the noise scaled linearly with the signal, in the other (“rho-

like”, figure 2) the noise amplitude was kept constant. It can be seen that the

ground state mass and the mass of the first excited state are extracted with

high reliability, while for the higher states good estimates are obtained. The

increased error in the excited states is largely due to the noise component in

the created data which makes it impossible to adequately resolve those states

and not to a shortcoming in the algorithm itself.

The running time for our Python implementation of each of the two boot-

strapped fits was on the order of one to two hours on a single-processor Pen-
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Fig. 2. Result of a fit to a set of rho-like synthetic correlators. Shown is a plot of

the mass against the excitation number of the state. The horizontal lines are the

input values used to create the synthetic data; the data points and errors are the

fit results.

tium 4 workstation; implementing the same algorithm in a compiled language

could cut this runtime down further. It should be stressed that the evolution-

ary fit works robustly without any human intervention, thus saving valuable

human time at the expense of a moderate increase in computer time when

compared to more conventional excited state fitting methods that often re-

quire a larger degree of user intervention.

Finally, in figure 3 we show the results from fits to actual pion and rho cor-

relators from a quenched simulation using Wilson quarks, demonstrating the

ability of our program to deal with real lattice data.
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Fig. 3. Result of a fit to an actual meson correlator from a quenched simulation

using Wilson quarks. The simulation (Nconf = 100) was run on a 163 × 32 lattice

at β = 6.0, κ = 0.154. The red points and error bars are the results of the fit; the

blue bands are the approximate masses of the continuum states corresponding to

the lowest and first excited states in the fitted channels extrapolated to the quark

masses employed in the simulation. The largest fitted state does not correspond to

a known continuum state and may be a lattice artifact.

4 Evolutionary Fitting of Multiple Correlators

In this section we discuss the generalizations of the evolutionary fitting algo-

rithm required for fitting multiple datasets simultaneously. A more sophisti-

cated genotype is required in this case, since now the same energy En can

occur throughout some subset of the datasets. Hence, the fit for dataset

number i will now be represented by a list of n(i)
max coefficients (Z(i)

n , I(i)n ),

n = 1, . . . , n(i)
max where I ∈ {1, . . . , mmax} is an integer index into a list of mmax
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energy states Em indicating to which state the coefficient is associated. 10 The

list E1 . . . Emmax
is common to all datasets.

In summary, for a fit of imax datasets the complete genotype is of the form:

Fit Genotype

= (Dataset coefficients,Mass list)

= ((Dataset 1 coefficients, . . . ,Dataset imax coefficients),Mass list) (8)

with

Dataset i coefficients = ((Z
(i)
1 , I

(i)
1 ), . . . , (Z

(i)

n
(i)
max

, I
(i)

n
(i)
max

))

Mass list = (E1, . . . , Emmax
) . (9)

Assuming the datasets are not correlated in any way, the new χ2 is simply

the sum of terms of the form in equation (5), one per dataset. The number of

degrees of freedom changes from the form of equation (7) to:

ndof (G) = ndata −mmax −
imax
∑

i=1

n(i)
max (10)

where ndata now counts all included timesteps in the fit of all datasets.

The presence of integer variables in the multi-dataset genotype requires some

adaptations to the breeding algorithm used. For practical reasons, it is ad-

vantageous to use a fixed-length integer implementation with n-bit integers,

where 2n is the maximum number of distinct states we will allow in our fit.

Crossover can be performed by exchanging the first m (0 ≤ m ≤ n) bits of

two integers. Mutations are implemented by flipping each bit of the integer

with some fixed probability.

10 The stored integer is interpreted modulo mmax to ensure it maps to an actual

energy state.
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The genotype (8) has a hierarchical structure as a list of lists ultimately con-

taining floating point or integer numbers. Mutation and crossover can therefore

be structured by recursing through these list structures, applying appropriate

mutation and crossover operations at each level. The lists can be distinguished

by the number (fixed or variable) and type (homogeneous or heterogeneous)

of their elements, and by whether they are ordered or unordered. Elementwise

mutation can be done on any kind of list. Lists of variable length can also be

mutated by removing elements or adding a random new element, and ordered

lists may be mutated by permuting their elements. Likewise for crossover,

building two new lists by picking from the elements of the parent lists in order

can be done for any list. Homogeneous lists allow more general subsets of the

parents’ elements to be chosen. Elementwise crossover may also be done, in

order for heterogeneous lists or with random pairs of the parents’ elements in

the homogeneous case. All of the different mutation and crossover operations

that are possible in each case can have different probabilities assigned to them

and for lists of variable length, a range of valid list lengths may be specified.

