
ar
X

iv
:h

ep
-p

h/
04

07
17

4v
2

 1
5

A
ug

 2
00

8

THERMUS - A Thermal Model Package for

ROOT

S. Wheaton a,1, J. Cleymans a, M. Hauer a,b

aUCT-CERN Research Centre and Department of Physics, University of Cape
Town, Rondebosch 7701, South Africa

bHelmholtz Research School, University of Frankfurt, Frankfurt, Germany

Abstract

THERMUS is a package of C++ classes and functions allowing statistical-thermal
model analyses of particle production in relativistic heavy-ion collisions to be per-
formed within the ROOT framework of analysis. Calculations are possible within
three statistical ensembles; a grand-canonical treatment of the conserved charges
B, S and Q, a fully canonical treatment of the conserved charges, and a mixed-
canonical ensemble combining a canonical treatment of strangeness with a grand-
canonical treatment of baryon number and electric charge. THERMUS allows for
the assignment of decay chains and detector efficiencies specific to each particle
yield, which enables sensible fitting of model parameters to experimental data.

PACS: 25.75.-q, 25.75.DW

Key words: statistical-thermal models; resonance decays; particle multiplicities;
relativistic heavy-ion collisions

1 Corresponding author: spencer.wheaton@uct.ac.za

Preprint submitted to Elsevier 1 January 2014

http://arxiv.org/abs/hep-ph/0407174v2

PROGRAM SUMMARY

Manuscript Title: THERMUS - A Thermal Model Package for ROOT
Authors: S. Wheaton, J. Cleymans, M. Hauer
Program Title: THERMUS, version 2.1
Journal Reference:
Catalogue identifier:
Licensing provisions: none
Programming language: C++
Computer: PC, Pentium 4, 1 GB RAM (not hardware dependent)
Operating system: Linux: FEDORA, RedHat etc
RAM:
Keywords: statistical-thermal models, resonance decays, particle multiplicities, rel-
ativistic heavy-ion collisions
PACS: 25.75.-q, 25.75.DW
Classification: 17.7 Experimental Analysis - Fission, Fusion, Heavy-ion
External routines/libraries: ’Numerical Recipes in C’ [1], ROOT [2]

Nature of problem:

Statistical-thermal model analyses of heavy-ion collision data require the calculation
of both primordial particle densities and contributions from resonance decay. A set
of thermal parameters (the number depending on the particular model imposed)
and a set of thermalised particles, with their decays specified, is required as input
to these models. The output is then a complete set of primordial thermal quantities
for each particle, together with the contributions to the final particle yields from
resonance decay.

In many applications of statistical-thermal models it is required to fit experimen-
tal particle multiplicities or particle ratios. In such analyses, the input is a set of
experimental yields and ratios, a set of particles comprising the assumed hadron res-
onance gas formed in the collision and the constraints to be placed on the system.
The thermal model parameters consistent with the specified constraints leading to
the best-fit to the experimental data are then output.

Solution method:

THERMUS is a package designed for incorporation into the ROOT [2] framework,
used extensively by the heavy-ion community. As such, it utilises a great deal of
ROOT’s functionality in its operation. ROOT features used in THERMUS include
its containers, the wrapper TMinuit implementing the MINUIT fitting package, and
the TMath class of mathematical functions and routines. Arguably the most useful
feature is the utilisation of CINT as the control language, which allows interactive

2

access to the THERMUS objects. Three distinct statistical ensembles are included
in THERMUS, while additional options to include quantum statistics, resonance
width and excluded volume corrections are also available.

THERMUS provides a default particle list including all mesons (up to the K∗
4 (2045))

and baryons (up to the Ω−) listed in the July 2002 Particle Physics Booklet [3]. For
each typically unstable particle in this list, THERMUS includes a text-file listing
its decays. With thermal parameters specified, THERMUS calculates primordial
thermal densities either by performing numerical integrations or else, in the case
of the Boltzmann approximation without resonance width in the grand-canonical
ensemble, by evaluating Bessel functions. Particle decay chains are then used to
evaluate experimental observables (i.e. particle yields following resonance decay).
Additional detector efficiency factors allow fine-tuning of the model predictions to
a specific detector arrangement.

When parameters are required to be constrained, use is made of the ‘Numerical
Recipes in C’ [1] function which applies the Broyden globally convergent secant
method of solving nonlinear systems of equations. Since the NRC software is not
freely-available, it has to be purchased by the user. THERMUS provides the means
of imposing a large number of constraints on the chosen model (amongst others,
THERMUS can fix the baryon-to-charge ratio of the system, the strangeness den-
sity of the system and the primordial energy per hadron).

Fits to experimental data are accomplished in THERMUS by using the ROOT
TMinuit class. In its default operation, the standard χ2 function is minimised,
yielding the set of best-fit thermal parameters. THERMUS allows the assignment
of separate decay chains to each experimental input. In this way, the model is able
to match the specific feed-down corrections of a particular data set.

Running time: Depending on the analysis required, run-times vary from seconds
(for the evaluation of particle multiplicities given a set of parameters) to several
minutes (for fits to experimental data subject to constraints).

References:

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing (Cambridge University Press, Cambridge,
2002).

[2] R. Brun and F. Rademakers, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81.
See also http://root.cern.ch/.

[3] K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001.

3

http://root.cern.ch/

1 Introduction

The statistical-thermal model has proved extremely successful [1,2,3] in de-
scribing the hadron multiplicities observed in relativistic collisions of both
heavy-ions and elementary particles. The methods used in calculating these
yields have been extensively reviewed in recent years [4,5]. The success of these
models has led to the creation of several software codes [6,7,8] that use ex-
perimental particle yields as input and calculate the corresponding chemical
freeze-out temperature (T) and baryon chemical potential (µB). In this pa-
per we present THERMUS, a package of C++ classes and functions, which
is based on the object-oriented ROOT framework [9]. All THERMUS C++
classes inherit from the ROOT base class TObject. This allows them to be fully
integrated into the interactive ROOT environment, allowing all of the ROOT
functionality in a statistical-thermal model analysis. Recent applications of
THERMUS include [2,10,11,12,13,14,15,16,17,18,19]. An on-going effort to ex-
tend the range of applications of THERMUS has led to several publications
on fluctuations in statistical models [20,21,22].

The paper is structured in the following way. In Section 2 an overview is
presented of the theoretical model on which THERMUS is based. Section 3
outlines the structure and functionality of the THERMUS code, while Section
4 explains the installation procedure.

2 Overview of the Statistical-Thermal Model of Heavy-Ion Colli-

sions

2.1 Choice of Ensemble

Within the statistical-thermal model there is a freedom regarding the ensemble
with which to treat the quantum numbers B (baryon number), S (strangeness)
and Q (charge), which are conserved in strong interactions. The introduction of
chemical potentials for each of these quantum numbers (i.e. a grand-canonical
description) allows fluctuations about conserved averages. This is a reasonable
approximation only when the number of particles carrying the quantum num-
ber concerned is large. In applications of the thermal model to high-energy
elementary collisions, such as pp, pp̄ and e+e− collisions [23,24], a canonical
treatment of each of the quantum numbers is required. Within such a canon-
ical description, quantum numbers are conserved exactly. In small systems or
at low temperatures (more specifically, low V T 3 values), a canonical treat-

4

ment leads to a suppression of hadrons carrying non-zero quantum numbers,
since these particles have to be created in pairs. In heavy-ion collisions, the
large number of baryons and charged particles generally allows baryon number
and charge to be treated grand-canonically. However, at the low temperatures
of the GSI SIS, the resulting low production of strange particles requires a
canonical treatment of strangeness [25]. This is the so-called mixed-canonical
approach.

In order to calculate the thermal properties of a system, one starts with an
evaluation of its partition function. The form of the partition function obvi-
ously depends on the choice of ensemble. In the following sections, we consider
the three ensembles most widely used in applications of the statistical-thermal
model.

2.1.1 The Grand-Canonical Ensemble

This ensemble is the most widely used in applications to heavy-ion colli-
sions [5,26,27,28,29,30,31,32,33,34,35]. Within this ensemble, conservation laws
for energy and quantum or particle numbers are enforced on average through
the temperature and chemical potentials.

In the case of a multi-component hadron gas of volume V and temperature
T , the logarithm of the total partition function is given by,

ln ZGC(T, V, {µi}) =
∑

species i

giV

(2π)3

∫

d3p ln
(

1 ± e−β(Ei−µi)
)±1

, (1)

where gi and µi are, respectively, the degeneracy and chemical potential of

hadron species i, β ≡ 1/T , while Ei =
√

p2 + m2
i , where mi is the particle

mass. The plus sign refers to fermions and the minus sign to bosons.

Since in relativistic heavy-ion collisions it is not individual particle numbers
that are conserved, but rather the quantum numbers B, S and Q, the chemical
potential for particle species i is given by,

µi =BiµB + SiµS + QiµQ, (2)

where Bi, Si and Qi are the baryon number, strangeness and charge, respec-
tively, of hadron species i, and µB, µS and µQ are the corresponding chemical
potentials for these conserved quantum numbers.

5

Once the partition function is known, the particle multiplicities, entropy and
pressure are obtained by differentiation:

NGC
i = T

∂ ln ZGC

∂µi
, (3)

SGC =
∂

∂T

(

T ln ZGC
)

, (4)

P GC = T
∂ ln ZGC

∂V
. (5)

Furthermore, the energy is given by,

EGC =T 2 ∂ ln ZGC

∂T
+

∑

species i

µi NGC
i . (6)

Using the prescription for the particle multiplicity,

NGC
i =

giV

2π2

∞
∑

k=1

(∓1)k+1m2
i T

k
K2

(

kmi

T

)

eβkµi =
∞
∑

k=1

zk
i e

βkµi , (7)

where we have introduced the zk
i . Similar expressions exist for the energy, en-

tropy and pressure.

In practice, the Boltzmann approximation (i.e. retaining just the k = 1 term
in Equation (7)) is reasonable for all particles except the pions. In this ap-
proximation,

ln ZGC (T, V, {µi})=
∑

species i

giV

(2π)3

∫

d3p e−β(Ei−µi) =
∑

species i

z1
i eβµi , (8)

where z1
i is the single-particle partition function of hadron species i. Further-

more, under this approximation, P =
∑

species i N
GC
i T/V both for massive and

massless particles, which is certainly not true for quantum statistics.

Since the use of quantum statistics requires numerical integration (or evalu-
ation of infinite sums), while Boltzmann statistics can be implemented ana-
lytically, it is worthwhile to identify those regions in which quantum statis-
tics deviate greatly from Boltzmann statistics. In most applications of the
statistical-thermal model, only a small region of the µ−T parameter space is

6

of interest. Using the freeze-out condition of constant E/N [36], the thermal
parameters, and hence the percentage deviation from Boltzmann statistics,
can be determined as a function of the collision energy

√
s [37]. From such an

analysis it is evident that, for pions, quantum statistics must be implemented
at all but the lowest energies (deviation at the level of 10%), while, for kaons,
the deviation peaks at between 1 and 2%. For all other mesons, the deviation
is below the 1% level. For baryons, the deviation is extremely small for all
except the protons at small

√
s.

