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Abstract

Given a space it is easy to obtain the system of geodesic equations on it. In this paper the

inverse problem of reconstructing the space from the geodesic equations is addressed. A

procedure is developed for obtaining the metric tensor from the Christoffel symbols. The

procedure is extended for determining if a second order quadratically semi-linear system

can be expressed as a system of geodesic equations, provided it has terms only quadratic

in the first derivative apart from the second derivative term. A computer code has been

developed for dealing with larger systems of geodesic equations.
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1. Introduction

The development of geometry originates in its applications for map making [1], but even
more from its use in kinematics and dynamics [2]. As such, it is of interest to look at
the interplay of geometry and dynamics. The path of a test particle in a flat space is
a straight line. The curved space generalization of the straight line is a geodesic. Thus
test particles in curved spaces move along geodesics. Given a space one easily obtains the
system of geodesic equations on it [3]. In principle it should be easy to obtain the space
from the geodesic equations. This would be of physical relevance as actual observations
would not provide the space but would provide the paths followed by “test particles”.
For example, in general relativity, one assumes some matter-energy distribution and then
solves the Einstein equations to obtain the metric tensor, using which one obtains the
geodesic equations, which give the paths for test particles [4]. However, one does not
really know the matter-energy distribution in any actual situation, but only the observed
paths of particles. Consequently, it would be of interest to be able to determine the metric
directly from the geodesic equations.

Though simple in principle, the problem is complicated by the fact that the Christoffel
symbols are non-linear combinations of the metric tensor and its first derivative. As such,
a system of highly non-linear first order partial differential equations would have to be
solved to obtain the metric tensor. The problem can be reduced enormously in complexity
by contracting the Christoffel symbols with the metric tensor, to obtain a system of first
order linear partial differential equations. In general, even this is very complicated to
solve. Further, we would need to check compatibility of the solutions obtained.

The procedure adopted here uses the skew symmetry of the covariant form of the Riemann
tensor in the first two indices, and the symmetry under interchange of the first and second
pair of indices to provide a system of linear equations that can be solved simultaneously.
If the system does not decouple we finally have to solve n partial first order differential
equations for one function of n variables. Consequently an arbitrary constant appears in
the solution. If it decouples we need to solve correspondingly more differential equations
and hence more arbitrary constants appear. These constants generally get determined by
inserting the solutions back into the equations for the metric. In principle it is possible
that they may not be fully evaluated and lead to a class of metrics. In this paper a
specific prescription is provided to reconstruct the space from the geodesic equations.
The metric constructed is unique (up to some multiplicative constants appearing in the
solution). For two variables the procedure will be explained in detail in the next section.
However, for larger systems the procedure is still too complicated to be implemented by
hand. In section 3 we have provided a general discussion of the general case and the
logic of the computer code to obtain the metric from the Christoffel symbols. Further,
if we only have a system of second order quadratically semi-linear ordinary differential
equations (ODEs) given, that have only the quadratic term, we would not know whether
they could, consistently, be regarded as a system of geodesic equations. In section 4 we
give a brief discussion of how the code can check whether the system can, or cannot, be
regarded as a system of geodesic equations. In section 5 there are some specific examples

2



given to illustrate the use of the general procedure. In the last section we have given a
brief summary and discussion of the results.

2. A System of Two Equations for Two Variables

The essential principle for obtaining the metric from the Christoffel symbols may be
seen directly by considering a system of two geodesic equations for two functions of one
variable. However, the general procedure involves additional complications that will be
discussed later. For the system of two equations

x′′ = a(x, y)x′2 + 2b(x, y)x′y′ + c(x, y)y′2, (1)

y′′ = d(x, y)x′2 + 2e(x, y)x′y′ + f(x, y)y′2, (2)

we can read off the Christoffel symbols as the the negative of the coefficients of the
quadratic terms. Thus

Γ1
11 = −a,Γ1

12 = −b,Γ1
22 = −c,Γ2

11 = −d,Γ2
12 = −e,Γ2

22 = −f. (3)

Note that for a general second-order quadratically semi-linear system of ODEs, the coef-
ficients cannot be assumed to be expressible as Christoffel symbols. However, if we are
given the system of equations as geodesic equations, we can assume that the coefficients
are so expressible. For a known metric tensor the Christoffel symbols are then given by

Γi
jk =

1

2
gim(gjm,k + gkm,j − gjk,m). (4)

