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Abstract

When one deals with data drawn from continuous variables, a histogram is often inadequate to display their
probability density. It deals inefficiently with statistical noise, and binsizes are free parameters. In contrast to that,
the empirical cumulative distribution function (obtained after sorting the data) is parameter free. But it is a step
function, so that its differentiation does not give a smooth probability density. Based on Fourier series expansion
and Kolmogorov tests, we introduce a simple method, which overcomes this problem. Error bars on the estimated
probability density are calculated using a jackknife method. We give several examples and provide computer code
reproducing them. You may want to look at the corresponding figures 4 to 9 first.
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1. Introduction

One is often confronted with displaying an em-
pirical probability density (PD) f(x) of a contin-
uous variable x. Most commonly this is done us-
ing histograms. While that is entirely appropriate
and parameter free when x is confined to discrete
values, in case of a continuous variable x, one is
faced with choosing a binsize, or even several bin-
sizes. This is a frustrated problem: On one side one
would like the binsize infinitesimally small, so that
the resolution of the curve becomes perfect. On
the other side the binsize has to be sufficiently big
so that statistical fluctuations do not destroy the
smoothness of the underlying curve. Here we do
not attempt to fine-tune the binsize parameter(s),
but propose to by-pass the entire problem by us-
ing a method based on the cumulative distribution

function (CDF)

F (x) =

x
∫

−∞

dx′f(x′) . (1)

F (x) is a monotonically increasing function as f(x)
cannot be negative. In a range with f(x) > 0, F (x)
is strictly monotone.
Given a time series of n real numbers (data), a

parameter free estimate of the CDF, called empir-
ical CDF (ECDF), is well-known [1,2]: The step
function F (x) which, after sorting the data, in-
creases by 1/n at each data point. Unfortunately,
that does not help directly in getting a good esti-
mate of the probability density. The derivative of
a step function is a sum of Dirac delta functions,
whereas the probability density is often known to
be a smooth function, as will be assumed in the
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forthcoming. So it appears that one needs some
kind of interpolation of the CDF before taking the
derivative. This is no fun, as one has to decide
whether the interpolation of 2, 3, 4, or k points will
work best. In contrast, plotting a histogram of the
data is simple and robust. However, it is tedious to
guess a smooth function from a histogram. Typi-
cally, either the statistical errors on the bins are
small, but the resolution of the function is bad, or
the resolution is good, but the statistical errors are
large.
Let F 0(x) be the straight line, which is zero for

x ≤ xπ1
and one for x ≥ xπn

, where xπ1
is the

smallest and xπn
the largest data point. After sub-

tracting F 0(x) from F (x), a function is left over,
which is zero for x ≤ xπ0

and x ≥ xπn
, and in-

between well-suited for a Fourier series expansion.
This leads to the desired smooth approximation
as long as the expansion is sufficiently short, but
will imitate every wiggle of the data, when carried
too far. Therefore, one needs a cut-off criterion.
We provide this by using the Kolmogorov [3,1,2]
test, which tells us whether the difference between
the ECDF and an analytical approximation of the
CDF is explained by chance. The result is a well-
defined, smooth empirical estimate of the PD. Our
approach is so simple and straightforward, that one
can hardly imagine that it is original, but we have
not seen it in use before. Whether there exists pre-
vious literature on it or not, it is certainly desirable
to bring it to the attention of a general science com-
munity. With this paper we also distribute startup
software, which should help to bridge initial barri-
ers against applying the approach.
In the next section we review the CDF, its em-

pirical estimate, and other preliminaries. Section 3
explains our construction of PDs and gives nu-
merical examples. We consider independent events
sampled from (1) a Gaussian distributions, (2) a
Cauchy distribution, and data from (3) a Markov
chain Monte Carlo simulation, which creates an
autocorrelated time series. Summary and conclu-
sions follow in section 4. The appendix gives a list-
ing of the main routine and explains Web access to
Fortran 77 code, which reproduces the examples of
this paper.
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Fig. 1. ECDF from 100 Gaussian random numbers versus
exact Gaussian CDF.