When quantum statistics are applied, restrictions have to be imposed on the
chemical potentials so as to avoid Bose-Einstein condensation. The Bose-
Einstein distribution function diverges if,

eβ(mi−µi) ≤ 1. (9)

Such Bose-Einstein condensation is avoided, provided that the chemical po-
tentials of all bosons included in the resonance gas are less than their masses
(i.e. µi < mi).

2.1.2 The Canonical Ensemble

Within this ensemble, quantum number conservation is exactly enforced. Con-
sidering the fully canonical treatment of B, S and Q in the Boltzmann ap-
proximation, as investigated in [38], the partition function for the system is
given by,

ZB,S,Q =
Z0

(2π)2

π
∫

−π

dφS

π
∫

−π

dφQ cos (SφS + QφQ − B arg ω)

× exp

2
∑

mesons j

z1
j cos (SjφS + QjφQ)

 IB (2|ω|) , (10)

where,

ω≡
∑

baryons j

z1
j ei(SjφS+QjφQ),

z1
j ≡

gjV

(2π)3

∫

d3p e−βEj ,

7

Z0 represents the contribution of those hadrons with no net charges, and the
sums over mesons and baryons extend only over the particles (i.e. not the
anti-particles).

Once the partition function is known, we can calculate all thermodynamic
properties of the system. Using thermodynamic relations it follows that,

S =
∂

∂T
(T ln ZB,S,Q) , (11)

and,

P = T
∂ ln ZB,S,Q

∂V
. (12)

Furthermore, the multiplicity of hadron species i within this ensemble, NB,S,Q
i ,

is calculated by multiplying the single-particle partition function for particle
i, appearing in the canonical partition function, by a fictitious fugacity λi,
differentiating with respect to λi, and then setting λi to 1:

NB,S,Q
i =

∂ ln ZB,S,Q(λi)

∂λi

∣

∣

∣

∣

∣

λi=1

. (13)

Following these prescriptions,

NB,S,Q
i =

(

ZB−Bi,S−Si,Q−Qi

ZB,S,Q

)

NGC
i

∣

∣

∣

µi=0
, (14)

SB,S,Q = ln ZB,S,Q +
∑

species i

(

ZB−Bi,S−Si,Q−Qi

ZB,S,Q

) EGC
i

∣

∣

∣

µi=0

T
, (15)

P B,S,Q =
∑

species i

(

ZB−Bi,S−Si,Q−Qi

ZB,S,Q

)

P GC
i

∣

∣

∣

µi=0
, (16)

EB,S,Q =
∑

species i

(

ZB−Bi,S−Si,Q−Qi

ZB,S,Q

)

EGC
i

∣

∣

∣

µi=0
. (17)

8

One notices that, in the Boltzmann approximation, the particle and energy
density and pressure of particle species i, within the canonical ensemble, differ
from that in the grand-canonical formalism, with all chemical potentials set to
zero, by a multiplicative factor (ZB−Bi,S−Si,Q−Qi

/ZB,S,Q). This correction fac-
tor depends only on the thermal parameters of the system and the quantum
numbers of the particle (i.e. the correction for the ∆+ and p are the same).
The entropy is, however, slightly different; the total entropy cannot be split
into the sum of contributions from separate particles.

Now,

lim
V →∞

(

ZB−Bi,S−Si,Q−Qi

ZB,S,Q

)

= eBiµB/T eSiµS/T eQiµQ/T . (18)

Thus, for large systems, the grand-canonical results for the particle number,
entropy, pressure and energy are approached [38].

2.1.3 The Mixed-Canonical (Strangeness-Canonical) Ensemble

Within this ensemble, the strangeness in the system is fixed exactly by its
initial value of S, while the baryon and charge content are treated grand-
canonically. For a Boltzmann hadron gas of strangeness S,

ZS =
1

2π

π
∫

−π

dφS e−iSφS

× exp

[

∑

hadrons i

giV

(2π)3

∫

d3p e−β(Ei−µi) eiSiφS

]

, (19)

where the sum over hadrons includes both particles and anti-particles and,

µi =BiµB + QiµQ. (20)

Applying the same prescription for the evaluation of the particle multiplicities
as discussed for the canonical ensemble, it follows that,

NS
i =

(

ZS−Si

ZS

)

NGC
i

∣

∣

∣

µS=0
. (21)

Furthermore,

9

SS = ln ZS +
∑

species i

(

ZS−Si

ZS

)

EGC
i

∣

∣

∣

µS=0
− µi NGC

i

∣

∣

∣

µS=0

T

 , (22)

P S =
∑

species i

(

ZS−Si

ZS

)

P GC
i

∣

∣

∣

µS=0
, (23)

ES =
∑

species i

(

ZS−Si

ZS

)

EGC
i

∣

∣

∣

µS=0
. (24)

As in the case of the canonical ensemble, the strangeness-canonical results,
in the Boltzmann approximation, differ from those of the grand-canonical
ensemble, with µS = 0, by multiplicative correction factors which depend, in
this case, only on the thermal parameters and the strangeness of the particle
concerned. For large systems and high temperatures, these correction factors
approach the grand-canonical fugacities, i.e.,

lim
V →∞

(

ZS−Si

ZS

)

= eSiµS/T . (25)

The expression for ZS can be reduced [39] to,

ZS = Z0 ×
+∞
∑

m=−∞

+∞
∑

n=−∞

I|3m+2n−S|(x1) I|n|(x2) I|m|(x3) (26)

×(y3/y
3
1)

m (y2/y
2
1)

n yS
1 ,

where Z0 is the contribution to the total partition function of the non-strange
hadrons, while,

xi = 2
√

k+ik−i (i = 1, 2, 3), (27)

and,

yi =

√

k+i

k−i

(i = 1, 2, 3), (28)

with,

km =
∑

hadrons j with Sj=m

nGC
j

∣

∣

∣

µS=0
V. (29)

In [40,41] it is suggested that two volume parameters be used within canoni-

10

cal ensembles; the fireball volume at freeze-out, Vf , which provides the overall
normalisation factor fixing the particle multiplicities from the correspond-
ing densities, and the correlation volume, Vc, within which particles fulfill
the requirement of local conservation of quantum numbers. In this way, by
taking Vc < Vf , it is possible to boost the strangeness suppression. In fact,
this was shown to be required to reproduce experimental heavy-ion collision
data [40,41].

2.2 Feeding from Unstable Particles

Since the particle yields measured by the detectors in collision experiments in-
clude feed-down from heavier hadrons and hadronic resonances, the primordial
hadrons are allowed to decay to particles considered stable by the experiment
before model predictions are compared with experimental data. For example,
the total π+ yield is given by,

Nπ+ =
∑

species i

N
(prim)
i Br(i → π+), (30)

where Br(i → π+) is the number of π+’s into which a single particle of species
i decays. As shown in Figure 1, approximately 70% of π+’s originate from
resonance decay at RHIC energies. Thus, a full treatment of resonances is es-
sential in any statistical-thermal analysis.

The inclusion of a mass cut-off in the measured resonance mass spectrum is
motivated by the realisation that the time scale of a relativistic collision does
not allow the heavier resonances to reach chemical equilibrium [42]. This as-
sumes that inelastic collisions drive the system to chemical equilibrium. If the
hadronisation process follows a statistical rule, then all resonances should, in
principle, be included [31]. This is problematic, since data on the heavy res-
onances is sketchy. The situation is saved by the finite energy density of the
system, resulting in a chemical freeze-out temperature at RHIC of approxi-
mately 160-170 MeV [43,44], which strongly suppresses these heavy resonances
and justifies their exclusion from the model. It is, however, important to check
the sensitivity of the extracted thermal parameters to the chosen cut-off. The
effect of the mass cut-off on particle ratios was studied in [37].

The finite width of the resonances is especially important at the low tempera-
tures of the SIS. Resonance widths are included in the thermal model by dis-
tributing the resonance masses according to Breit-Wigner forms [23,24,27,25,42,45].

11

 (GeV)s
1 10 210 310

 Y
ie

ld
+ π

F
ra

ct
io

n
 o

f
F

in
al

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Total

Non-strange mesons

Strange mesons

Non-strange baryons

Other

Fig. 1. The energy dependence of the decay contribution to the final π+ yield as pre-
dicted by the statistical-thermal model. Calculations performed within the grand–
canonical formalism, assuming the constant E/N freeze-out criterion [36] (weak
decays excluded).

This amounts to the following modification in the integration of the Boltzmann
factor [25]:

∫

d3p exp

[

−
√

p2 + m2

T

]

→
∫

d3p
∫

ds exp

[

−
√

p2 + s

T

]

1

π

mΓ

(s − m2)2 + m2Γ2
, (31)

where Γ is the width of the resonance concerned, with threshold limit mthreshold

and mass m, and
√

s is integrated over the interval [m - δm, m + 2Γ], where
δm = min[m - mthreshold, 2Γ].

2.3 Deviations from Equilibrium Levels

The statistical-thermal model applied to elementary e+e−, pp and pp̄ colli-
sions [23,24] indicates the need for an additional parameter, γS (first intro-
duced as a purely phenomenological parameter [46,47]), to account for the
observed deviation from chemical equilibrium in the strange sector. Since a
canonical ensemble was considered in these analyses, there is an additional
strangeness suppression at work, on top of the canonical suppression. Although

12

strangeness production is expected to be greatly increased in AA collisions,
due to the larger interaction region and increased hadron rescattering, a num-
ber of recent analyses [45,48,49,50,51,52] have found such a factor necessary
to accomplish a satisfactory description of data.

Allowance for possibly incomplete strangeness equilibration is made by multi-
plying the Boltzmann factors of each particle species in the partition function
(or thermal distribution function fi(x, p)) by γ

|Si|
S , where |Si| is the number

of valence strange quarks and anti-quarks in species i (for example, for the
φ-meson, with an ss̄ pair, |Sφ| = 2). The value γS = 1 obviously corresponds
to complete strangeness equilibration.

It has been suggested [53] that a similar parameter, γq, should be included in
thermal analyses to allow for deviations from equilibrium levels in the non-
strange sector. Furthermore, as collider energies increase, so does the need for
the inclusion of charmed particles in the statistical-thermal model, with their
occupation of phase-space possibly governed by an additional parameter, γC .