Now construct the Riemann tensor from these Christoffel symbols

Ri
jkl = Γi

jl,k − Γi
jk,l + Γi

mlΓ
m
jk − Γi

mkΓ
m
jl , (5)

where the Einstein summation convention, that repeated indices are summed over, has
been used. Note that the tensor is skew in the last two indices, k and l. As such, when
they are equal the tensor is trivially zero. Thus, without loss of generality, we can set
k = 1, l = 2. Putting the tensor into fully covariant form it is skew in its first two indices
as well. Using the metric tensor to lower the index of the curvature tensor, we obtain the
two linear relations for the metric coefficients:

g11R
1
112 + g12R

2
112 = 0, (6)

g12R
1
212 + g22R

2
212 = 0. (7)

There are various possibilities for the Riemann tensor components being zero or non-zero.
Not all possibilities are consistently allowed. Apart from the case of a flat space, Ri

jkl = 0,
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only two possibilities survive: (a) when i = j, Ri
jkl = 0; (b) when i = j, Ri

jkl 6= 0. In
case (b) these equations can be used to write g11 and g22 in terms of g12

g11 = −
R2

112

R1
112

g12 := Ag12, (8)

g22 = −
R2

212

R1
212

g12 := Bg12. (9)

To make the procedure easier to see, write g11 = p(x, y), g12 = q(x, y) and g22 = r(x, y). In
case (b) using eqs.(7) and (8) we get p and r in terms of q. Then, writing the Christoffel
symbols explicitly we obtain the differential equation for q

qx = (Ab+ a+Bd+ e)q, qy = (Ac + b+Be + f)q. (10)

The solution for q is provided by integrating eq.(9) relative to x and y and comparing the
arbitrary functions of integration

q(x, y) = α(y)exp(
∫

(Ab+ a+Bd+ e)dx) = β(x)exp(
∫

(Ac+ b+Be+ f)dy). (11)

There would appear to be an arbitrary constant still left. This disappears on using the
resulting p, q, r in the expression for the Christoffel symbols. (Remember that the inverse
metric contains the functions as well as their first derivatives.)

In case (a) q = 0. We now get two sets of two partial differential equations for p and r,
which can be solved to give

p(x, y) = γ(y)exp(
∫

2a(x, y)dx) = δ(x)exp(
∫

2c(x, y)dy); (12)

r(x, y) = µ(y)exp(
∫

2d(x, y)dx) = ν(x)exp(
∫

2f(x, y)dy). (13)

There now appear to be two arbitrary constants appearing which are determined by
inserting the expressions back into the Christoffel symbols. If the constant(s) remain, we
obtain a class of metrics for the same geodesics.

Note the remarkable fact that the algebraic symmetry properties of the ‘geometric’ in-
trinsic curvature tensor, from the ‘ODE’ point of view, are just the compatibility criteria
for being able to obtain the metric from the system of geodesic equations.

Finally, there remains the case that the space is flat. The metric tensor can certainly
be set as the flat space metric tensor in Cartesian coordinates and hence the metric is
“reconstructed”. However, this would not be the metric tensor in the coordinates used.
We could now solve the full system of six linear first order partial differential equations
for the three functions p, q, r of two variables x, y. The compatibility is now guaranteed.
There are other, neater, methods available as well [5].
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3. The General Procedure

Whereas, in principle there is nothing new when we have more than two variables, the
problem arises because there are many more possibilities now. To see how the equations
proliferate, consider the three variable case. We now have 18 Christoffel symbols for a
system of three geodesic equations. These lead to six independent components of Rijkl.
There are now three sets of constraining equations each of which has three possible index
choices. As such, we have 9 linearly dependent equations for the 6 metric coefficients. If
all the components are non-zero, we have enough equations to be able to obtain the metric
coefficients from three differential equations. In fact if we have five distinct components
non-zero, we could solve the system. However, we have many possibilities between this
case and the flat metric. For 4 variables there are 10 independent metric coefficients,
20 linearly independent components of Rijkl and 40 Christoffel symbols for a system of
four geodesic equations. This appears to be a very heavily over-determined system and
compatibility checks would become really long.

The proliferation of equations would have rapidly rendered the problem intractable were it
not for the availability of computer codes to solve such systems, for many more variables,
going through all possibilities. We have constructed such a computer code that enables
us to solve the problem in full generality. It is given at: www.cam.wits.ac.za/inverse.

