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Abstract

We give a simple tutorial introduction to the Mathematica package STRING-
VACUA, which is designed to find vacua of string-derived or inspired four-dimensional
N = 1 supergravities. The package uses powerful algebro-geometric methods, as im-
plemented in the free computer algebra system Singular, but requires no knowledge
of the mathematics upon which it is based. A series of easy-to-use Mathematica

modules are provided which can be used both in string theory and in more general
applications requiring fast polynomial computations. The use of these modules is
illustrated throughout with simple examples.
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1 Introduction

The systematic investigation of the turning points of a given potential is one of the most
fundamental problems in physics. In particular, much of the current effort in making string
theory reproduce the real world is concentrated in the study of effective theories with potentials
capable of stabilising all of the moduli. The theoretical framework for deriving the potential
given the particular scenario of compactification – be it heterotic or type II, with or without
fluxes – has been considerably developed. However, the analysis of the resulting effective
theory, due to the typically complicated forms of the (super-) potential, is often computationally
insurmountable.

In [1, 2] a novel, algorithmic approach to this problem was presented. The key realisation of
these papers was that the typical potential is a ratio of, albeit complicated, polynomials in the
field variables (in the non-perturbative cases, dummy variables may be used as substitutions for
exponential terms, recovering polynomial expressions). The most efficient method of studying
systems of polynomials is computational algebraic geometry.

Recent advances in computer algebra, in particular the advent of such packages as Macaulay

2 [3] and Singular [4], have rendered the subject of computational algebraic geometry an in-
creasingly significant tool in string theory [5, 6, 7]. As outlined in [1], the starting point for
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our analysis is a (string-derived or inspired) N = 1 supergravity theory with complex chiral su-
perfields φi, given in terms of the associated Kähler potential K ≡ K(φ, φ̄) and superpotential
W ≡ W (φ). The scalar potential V of such a theory is given by the well-known formula,

V = exp(K/M2)

(

KijFiF̄j −
3

M2
|W |2

)

. (1)

Here Fi ≡ ∂iW +M−2∂iKW are the F-terms, Kij =
∂2K

∂φi∂φ̄j
is the Kähler metric, Kij its inverse

and M is the Planck mass. Our primary interest is in analysing the vacuum properties of this
potential.

One tool which computational algebraic geometry provides us with to help in this analysis is
the so-called saturation expansion [1]. This method takes the complicated polynomial equations
describing the extrema of the potential of a system, and breaks them up into a series of simpler
systems, each describing one particular locus of turning points. Further algorithmic methods
then make it possible to single out extrema of interest and to extract the physical properties of
the associated vacua. Another tool, called elimination, provides constraints on the parameters
of a model which must be satisfied for vacua of given types to exist.

The computer package Mathematica has become an indispensable tool in modern theoreti-
cal physics and most researchers are familiar with its syntax. The algebraic geometry system
Singular is perhaps less known to the community interested in effective supergravity theories.
With this in mind, we have written a package for Mathematica, called STRINGVACUA, which
externally calls Singular where appropriate while sustaining the user in the comfortable envi-
ronment ofMathematica. A range ofMathematica modules, from low to high level, provide both
ease of use in string theory calculations as well as flexibility for a wider range of applications.
In particular, the tools described in the previous paragraph are implemented in module form -
allowing the user to access them with a few simple Mathematica commands.

The methods of STRINGVACUA are of course far from restricted in use to problems in
string phenomenology. Many of the modules will be of use in any problem involving polynomial
computations. Another Mathematica package which makes use of Singular is [8]. In the ensuing
pages we shall walk the reader through a quick and illustrative tutorial of how to use the basic
commands of the package. The appendix contains a glossary of terms.

Throughout this tutorial text in Serif font indicates a function or object defined inMathemat-

ica, while commands to be entered by the user into aMathematica notebook are typeset as so .