In addition to these generic genetic operations, the multi-dataset fitting prob-

lem benefits from some operations specific to its structure. One notes that

the genotype of equation (8) allows for multiple representations of the same

fitting function, because the coefficient integers are taken modulo the number

of masses in the fit, because either the masses or the indices to them may be

in different orders, and because some masses may be unused or referred to

multiple times for a single dataset. This degeneracy can have an adverse effect

on the convergence of the algorithm. To encourage the algorithm to work to-

ward a single representation of the solution, we employ a reduction mutation

which sorts the mass list and removes unused masses. It also combines coef-
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ficients pointing to the same mass, places coefficient indices uniquely within

the range 1, . . . , mmax, and orders them within each dataset by the associated

mass index. In order to favor this operation, as well as any other mutation

that may reduce redundancies, it is beneficial to count all masses and coeffi-

cients, whether redundant or not, in the count of the degrees of freedom in

equation (10).

As in the single-correlator case, interspersing local optimization steps using

the Levenberg-Marquardt method with the other mutations was found to be

useful in accelerating convergence. Limiting the mutation to a fixed number

of steps of the Levenberg-Marquardt algorithm and making it a relatively

improbable mutation keeps the overall time evolution reasonable.

Special care needs to be taken in the multi-dataset case when adding or re-

moving masses, since simply dropping a mass from the list will mean that

any coefficients belonging to the dropped mass will now become associated

with a different mass, which tends to have a catastrophic effect on fitness,

especially for more evolved genotypes. A careful generalization of the way in

which amplitudes are redistributed when changing the number of masses in

the single-correlator case is therefore necessary. This is facilitated by first ap-

plying the reduction operation mentioned above before adding or removing a

mass from the mass list. When removing a mass, one then loops through the

dataset functions to see which ones have a coefficient corresponding to the

removed mass. For any that do, the coefficient is deleted and its amplitude is

redistributed between neighboring masses, either by increasing the coefficients

for the closest masses already having coefficients in that dataset function, or by

adding a new coefficient for an unrepresented neighboring mass. When adding

a mass, at least one of the datasets receives a new coefficient associated with it,
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and the coefficients of the other masses in those datasets are lowered accord-

ingly. As a final step, a Levenberg-Marquardt optimization step is carried out

in order to give the new mutant a better chance of survival. There is obviously

a tradeoff between the probability of such relatively expensive mutations and

the maximum size of the population that can be employed.

As a test of the efficiency of the evolutionary algorithm in the multi-dataset

case we have run fits of synthetic data. The result of such a test is shown

in figure 4. Four hypothetical diagonal meson correlators were constructed

to contain four masses among them. One correlator had coefficients for only

two of the masses, two had coefficients for three of the masses, and one had

coefficients for all four masses. The four datasets, with 48 timesteps each,

were modified by adding Gaussian noise, the amplitude of which was chosen

small enough to allow statistical discrimination of all states. A Levenberg-

Marquardt fit to the synthetic data, using the masses and coefficients used to

generate the data as the starting point, is shown in the last column of figure 4.

As expected, the parameters shifted only marginally from their ideal values

and χ2/ndof for the fit is very close to 1.