2.4 Excluded Volume Corrections (Grand-Canonical Ensemble)

At very high energies, the ideal gas assumption is inadequate. In fact, the total
particle densities predicted by the thermal model, with parameters extracted
from fits to experimental data, far exceed reasonable estimates and measure-
ments based on yields and the system size inferred by pion interferometry [54].
It becomes necessary to take into account the Van der Waals–type excluded
volume procedure [54,55,56]. At the same fixed T and µB, all thermodynamic
functions of the hadron gas are smaller than in the ideal hadron gas, and
strongly decrease with increasing excluded volume.

Van der Waals–type corrections are included by making the following substi-
tution for the volume V in the canonical (with respect to particle number)
partition function,

V → V −
∑

hadrons i

νiNi, (32)

where Ni is the number of hadron species i, and νi = 4 (4/3πr3
i) is its proper

volume, with ri its hard-sphere radius. This then leads to the following tran-
scendental equation for the pressure of the gas in the grand-canonical ensemble

13

(assuming h particle species):

P (T, µ1, ..., µh)=
h
∑

i=1

P ideal
i (T, µ̃i), (33)

with,

µ̃i =µi − νiP (T, µ1, ..., µh). (34)

The particle, entropy and energy densities are given by,

ni(T, µ1, ..., µh)=
nideal

i (T, µ̃i)

1 +
∑

j νjn
ideal
j (T, µ̃j)

, (35)

s(T, µ1, ..., µh)=

∑

i s
ideal
i (T, µ̃i)

1 +
∑

j νjn
ideal
j (T, µ̃j)

, (36)

and,

e(T, µ1, ..., µh)=

∑

i e
ideal
i (T, µ̃i)

1 +
∑

j νjnideal
j (T, µ̃j)

, (37)

respectively. One sees that two suppression factors enter. The first suppression
is due to the shift in chemical potential µi → µ̃i. In the Boltzmann approxima-
tion, this leads to a suppression factor e−νiP/T in all thermodynamic quantities.
The second suppression is due to the [1 +

∑

j νjn
ideal
j (T, µ̃j)]

−1 factor.

In ratios of particle numbers, although the denominator correction cancels
out, the shift in chemical potentials leads to a change in the case of quantum
statistics. In the Boltzmann case, even these corrections cancel out, provided
that the same proper volume parameter ν is applied to all species.

3 The Structure of THERMUS

3.1 Introduction

The three distinct ensemble choices outlined in Sections 2.1.1-2.1.3 are im-
plemented in THERMUS. As input to the various thermal model formalisms

14

one needs first a set of particles to be considered thermalised. When combined
with a set of thermal parameters, all primordial densities (i.e. number density
as well as energy and entropy density and pressure) are calculable. Once the
particle decays are known, sensible comparisons can be made with experimen-
tally measured yields.

In THERMUS, the following units are used for the parameters:

Parameter Unit

Temperature (T) GeV

Chemical Potential (µ) GeV

Radius fm

Quantities frequently output by THERMUS are in the following units:

Quantity Unit

Number Densities (n) fm−3

Energy Density (e) GeV.fm−3

Entropy Density (s) fm−3

Pressure (P) GeV.fm−3

Volume (V) fm3

In the subsections to follow, we explain the basic structure and functionality
of THERMUS (shown diagrammatically in Figure 2) by introducing the ma-
jor THERMUS classes in a bottom-up approach. We begin with a look at the
TTMParticle object. 2

2 It is a requirement that all ROOT classnames begin with a ‘T’. THERMUS
classnames begin with ‘TTM’ for easy identification.

15

Particle Set
TTMParticleSet

Parameter Set
TTMParameterSet

Thermal Model
TTMThermalModel

Particle
TTMParticle

Thermal Particle
TTMThermalParticle

� Particle properties
� Particle decays

� Functions to calculate primordial
particle-, energy- and entropy densities
and pressure

� Primordial properties and
feed-down contributions of
all constituents calculable

� Total fireball properties
now known

Thermal Fit
TTMThermalFit

Functions and
structures used in
thermal model classes

Experimental Data
TTMYield

Densities
TTMDensObj

Container for thermal
densities output by
thermal model classes

� Best-fit thermal parameters
can now be determined

Fig. 2. The basic structure of THERMUS (only the most fundamental base classes
are shown).

16

3.2 The TTMParticle Class

The properties of a particle applicable to the statistical-thermal model are
grouped in the basic TTMParticle object:

********* LISTING FOR PARTICLE Delta(1600)0 *********

ID = 32114

Deg. = 4

STAT = 1

Mass = 1.6 GeV

Width = 0.35 GeV

Threshold = 1.07454 GeV

Hard sphere radius = 0

B = 1

S = 0 |S| = 0

Q = 0

Charm = 0 |C| = 0

Beauty = 0

Top = 0

UNSTABLE

Decay Channels:

Summary of Decays:

**

Besides the particle name, ‘Delta(1600)0’ in this case, its Particle Data Group
(PDG) numerical ID is also stored. This provides a far more convenient means
of referencing the particle. The particle’s decay status is also noted. In this
case, the ∆(1600)0 is considered unstable. Particle properties are input using
the appropriate setters.

17

3.2.1 Inputting and Accessing Particle Decays

The TTMParticle class allows also for the storage of a particle’s decays. These
can be entered from file. As an example, consider the decay file of the ∆(1600)0:

11.67 2112 111

5.83 2212 -211

29.33 2214 -211

3.67 2114 111

22. 1114 211

8.33 2112 113

4.17 2212 -213

15. 12112 111

7.5 12212 -211

Each line in the decay file corresponds to a decay channel. The first column
lists the branching ratio of the channel, while the subsequent tab-separated

integers represent the PDG ID’s of the daughters (each line (channel) can
contain any number of daughters). The decay channel list of a TTMParticle

object is populated with TTMDecayChannel objects by the SetDecayChannels
function, with the decay file the first argument (only that part of the output
that differs from the previous listing of the particle information is shown)
(Note: in the example below $THERMUS must be entered in full):

root [] part->SetDecayChannels("$THERMUS/particles/Delta\(1600\)0_decay.txt")

root [] part->List()

********* LISTING FOR PARTICLE Delta(1600)0 *********

-

-

-

UNSTABLE

Decay Channels:

BRatio: 0.1167 Daughters: 2112 111

BRatio: 0.0583 Daughters: 2212 -211

BRatio: 0.2933 Daughters: 2214 -211

BRatio: 0.0367 Daughters: 2114 111

BRatio: 0.22 Daughters: 1114 211

BRatio: 0.0833 Daughters: 2112 113

BRatio: 0.0417 Daughters: 2212 -213

18

BRatio: 0.15 Daughters: 12112 111

BRatio: 0.075 Daughters: 12212 -211

Summary of Decays:

2112 20%

111 30.34%

2212 10%

-211 42.66%

2214 29.33%

2114 3.67%

1114 22%

211 22%

113 8.33%

-213 4.17%

12112 15%

12212 7.5%

**

In many cases, the branching ratios of unstable hadrons do not sum to 100%.
This can, however, be enforced by scaling all branching ratios. This is achieved
when the second argument of SetDecayChannels is set to true (it is false by
default).

In addition to the list of decay channels, a summary list of TTMDecay objects
is generated in which each daughter appears only once, together with its total
decay fraction. This summary list is automatically generated from the decay
channel list when the SetDecayChannels function is called. As an example,
the summary list of the ∆+ contains the following entries: p: 2/3, n: 1/3, π+:
1/3, π0: 2/3.

An existing TList can be set as the decay channel list of the particle, using
the SetDecayChannels function. This function calls UpdateDecaySummary,
thereby automatically ensuring consistency between the decay channel and
decay summary lists.

The function SetDecayChannelEfficiency sets the reconstruction efficiency
of the specified decay channel to the specified percentage (it has a default
value of 100%). Again, a consistent decay summary list is generated.

19

Access to the TTMDecayChannel objects in the decay channel list is achieved
through the TTMDecayChannel* GetDecayChannel method. If the extracted
decay channel is subsequently altered, UpdateDecaySummary must be called
to ensure consistency of the summary list.

3.3 The TTMParticleSet Class

The thermalised fireballs considered in statistical-thermal models typically
contain approximately 350 different hadron and hadronic resonance species.
To facilitate fast retrieval of particle properties, the TTMParticle objects of
all constituents are stored in a hash table in a TTMParticleSet object. Other
data members of this TTMParticleSet class include the filename used to in-
stantiate the object and the number of particle species. Access to the entries
in the hash table is through the PDG ID’s.

3.3.1 Instantiating a TTMParticleSet Object

In addition to the default constructor, the following constructors exist:

TTMParticleSet *set = new TTMParticleSet(char *file);

TTMParticleSet *set = new TTMParticleSet(TDatabasePDG *pdg);

The first constructor instantiates a TTMParticleSet object and inputs the
particle properties contained in the specified text file. As an example of such a
file, $THERMUS/particles/PartList PPB2002.txt contains a list of all mesons
(up to the K∗

4(2045)) and baryons (up to the Ω−) listed in the July 2002 Par-
ticle Physics Booklet [57] (195 entries). Only particles need be included, since
the anti-particle properties are directly related to those of the corresponding
particle. The required file format is as follows:

0 Delta(1600)0 32114 4 +1 1.60000 0 1

0 0 0.35000 1.07454 (npi0)

• stability flag (1 for stable, 0 for unstable)
• particle name
• PDG ID (used for all referencing)
• spin degeneracy
• statistics (+1 for Fermi-Dirac, -1 for Bose-Einstein, 0 for Boltzmann)

20

Mass (GeV)
0 0.5 1 1.5 2 2.5 3

N
u

m
b

er
 o

f
R

es
o

n
an

ce
 S

ta
te

s

0

20

40

60

80

100

120

140

160

Fig. 3. The mass distribution of the resonances included in PartList PPB2002.txt.

• mass in GeV
• strangeness
• baryon number
• charge
• absolute strangeness content |S| = #s + #s̄ (e.g., |Sφ| = 2)
• width in GeV
• threshold in GeV
• string recording the decay channel from which the threshold is calculated if

the particle’s width is non-zero

All further particle properties have to be set with the relevant setters (e.g.
the charm, absolute charm content and hard-sphere radius). By default, all
properties not listed in the particle list file are assumed to be zero.

Figure 3 shows the distribution of resonances (both particle and anti-particle)
derived from $THERMUS/particles/PartList PPB2002.txt. As collider en-
ergies increase, so does the need to include also the higher mass resonances.
Although the TTMParticle class allows for the properties of charmed parti-
cles, these particles are not included in the default THERMUS particle list.
If required, these particles have to be input by the user. The same applies to
the hadrons composed of b and t quarks.

21

It is also possible to use a TDatabasePDG object to instantiate a particle set 3 .
TDatabasePDG objects also read in particle information from text files. The
default file is $ROOTSYS/etc/pdg table.txt and is based on the parameters
used in PYTHIA [58].