2 Getting started: a simple supergravity model

2.1 A quick first look: SimpleMinimise

Installation of the package is easy. Instructions, along with the download of the package itself,
can be found at the following URL.

http://www-thphys.physics.ox.ac.uk/user/Stringvacua

In this tutorial, we describe use of the package in a Unix environment, focussing on the
Mathematica notebook interface although the package also works with the text interface or
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running in emacs. The only significant differences from a Windows environment are during
installation, for further details see the URL given above. Once you have the package installed
start up X11, if it is not already running, and then to load the package simply evaluate (note
the single open quote!)

<<Stringvacua`

A package header and links to examples and the browser help pages will be displayed, and
the package is ready for calculations. For illustration, let us start with a very simple example
based on one modulus T = t + iτ , with Kähler potential and superpotential given by

K = −3 log(T + T̄ ) , W = a+ bT + cT 2 , (2)

respectively. Here, a, b and c are (real) parameters.

We will first study the vacuum structure of this theory using the SimpleMinimise command,
which is designed to provide an elementary illustration of the package’s use and to familiarise
the user with its output. Evaluating the command

SimpleMinimise[]

will result in the appearance of a dialogue box saying List of complex fields? (example: {T}). In

our case our complex field is indeed T, thus we simply type {T} and click OK. The next two
dialogue boxes ask for the real and imaginary parts of the complex fields. If we want these to be
given by T = t+ iτ then we enter {t} followed by {\[Tau]} (using the Mathematica syntax).

We are then prompted to provide the Kähler potential, -3 Log[T+Conjugate[T]] , followed

by the superpotential, which for our example is a + b T + c T∧2 and then the parameters

in the model, {a,b,c} . Finally (in the unix release) the package asks how much time it is
allowed to spend on each calculation that it will perform in Singular. Let us set this to 20
(seconds) for this example, by entering 20 .

This data having been entered, the package then works out everything else automatically.
An xterm will appear on your screen (by default in the upper right corner) to which Singular

writes its protocol. The details of this protocol should not concern us for now: we will simply
use its presence as an indication that something is “happening” in our calculation. The final
output looks as pictured in figure 1.

Let us discuss the interpretation of this result. Clearly the first few rows of the first table,
labelled “Model”, simply repeat the data defining the model which we have input. The last
entry in this table is the scalar potential of the system, which the package has calculated using
the standard N = 1 four dimensional supergravity formula (1).

The second of the two tables contains the results. Each row represents an irreducible
component of the vacuum manifold. Starting with the first row, the entry {} in the first
column indicates that this component satisfies Ft ≡ Re(FT ) = 0 and Fτ ≡ Im(FT ) = 0 (in
notation we will use throughout) and is therefore a supersymmetric vacuum. The field values
for this vacuum are obtained by setting the polynomials in the column entitled “0-dim. ideals”
to zero, so for the first row they are found by solving ct2 − bt− 3a = 0 and τ = 0.
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In[2]:= SimpleMinimise@D

Model

complex fields 8T<
real fields 8t<
imaginary fields 8tau<
Kahler potential -3 Log@T + Conjugate@TDD
superpotential a + b T + c T2

scalar potential -
2 b2 t+3 a Hb+2 c tL+2 c2 t It2+tau2M+b c I5 t2+3 tau2M

6 t2

Result

non-zero F terms 0-dim. ideals

8< 9tau, -3 a - b t + c t2=

8< 93 b + 2 c t, 5 b2 - 4 a c + 4 c2 tau2=
8t< 8tau, -b - c t<

Figure 1: An example of the output of SimpleMinimise.

Similarly, the second row corresponds to another supersymmetric vacuum. The first entry in
the last row, {t}, indicates that this extremum of the potential has Ft 6= 0 and all other F-terms
zero (here, simply Fτ = 0) and, hence, breaks supersymmetry in the t direction. SimpleMinimise
only provides isolated turning points of the potential in field space and so all three components
correspond to isolated extrema (as opposed to vacua with flat directions). The absence of a
row starting with {t, τ} shows that this model has no vacuum where supersymmetry is broken
in the directions of both t and τ .