The multi-dataset algorithm was then run on the synthetic data. It was re-

stricted to fit genotypes containing a maximum of eight masses with pos-

itive masses of value less than 10. Each dataset function was allowed to

have up to six coefficients whose values were only restricted to being pos-

itive. Four islands were used, each containing 120 individuals (specifically

Nelite = Ndiversity = 5, Nmutants = 20). Figure 4 displays the best fit geno-

type from each generation along with its χ2/ndof . It is evident that the algo-

rithm quickly succeeds at finding a good fit to the data. By generation 20 one

has a fit with good χ2/ndof and characteristics almost identical to the model
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Fig. 4. Best fit genotype and its χ2/ndof of each generation for a multi-dataset fit

are shown. Four datasets were constructed to contain four masses with each dataset

having coefficients for two to four of the masses. The model fit that generated the

data is shown on the right. Each fit is displaced horizontally with different masses

in separate columns with their corresponding coefficients in each of the datasets

vertically aligned above them. The latter have been multiplied by powers of 10 for

display purposes. The left side of the plot shows the results of the evolutionary

algorithm, starting with the best fit of the first generation. Only generations with

an improvement in the best fit genotype are plotted. For clarity a few of these fits

have only their χ2/ndof displayed (open circles) to ensure that all data between

subsequent drop lines corresponds to a single fit.

function, having the same number of masses and corresponding coefficients,

except for the addition of a small (four orders of magnitude lower) coefficient

added in the first dataset for the highest mass. Generation 64 shows that this
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functional form with an additional coefficient actually improves the fit, having

a lower χ2/ndof than the optimized model function. Generations 100 onward

improve even further in the fit by bifurcating the lowest mass to produce a fit

of ever so slightly greater probability than the actual model function used to

generate the data. This was the final result as of generation 2000. The total

run was performed overnight on a single-processor Pentium 4 workstation.

Overall one notices that the algorithm adds masses initially as required before

proceeding to coalesce masses and combine coefficients to improve the fit. The

reduction mutation serves to encourage an ordering of masses from lowest to

highest but generations 2 to 10 show it is not strictly required.

We are currently employing this program in a forthcoming analysis [43] of the

meson spectrum of twisted-mass QCD [44] based on the representation theory

of the octahedral group with generalized parity [45]. In figure 5, we show the

results of a fit to actual data from the Wilson QCD action in the pion channel.

The algorithmic parameters were the same as for the previous fit. Again, one

observes that initially the number of states found fluctuates considerably, with

states being added to improve the fit. At some point, too many states which are

nearly degenerate have been introduced, and the population culls unnecessary

bifurcations. One observes that by generation 200 the energy states have been

largely found, further improvements occurring within the coefficients. The

fitness of the best genotype traces this behavior. 11

11 As an aside we note that for this fit and the fit to synthetic data shown in figure 4,

the restriction En < 10 was initially imposed with an eye to restricting ourselves

to physical masses and thereby preventing the occurrence of “runaway” solutions

commonly encountered in this fitting task. We subsequently found this restriction

to be unnecessary. We conjecture that the problem with runaway solutions may
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Fig. 5. A simultaneous fit to actual data of eight diagonal pion (i.e. ΛPC = A−+
1 )

correlators from a quenched simulation using Wilson quarks (β = 6.0, κ = 0.1554,

203 × 48, 600 configurations) is shown; the eight operators used are from [45]. Only

the energies of the fittest organism of each generation are shown; the coefficients

in each dataset, a further 28 parameters in the final fit, are not. The last column

depicts the best fit found with bootstrap errors produced via Levenberg-Marquardt

fits with its fixed functional form. Also shown (circles) is (the logarithm of) χ2/ndof

of the best genotype, which indicates that by generation 25 one has technically a

good fit (χ2/ndof ≈ 1).

To get an impression of how well the algorithm converges, we show histograms

of χ2/ndof values of the final best fit for 160 twisted-mass meson channels in

be due to trying to fit a poor functional form to the data, something which our

algorithm avoids, thus removing the need for such a constraint. Subsequently, we

merely constrain parameters to be positive.
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figure 6. The 160 channels correspond to four quark masses (the mesons con-

sist of mass-degenerate quarks and antiquarks), two particle types (charged or

neutral), and 20 octahedral irreducible representations (ΛPC). The 400 opera-

tors used (16 local and 384 extended) are detailed in [45]. Diagonal correlators

were obtained for all of these operators, encompassing all channels. For opera-

tors in representations of dimension greater than one, all the correlators were

row-averaged before fitting. The quenched simulation used degenerate twisted

mass quarks with quark and link smearing of operators on a 203×48 lattice at

β = 6.0, m ∼ ms, ms/2, ms/3, ms/6 (where ms is the physical strange quark

mass); see [46,47,48] for further details.