The logic of the code is as follows. We first differentiate the Christoffel symbols Γi
jk

relative to all the dependent variables and combine them to form the curvature tensor
of valence [1, 3], i.e. with one upper and three lower indices, Ri

jkl. Next we use the
symmetry properties of the covariant form of the Riemann tensor, namely

gimR
m
jkl = −gjmR

m
ikl, (14)

and
gimR

m
jkl = gkmR

m
lij. (15)

Since (14) is skew in i, j, there are n3(n− 1)/2 linearly independent equations. Further,
(15) are n4 equations. There are only n(n+1)/2 independent components of gij. As such,
the system must be grossly over-determined. However, if the Γi

jk are, indeed, Christoffel
symbols, they must be consistent. As such, one can use the first n(n+1)/2−1 of them to
obtain all the gij in terms of one of them (say g11). It is to be noted that since the system
is homogeneous, there can be no non-trivial determination for all the metric coefficients
from here. One now writes the equation for the metric tensor in terms of the given
Christoffel symbols as

gik,j + gjk,i − gij,k = 2gilΓ
l
jk. (16)

With the full set of equations for all n2(n+ 1)/2 independent Christoffel symbols we can
reduce the equations to a system of n first order linear partial differential equations for
one function (say g11) of n variables. We can now solve these and obtain the full metric
tensor.
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It may happen that the system of equations has a rank less than n(n+1)/2−1. If it is one
less, we will need to solve the system for n(n+ 1)/2− 2 components of the metric tensor
and then solve partial differential equations for the last two metric coefficients. Similarly,
if the rank is p less, we would solve the system for n(n+ 1)/2− p− 1 and then solve the
remaining partial differential equations for those p components. Note that there would be
no need to re-check compatibility of the solutions, other than to determine the arbitrary
constants arising from the solution of the differential equations.

4. Consistency Criteria for Systems of Geodesic Equa-

tions

So far we have taken it for granted that the system given is for geodesics. It may happen
that one obtains a system of equations that look formally like the system of geodesic
equations, in that they can be written as

ẍi + Γi
jkẋ

j ẋk = 0, (17)

but that they cannot be regarded as a system of geodesic equations. The point is that there
is no check that the system of partial differential equations (16) is internally consistent.
To check this we would require that (14) and (15) form a consistent set of equations. This
is still not enough! We also need to check that the first Bianchi identities are satisfied,
namely

Ri
jkl +Ri

klj +Ri
ljk = 0. (18)

If these are satisfied we can, indeed, regard the given system of equations as a system of
geodesic equations and possibly use the results of theorems on global linearizability of the
system to obtain the solution [5].

The computer code we have prepared can be used to obtain the metric tensor if the
system is known to be of geodesic equations and can be used to check the consistency of
the system as geodesic equations.

5. Computation

The algorithm is implemented as follows: Specify the order of the geodesic equation via
n. Assume gij = gji and Ri

jnn = 0 by enforcing the following rules

SetAttributes[g,Orderless]; (19)

R[i , j ,k , l ] := 0; i == j&&k == l; (20)
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in Mathematica. We next introduce the lists SkewSymmetry and Symmetry which
caters for all the possible combinations of i,j,k and l when summing over the repeated
index in (14) and (15). The independent variables are represented by X in eq1[i , j ,k , l ]
and eq2[i , j ,k , l ]. The matrices which are then formed when mapping eq1[i , j ,k , l ]
and eq2[i , j ,k , l ] to their corresponding lists Symmetry and SkewSymmetry , are
stored in SYM and SkewSYM respectively. We construct the gij metric tensors with
gcomponents , which is then used in conjunction with CoefficientArrays to construct
the matrices ASym and ASkewSym. By choosing n(n+ 1)/2− 1 rows from each using
the input from ChooseEqns these two matrices are used to form the matrix A and vector
b. The vector sol then solves the metric tensors in terms of g11 by using LinearSolve in
conjunction with the matrix A and vector b. The overdetermined system of linear partial
differential equations, EqnSet16 , are then used to solve for g11 by using DSolve. The
order of the problem dictates the number of arbitrary functions which will then have to
be solved subsequently.

The implementation of the n = 3 case is given in the Appendix.

The code has been checked for the following examples.
1. Systems of two equations: (a) geodesics on a sphere; (b) a linearizable system
given in [5]; (c) a non-geodesic system (in [5]).
2. Systems of three equations: (a) flat space; (b) a 3-sphere; (c) linearizable (in [5]);
(d) non-geodesic (in [5]).
3. Physical four dimensional Lorentzian systems: (a) the Reissner-Nordström
system (geodesics for a point charged mass, in which the charge could be taken to be zero
to get the Schwarzschild system); (b) the Kerr system (for a rotating point mass, in which
the rotation could be taken to be zero to reduce to the Schwarzschild system).