If no warning messages are given by the package, as is the case in this example, then
SimpleMinimise returns all of the isolated turning points of the potential which are present for
generic parameter values. Vacua which appear only for non-generic values of the parameters
will be discussed in section 4.

2.2 A little more detail: sugra models in STRINGVACUA

For more serious calculations SimpleMinimise is not the most flexible or convenient way in which
to perform such a decomposition of the vacuum space in STRINGVACUA. Let us repeat the
above calculation, therefore, using some mainstream package modules.

In this approach, we first need to define our supergravity model within Mathematica. This
is easily done using the module CreateModel. For the above case the appropriate command
reads

SingleTmodel = CreateModel[{T},{t},{\[Tau]},-3 Log[T + Conjugate[T]],

a + b T + c T^2, Par->{a,b,c}];

In general, this module has five obligatory arguments which are, in order, the list of complex
fields, the list of the real parts of these fields, the list of imaginary parts, the Kähler potential
and the superpotential. In addition, we have used the option Par to tell the package about the
model parameters a, b, c. The output of CreateModel is amodel list ofMathematica assignments,
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here called SingleTmodel, of the form keyword → value. Each keyword in the model list contains
a piece of information about the supergravity model. Examples of model keywords include
Fields for the list of complex fields, KPot for the Kähler potential, SPot for the superpotential
and Pot for the scalar potential. For example, the potential for the above model can be obtained
by evaluating Pot/.SingleTmodel which returns

−
2b2t+ 3a(b+ 2ct) + 2c2t(t2 + τ 2) + bc(5t2 + 3τ 2)

6t2
. (3)

This is indeed the bosonic potential of the model (2), calculated using (1). After evaluating
CreateModel the model list contains all of the information about the supergravity model which
is relevant for an examination of its vacuum structure.

Hidden from the user, the package uses techniques from algorithmic algebraic geometry in
order to decompose the vacuum space and describe its properties [1, 2]. This requires that we
process the equations of the supergravity model into a particular form. The required operations
are performed by the Mathematica module CalcModel.

SingleTmodel = CalcModel[SingleTmodel];

After executing CreateModel and CalcModel a model list contains over 20 pieces of data, each
referred to by its keyword, and has essentially all of the information one would want for a
further analysis of the model. A complete list of the physical content of a model list is given in
Appendix A.

As mentioned earlier, one of the key applications of STRINGVACUA is to break up the
equations describing the vacua of a model into smaller pieces – giving one system of equations
for each type of vacuum. Let us see how such an analysis is performed given the model list we
have just created. We simply evaluate

satex = SaturationExpand[SingleTmodel]

Once this command has been executed information will start to scroll past in the Singular

window. While this happens a new Mathematica protocol notebook appears. Within this is
printed the data shown in figure 2. The terms in the second line of this notebook appear

Calculate 4 saturation terms : 

81, 8<, "ok"< 82, 8t<, "ok"< 83, 8Τ<, "ok"< 84, 8t, Τ<, "ok"<

Finished!

Figure 2: An example of a STRINGVACUA protocol notebook.

successively until the calculation is finished. Typically after a few seconds, the final result is
returned:

{

{} →
{

{Gen → {τ,−3a− bt + ct2},Dim → {0},Var → {t, τ},Par → {a, b, c}
}

,

{Gen → {3b+ 2ct, 5b2 − 4ac+ 4c2τ 2},Dim → {0},Var → {t, τ},Par → {a, b, c}
}}

,

{t} → {{Gen → {τ,−b− ct},Dim → {0},Var → {t, τ},Par → {a, b, c}}
}

.