For each channel the evolutionary algorithm was run three times: first using all

of the data (Nconfig = 600 configurations), then one third of it (Nconfig = 200),

and finally one sixth of it (Nconfig = 100). The fitness distribution for the

full data set is excellent with χ2/ndof distributed locally about 1.0, clearly

demonstrating the algorithm is robust in its ability to find a good fit, when

the latter exists. As the amount of data included drops, however, the certainty

with which states are resolved falls and the optimal fit becomes poorer. Fits

required a minimum of 600 generations, and ran for up to 1200 generations

if improvement still occurred in the best organism. The shown fits are for

correlators with smeared operators. Unsmeared correlators (not shown) of

the same operators which exhibit a greater number of excited states were

also fit for the 600 configuration case with no appreciable difference from the

histogram of the smeared one.

As a measure of stability of these fits, bootstrap errors of the fitness, σχ2/ndof
,

have been calculated for each fit and their histograms are also shown. Specifi-

cally, for each fit, 3×Nconfig bootstrap configurations of the data were made
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Fig. 6. Shown are normalized histograms of χ2/ndof (thick lines) of fits to 160

meson quantum channels containing between 2 and 16 correlators each. For each

channel the evolutionary algorithm was run three times: using all (Nconfig = 600

configurations), one third (Nconfig = 200), and one sixth (Nconfig = 100) of the

lattice data. For the full data set, the fitness distribution peaks sharply around

1.0, but as the amount of data included drops,the certainty with which states are

resolved falls and the optimal fit becomes poorer. Bootstrap errors of the fitness,

σχ2/ndof
, are also shown (thin lines). The stability of the fit is seen to decrease in

the same way as the overall χ2/ndof as the quality of the data declines.

and the functional forms of the best fits were fit to them using a Levenberg-

Marquardt routine whose initial values were those of the best fit. For the full

600 configurations one observes the variation in the goodness of the fit is small

(σχ2/ndof
< 0.3). Since good fits occur in essentially all of the bootstrap con-

figurations, this increases confidence that the spectrum found is accurate. The
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Fig. 7. Shown is the execution time (on a single Intel Xeon 3.06 GHz CPU) per

parameter as a function of the number of parameters in the final best fit. The latter

includes each of the masses as well as the coefficients on each dataset for the given

fit. The number of generations for all fits shown was fixed at 600, by which time

all fits were already well converged. Smeared correlators (squares) exhibit a smaller

number of fitted parameters than unsmeared ones (circles), which is expected since

smearing suppresses contributions from excited states.

same is largely true for 200 configurations as well (σχ2/ndof
< 0.6), but by the

time the data set is reduced to only 100 configurations the error in χ2/ndof is

as wide as the value itself, indicating along with the fit histogram, that the

amount of data is insufficient for solution of the problem.

Finally, in figure 7 we show the runtime per parameter as a function of the

total number of parameters (masses and coefficients in all datasets) in the final

fit. Overall, we find that the dominant contribution to runtime comes from
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the number of coefficients, which in turn is largely proportional to the number

of correlators used for the fit, as might be expected from a naive runtime

analysis.

5 Alternatives and Variations

The specific implementation described in the previous section is just one of

many possible ways to approach the problem of extracting excited state ener-

gies using evolutionary algorithms. In this section we wish to point out some

alternatives to our current implementation, many of which we are actively

exploring at the moment.

The previously described algorithm used a genetic encoding based on real

numbers. This offers the advantage of being a straightforward representation,

as well as the ability to interject local optimization steps in a natural manner.

An alternative would be to use an integer-based representation of real param-

eters instead; the advantage in this case would be the ability to use bit-based

mutation and crossover operations instead of our Gaussian mutations and in-

terpolating crossover. The bit-based operations, besides likely being faster in

most cases, are better understood in terms of rigorous theorems regarding

global convergence properties (such as from schema theory [26,28]), but do

not offer the possibility for easy mixing with local optimization.