2. Cumulative Distribution Functions

Assume we generate n random numbers x1, · · ·,
xn according to a distribution function F (x). We
may re-arrange the xi in increasing order. Denoting
the smallest value by xπ1

, the next smallest by xπ2
,

etc., we arrive at

xπ1
≤ xπ2

≤ . . . ≤ xπn
(2)

where π1, . . . , πn is a permutation of 1, . . . , n. As
long as the data are not yet created, the xπi

are
random variables, afterwards they are data. An es-
timator for the distribution function F (x) is the
ECDF

F (x) =
i

n
for xπi

≤ x < xπi+1
, (3)

with i = 0, 1, . . . , n−1, n and the definitions xπ0
=

−∞, xπn+1
= +∞. Confidence limits can be ob-

tained from the bimodal distribution: With xq de-
fined by F (xq) = q, 0 ≤ q ≤ 1, the probability to
find k data points with values xπ1

≤ . . . ≤ xπk
<

xq and n− k data points with xq < xπk+1
≤ . . . ≤

xπn
is given by

bn(k, q) =
(n

k

)

qk(1− q)n−k . (4)

Figure 1 shows an ECDF from 100 Gaussian dis-
tributed random numbers together with the exact
CDF. Using Marsaglia [4] random numbers, the
data were created for the probability density
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Fig. 2. Peaked ECDF from 100 Gaussian random numbers
versus exact Gaussian peaked CDF.

g(x) =
1√
2π

exp

(

−x2

2

)

(5)

and sorted with the heapsort algorithm. The CDF
is in this case determined by the error function:

G(x) =

x
∫

−∞

dx′g(x′) =
1

2
+

1

2
erf

(

x√
2

)

. (6)

The computer code used was that of Ref. [2].
In contrast to histograms as estimators of a PD

from data, the ECDF has the advantage that no
free parameters are involved in its definition, but
the probability density of events is encoded in its
slope. This makes it often impossible to read off
from graphs like Fig. 1 high probability regions, in
particular, the point of maximum likelihood. An
ECDF is well-suited for determining confidence in-
tervals, however, and that can be further improved
by switching from the CDF to the peaked CDF [2]
defined by

Fp(x) =

{

F (x) for F (x) ≤ 1

2
;

1− F (x) for F (x) > 1

2
.

(7)

By construction the maximum of the peaked CDF
Fp(x) is at the median x 1

2
and Fp(x1/2) = 1/2.

Therefore, Fp(x) has two advantages over the CDF
F (x): The median is clearly exhibited and the ac-
curacy of the ordinate is doubled. It looks a bit like
a PD, but it is in essence still the integrated PD.
The peaked ECDF F p(x) is defined in the same

way, just replacing F (x) in Eq. (7) by F (x). Fig-
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Fig. 3. Peaked ECDF from 10 000 Gaussian random num-
bers versus exact Gaussian peaked CDF. The arrows indi-
cate 70% and 95% confidence intervals.

ure 2 displays the peaked ECDF and peaked CDF
for the same data as used in Fig. 1. While in these
two figures deviations of the estimates from the
exact function due to statistical deviations are
clearly visible, the picture changes dramatically
when one increases the number of data by a factor
of 100. Figure 3 shows the peaked ECDF from
10 000 Gaussian random numbers together with
the exact peaked CDF. A difference is no longer
visible to the naked eye. Note that for large n use
of a fast sorting algorithm is mandatory. For a
heapsort the CPU time scales with n log2(n). For
details see, e.g., Ref. [2].
Estimation of confidence intervals is also illus-

trated in Fig. 3: Just pick the desired likelihood on
the ordinate and follow the arrows to their termi-
nation points. Call such a point xy , then the prob-
ability for x < xy is given by the value on the or-
dinate for arrows emerging from the left, and the
probability x > xy for arrows emerging from the
right. Using one arrow from the left, and one ar-
row from the right, the probability content for the
interval between these x values is obtained by sub-
tracting the appropriate numbers from one (70%
for the x values from the two inner and 95% for the
x values from the two outer arrows of Fig. 3).
Do the empirical and exact CDFs of our fig-

ures agree? The Kolmogorov test [3] answers this
question. It returns the probability Q, that the
difference between the analytical CDF and an
ECDF from statistically independent data is due
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to chance. If the analytical CDF is exactly known
and the data are indeed sampled from this dis-
tribution, Q is a uniformly distributed random
variable in the range 0 < Q < 1. Turned around, if
one is not sure about the exact CDF, or the data,
or both, and Q is small (say, Q < 10−6) one con-
cludes that the difference between the proposed
CDF and the data is not due to chance, but that
one of the assumptions made is false.
Kolmogorov’s ingenious test relies on no more

than the maximum difference △ between the
ECDF and the CDF. For the one-sided tests the
relationship to Q is analytically known [5,2] for
any value of n. In practice one prefers the two-
sided test for which △ is defined by