(4)
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Each entry in this list represents an irreducible part of the vacuum manifold of our potential,
the package has split up the equations for an extremum of the scalar potential as desired. It is
sometimes useful to represent results, such as the above, in table form and the package provides
a specific command, TF, for this purpose. Evaluating

satex//TF

we obtain the table shown in figure 3. The results in figure 3 should be compared to those

DimHcompl.dim.L GenHGeneratorsL ParHParametersL VarHVariablesL
8< 80< 9Τ, -3 a - b t + c t2= 8a, b, c< 8t, Τ<

8< 80< 93 b + 2 c t, 5 b2 - 4 a c + 4 c2 Τ2= 8a, b, c< 8t, Τ<
8t< 80< 8Τ, -b - c t< 8a, b, c< 8t, Τ<

Figure 3: An example of the output of SaturationExpand.

in figure 1 which were obtained by applying SimpleMinimise to the same supergravity theory.
We see that they are the same and that the presentation is similar in the two cases. In
figure 3 we may obtain the equations for each of the vacua by setting the polynomials in the
column Gen(Generators) to zero. The first column tells us which F-terms are zero in each
vacuum. Thus, as before, we see that this model has two sets of supersymmetric vacua and one
non-supersymmetric vacuum with Ft 6= 0. As with SimpleMinimise, if no warning messages are
given by the package, SaturationExpand returns all of the isolated turning points of the potential
which appear for generic parameter values. In summary, we have found the complete isolated
vacuum structure of the model (2) by performing three simple commands, namely CreateModel,
CalcModel and SaturationExpand.

These are, in fact, the three commands being performed during a call to SimpleMinimise.
However, as we introduce more of the package’s abilities it will be useful to have all the in-
formation we need close to hand – this information is stored in the model lists generated by
CalcModel and CreateModel.

3 Filtering and finding properties of vacua

In the cases discussed above, the equations returned by SimpleMinimise and SaturationExpand
were so simple that they may be solved trivially to find the vacua. Any physical property
of those vacua may subsequently be calculated using the field values obtained. It may not
always be the case that these modules simplify the equations to such an extent. We would like,
therefore, to have an automated method for extracting the physical properties of the vacua
which we discover, which does not require solving the returned equations. STRINGVACUA
provides two types of facilities towards this end, filtering and Sturm queries.

3.1 Filtering

As STRINGVACUA performs a computation it can discard vacua which do not meet criteria
specified by the user. This process, which we call filtering, can greatly speed up computations.

6



It avoids costly calculations being carried out on parts of the problem which are of no physical
interest. Many of the modules of STRINGVACUA have a range of optional arguments, some
of which deal with the task of filtering1. When omitted in module calls, the filtering options
are set to sensible default values.

Dimension filtering

Perhaps the simplest type of filtering offered by the package is dimension filtering. By spec-
ifying an optional argument of the form Dim→list of dimensions, the user can choose to filter
out any vacua which do not have a particular dimension (the number of flat directions). In
fact, we have already used this type of filtering in the previous section! In SimpleMinimise
and SaturationExpand this option is set by default to Dim→0. Thus, in the previous section,
STRINGVACUA was only keeping vacua which are dimension zero – that is, vacua which do
not have flat directions. Had we wished to search for vacua with 1 or 2 flat directions instead
we could have evaluated the following.

SaturationExpand[SingleTModel, Dim->{1,2}]

The result, {}, tells us that there are no vacua with 1 or 2 flat directions in the model defined
in (2) for generic values of the parameters.

Field value filtering

Another example of physically uninteresting vacua which one may want to filter out are those
which lie in an unacceptable region of field space. For example, in a four dimensional theory
obtained by compactifying a higher dimensional supergravity, we would wish for the size of the
hidden dimensions to be larger than the string scale. If a particular field were to represent the
volume of the hidden dimensions, and if our conventions were such that the string scale was set
to 1, we may therefore only be interested in vacua where this field takes a value greater than 1.

We can instruct modules, such as SaturationExpand, to throw away all vacua which do not
satisfy any set of conditions, as long as those conditions can each be stated as a sign condition
on a polynomial in the fields. Let us see how this would work, using the condition described
above, in the following model.