The constructor TTMParticleSet(TDatabasePDG *pdg) extracts only those
particles in the specified TDatabasePDG object in particle classes ‘Meson’,
‘CharmedMeson’, ‘HiddenCharmMeson’, ‘B-Meson’, ‘Baryon’, ‘CharmedBaryon’
and ‘B-Baryon’, as specified in $ROOTSYS/etc/pdg table.txt, and includes
them in the hadron set. Anti-particles must be included in the TDatabasePDG

object, as they are not automatically generated in this constructor of the
TTMParticleSet class.

The default file read into the TDatabasePDG object, however, is incomplete; the
charm, degeneracy, threshold, strangeness, |S|, beauty and topness of the par-
ticle are not included. Although the TDatabasePDG::ReadPDGTable function
and default file allow for isospin, I3, spin, flavor and tracking code to be entered
too, the default file does not contain these values. Furthermore, all particles
are made stable by default. Therefore, at present, using the TDatabasePDG

class to instantiate a TTMParticleSet class should be avoided, at least until
pdg table.txt is improved.

3.3.2 Inputting Decays

Once a particle set has been defined, the decays to the stable particles in
the set can be determined. After instantiating a TTMParticleSet object and
settling on its stable constituents (the list of stable particles can be modified
by adjusting the stability flags of the TTMParticle objects included in the
TTMParticleSet object), decays can be input using the InputDecays method.
Running this function populates the decay lists of all unstable particles in the
set, using the decay files listed in the directory specified as the first argument.
If a file is not found, then the corresponding particle is set to stable. For each
typically unstable particle in $THERMUS/particles/PartList PPB2002.txt,
there exists a file in $THERMUS/particles listing its decays. The filename
is derived from the particle’s name (e.g. Delta(1600)0 decay.txt for the
∆(1600)0). There are presently 195 such files, with entries based on the Par-
ticle Physics Booklet of July 2002 [57]. The decays of the corresponding
anti-particles are automatically generated, while a private recursive function,
GenerateBRatios, is invoked to ensure that only stable particles feature in
the decay summary lists. The second argument of InputDecays, when set to

3 In order to have access to TDatabasePDG and related classes, one must first load
$ROOTSYS/lib/libEG.so

22

true, scales the branching ratios so that their sum is 100%. As an example,
consider the following (again only part of the listing is shown) (Note: in the
example below $THERMUS must be entered in full):

root [] TTMParticleSet set("$THERMUS/particles/PartList_PPB2002.txt")

root [] set.InputDecays("$THERMUS/particles/",true)

root [] TTMParticle *part = set.GetParticle(32114)

root [] part->List()

********* LISTING FOR PARTICLE Delta(1600)0 *********

-

-

-

UNSTABLE

Decay Channels:

BRatio: 0.108558 Daughters: 2112 111

BRatio: 0.0542326 Daughters: 2212 -211

BRatio: 0.272837 Daughters: 2214 -211

BRatio: 0.0341395 Daughters: 2114 111

BRatio: 0.204651 Daughters: 1114 211

BRatio: 0.0774884 Daughters: 2112 113

BRatio: 0.0387907 Daughters: 2212 -213

BRatio: 0.139535 Daughters: 12112 111

BRatio: 0.0697674 Daughters: 12212 -211

Summary of Decays:

2112 60.6774%

111 62.5704%

2212 39.3226%

-211 83.9999%

211 44.6773%

**

For particle sets based on TDatabasePDG objects, decay lists should be pop-
ulated through the function InputDecays(TDatabasePDG *). This function,
however, does not automatically generate the anti-particle decays from those
of the particle. Instead, the anti-particle decay list is used. Since the decay
list may include electromagnetic and weak decays to particles other than the
hadrons stored in the TTMParticleSet object, each channel is first checked
to ensure that it contains only particles listed in the set. If not, the channel

23

is excluded from the hadron’s decay list used by THERMUS. As mentioned
earlier, care should be taken when using TDatabasePDG objects based on the
default file, as it is incomplete.

An extremely useful function is ListParents(Int t id), which lists all of
the parents of the particle with the specified PDG ID. This function uses
GetParents(TList *parents, Int t id), which populates the list passed
with the decays to particle id. Note that these parents are not necessarily
‘direct parents’; the decays may involve unstable intermediates.

3.3.3 Customising the Set

The AddParticle and RemoveParticle functions allow customisation of par-
ticle sets. Particle and anti-particle are treated symmetrically in the case of
the former; if a particle is added, then its corresponding anti-particle is also
added. This is not the case for the RemoveParticle function, however, where
particle and anti-particle have to be removed separately.

Mass-cuts can be performed using MassCut(Double t x) to exclude all hadrons
with masses greater than the argument (expressed in GeV). Decays then have
to be re-inserted, to remove the influence of the newly-excluded hadrons from
the decay lists.

The function SetDecayEfficiency allows the reconstruction efficiency of the
decays from a specified parent to the specified daughter to be set. Changes
are reflected only in the decay summary list of the parent (i.e. not the decay
channel list). Note that running UpdateDecaySummary or GenerateBRatios

will remove any such changes, by creating again a summary list consistent
with the channel list.

In addition to these operations, users can input their own particle sets by
compiling their own particle lists and decay files.

3.4 The TTMParameter Class

This class groups all relevant information for parameters in the statistical-
thermal model. Data members include:

24

fName - the parameter name,

fValue - the parameter value,

fError - the parameter error,

fFlag - a flag signalling the type of parameter (constrain, fit,

fixed, or uninitialised),

fStatus - a string reflecting the intended treatment or action taken.

In addition to these data members, the following, relevant to fit-type param-
eters, are also included:

fStart - the starting value in a fit,

fMin - the lower bound of the fit-range,

fMax - the upper bound of the fit-range,

fStep - the step-size.

The constructor and SetParameter(TString name, Double t value, Double t

error) function set the parameter to fixed-type, by default. The parameter-
type can be modified using the Constrain, Fit or Fix methods.

3.5 The TTMParameterSet Class

The TTMParameterSet class is the base class for all thermal parameter set
classes. Each derived class contains its own TTMParameter array, with size
determined by the requirements of the ensemble. The base class contains a
pointer to the first element of this array. In addition, it stores the constraint
information.

All derived classes contain the function double GetRadius. In this way, TTMParameterSet
is able to define a function, double GetVolume, which returns the volume re-
quired to convert densities into total fireball quantities.

TTMParameterSetBSQ, TTMParameterSetBQ and TTMParameterSetCanBSQ are
the derived classes.

25

3.5.1 TTMParameterSetBSQ

This derived class, applicable to the grand-canonical ensemble, contains the
parameters:

T µB µS µQ µC γS γC R,

where R is the fireball radius, assuming a spherical fireball (i.e. V = 4/3πR3).
In addition, the B/2Q ratio and charm and strangeness density of the system
are stored here. In the constructor, all errors are defaulted to zero, as is R,
µC , S/V , C/V and B/2Q, while γC is defaulted to unity.

Each parameter has a getter (e.g. TTMParameter* GetTPar), which returns
a pointer to the requested TTMParameter object. In this class, µS and µQ

can be set to constrain-type using ConstrainMuS and ConstrainMuQ, where
the arguments are the required strangeness density and B/2Q ratio, respec-
tively. No such function exists for µC , since constraining functions are not
yet implemented for the charm density. Each parameter of this class can be
set to fit-type, using functions such as FitT (where the fit parameters have
reasonable default values), or fixed-type, using functions such as FixMuB.

3.5.2 TTMParameterSetBQ

This derived class, applicable to the strangeness-canonical ensemble (strangeness
exactly conserved and B and Q treated grand-canonically), has the parame-
ters:

T µB µQ γS Rc R,

where Rc is the canonical or correlation radius; the radius inside which strangeness
is exactly conserved. The fireball radius R, on the other hand, is used to con-
vert densities into total fireball quantities. In addition, the required B/2Q
ratio is also stored, as well as the strangeness required inside the correlation
volume (which must be an integer).

In addition to the same getters and setters as the previous derived class, it is
possible to set µQ to constrain-type by specifying the B/2Q ratio in the argu-
ment of ConstrainMuQ. The strangeness required inside the canonical volume
is set through the SetS method. This value is defaulted to zero. The function
ConserveSGlobally fixes the canonical radius, Rc, to the fireball radius, R.
As in the case of the TTMParameterSetBSQ class, there also exist functions to

26

set each parameter to fit or fixed-type.

3.5.3 TTMParameterSetCanBSQ

This set, applicable to the canonical ensemble with exact conservation of B,
S and Q, contains the parameters:

T B S Q γS R.

Since all conservation is exact, there are no chemical potentials to satisfy
constraints. Again, the same getters, setters and functions to set each pa-
rameter to fit or fixed-type exist, as in the case of the previously discussed
TTMParameterSet derived classes.

3.5.4 Example

As an example, let us define a TTMParameterSetBQ object. By default, all
parameters are initially of fixed-type. Suppose we wish to fit T and µB, and
use µQ to constrain the B/2Q ratio in the model to that in Pb+Pb collisions:

root [] TTMParameterSetBQ parBQ(0.160,0.2,-0.01,0.8,6.,6.)

root [] parBQ.FitT(0.160)

root [] parBQ.FitMuB(0.2)

root [] parBQ.ConstrainMuQ(1.2683)

root [] parBQ.List()

***************************** Thermal Parameters ****************************

Strangeness inside Canonical Volume = 0

T = 0.16 (to be FITTED)

start: 0.16

range: 0.05 -- 0.18

step: 0.001

muB = 0.2 (to be FITTED)

start: 0.2

range: 0 -- 0.5

step: 0.001

muQ = -0.01 (to be CONSTRAINED)

27

B/2Q: 1.2683

gammas = 0.8 (FIXED)

Can. radius = 6 (FIXED)

radius = 6 (FIXED)

Parameters unconstrained

**

Note the default parameters for the T and µB fits. Obviously, no constraining
or fitting can take place yet; we have simply signalled our intent to take these
actions at some later stage.

3.6 The TTMThermalParticle Class

By combining a TTMParticle and TTMParameterSet object, a thermal particle
can be created. The TTMThermalParticle class is the base class from which
thermal particle classes relevant to the three currently implemented thermal
model formalisms, TTMThermalParticleBSQ, TTMThermalParticleBQ and
TTMThermalParticleCanBSQ, are derived. Since no particle set is specified, the
total fireball properties cannot be determined. Thus, in the grand-canonical
approach, the constraints cannot yet be imposed to determine the values of
the chemical potentials of constrain-type, while, in the strangeness-canonical
and canonical formalisms, the canonical correction factors cannot yet be calcu-
lated. Instead, at this stage, the chemical potentials and/or correction factors
must be specified.