△ = max
x

∣

∣F (x) − F (x)
∣

∣ . (8)

An exact analytical conversion into Q is then
not known, but an asymptotic expansion due to
Stephens [6] gives satisfactory results for n ≥ 4,
which is for practically all applications sufficient.
The test yields Q = 0.19 for the data of Fig. 1
and 2, and Q = 0.78 for the data of Fig. 3. Both
values are consistent with the assumption that the
difference between the data and the exact CDF is
due to chance.

3. Probability Densities

We would like to construct an empirical prob-
ability density (EPD) from an ECDF given by
Eq. (3). The first idea, that comes to mind, is to
differentiate smooth interpolations of F (x). This
turns out to be tedious as long as one is unable to
find a simple, generic rule, which determines the
optimal interpolation for the purpose at hand, and
we do not pursue this line.
The method we propose consists of two well-

defined steps.
(i) Define as an initial approximation to F (x)

a differentiable, monotonically increasing
function F0(x), with details as specified be-
low.

(ii) Fourier expand the remainder until the Kol-
mogorov test yields Q ≥ Qcut = 1/2 (there
may be some flexibility in lowering Qcut).

For F0(x) we require

F0(x) = 0 for x ≤ a , (9)

F0(x) = 1 for x ≥ b , (10)

where the interval [a, b] has to lie within the range
of the data:

xπ1
≤ a < b ≤ xπn

. (11)

For PDs with support on a compact interval, or
with fast fall-off like for a Gaussian distribution,
the natural choice is a = xπ1

and b = xπn
. In case

of slow fall-off, like for a Cauchy distributions, or
other distributions with outliers, one has to restrict
the analysis to [a, b] regions, which are sufficiently
populated by data. This can be interpreted as con-
sidering instead of f(x) the PD

fab =
{

c f(x) for a ≤ x ≤ b ;
0 otherwise .

(12)

Here the constant c is defined by the normaliza-
tion

∫

dx fab(x) = 1 and empirically obtained by
the left-out probability content of F (x), i.e., c =
n/nab, where nab is the number of data in [a, b] and
n the total number of data. We denote the CDF
of fab(x) by Fab(x) and its ECDF by F ab(x). Af-
ter calculating from F ab(x) an estimate fab(x) of
fab(x), the estimate of f(x) is for x ∈ [a, b] given
by f(x) = c−1fab(x).
For x ∈ [a, b] we restrict our choice of F0(x) in

this paper to the straight line,

F0(x) =
x− a

b− a
for a ≤ x ≤ b . (13)

More elaborate definitions will likely give improve-
ments in a number of situations (we comment on
that in the conclusions), but would at the present
state just discourage applications. Our point here
is to show that good results are already obtained
with the definition (13).
Once F0(x) is defined, the remainder of the

ECDF is given by

R(x) = F ab(x) − F0(x) , (14)

which we expand into the Fourier series

R(x) =

m
∑

i=1

d(i) sin

(

i π (x− a)

b− a

)

. (15)
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The cosine terms are not present due to the bound-
ary conditions R(a) = R(b) = 0. The Fourier coef-
ficients follow from

d(i) =

√

2

b− a

b
∫

a

dxR(x) sin

(

i π (x− a)

b− a

)

(16)

Because in our case R(x) is the difference of a step
function and a linear function, the integrals over
the flat regions of the step function are easily cal-
culated, and the integrals (16) are solved by adding
them up.
The Fourier expansion (14) is useless for a too

large value of m, because it will then reproduce
all statistical fluctuations of the data. To get
around this problem, we perform the two-sided
Kolmogorov test first between F ab(x) and F0(x)
(m = 0), and then each time m is incremented by
m → m + 1. Once Q ≥ Qcut = 1/2 is reached for
the Kolmogorov Q, we know that the difference
between the data and our analytical approxima-
tion is explained by statistical fluctuations. The
other way round, the only information left in the
data is statistical noise. Therefore, the expansion
is terminated at that point. The thus obtained
smooth estimate of the CDF,

Festimate(x) = F0(x) +R(x) , (17)

yields fab(x) by differentiation, and our final esti-
mate of the desired PD is: f(x) = nabfab(x)/n.
One likes to attach error bars to the estimate

of the PD. We do this by dividing the (unsorted)
original data into jackknife [7,8] bins and repeat
the analysis for each bin. Comparing the function
values thus obtained at selected points, error bars
follow in the usual jackknife way (see [2] for tech-
nical details).