K = −3 log(T + T̄ )− log(S + S̄) , W = aS + bST + cT 2 ,

T = t + iτ, S = s+ iσ .
(5)

We begin by creating a model list, containing all of the relevant data of the supergravity theory,
and add to this the ancillary mathematical structures the package requires. This is achieved,
as in section 2, by use of the CreateModel followed by the CalcModel modules.

modelnew=CreateModel[{T,S}, {t,s}, {\[Tau],\[Sigma]}, -3 Log[T + Conjugate[T]]

-Log[S + Conjugate[S]], a S + b S T + c T^2, Par->{a,b,c}];

modelnew=CalcModel[modelnew];

1We will encounter some of the optional arguments found in STRINGVACUA modules in the following

sections. A comprehensive list of options for any module can be found in its Mathematica help file.
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We now have a complete model list for the case in hand: modelnew. We now wish to apply
SaturationExpand to this model, filtering out all vacua which do not obey the condition t > 1.
The relevant command is

satexmodelnew = SaturationExpand[modelnew, VarPar->{a->1, b->-1, c->1},

RRoots->"Probab", NRoots->1, SturmPoly->{t-1}, SturmSigns->1];

This module call makes use of some new optional arguments2. The argument

VarPar →{a → 1,b → -1,c →1} (6)

sets the parameters of the model (5) to the indicated values for the duration of this module
call. Filtering can only be performed in cases where the parameters have been fixed; whether
or not the required filtering conditions are met would otherwise be parameter dependent and
would not have a unique answer. Ranges of parameter values can be scanned simply by writing
an appropriate loop over module calls in Mathematica. The remaining options are

RRoots → “Probab”, NRoots→1, SturmPoly→{t-1}, SturmSigns→1 (7)

The first two of these, in order, turn on field value filtering and only keep equations that have
at least one real solution. The second two specify t − 1 as the polynomial whose sign is to be
checked and state that the sign of this polynomial should be positive in any vacua to be kept in
the output. In short, these options tell the module to only keep vacua for which the polynomial
t− 1 takes positive values, i.e. for which t > 1

It is worth mentioning here that the calls to Singular will, of course, take different amounts
of time on different computers. On a modern computer the above call will finish in under
30 seconds, however on older machines it may take longer. In the Unix release there is a
default maximum time for Singular calculations, set at 60 seconds. This is controlled by the
option SingularMaxTime. For example, to set the maximum time to 120 seconds for a particular
calculation, simply add to any call the option3 SingularMaxTime->120 .

The result of the above call to SaturationExpand, put in table form using satexmodelnew//TF ,
is as shown in figure 4.

" " "DimHcompl.dim.L" "GenHGeneratorsL" "NRootsHð
real rootsL"

"ParHParametersL" "VarHVariablesL"

8s, t< 80< 9Τ, Σ,

-2 + s - 2 t,

-2 - 4 t + 3 t2=

82< 8< 8s, t, Σ, Τ<

Figure 4: A filtered output from SaturationExpand.

Thus only a single set of vacua exist for this model with t > 1 and they spontaneously break
supersymmetry. The first entry in the results table, {s, t} , indicates that the real parts of both

2To find out about the options available for SaturationExpand evaluate ?SaturationExpand. This returns a

brief summary of the module ending with “More...”. Click on “More...” to open the Mathematica help browser

at the relevant page.
3To change the SingularMaxTime setting globally, refer to ?StringvacuaOptions
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F-terms are non-zero (while the imaginary parts vanish). The second entry tells us that this
vacuum has no flat directions (recall the dimension filtering is set to only keep isolated extrema
by default). The third entry is the polynomials which we set to zero to obtain the equations
describing the vacua. The fourth column tells us that these equations have 2 real solutions. As
always, since no warning messages were given during this computation, the results in figure 4
constitute all of the vacua of the system which satisfy our filtering constraints.

3.2 Finding properties of vacua

Once we have found vacua we will wish to investigate their physical properties (other than those
determined by the filtering - which we already know!). This can be achieved in an automated
manner using the SturmQuery module.

As an example let us examine further the result we obtained at the end of the previous
subsection. What else might we like to know about the vacua we have found? We know,
from using the SaturationExpand options, that the extrema lie in a sensible part of field space.
However, we do not yet know if they are stable – have we found saddle points, minima, or
maxima?