6. Summary and Discussion

We have shown explicitly how to construct the metric from the geodesic equations. In
other words, if we knew the geodesics globally we could reconstruct the full manifold
with the metric on it and if we know them locally we can reconstruct the metric and
hence the space, locally. It is remarkable that the purely geometric entity measuring
curvature should provide, when looked at from the viewpoint of differential equations,
the compatibility conditions for the system to be regarded as describing geodesics. The
significance of this representation is that it provides a procedure to reduce the system
of equations as follows. We use the conjecture of [6] that for m-dimensional sections
of constant curvature it will have an so(m + 1) symmetry algebra. We can use the
geometric information to choose the sections of constant curvature to decouple the system
of geodesic equations (using the procedure of [6]). These m geodesic equations would then
be completely solved and we would have only a system of n−m coupled equations to be
solved. Notice the heavy utilization of purely geometric considerations.
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We solved the problem explicitly for the case of a system of two geodesic equations ana-
lytically. The only problem arose in the case of the flat space where we anyhow know the
metric in Cartesian coordinates. If we want to express the metric in the given coordinates,
it may not be so easy. However, the metric coefficients are directly determinable by solv-
ing decoupled first order partial differential equations for each of the metric coefficients.
There are also more elegant methods available [5].

For larger systems one needs a computer code. Such a code was developed and its logic
is given here. The code is available at: www.cam.wits.ac.za/inverse. Some examples
illustrate the use of the code. The code further provides a check for the given system of
equations to be consistently regarded as a system of geodesic equations.

This approach is of importance as it provides a geometric method for solving systems
of ODEs [5]. Further developments may be possible by embedding the space in higher
dimensional spaces in which they become larger quadratically semi-linear systems. At-
tempts to convert cubically semi-linear systems to quadratically semi-linear systems in a
higher dimension are in progress [7]. This procedure is the inverse of that adopted by
Aminova and Aminov [8], in which they use the geodetic re-parametrization symmetry
(∂/∂s) to reduce the system by one dimension. Further, it would be possible to reduce
the order of a higher order system by increasing the number of variables. Thus we could
possibly use the same techniques for higher order ODEs by embedding in correspondingly
higher dimensions. This technique could also be tried to reduce from higher degree equa-
tions to two. It would be of great interest if the approach could be extended to PDEs as
well.

Appendix

We implement our code for n = 3. The skew symmetry of Ri
jkl implies that without loss

of generality, in both (21) and (22) below we have (k, l) = {(1, 2), (1, 3), (2, 3)}, while in
(22) (i, j) = {(1, 2), (1, 3), (2, 3)}. The equations (21) and (22) are our skew symmetry
and symmetry equations repsectively and are generalized as

gj1R
1
ikl + gi1R

1
jkl + gj2R

2
ikl + gi2R

2
jkl + gj3R

3
ikl + gi3R

3
jkl = 0, (21)

gi1R
1
jkl − gk1R

1
lij + gi2R

2
jkl − gk2R

2
lij + gi3R

3
jkl − gk3R

3
lij = 0. (22)

From (21) we obtain the nine equations which is generated by eq2[i , j ,k , l ]

g11R
1
112 + g12R

2
112 + g13R

3
112 = 0, (23)

g11R
1
113 + g12R

2
113 + g13R

3
113 = 0, (24)

g11R
1
123 + g12R

2
123 + g13R

3
123 = 0, (25)

g12R
1
212 + g22R

2
212 + g23R

3
212 = 0, (26)
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g12R
1
213 + g22R

2
213 + g23R

3
213 = 0, (27)

g12R
1
223 + g22R

2
223 + g23R

3
223 = 0, (28)

g13R
1
312 + g23R

2
312 + g33R

3
312 = 0, (29)

g13R
1
313 + g23R

2
313 + g33R

3
313 = 0, (30)

g13R
1
323 + g23R

2
323 + g33R

3
323 = 0. (31)

From (22) we obtain the six equations which is generated by eq1[i , j ,k , l ]

g11
(

R1
213 − R1

312

)

+ g12
(

R2
213 −R2

312

)

+ g13
(

R3
213 − R3

312

)

= 0, (32)

g11R
1
223 + g12

(

R2
223 − R1

312

)

− g22R
2
312 + g13R

3
223 − g23R

2
312 = 0, (33)

g11
(

R1
312 − R1

213

)

+ g12
(

R2
312 −R2

213

)

+ g13
(

R3
312 − R3

213

)

= 0, (34)

g11R
1
323 + g12

(

R2
323 − R1

313

)

− g22R
2
313 − g23R

3
313 + g13R

3
323 = 0, (35)

g11R
1
223 − g12

(

R1
312 − R2

223

)

− g22R
2
312 + g13R

3
223 − g23R

3
312 = 0, (36)

− g11R
1
323 + g12

(

R1
313 − R2

323

)

+ g22R
2
313 + g23R

3
313 − g13R

3
323 = 0. (37)