3.1. Gaussian distribution

Figure 4 shows a histogram of 51 bins for 2 000
random numbers generated according to the Gaus-
sian distribution (the error bars follow follow from
the variance p (1−p) of the bimodal distribution (4)
with p = h(i)/n).
Figure 5 shows the estimate g(x) obtained from

the same data with the method described in this
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Fig. 4. Histogram from 2 000 Gaussian random numbers.
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Fig. 5. Estimate g(x) of the Gaussian PD from the same
data as used in Fig. 4.

section. We used a = xπ1
and b = xπn

. For the
estimate from all 2 000 data,Q = 0.97 was reached
with m = 4 (Q = 0.056 with m = 3). Twenty
jackknife bins were used to calculate the error bars.
As all results of this section, the analysis is fully
reproducible with the programs provided on the
Web as described in the appendix.

3.2. Cauchy distribution

We consider the Cauchy distribution defined by
the PD

fc(x) =
1

π (1 + x2)
(18)

which leads to the CDF

5
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Fig. 6. Histogram from 20 000 Cauchy distributed random
numbers.
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Fig. 7. Estimate fc(x) of the Cauchy PD from the same
data as used in Fig. 6.

Fc(x) =

x
∫

−∞

fc(x
′) dx′ =

1

2
+

1

π
tan−1 (x) . (19)

Due to the slow ∼ x−2 fall-off of the Cauchy PD,
neither its mean nor its variance are defined.
Therefore, it comes to no surprise that we en-

counter considerably more difficulties in applying
our method for Cauchy data than for Gaussian
data or for the data of our next example. To over-
come instabilities, the analysis has to be restricted
to the central region and far more data than before
are needed for stable estimates. We ended up with
using 20 000 Cauchy distributed random number
and restricting the analysis to

a = xπ3001
and b = xπ17000

,

which came out to be a = −1.984 and b = 1.916.
Figure 6 depicts the 51-bins histogram of the data
in this region. The estimate of the PD f c(x) with
our method is then shown in Fig. 7. As before,
twenty jackknife bins were used for the error esti-
mates and for the estimate from all data Q = 0.77
was obtained for m = 2 (Q < 10−14 for m = 1).

3.3. Double peak from Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) simula-
tions are widely employed in physics and other
disciplines. Data in a MCMC time series are auto-
correlated, which makes straightforward applica-
tion of the Kolmogorov test questionable. Here we
illustrate for an example from lattice gauge theory
(LGT) a way to deal with this problem.
In 4D U(1) LGT, a double peak in the action

has been observed on symmetric lattices [9]. This is
characteristic for a first order phase transition, al-
though the situation in 4D U(1) LGT is somewhat
questionable due to the weakness of the transition
and other circumstances.
For this paper we have used the biased

Metropolis-Heatbath algorithm of Ref. [10] to
generate U(1) data at β = 1.007 on an 84 lattice.
These are parameters appropriate for producing
a double peak. In LGT and statistical physics a
standard unit for the time series is one “sweep”,
which corresponds for sequential updating (as
used in our simulations) to updating each dynam-
ical variable once. We have generated a time series
of 2 560 000 sweeps, which takes about twenty
hours on a 2GHz PC.
We calculated the integrated autocorrelation

time τint of our time series and found τint ≈ 1 280
sweeps. As the effective number of statistically
independent data in an autocorrelated time se-
ries is given by [2] n/τint, our measurement of
τint implies that we have generated approximately
2 560 000/1 200 = 2 000 independent measure-
ments. In the spirit of data reduction, we then
selected 2 000 action values, separated by steps of
1 200 sweeps, from the time series.
For these 2 000 measurements, the histogram

with 51 entries is plotted in Fig. 8, where s is the
action density. Figure 9 shows the estimate f(s)