Use is made of the fact that, in the Boltzmann approximation, E/V , N/V
and P , in the canonical and strangeness-canonical ensembles, are simply the
grand-canonical values, with the chemical potential(s) corresponding to the
canonically-treated quantum number(s) set to zero, multiplied by a particle-
specific correction factor. This allows the functions for calculating E/V , N/V
and P in the Boltzmann approximation to be included in the base class, which
then also contains the correction factor as a data member (by definition, this
correction factor is 1 in the grand-canonical ensemble).

Both functions including and excluding resonance width, Γ, are implemented
(e.g. double DensityBoltzmannNoWidth and double EnergyBoltzmannWidth).

28

When width is included, a Breit-Wigner distribution is integrated over between
the limits [max(m − 2Γ, mthreshold), m + 2Γ].

3.6.1 TTMThermalParticleBSQ

This class is relevant to the grand-canonical treatment of B, S and Q. In
addition to the functions for calculating E/V , N/V and P in the Boltz-
mann approximation, defined in the base class, functions implementing quan-
tum statistics for these quantities exist in this derived class (e.g. double

EnergyQStatNoWidth and double PressureQStatWidth). Additional mem-
ber functions of this class calculate the entropy using either Boltzmann or
quantum statistics, with or without width.

In the functions calculating the thermal quantities assuming quantum statis-
tics, it is first checked that the integrals converge for the bosons (i.e. there is no
Bose-Einstein condensation). The check is performed by the bool ParametersAllowed

method. A warning is issued if there are problems and zero is returned.

This class also accommodates charm, since the associated parameter set in-
cludes µC and γC , while the associated particle may have non-zero charm.

3.6.2 TTMThermalParticleBQ

This class is relevant to the strangeness-canonical ensemble. At present, this
class is only applied in the Boltzmann approximation. Under this assumption,
N/V , E/V and P are given by the grand-canonical result, with µS set to zero,
up to a multiplicative correction factor. Since the total entropy does not split
into the sum of particle entropies, no entropy calculation is made in this class.

3.6.3 TTMThermalParticleCanBSQ

This class is relevant to the fully canonical treatment of B, S and Q. At
present, as in the case of TTMThermalParticleBQ, this class is only applied
in the Boltzmann approximation. Also, since the total entropy again does not
split into the sum of particle entropies, no entropy calculation is made here.

29

3.6.4 Example

Let us construct a thermal particle, within the strangeness-canonical ensemble,
from the ∆(1600)0 and the parameter set previously defined. Since this particle
has zero strangeness, a correction factor of 1 is passed as the third argument
of the constructor:

root [] TTMThermalParticleBQ therm_delta(part,&parBQ,1.)

root [] therm_delta.DensityBoltzmannNoWidth()

(Double_t)8.15072671710089913e-04

root [] therm_delta.EnergyBoltzmannWidth()

(Double_t)2.29185316377137748e-03

3.7 The TTMThermalModel Class

Once a parameter and particle set have been specified, these can be com-
bined into a thermal model. TTMThermalModel is the base class from which
the TTMThermalModelBSQ, TTMThermalModelBQ and TTMThermalModelCanBSQ

classes are derived. A string descriptor is included as a data member of the
base class to identify the type of model. This is used, for example, to handle
the fact that the number of parameters in the associated parameter sets is
different, depending on the model type.

All derived classes define functions to calculate the primordial particle, energy
and entropy densities, as well as the pressure. These thermal quantities are
stored in a hash table of TTMDensObj objects. Again, access is through the
particle ID’s. In addition to the individual particles’ thermal quantities, the
total primordial fireball strangeness, baryon, charge, charm, energy, entropy,
and particle densities, pressure, and Wròblewski factor (see Section 3.7.11) are
included as data members.

At this level, the constraints on any chemical potentials of constrain-type can
be imposed, and the correction factors in canonical treatments can be deter-
mined. Also, as soon as the primordial particle densities are known, the decay
contributions can be calculated.

3.7.1 Calculating Particle Densities

Running int GenerateParticleDens clears the current entries in the den-
sity hash table of the TTMThermalModel object, automatically constrains the

30

chemical potentials (where applicable), calculates the canonical correction fac-
tors (where applicable), and then populates the density hash table with a
TTMDensObj object for each particle in the associated set. The decay contribu-
tions to each stable particle are also calculated, so that the density hash table
contains both primordial and decay particle density contributions, provided of
course that the decays have been entered in the associated TTMParticleSet

object. In addition, the Wròblewski factor and total strangeness, baryon,
charge, charm and particle densities in the fireball are calculated.

Note: The summary decay lists of the associated TTMParticleSet object are
used to calculate the decay contributions. Hence, only stable particles have
decay contributions reflected in the hash table. Unstable particles that are
themselves fed by higher-lying resonances, do not receive a decay contribution.

Each derived class contains the private function int PrimPartDens, which
calculates only the primordial particle densities and, hence, the canonical
correction factors, where applicable. In the case of the grand-canonical and
strangeness-canonical ensembles, this function calculates the densities without
automatically constraining the chemical potentials of constrain-type first. The
constraining is handled by int GenerateParticleDens, which calls external
friend functions, which, in turn, call int PrimPartDens. In the purely canon-
ical ensemble, int GenerateParticleDens simply calls int PrimPartDens.
In this way, there is uniformity between the derived classes. Since there is no
constraining to be done, there is no real need for a separate function in the
canonical case.

3.7.2 Calculating Energy and Entropy Densities and Pressure

GenerateEnergyDens, GenerateEntropyDens and GeneratePressure iterate
through the existing density hash table and calculate and insert, respectively,
the primordial energy density, entropy density and pressure of each particle
in the set. In addition, they calculate the total primordial energy density,
entropy density and pressure in the fireball, respectively. These functions re-
quire that the density hash table already be in existence. In other words, int
GenerateParticleDens must already have been run. If the parameters have
subsequently changed, then this function must be run yet again to recalculate
the correction factors or re-constrain the parameters, as required.

31

3.7.3 Bose-Einstein Condensation

When quantum statistics are taken into account (e.g. in TTMThermalModelBSQ

or for the non-strange particles in TTMThermalModelBQ), certain choices of pa-
rameters lead to diverging integrals for the bosons (Bose-Einstein condensa-
tion). In these classes, a check, based on TTMThermalParticleBSQ::Parameters-

Allowed, is included to ensure that the parameters do not lead to problems.
Including also the possibility of incomplete strangeness and/or charm satu-
ration (i.e. γS 6= 1 and/or γC 6= 1), Bose-Einstein condensation is avoided,
provided that,

e(mi−µi)/T > γ
|Si|
S γ

|Ci|
C , (38)

for each boson. If this condition is failed to be met for any of the bosons in
the set, a warning is issued and the densities are not calculated.

3.7.4 Accessing the Thermal Densities

The entries in the density hash table are accessed using the particle ID’s. The
function TTMDensObj* GetDensities(Int t ID) returns the TTMDensObj ob-
ject containing the thermal quantities of the particle with the specified ID. The
primordial particle, energy, and entropy densities, pressure, and decay density
are extracted from this object using the GetPrimDensity, GetPrimEnergy,
GetPrimEntropy, GetPrimPressure, and GetDecayDensity functions of the
TTMDensObj class, respectively. The sum of the primordial and decay particle
densities is returned by TTMDensObj::GetFinalDensity. TTMDensObj::List
outputs to screen all thermal densities stored in a
TTMDensObj object.

ListStableDensities lists the densities (primordial and decay contributions)
of all those particles considered stable in the particle set associated with the
model. Access to the total fireball densities is through separate getters defined
in the TTMThermalModel base class (e.g. GetStrange, GetBaryon etc.).

3.7.5 Further Functions

GenerateDecayPartDens and GenerateDecayPartDens(Int t id) (both de-
fined in the base class) calculate decay contributions to stable particles. The
former iterates through the density hash table and calculates the decay con-
tributions to all those particles considered stable in the set. The latter calcu-

32

lates just the contribution to the stable particle with the specified ID. In
both cases, the primordial densities must be calculated first. In fact, int

GenerateParticleDens automatically calls GenerateDecayPartDens, so that
this function does not have to be run separately under ordinary circumstances.
However, if one is interested in investigating the effect of decays, while keeping
the parameters (and hence the primordial densities) fixed, then running these
functions is best (the hash table will not be repeatedly cleared and repopu-
lated with the same primordial densities).

ListDecayContributions(Int t d id) lists the contributions (in percentage
and absolute terms) of decays to the daughter with the specified ID. The pri-
mordial and decay densities must already appear in the density hash table
(i.e. run int GenerateParticleDens first). ListDecayContribution(Int t

p id, Int t d id) lists the contribution of the decay from the specified par-
ent (with ID p id) to the specified daughter (with ID d id). The percentages
listed by each of these functions are those of the individual decays to the total
decay density.

Next we consider the specific features of the derived TTMThermalModel classes.

3.7.6 TTMThermalModelBSQ

In the grand-canonical ensemble, quantum statistics can be employed and,
hence, there is a flag specifying whether to use Fermi-Dirac and Bose-Einstein
statistics or Boltzmann statistics. The constructor, by default, includes both
the effect of quantum statistics and resonance width. The flags controlling their
inclusion are set using the SetQStats and SetWidth functions, respectively.
The functions that calculate the particle, energy, and entropy densities, and
pressure then use the corresponding functions in the TTMThermalParticleBSQ
class to calculate these quantities in the required way. The statistics data mem-
ber (fStat) of each TTMParticle included in the associated set can be used
to fine-tune the inclusion of quantum statistics; with the quantum statistics
flag switched on, Boltzmann statistics are still used for those particles with
fStat=0.

In this ensemble, at this stage, both µS and µQ can be constrained (either
separately or simultaneously). In order to accomplish this, the µS and/or
µQ parameters in the associated TTMParameterSetBSQ object must be set to
constrain-type.

It is also possible to constrain µB by the primordial ratio E/N (the average

33

energy per hadron), nb +nb̄ (the total primordial baryon plus anti-baryon den-
sity), or s/T 3 (the primordial, temperature-normalised entropy density). This
is accomplished by the int ConstrainEoverN, int ConstrainTotalBaryonDensity

and int ConstrainSoverT3 methods, respectively. Running these functions
will adjust µB such that E/N , nb + nb̄ or s/T 3, respectively, has the required
value, regardless of the parameter type of µB. In addition, the percolation
model [59] can be imposed to constrain µB using int ConstrainPercolation.

This class also accommodates charm, since the associated parameter set in-
cludes µC and γC, while the associated particle set may contain charmed
particles. However, no constraining functions have yet been written for the
charm content within this ensemble.

Within the grand-canonical ensemble, it is possible to include excluded volume
effects. Their inclusion is controlled by the fExclVolCorrection flag, false
by default, which is set through the SetExcludedVolume function. When in-
cluded, these corrections are calculated on calling int GenerateParticleDens,
based on the hard-sphere radii stored in the TTMParticle objects of the asso-
ciated particle set.