To answer this question one would usually compute the eigenvalues of the Hesse matrix
in the vacuum and check to see if they are positive, negative or zero – but this is just a sign
test of the type described above! Below, we will show how to formulate the relevant test by
hand, in the interest of introducing more of the package modules. However, as stability is such
an important issue, the package admits an option ‘TestStability’ for SaturationExpand, which
automates the relevant sign tests. To illustrate, we will repeat the above SaturationExpand call,
but adding this new option,

SaturationExpand[modelnew, VarPar->{a->1, b->-1, c->1},

RRoots->"Probab", NRoots->1, SturmPoly->{t-1}, SturmSigns->1,

TestStability->"Hesse"]//TF

These options, as before, instruct the package to retain only equations which have at least
one real solution in the allowed region of field space. The additional, final, option TestStability
has been set to ”Hesse” – this instructs the package to determine the stability of the extrema
described by the retained equations. The output, which we have here passed straight to table
form, is just as in figure 4 (so that we recover the solutions we found previously) except that
an additional column has been added to the table, containing

Sturm(Sturm Query)
{{Hessian}, {{1,-1},{2,2}},{{1,-1},{2,2}} }

How are we to interpret this? Each entry in the column is a list (one for each set of equations
retained). The first entry in a list, {Hesse}, simply labels the type of sign test performed –
here it reminds us that we are testing the signs of the Hesse matrix eigenvalues. There are two
further entries (each a list itself), because the equations have two real solutions – in general,
then, the list would contain a label and one further list for each real solution. These entries tell
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us about the signs of the eigenvalues at each of root of the system. In this case they are both
identical,

{{1,−1}, {2, 2}} . (8)

The interpretation of this is simple: at both roots, the extrema have two positive (the first
2 goes with the +1) and two negative eigenvalues (the second 2 goes with the -1). Thus the
non-supersymmetric vacua we have been studying are actually saddle points.

Let us take a closer look at how the package arrived at this result. The output of the
filtered SaturationExpand call which led to this result was called satexmodelnew. The non-
supersymmetric vacuum we found may be extracted from this list by using its label, as given
in the first column of figure 4, as follows, {s,t}/.satexmodelnew which returns

{{Gen →
{

τ, σ,−2 + s− 2t,−2− 4t+ 3t2
}

,Dim → {0},NRoots → {2},

Var → {s, t, σ, τ},Par → {}}}
(9)

This list contains the information in the table of figure 4, in a format which the modules of
STRINGVACUA can understand. We will now pass this information to the SturmQuery module
to find out about the stability properties of these non-supersymmetric vacua using the sign tests
introduced above.

In fact, using SturmQuery we can check the signs taken by any rational functions, the signs
taken by the determinants of any matrices of rational functions, and the signs taken by the
eigenvalues of any matrix with real eigenvalues in the vacua we have found. In our case we
of course wish to check the eigenvalues of the Hesse matrix. The first piece of information we
require is the Hesse matrix itself. Fortunately this has already been calculated by the package
and stored in the model list! The relevant keyword to access this matrix, as may be discovered
from the help files, is Hesse. Thus evaluating Hesse/.modelnew will return the Hesse matrix
of the system. The result is rather lengthy and so we do not reproduce it here.

To identify the signs of the eigenvalues of this matrix in the vacua given by (9) we simply
perform the following SturmQuery call,

SturmQuery[{s,t}/.satexmodelnew, TestMatEigen->Hesse/.modelnew,

VarPar->{a->1, b->-1, c->1}, SturmLabel->"The Hessian", RRoots->"Probab"]