6



 0

 5

 10

 15

 20

 25

 0.58  0.6  0.62  0.64  0.66

¾¯ f(
s)

s

Histogram

Fig. 8. Histogram from 2 000 effectively independent action
measurements in U(1) lattice gauge theory.
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Fig. 9. Estimate f(s) of the PD from the same data as
used in Fig. 8.

obtained from the same data with our method,
using a = xπ1

and b = xπn
. For the estimate from

all 2 000 data Q = 0.93 was reached with m = 5
(Q = 0.026 with m = 4), and twenty jackknife
bins were used to calculate the error bars. The
improvement from Fig. 8 to Fig. 9 is as good as
the corresponding improvement for the Gaussian
distribution.
This result sheds new light on an effect, which is

well-known to workers in MCMC simulations, but
has to our knowledge not been satisfactorily ex-
plained, the amazing smoothing, which one obtains
when one includes all autocorrelated data in the
histogram. In our case this is 640 000 data points,
as we have taken measurements every 4 sweeps.

The histogram error bars then fall almost on top
of the jackknife error bars of Fig. 9. How can that
be when there is little or no additional informa-
tion in the autocorrelated data? Part of the answer
appears to be that most of this information is al-
ready in the statistically independent data, but is
usually not exploited.

4. Summary and Conclusions

To someone used to plotting histogram, our
method may appear difficult, but indeed it is not.
True, first one has to sort the data to calculate
their ECDF, then from it the empirical PD, using
Fourier series expansion and Kolmogorov tests,
and finally jackknife error bars need to be calcu-
lated, but all these steps are standard. Besides
the subroutine shown in the appendix, another
short subroutine, and the main program, we had
no programming to do. All other routines were
already available in the Web based Fortran 77
code of Ref. [2]. Once the archive described in the
appendix is downloaded from the Web, and the
program is up and running, the extra effort com-
pared to plotting histograms is almost negligible.
And the differences between Fig. 4 and Fig. 5,
Fig. 6 and Fig. 7, and finally Fig. 8 and Fig. 9
speak for themselves.
It is astonishing that these results could be ob-

tained with a simple straight line (13) as initial
approximation for the CDF. There is certainly
space for improvement at the price of giving up
the presently achieved simplicity. For our exam-
ples one and two, the exact CDFs are known and
pointed out by Eqs. (6) and (19). Obviously, one
does not test our method by constructing F0(x)
from them in these examples, but they could be
good choices, when one has reasons to expect them
to be a close, albeit not exact, approximation of
the investigated distribution. For instance, for the
double peak of our third example, a good initial
guess could be a sum of two Gaussians, and one
could start off by fitting their CDF to the data.
Afterwards care has to be taken that Eqs. (9)
and (10) remain valid. That this can always be
achieved follows from the interpretation (12) of

7



that requirement. We abstained from investigating
a double Gaussian F0(x), because it starts to get
tedious and there is nothing really to improve on
our result. But, one can easily imagine that there
are more complicated situations, accompanied by
limited statistics, where an improvement of F0(x)
becomes essential. If the problem for which this
happens is important too, it will become worth-
while to explore more F0(x) functions.
With our Qcut = 1/2 rule, we are slightly over-

expanding the Fourier transformation (15). In the
averageQ should be 1/2, but all our final values are
≥ 1/2. That gives some flexibility to lower Qcut,
which should be used with discretion in situations
were the m of the Fourier expansion (15) appears
to be too large. A warning right away: The only
situation in which we did not see a rapid approach
towards Q > Qcut turned out to be one in which
we had not noticed that the underlying distribu-
tion was discrete, while the Kolmogorov test did
notice that.
We did not develop a statistically rigorous ap-

proach. We address physicists and others, who do
not hesitate to use whatever works, not those, who
want to forbid numerical recipes. We rely on the
assumption that the Fourier series (15) would be
rapidly convergent, when the ECDF in Eq. (14)
would be replaced by the corresponding (unknown)
exact CDF. That is in spirit similar to picking a
primer in Bayesian statistics, when a rigorous one
is not known, a procedure, which can modify the
probability content of confidence intervals.

Acknowledgments: BB likes to thank Alexei
Bazavov for useful discussions. This work was in
part supported by the U.S. Department of Energy
under contract DE-FG02-97ER41022.