3.7.7 TTMThermalModelBQ

This class contains the following additional data members:

flnZtot - log of the total partition function,

flnZ0 - log of the non-strange component of the partition function,

fExactMuS - equivalent strangeness chemical potential,

fCorrP1 - canonical correction for S = +1 particles,

fCorrP2 - canonical correction for S = +2 particles,

fCorrP3 - canonical correction for S = +3 particles,

fCorrM1 - canonical correction for S = -1 particles,

fCorrM2 - canonical correction for S = -2 particles,

fCorrM3 - canonical correction for S = -3 particles.

Although this ensemble is only applied in the Boltzmann approximation for
S 6= 0 hadrons, it is possible to apply quantum statistics to the S = 0 hadrons.

34

This is achieved through the SetNonStrangeQStats function. By default,
quantum statistics is included for the non-strange hadrons by the construc-
tors. Resonance width can be included for all hadrons, and is achieved through
the SetWidth function. The constructors, by default, apply resonance width.
The functions that calculate the particle, energy, and entropy densities, and
pressure then use the corresponding functions in the TTMThermalParticle

classes to calculate these quantities in the required way.

int GenerateParticleDens populates the density hash table with particle
densities, including the canonical correction factors, which are also stored in
the appropriate data members. The equivalent strangeness chemical potential
is calculated from the canonical correction factor for S = +1 particles. In the
limit of large V T 3, this approaches the value of µS in the equivalent grand-
canonical treatment.

Running GenerateEntropyDens populates each TTMDensObj object in the
hash table with only that part of the total entropy that can be unambiguously
attributed to that particular particle. There is a term in the total entropy that
cannot be split; this is added to the total entropy at the end, but not included
in the individual entropies (i.e. summing up the entropy contributions of each
particle will not give the total entropy).

At this stage, in this formalism, µQ can be constrained (this is automati-
cally realised if this parameter is set to constrain-type), while the correlation
radius (Rc) can be set to the fireball radius (R) by applying the function
ConserveSGlobally to the associated TTMParameterSetBQ object.

In exactly the same way as in the grand-canonical ensemble case, µB can be
constrained in this ensemble by the primordial ratio E/N (the average energy
per hadron), nb + nb̄ (the total primordial baryon plus anti-baryon density),
or s/T 3 (the primordial, temperature-normalised entropy density), as well as
by the percolation model.

3.7.8 TTMThermalModelCanBSQ

This class contains, amongst others, the following data members:

35

flnZtot - log of the total canonical partition function,

fMuB,fMuS,fMuQ - equivalent chemical potentials,

fCorrpip - correction for π+-like particles,

fCorrpim - correction for π−-like particles,

fCorrkm - correction for K−-like particles,

fCorrkp - correction for K+-like particles,

fCorrk0 - correction for K0-like particles,

fCorrak0 - correction for K̄0-like particles,

fCorrproton - correction for p-like particles,

fCorraproton - correction for p̄-like particles,

fCorrneutron - correction for n-like particles,

fCorraneutron - correction for n̄-like particles,

fCorrlambda - correction for Λ-like particles,

fCorralambda - correction for Λ̄-like particles,

fCorrsigmap - correction for Σ+-like particles,

fCorrasigmap - correction for Σ̄−-like particles,

fCorrsigmam - correction for Σ−-like particles,

fCorrasigmam - correction for Σ̄+-like particles,

fCorrdeltam - correction for ∆−-like particles,

fCorradeltam - correction for ∆̄+-like particles,

fCorrdeltapp - correction for ∆++-like particles,

fCorradeltapp - correction for ∆̄−−-like particles,

fCorrksim - correction for Ξ−-like particles,

fCorraksim - correction for Ξ̄+-like particles,

fCorrksi0 - correction for Ξ0-like particles,

fCorraksi0 - correction for Ξ̄0-like particles,

fCorromega - correction for Ω−-like particles,

fCorraomega - correction for Ω̄+-like particles.

Since this ensemble is only applied in the Boltzmann approximation, there is

36

no flag for quantum statistics. However, resonance width can be included. This
is achieved through the SetWidth function. The constructor, by default, ap-
plies resonance width. The functions that calculate the particle, energy, and
entropy densities, and pressure then use the corresponding functions in the
TTMThermalParticle classes to calculate these quantities in the required way.

int GenerateParticleDens calls int PrimPartDens, which calculates the
particle densities, including the canonical correction factors, which are then
also stored in the relevant data members accessible through the double GetCorrFactor

method. The integrands featuring in the evaluation of the partition function
and correction factors can be viewed after calling PopulateZHistograms. This
function populates the array passed as argument with histograms showing
these integrands as a function of the integration variables φS and φQ. Since
these histograms are created off of the heap, they must be cleaned up after-
wards.

GenerateEntropyDens acts in exactly the same way as in the strangeness-
canonical ensemble case.

3.7.9 Example

As an example, we consider the strangeness-canonical ensemble, based on the
particle set and strangeness-canonical parameter set previously defined. After
instantiating the object, we populate the hash table with primordial and decay
particle densities:

root [] TTMThermalModelBQ modBQ(&set,&parBQ)

root [] modBQ.GenerateParticleDens()

root [] parBQ.List()

***************************** Thermal Parameters ****************************

Strangeness inside Canonical Volume = 0

T = 0.16 (to be FITTED)

start: 0.16

range: 0.05 -- 0.18

step: 0.001

muB = 0.2 (to be FITTED)

start: 0.2

37

range: 0 -- 0.5

step: 0.001

muQ = -0.00636409 (*CONSTRAINED*)

B/2Q: 1.2683

gammas = 0.8 (FIXED)

Can. radius = 6 (FIXED)

radius = 6 (FIXED)

B/2Q Successfully Constrained

**

One notices that the constraint on µQ is now automatically imposed.

The energy and entropy densities and pressure can be calculated once int

GenerateParticleDens has been run:

root [] modBQ.GenerateEnergyDens()

root [] modBQ.GenerateEntropyDens()

root [] modBQ.GeneratePressure()

Now, suppose that we are interested in the thermal densities of the ∆(1600)0

and π+:

root [] TTMDensObj *delta_dens = modBQ.GetDensities(32114)

root [] delta_dens->List()

**** Densities for Particle 32114 ****

n_prim = 0.00138306

n_decay = 0

e_prim = 0.0022912

s_prim = 0.0139745

p_prim = 0.000221328

root [] TTMDensObj *piplus_dens = modBQ.GetDensities(211)

root [] piplus_dens->List()

**** Densities for Particle 211 ****

n_prim = 0.0488139

n_decay = 0.119683

e_prim = 0.0247039

s_prim = 0.20276

p_prim = 0.00742708

38

One notices that the π+ has a decay density contribution, while the ∆(1600)0

does not. This is because, unlike the ∆(1600)0, the π+ was considered stable.

3.7.10 Imposing of Constraints

The ‘Numerical Recipes in C’ [60] function applying the Broyden globally con-
vergent secant method of solving nonlinear systems of equations is employed
by THERMUS to constrain parameters. The input to the Broyden method
is a vector of functions for which roots are sought. Typically, in the thermal
model, solutions to the following equations are required (either separately or
simultaneously):

(

B/V

2Q/V

)model

primordial

−
(

B

2Q

)colliding system

=0,

Smodel
primordial − Scolliding system =0,

(

E/V

N/V

)model

primordial

−
(

E

N

)required

=0.

Although, as written, these equations are correct, the quantities B/2Q, S
and E/N are typically of different orders of magnitude. Since the Broyden
method in ‘Numerical Recipes in C’ defines just one tolerance level for function
convergence (TOLF), it is important to ‘normalise’ each equation:

(

B/V

2Q/V

)model

primordial

−
(

B

2Q

)colliding system

/

(

B

2Q

)colliding system

= 0,

{

Smodel
primordial − Scolliding system

}

/Scolliding system = 0,

(

E/V

N/V

)model

primordial

−
(

E

N

)required

/
(

E

N

)required

= 0.

This is the most democratic way of treating the constraints. However, this
method obviously fails in the event of one of the denominators being zero. For
the equations considered above, this is only likely in the case of the strangeness
constraint, where the initial strangeness content is typically zero. In this case,
where the strangeness carried by the positively strange particles S+ is balanced
by the strangeness carried by the negatively strange particles S−, we write as
our function to be satisfied,

39

(S/V)model
primordial /

(

|S+|model
primordial/V + |S−|model

primordial/V
)

=0.

In this way, the constraints can be satisfied to equal relative degrees, and
equally well fractionally at each point in the parameter space. In addition
to the constraints listed above, THERMUS also allows for the constraining
of the total baryon plus anti-baryon density and the temperature-normalised
entropy density, s/T 3, as well as the imposing of the percolation model.

3.7.11 Calculation of the Wròblewski Factor

The Wròblewski factor [61] is defined as,

λS =
2 < ss̄ >

< uū > + < dd̄ >
,

where < uū > + < dd̄ > is the sum of newly-produced uū and dd̄ pairs, while
all ss̄ pairs are newly-produced if S = 0 in the initial state.

In THERMUS, λS is calculated in the following way:

• Using the primordial particle densities and the strangeness content of each
particle listed in the particle hash table, the s+ s̄ and u+d+ ū+ d̄ densities
are determined.

• Assuming S = 0, #s = #s̄, and so the density of newly-produced ss̄ pairs
is simply (s + s̄)/2.

• From baryon number conservation, the net baryon content in the system,
nB, originates from the initial state. Thus, 3 × nB must correspond to the
density of u+d quarks brought in by the colliding nuclei. This is subtracted
from the total u + d + ū + d̄ density to yield the density of newly-produced
non-strange light quarks.

• Since #s = #s̄ and, amongst newly-produced non-strange light quarks,
u + d = ū + d̄, further assuming that µQ = 0 implies that u = ū = d = d̄.
This allows the density of uū and dd̄ pairs to be easily determined.

3.8 The TTMYield Class

Often a single experiment releases yields and ratios that contain different
feed-down corrections. Each yield or ratio then has a different decay chain as-
sociated with it. Since TTMThermalModel objects allow for just one associated
particle set, they do not allow sufficient flexibility for performing thermal fits

40

to experimental data. However, TTMThermalFit classes do feature such flex-
ibility. Before we discuss these classes, let us look at the TTMYield object,
which forms an essential part of the TTMThermalFit class.

Information relating to both yields and ratios of yields can be stored in
TTMYield objects. These objects contain the following data members:

fName - the name of the yield or ratio,

fID1 - the ID of the yield or numerator ID in the case of a ratio,

fID2 - denominator ID in the case of a ratio (0 for a yield),

fFit - true if the yield or ratio is to be included in a fit (else predicted),

fSet1 - particle set relevant to yield or numerator in case of ratio,

fSet2 - particle set relevant to denominator in case of ratio (0 for yield),

fExpValue - the experimental value,

fExpError - the experimental error,

fModelValue - the model value,

fModelError - the model error.