The first argument above is the component of the vacuum space which we wish to test, as
detailed in (9). The second argument is the matrix whose eigenvalues are to be checked, as we
just described. The third argument sets the parameters in the Hesse matrix to the correct values
– just those that were selected in the SaturationExpand call of the previous section, from which
(9) was obtained. The fourth argument allows a user-defined label for the results of SturmQuery.
Finally the fifth argument tells the module which method to use in its computations. The result
of this call is shown in figure 5 (as earlier we have put the result in table form by appending
//TF to the end of the result of the module call). We see that there is one additional piece of
data in this table now, as compared to figure 4: the result of the sign check we have requested.
This is precisely the same output we found using SaturationExpand[... TestStability→ ”Hesse”],
thus we recover the fact that these non-supersymmetric vacua are saddle points. A very large
range of properties of vacua can be studied using SturmQuery. For more examples we refer the
reader to the module’s Mathematica help file.
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VarHVariablesL 8s, t, Σ, Τ<
ParHParametersL 8<
GenHGeneratorsL 9Τ, Σ, -2 + s - 2 t, -2 - 4 t + 3 t2=
DimHcompl.dim.L 80<
NRootsHð real rootsL 82<
SturmHSturm queryL 8The Hessian, 881, -1<, 82, 2<<, 881, -1<, 82, 2<<<

Figure 5: A example output from SturmQuery.

4 Constraints on parameters

As well as finding the vacua of a given N = 1 theory, our methods may be used to identify
constraints on the parameters of a model which are necessary for vacua of a given type to
exist. As before we shall illustrate this with a simple example. Consider the following theory,
obtained in [9] in the context of non-geometric compactifications of type II string theory.

K = −3 log(−i(T − T̄ )− log(−i(S − S̄))− 3 log(−i(U − U)),

W = a0 − 3a1T + 3a2T
2 − a3T

3

+ S(−b0 + 3b1T − 3b2T
2 + b3T

3)

+ 3U(c0 + (ĉ1 + č1 − c̃1)T − (ĉ2 + č2 − c̃2)T
2 − c3T

3) ,

(10)

Here S, T and U are superfields while all other quantities are parameters. The parameters obey
the following set of conditions, which come from consideration of tadpoles and integrability of
Bianchi identities. We have,

0 = a0b3 − 3a1b2 + 3a2b1 − a3b0 − 16 ,

0 = a0c3 + a1(č2 + ĉ2 − c̃2)− a2(č1 + ĉ1 − c̃1)− a3c0 ,
(11)

together with the equations below and another set given by exchanging all hats and checks,

0 = c0b2 − c̃1b1 + ĉ1b1 − č2b0 , 0 = c0c̃2 − č2
1
+ c̃1ĉ1 − ĉ2c0 ,

0 = č1b3− ĉ2b2 + c̃2b2 − c3b1 , 0 = c3c̃1 − č2
2
+ c̃2ĉ2 − ĉ1c3 ,

0 = c0b3− c̃1b2 + ĉ1b2 − č2b1 , 0 = c3c0 − č2ĉ1 + c̃2č1 − ĉ1c̃2 ,

0 = č1b2 − ĉ2b1 + c̃2b1 − c3b0 , 0 = ĉ2c̃1 − c̃1č2 + č1ĉ2 − c0c3 .

As an example, we shall describe how to find further constraints on the parameters of this
system which are necessary (and in this case sufficient) for the existence of supersymmetric
Minkowski vacua. These vacua are obtained as solutions to the equations,

∂TW = 0 , ∂SW = 0 , ∂UW = 0 , W = 0 , (12)

together, of course with the vanishing of the conditions on the parameters given above. This
large and complicated set of equations contains information about what values the flux pa-
rameters can take in order for solutions to exist, but this data is entangled with all of the
other information about the extrema (such as field values). Our objective is to separate out

11



the information concerning the constraints on the parameters. This may be achieved using the
package routine Elimination.

First, we must collect the various equations describing the vacua we wish to analyse. We
create the model list for the above system using the commands CreateModel and CalcModel as
in earlier sections. Let us call the resulting model list model. The equations in (12), being infor-
mation about our supergravity model, are now stored in this model list and may be extracted,
in a form STRINGVACUA modules will understand, by evaluating the following command.