We choose (26), (27), (31), (32) and (33) to solve for for g12, g13, g22, g23 and g33. This
choice is done by ChooseEqns = {4, 5, 9, 10, 11} in our code, which is then used to
relate these metrics to the g11 metric. Here are the relations

△ = R3
212R

3
223

(

R2
213

)2
−

(

−R1
212

(

R3
312

)2
+R1

212R
3
213R

3
312 +

(

R2
312R

3
212 +R2

212R
3
213

)

R3
223

+R2
223R

3
212

(

R3
213 −R3

312

))

R2
213 −R1

213R
2
212

(

R3
312

)2
+

R3
213

(

R2
212R

2
223R

3
213 +R2

312

(

−R1
213R

3
212 +R1

212R
3
213 +R2

212R
3
223

))

+

R1
312

(

R2
213R

3
212 −R2

212R
3
213

) (

R3
213 − R3

312

)

+
(

R1
213R

2
312R

3
212 +

(

R2
212

(

R1
213 − R2

223

)

−R1
212R

2
312

)

R3
213

)

R3
312, (38)

g12 = g11
((

R2
213R

3
212 − R2

212R
3
213

) ((

R1
312 − R1

213

)

R3
223 +R1

223

(

R3
213 − R3

312

)))

/△, (39)

g13 = g11
((

R2
312R

3
212 − R2

212R
3
312

)

R2
213+

(

−
(

R2
212R

2
223 +R1

212R
2
312

)

R3
213 +R2

213

(

R2
223R

3
212 +R1

212R
3
312

)

+

R312

(

R2
212

(

R3
213 +R3

312

)

−
(

R2
213 +R2

312

)

R3
212

))

R1
213+

R2
312

(

R2
213R

3
212 −R2

212R
3
213

)

+
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R223

(

R2
213 −R2

312

) (

R2
212R

3
213 −R2

213R
3
212

)

+

R312

((

R2
212R

2
223 +R212R

2
312

)

R3
213−

R2
213

(

R2
223R

3
212 +R212R

3
312

)))

/△, (40)

g22 = g11
(

R1
213R

3
212 − R1

212R
3
213

) ((

R1
213 − R1

312

)

R3
223 +R1

223

(

R3
312 − R3

213

))

/△, (41)

g23 = −g11
(

R1
213R

2
212 − R1

212R
2
213

) ((

R1
213 −R1

312

)

R3
223 +R1

223

(

R3
312 − R3

213

))

/△, (42)

g33 = g11
((

R2
212R

2
323R

3
223 +R1

323

(

R2
212R

3
312 −R2

312R
3
212

)) (

R1
213

)2
+

(

−R2
323

(

R1
212R

2
213R

3
223 +R1

223R
2
212

(

R3
213 − R3

312

))

+

R1
323

((

R2
212R

2
223 +R1

212R
2
312

)

R3
213 −R2

213

(

R2
223R

3
212 +R1

212R
3
312

))

+

R312

(

R1
323

((

R2
213 +R2

312

)

R3
212 − R2

212

(

R3
213 +R3

312

))

− R2
212R

2
323R

3
223

))

R1
213+

(

R1
312

)2
R1

323

(

R2
212R

3
213 − R2

213R
3
212

)

+R1
223

(

R1
323

(

R2
213 − R2

312

) (

R2
213R

3
212

−R2
212R

3
213

)

+R1
212R

2
213R

2
323

(

R3
213 − R3

312

))

+

R1
312

(

R1
212R

2
213R

2
323R

3
223 +R1

323

(

R2
213

(

R2
223R

3
212 +R1

212R
3
312

)

−
(

R2
212R

2
223 +R1

212R
2
312

)

R3
213

)))

/△. (43)

Substituting into (16) we obtain a system of differential equations for the Ri
jkl in terms

of the Christoffel symbols which is represented in our code by EqnSet16. Imposing
Christoffel symbols we can determine the Ri

jkl from the system of ordinary diferential
equations and hence the metric. On solving for g11 we get

g11 (x1, x2, x3) = 0 (44)

g11 (x1, x2, x3) = e
∫

x1

1
Γ1

11
(K1,x2,x3) dK1

∫ x1

1
e−

∫

K2

1
Γ1

11
(K1,x2,x3) dK1

(

s2 (K2, x2, x3) Γ
2
11 (K2, x2, x3) + s3 (K2, x2, x3) Γ

3
11 (K2, x2, x3)

)

dK2

+ e
∫

x1

1
Γ1

11
(K1,x2,x3) dK1c1 [x2, x3] (45)

We can then subsequently solve for the arbitrary function c1 [x2, x3].
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