By default, TTMYield objects are set for inclusion in fits. The functions Fit

and Predict control the fit-status of a TTMYield object. Particle sets (decay
chains) are assigned using the SetPartSet method.

The functions double GetStdDev and double GetQuadDev return the number
of standard and quadratic deviations between model and experimental values,
respectively, i.e.,

(Model Value − Exp. Value)/Exp. Error, (39)

and,

(Model Value − Exp. Value)/Model Value, (40)

respectively, while List outputs the contents of a TTMYield object to screen.
Access to all remaining data members is through the relevant getters and set-
ters.

41

3.9 The TTMThermalFit Class

This is the base class from which the TTMThermalFitBSQ, TTMThermalFitBQ
and TTMThermalFitCanBSQ classes are derived. Each TTMThermalFit object
contains:

• a particle set, the so-called base set, which contains all of the constituents
of the hadron gas, as well as the default decay chain to be used;

• a parameter set;
• a list of TTMYield objects containing yields and/or ratios of interest;
• data members storing the total χ2 and quadratic deviation; and
• a TMinuit fit object.

A string descriptor is also included in the base class to identify the type of
model on which the fit is based. This is used, for example, to determine the
number of parameters in the associated parameter sets.

Each derived class defines a private function, TTMThermalModel* GenerateThermalModel,
which creates (off the heap) a thermal model object, based on the base particle
set and parameter set of the TTMThermalFit object, with the specific quantum
statistics/resonance width/excluded volume requirements, where applicable.

3.9.1 Populating and Customising the List of Yields of Interest

The list of yields and/or ratios of interest can be input from file using the
function InputExpYields, provided that the file has the following format:

333 Exp_A 0.02 0.01

-211 211 Exp_B 0.990 0.100

-211 211 Exp_C 0.960 0.177

321 -321 Exp_C 1.152 0.239

where the first line corresponds to a yield, and has format:

Yield ID /t Descriptor string /t Exp. Value /t Exp. Error/n

while the remaining lines correspond to ratios, and have format:

Numerator ID /t Denominator ID /t Descriptor string /t Exp. Value

/t Exp. Error/n

42

A TTMYield object is created off the heap for each line in the file, with a
name derived from the ID’s and the descriptor. This name is determined by
the private function TString GetName, which uses the base particle set to
convert the particle ID’s into particle names and appends the descriptor. In
addition to all of the PDG ID’s in the associated base particle set, the following
THERMUS-defined identifiers are also allowed:

• ID = 1: Npart,
• ID = 2: h−,
• ID = 3: h+.

A TTMYield object can also be added to the list using AddYield. Such yields
should, however, have names that are consistent with those added by the
InputExpYields method; the TString GetName function should be used to
ensure this consistency. Only yields with unique names can be added to the
list, since it is this name which allows retrieval of the TTMYield objects from
the list. If a yield with the same name already exists in the list, a warning is
issued. The inclusion of descriptors ensures that TTMYield objects can always
be given unique names.

RemoveYield(Int t id1,Int t id2,TString descr) removes from the list
and deletes the yield with the name derived from the specified ID’s and de-
scriptor by TString GetName. The TTMYield* GetYield(Int t id1,Int t

id2,TString descr) method returns the required yield.

3.9.2 Generating Model Values

Values for each of the yields of interest listed in a TTMThermalFit object are
calculated by the function GenerateYields. This method uses the current
parameter values and assigned particle sets to calculate these model values.

GenerateYields firstly calculates the primordial particle densities of all con-
stituents listed in the base particle set. This it does by creating the relevant
TTMThermalModel object from the base particle set and the parameters, and
then calling int GenerateParticleDens. In this way, the density hash ta-
ble of the newly-formed TTMThermalModel object is populated with primor-
dial densities, as well as decay contributions, according to the base particle
set (recall that int GenerateParticleDens automatically calculates decay
contributions in addition to primordial ones). GenerateYields then iterates
through the list of TTMYield objects, calculating their specific decay contri-

43

butions. New model values are then inserted into these TTMYield objects. In
addition, the total χ2 and quadratic deviation are calculated, based solely on
the TTMYield objects which are of fit-type. ListYields lists all TTMYield ob-
jects in the list.

3.9.3 Performing a Fit

The FitData(Int t flag) method initiates a fit to all experimental yields
or ratios in the TTMYield list which are of fit-type. With flag=0, a χ2 fit
is performed, while flag=1 leads to a quadratic deviation fit. In both cases,
fit function is called. This function determines which parameters of the
associated parameter set are to be fit, and performs the required fit using
the ROOT TMinuit fit class. On completion, the list of TTMYield objects
contains the model values, while the parameter set reflects the best-fit param-
eters. Model values are calculated by the GenerateYields method. For each
TTMYield object in the list, a model value is calculated– even those that have
been chosen to be excluded from the actual fit. In this way, model predictions
can be determined at the same time as a fit is performed. ListMinuitInfo
lists all information relating to the TMinuit object, following a fit.

3.9.4 TTMThermalFitBSQ, TTMThermalFitBQ and TTMThermalFitCanBSQ

The constructor in each of these derived classes instantiates an object with
the specified base particle set and parameter set and inputs the yields listed
in the specified file in the TTMYield list.

The specifics of the fit, i.e. the treatment of quantum statistics (in the grand-
canonical ensemble and for the non-strange particles in the strangeness-canonical
ensemble), resonance width (in all three ensembles) and excluded volume cor-
rections (in the grand-canonical ensemble), are handled through the SetQStats/
SetNonStrangeQStats, SetWidth and SetExclVol methods, respectively. By
default, both resonance width and quantum statistics are included, while ex-
cluded volume corrections are excluded, where applicable.

3.9.5 Example

As an example to conclude this section, consider a fit to fictitious particle
ratios measured in Au+Au collisions at some energy. We will assume a grand-
canonical ensemble, with the parameters T , µB and µS fitted, and µQ fixed to
zero. In the grand-canonical ensemble, ratios are independent of the fireball

44

radius (this is not true in the canonical ensemble). For this reason, there is no
need to specify the treatment of the radius. Furthermore, we will ignore the
effects of resonance width and quantum statistics.

We begin by instantiating a particle set object, based on the particle list
distributed with THERMUS. After inputting the particle decays (scaled to
100%), a parameter set is defined (Note: in the example below $THERMUS must
be entered in full):

root [] TTMParticleSet set("$THERMUS/particles/PartList_PPB2002.txt")

root [] set.InputDecays("$THERMUS/particles/",true)

root [] TTMParameterSetBSQ par(0.160,0.05,0.,0.,1.)

Next, we change the parameters T , µB and µS to fit-type, supplying sensible
starting values as the arguments to the appropriate functions, as well as the
range of temperature values for the fit (50 - 180 MeV). For all other properties
of the fit (step size, fit range etc.), we accept the default values:

root [] par.FitT(0.160,0.05,0.180)

root [] par.FitMuB(0.05)

root [] par.FitMuS(0.)

Next, we prepare a file (‘ExpData.txt’) containing the experimental data:

-211 211 Exp_A 0.990 0.100

-211 211 Exp_B 0.960 0.177

-211 211 Exp_D 1.000 0.022

321 -321 Exp_B 1.152 0.239

321 -321 Exp_D 1.098 0.111

321 -321 Exp_C 1.108 0.022

-2212 2212 Exp_A 0.650 0.092

-2212 2212 Exp_B 0.679 0.148

-2212 2212 Exp_D 0.600 0.072

-2212 2212 Exp_C 0.714 0.050

-3122 3122 Exp_B 0.734 0.210

-3122 3122 Exp_C 0.720 0.024

-3312 3312 Exp_C 0.878 0.054

-3334 3334 Exp_C 1.062 0.410

As one can see, there are multiple occurrences of the same particle–anti-
particle combination. This is why additional descriptors are required. In this
case, the descriptors list the particular experiment responsible for the mea-
surement. In other situations, the descriptors may describe whether feed-down
corrections have been employed or some other relevant detail that, together
with the ID’s, uniquely identifies each yield or ratio.

45

We are now in a position to create a TTMThermalFitBSQ object based on
the newly-instantiated parameter and particle sets and the data file. Since
quantum statistics and resonance width are included by default, we have to
explicitly turn these settings off:

root [] TTMThermalFitBSQ fit(&set,&par,"ExpData.txt")

root [] fit.SetQStats(kFALSE)

root [] fit.SetWidth(kFALSE)

Next, let us simply generate the model values corresponding to each of the
TTMYield objects in the list, based on the current parameters. Part of the
output of ListYields is shown here:

root [] fit.GenerateYields()

root [] fit.ListYields()

-

-

-

K+/anti-K+ Exp_B:

FIT YIELD

Experiment: 1.152 +- 0.239

Model: 0.979833 +- 0

Std.Dev.: -0.720365 Quad.Dev.: -0.175711

K+/anti-K+ Exp_D:

FIT YIELD

Experiment: 1.098 +- 0.111

Model: 0.979833 +- 0

Std.Dev.: -1.06457 Quad.Dev.: -0.120599

K+/anti-K+ Exp_C:

FIT YIELD

Experiment: 1.108 +- 0.022

Model: 0.979833 +- 0

Std.Dev.: -5.82578 Quad.Dev.: -0.130805

anti-p/p Exp_A:

FIT YIELD

Experiment: 0.65 +- 0.092

Model: 0.535261 +- 0

Std.Dev.: -1.24716 Quad.Dev.: -0.21436

-

-

46

-

**

Finally, we perform a χ2 fit:

root [] fit.FitData(0)

-

-

-

COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=3.54326 FROM MIGRAD STATUS=CONVERGED 128 CALLS 129 TOTAL

EDM=6.43919e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO. NAME VALUE ERROR SIZE DERIVATIVE

1 T 1.62878e-01 1.10211e-01 2.32021e-04 -7.98809e-03

2 muB 3.58908e-02 1.91364e-02 1.68543e-05 4.05740e-03

3 muS 1.06828e-02 8.13945e-03 1.80744e-05 1.25485e-01

EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 ERR DEF=1

4.593e-03 1.289e-03 5.418e-04

1.289e-03 3.689e-04 1.548e-04

5.418e-04 1.548e-04 6.653e-05

PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2 3

1 0.99017 1.000 0.990 0.980

2 0.99410 0.990 1.000 0.988

3 0.98814 0.980 0.988 1.000

FCN=3.54326 FROM MIGRAD STATUS=CONVERGED 128 CALLS 129 TOTAL

EDM=6.43919e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER PHYSICAL LIMITS

NO. NAME VALUE ERROR NEGATIVE POSITIVE

1 T 1.62878e-01 1.10211e-01 5.00000e-02 1.80000e-01

2 muB 3.58908e-02 1.91364e-02 0.00000e+00 5.00000e-01

3 muS 1.06828e-02 8.13945e-03 0.00000e+00 5.00000e-01

Once completed, the associated parameter set contains the best-fit values for
the fit parameters:

root [] par.List()

***************************** Thermal Parameters ****************************

T = 0.162878 +- 0.110211 (FITTED!)