Appendix A. Computer Code

An archive with Fortran 77 example runs can
presently be downloaded from the website of BB.
Google Bernd Berg, or go directly to

http://people/scs.fsu.edu/~berg/ .

Take from there the research link and download
the gzipped archive

STMC CDFtoPD.tgz .

Unfold the archive. (If instructions for that are
needed, they can be found on the website of Ref. [2],
which is also linked on the main website of BB.)
Go then to the folder

STMC CDFtoPD/Work/CDFtoPDexamples .

All three examples of this paper can be run as
special cases of the program cdf to pd.f in this
folder, and more instructions are given in its
readme.txt file. To show that at its heart our
method is indeed quite simple, we list in the fol-
lowing our main subroutine.

SUBROUTINE CDF_PD(IUO,NDAT,SDAT,Fxct)

C Bernd Berg, Robert Harris Dec 16 2007.

C Transforms an empirical cumulative distribution function (CDF) into

C a corresponding probability density using and initial function plus

C Fourier series expansion for the CDF.

C On INPUT:

C IUO Write unit, unchanged on exit.

C NDAT Number of input data, unchanged on exit.

C SDAT Sorted input data, unchanged on exit.

C INTERNAL:

C Qcut Cut-off. Fourier expansion is terminated for Q>Qcut.

C cumulative distribution function.

C NMAX Maximum number of terms in the Fourier series.

C On OUTPUT:

C Fxct Exact CDF (means here analytical approximation of the CDF).

include ’../../Libs/Fortran/implicit.sta’

include ’../../Libs/Fortran/constants.par’

PARAMETER(Qcut=HALF,NMAX=100) ! Change also in functions.

DIMENSION SDAT(NDAT),Fxct(NDAT)

COMMON /CDFProb/ XMIN,XRANGE,DN(NMAX),M ! Expansion parameters.

C

XMIN=SDAT(1) ! Initializations.

XRANGE=SDAT(NDAT)-SDAT(1)

DO J=1,NDAT

Fxct(J)=(SDAT(J)-SDAT(1))/XRANGE

END DO

DO K=1,NMAX

DN(K)=ZERO

ENDDO

DO M=1,NMAX ! Integration for the Fourier series coefficients:

DO I=1,NDAT-1

X1=(SDAT(I)-SDAT(1))/XRANGE

X2=(SDAT(I+1)-SDAT(1))/XRANGE

DN(M)=DN(M)+(ONE*I/NDAT-X1)*COS(M*PI*X1)/(M*PI)

DN(M)=DN(M)-(ONE*I/NDAT-X2)*COS(M*PI*X2)/(M*PI)

DN(M)=DN(M)+SIN(M*PI*X1)/(M*M*PI*PI)

DN(M)=DN(M)-SIN(M*PI*X2)/(M*M*PI*PI)

ENDDO

DN(M)=DN(M)*TWO

DO K=1,NDAT ! CDF in Fourier series approximations:

XRANGE1=SDAT(K)-SDAT(1)

Fxct(K)=Fxct(K)+DN(M)*SIN(M*PI/XRANGE*XRANGE1)

ENDDO

CALL KOLM2_AS(NDAT,Fxct,DEL,Q) ! Kolmogorov test.

IF(Q.GT.Qcut) GOTO 1

ENDDO

WRITE(IUO,’(/," CDF_PD failed M,Q =",I6,G12.3)’) M,Q

STOP "CDF_PD: Expansion failed."

1 WRITE(IUO,’(/," CDF_PD: Final M,Q =",I6,G12.3,/)’) M,Q

C

RETURN

END

With exception of the jackknife routine

dat to datj.f ,
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to be found in Libs/Fortran of the package, all
other subroutines used are from the code of Ref. [2]
and for convenience included here. For the Kol-
mogorov test in the form of Stephens the routine
kolm2 as.f of [2] has been modified to abort in
case of no convergence. (Note also that the related
routine kolm2 as2.f of [2], which is not used in
this paper, does not work for large values of the in-
put arguments N1, N2 due to bad coding of a mul-
tiplication of N1 and N2, which can be easily cor-
rected.) All routines are copyrighted by their au-
thors, who are listed in one of the first lines of each
routine. Limited permission of their use is given
under the conditions stated on the Fortran down-
load page of Ref. [2].
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