Using straight elitism as the selection method has been found to be favorable

in the case of problems with a real-number genetic code [18], but introduces

a certain risk of premature convergence if the elite should happen to cluster

around a local optimum. This risk is significantly reduced by the addition of
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random survivors and our use of an island-based ecosystem, but other, more

sophisticated, selection methods could help to further eliminate any remaining

bias. Another disadvantage of elitist selection is that it requires a full sort of

the organisms by fitness in each generation, which makes up a fair part of

our implementation’s computational cost. Other selection methods manage

to avoid this requirement, which could lead to further gains in speed. The

specific mutation schedule implemented in our algorithm is also to be seen

as just one example out of many that are possible. In some cases, it may be

more favorable to mutate each parameter separately instead of mutating all

parameters at once.

Our evolutionary algorithm depends on a number of parameters, such as the

rate for different kinds of mutations, their dependence on χ2/ndof , and the

size of the breeding pool. In the current implementation, these parameters

have been set to reasonable values by hand. For a more highly optimized

implementation, these parameters should be tuned to values that tend to

give the fastest rate of convergence towards the true optimum; in principle,

such tuning itself could be done by means of another evolutionary algorithm,

although that approach might prove to be fairly expensive computationally.

Evolutionary multi-modal algorithms (see [49] and refs. therein) are able to

find not only absolute extrema but relative extrema as well. “Niching” and

“diversity preservation” algorithms have been devised that dissuade too many

elements of the population from going after the single best solution, thereby

finding not only the best solution but other good solutions. This could be

useful in the context of fitting since these algorithms can produce the best fit

as well as other fits that lie in relative extrema that are perhaps comparable

with the best fit. Comparison of such fits would give the researcher a better
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feel for the uniqueness and likelihood of the functional form of the solution

found.

Several improvements might be made for the simultaneous fitting of multiple

correlators. Obviously it is of value to cull from the fit any datasets which

clearly only contain noise. As well, if fitting a large number of datasets it

could be of value to partition the datasets and find viable fits on each subset

first. One could then merge these populations into genotypes suitable for the

entire dataset by stitching together fits from each subset. This could be done

crudely by just putting the masses back to back, or one could implement

some algorithm which tried to find common masses at this point between two

genotypes being merged in some systematic fashion. Running the algorithm

on these new datasets would then optimize these fits globally, presumably by

coalescing common masses across the subsets that are statistically equal to

improve the final fit.

The local optimization steps used as mutations in our algorithm could be ren-

dered more efficient by employing techniques that exploit the partial linearity

of the functional form of equation (1) by separating the linear and non-linear

variables [50].

There is also the possibility to combine the variational method with an evo-

lutionary fitting algorithm. To do this, one could diagonalize the correlator

matrix as usual with the variational method, and then use the evolutionary

algorithm to fit the resulting diagonal correlators. In this way, any remain-

ing mixing between the optimized operators could be detected and quantified,

while at the same time reducing the number of correlators to be fit.

An alternative to evolutionary algorithms, which we have not investigated so
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far, might be the use of Markov Chain Monte Carlo optimization methods

such as simulated annealing [51], which share evolutionary algorithms’ ability

to accommodate discrete changes in functional form.

6 Conclusions

Evolutionary fitting methods provide an interesting and useful addition to

the lattice field theorist’s data analysis toolkit. Especially when combined

with other well-known and well-tested fitting methods, evolutionary fitting

can help to extract information from simulation data without having to im-

pose any external constraints, such as Bayesian priors. Evolutionary methods

allow one instead to extract all of this information from the data themselves

by harnessing the globally optimizing nature of evolving systems. This is par-

ticularly true in the case of discrete parameters such as the number of states

to fit, which are hard to determine using more conventional methods.

We have demonstrated a working method for the extraction of excited state

masses from lattice QCD correlators using evolutionary fitting. We believe that

evolutionary fitting algorithms have significant potential as a data analysis

method in lattice QCD, and that further investigation in this direction is

warranted.
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