47

start: 0.16

range: 0.05 -- 0.18

step: 0.001

muB = 0.0358908 +- 0.0191364 (FITTED!)

start: 0.05

range: 0 -- 0.5

step: 0.001

muS = 0.0106828 +- 0.00813945 (FITTED!)

start: 0

range: 0 -- 0.5

step: 0.001

muQ = 0 (FIXED)

gammas = 1 (FIXED)

radius = 0 (FIXED)

muC = 0 (FIXED)

gammac = 1 (FIXED)

Parameters unconstrained

**

4 Installation of THERMUS

Having introduced the basic functionality of THERMUS in the previous sec-
tion, we conclude by outlining the installation procedure.

Since several functions in THERMUS use ‘Numerical Recipes in C’ code [60]
(which is under copyright), it is required that THERMUS users have their own
copies of this software. Then, with ROOT [9] already installed, the following
steps are to be followed to install THERMUS:

• Download the THERMUS source;
• Set an environment variable ‘THERMUS’ to point at the top-level directory

containing the THERMUS code;
• Copy the following ‘Numerical Recipes in C’ [60] functions to $THERMUS/nrc:

48

broydn.c rsolv.c

fdjac.c fmin.c

lnsrch.c nrutil.c

nrutil.h qrdcmp.c

qrupdt.c rotate.c

zbrent.c;

• Use the makefiles in $THERMUS/functions, $THERMUS/nrc and $THERMUS/main

to build the libFunctions.so, libNRCFunctions.so and libTHERMUS.so

shared object files (run make all in each of these directories);
• Finally, open a ROOT session, load the libraries and begin:

root [] gSystem->Load("./lib/libFunctions.so");

root [] gSystem->Load("./lib/libNRCFunctions.so");

root [] gSystem->Load("./lib/libTHERMUS.so");

-

-

-

References

[1] A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A772 (2006) 167.

[2] J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C73 (2006)
034905.

[3] F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C73 (2006) 044905.

[4] For a recent review see F. Becattini, plenary talk presented at Quark Matter
2008, Jaipur, India, Feb 4 - 10, 2008.

[5] P. Braun-Munzinger, K. Redlich, J. Stachel, nucl-th/0304013 and in Quark
Gluon Plasma 3, eds. R.C. Hwa and X.N. Wang, (World Scientific Publishing,
2004).

[6] G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski,
Comput. Phys. Commun. 167 (2005) 229.

49

http://arxiv.org/abs/nucl-th/0304013

[7] G. Torrieri, S. Jeon, J. Letessier, J. Rafelski, Comput. Phys. Commun. 175

(2006) 635.

[8] A. Kisiel, T. Taluć, W. Broniowski, W. Florkowski, Comput. Phys. Commun.
174 (2006) 669.

[9] R. Brun and F. Rademakers, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997)
81.
See also http://root.cern.ch/.

[10] J. Cleymans, I. Kraus, H. Oeschler, K. Redlich and S. Wheaton, Phys. Rev.
C 74 (2006) 034903.

[11] I. Kraus, J. Cleymans, H. Oeschler, K. Redlich and S. Wheaton, J. Phys. G32

(2006) S495.

[12] H. Caines, J. Phys. G32 (2006) S171.

[13] L.A. Stiles and M. Murray, nucl-ex/0601039.

[14] J. Takahashi (for the STAR Collaboration), nucl-ex/0711.2273.

[15] M. Murray (for the BRAHMS Collaboration), nucl-ex/0710.4576.

[16] M.I. Gorenstein, M. Hauer, O.N. Moroz, nucl-th/0708.0137.

[17] R. Witt, J. Phys. G34 (2007) S921.

[18] B. Hippolyte, Eur. Phys. J. C49 (2007) 121.

[19] J. Cleymans, R. Sahoo, D.P. Mahapatra, D.K. Srivastava and S. Wheaton,
Phys. Lett. B660 (2008) 172.

[20] M. Hauer, V.V. Begun and M.I. Gorenstein, nucl-th/0706.3290.

[21] M.I. Gorenstein, M. Hauer, D.O. Nikolajenko, Phys. Rev. C 76 (2007) 024901.

[22] V.V. Begun, M. Gaździcki, M.I. Gorenstein, M. Hauer, V.P. Konchakovski and
B. Lungwitz, Phys. Rev. C 76 (2007) 024902.

[23] F. Becattini, Z. Phys. C 69 (1996) 485.

[24] F. Becattini and U. Heinz, Z. Phys. C 76 (1997) 269.

[25] J. Cleymans, D. Elliott, A. Keränen and E. Suhonen, Phys. Rev. C 57 (1998)
3319.

[26] K. Redlich, J. Cleymans, H. Oeschler and A. Tounsi, Acta Physica Polonica
B33 (2002) 1609.

[27] F. Becattini, J. Cleymans, A. Keränen, E. Suhonen, K. Redlich, Phys. Rev. C
64 (2001) 024901.

[28] P. Braun-Munzinger, I. Heppe, J. Stachel, Phys. Lett. B465 (1999) 15.

[29] P. Braun-Munzinger et al., Phys. Lett. B344 (1995) 43, ibid. B365 (1996) 1.

50

http://root.cern.ch/
http://arxiv.org/abs/nucl-ex/0601039

[30] P. Braun-Munzinger, D. Magestro, K. Redlich and J. Stachel, Phys. Lett.
B518 (2001) 41.

[31] J. Sollfrank, J. Phys. G: Nucl. Part. Phys. 23 (1997) 1903.

[32] W. Broniowski and W. Florkowski, Phys. Rev. C 65 (2002) 064905.

[33] W. Florkowski, W. Broniowski and M. Michalec, Acta Physica Polonica B33

(2002) 761.

[34] N. Xu and M. Kaneta, Nucl. Phys. A698 (2002) 306c.

[35] M. Kaneta (for the NA44 Collaboration), J. Phys. G: Nucl. Part. Phys. 23

(1997) 1865;
M. Kaneta and N. Xu, J. Phys. G: Nucl. Part. Phys. 27 (2001) 589.

[36] J. Cleymans and K. Redlich, Phys. Rev. Lett. 81 (1998) 5284;
J. Cleymans and K. Redlich, Phys. Rev. C 60 (1999) 054908.

[37] S. Wheaton, ”The Development and Application of THERMUS- a Statistical-
Thermal Model Analysis Package for ROOT”, Ph.D. dissertation, University
of Cape Town, Cape Town, South Africa, 2005.

[38] A. Keränen and F. Becattini, nucl-th/0112021.

[39] P. Braun-Munzinger, J. Cleymans, H. Oeschler and K. Redlich, Nucl. Phys.
A697 (2002) 902.

[40] J. Cleymans, H. Oeschler and K. Redlich, Phys. Lett. B485 (2000) 27;
K. Redlich, S. Hamieh and A. Tounsi, J. Phys. G: Nucl. Part. Phys. 27 (2001)
413.

[41] J. Cleymans, H. Oeschler and K. Redlich, Phys. Rev. C 59 (1999) 1663.

[42] J. Sollfrank, P. Koch and U. Heinz, Z. Phys. C 52 (1991) 593.

[43] M. Kaneta and N. Xu, nucl-th/0405068.

[44] J. Cleymans, B. Kämpfer, M. Kaneta, S. Wheaton and N. Xu, Phys. Rev. C
71 (2005) 054901.

[45] F. Becattini, M. Gaździcki and J. Sollfrank, Eur. Phys. J. C 5 (1998) 143.

[46] J. Rafelski, Phys. Lett. B262 (1991) 333;
P. Koch, B. Müller, J. Rafelski, Phys. Rep. 142 (1986) 167.

[47] J. Letessier, J. Rafelski, A. Tounsi, Phys. Rev. C 50 (1994) 405;
C. Slotta, J. Sollfrank, U. Heinz, AIP Conf. Proc. (Woodbury) 340 (1995)
462.

[48] F. Becattini, M. Gaździcki, A. Keränen, J. Manninen and R. Stock, Phys. Rev.
C 69 (2004) 024905.

[49] I.G. Bearden et al. (NA44), Phys. Rev. C 66 (2002) 044907.

51

http://arxiv.org/abs/nucl-th/0112021
http://arxiv.org/abs/nucl-th/0405068

[50] J. Cleymans, B. Kämpfer and S. Wheaton, Phys. Rev. C 65 (2002) 027901,
nucl-th/0110035.

[51] J. Cleymans, B. Kämpfer and S. Wheaton, Nucl. Phys. A715 (2003) 553c,
hep-ph/0208247.

[52] J. Cleymans, B. Kämpfer, P. Steinberg and S. Wheaton, J. Phys. G: Nucl.
Part. Phys. 30 (2004) S595, hep-ph/0311020.

[53] J. Lettesier and J. Rafelski, Phys. Rev. C 59 (1999) 947.

[54] G.D. Yen, M.I. Gorenstein, W. Greiner and S.N. Yang, Phys. Rev. C 56 (1997)
2210.

[55] D.H. Rischke, M.I. Gorenstein, H. Stöcker and W. Greiner, Z. Phys. C 51

(1991) 485.

[56] J. Cleymans, M.I. Gorenstein, J. Stalnacke and E. Suhonen, Phys. Scr. 48

(1993) 277.

[57] K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001.

[58] T. Sjöstrand et al., Comput. Phys. Commun. 135 (2001) 238.

[59] V. Magas, H. Satz, Eur. Phys. J. C 32 (2003) 115.

[60] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing (Cambridge University Press,
Cambridge, 2002).

[61] K. Wròblewski, Acta Physica Polonica B16 (1985) 379.

52

http://arxiv.org/abs/nucl-th/0110035
http://arxiv.org/abs/hep-ph/0208247
http://arxiv.org/abs/hep-ph/0311020

	Introduction
	Overview of the Statistical-Thermal Model of Heavy-Ion Collisions
	Choice of Ensemble
	Feeding from Unstable Particles
	Deviations from Equilibrium Levels
	Excluded Volume Corrections (Grand-Canonical Ensemble)

	The Structure of THERMUS
	Introduction
	The TTMParticle Class
	The TTMParticleSet Class
	The TTMParameter Class
	The TTMParameterSet Class
	The TTMThermalParticle Class
	The TTMThermalModel Class
	The TTMYield Class
	The TTMThermalFit Class

	Installation of THERMUS
	References