{IDSPot/.model, ISPot/.model}

See the appendix for a description of these keywords. Next we must enter the conditions on
the parameters given above into Mathematica. Using the usual Mathematica syntax, these are
included as a list of the polynomials which the conditions dictate vanish, let us call it Constraints.

Constraints={a0 b3 - 3 a1 b2 + 3 a2 b1 - a3 b0 - 16,...}

Now we have entered all of the relevant equations we may simply plug them into the module
Elimination to obtain our constraints. The first argument in this module call is simply the collec-
tion of equations we wish to vanish. The optional argument list VarPar instructs the module to
eliminate some set of variables from the equations it is passed. Here, we set VarPar->{T,S,U}
in order to eliminate the field variables T , S and U from the equations. A final argument Meth
is optional. Here we use it to select one of the faster methods of elimination available. The full
command to be entered is

NewConstraints = Elimination[{IDSPot/.model, ISPot/.model, Constraints},

VarPar->{T,S,U}, Meth->"Prod"];

We are left with NewConstraints which contains a list of polynomials. As usual we may display
this object in a nice form by evaluating NewConstraints//TF . The result is shown in figure
6. When set to zero, the polynomials in the box “Gen (Generators)” represent the constraints
on the flux parameters which are necessary and sufficient for the existence of supersymmetric
Minkowski vacua4. Note that in figure 6 we have relabelled the parameters in an obvious way
for ease of input into Mathematica (ct1 for c̃1, etc).

Use of constraints, such as those found in this section, is one of the ways in which vacua
which only appear for non-generic values of the parameters can be found using STRINGVACUA.
One can simply solve for a sufficiently large number of parameters until the constraints for the
required type of vacuum are automatically satisfied. Alternatively if one is running loops over
calls to SaturationExpand, one for each set of flux parameters, the constraints in this section
can be used to greatly speed up the calculation. Any set of parameters which do not satisfy
the constraints need not be investigated.

4Often, one can apply one of the other STRINGVACUA modules, PrimDec, to the output of Elimination in

order to separate this list into smaller, simpler subsets, the vanishing of each subset representing a different way

to solve the full set of constraints.
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VarHVariablesL 8a0, a1, a2, a3, b0, b1, b2, b3, c0, c3, cc1, cc2, ch1, ch2, ct1, ct2<
ParHParametersL 8<
GenHGeneratorsL 9ct2, ct1, ch2 + ct2, ch1 + ct1, cc2 - ch2,

cc1 - ch1, c3, c0, 16 + a3 b0 - 3 a2 b1 + 3 a1 b2 - a0 b3,

16 a3
2
b0

2
- 96 a2 a3 b0 b1 - 288 a2

2
b1

2
+ 432 a1 a3 b1

2
+ 54 a2

3
b1

3
-

81 a1 a2 a3 b1
3
+ 27 a0 a3

2
b1

3
+ 432 a1 a3 b0 b2 - 27 a2

2
a3 b0

2
b2 +

48 a1 a3
2
b0

2
b2 - 288 a0 a3 b1 b2 - 18 a1 a2 a3 b0 b1 b2 -

45 a0 a3
2
b0 b1 b2 - 54 a1 a2

2
b1

2
b2 + 81 a1

2
a3 b1

2
b2 -

27 a0 a2 a3 b1
2
b2 + 54 a0 a2 a3 b0 b2

2
+ 27 a0 a1 a3 b1 b2

2
- 27 a0

2
a3 b2

3
-

288 a1 a2 b0 b3 - 32 a0 a3 b0 b3 + 27 a2
3
b0

2
b3 - 45 a1 a2 a3 b0

2
b3 +

432 a0 a2 b1 b3 - 27 a1 a2
2
b0 b1 b3 + 54 a1

2
a3 b0 b1 b3 +

48 a0 a2 a3 b0 b1 b3 + 18 a0 a2
2
b1

2
b3 - 81 a0 a1 a3 b1

2
b3 -

144 a0 a1 b2 b3 + 27 a1
2
a2 b0 b2 b3 - 54 a0 a2

2
b0 b2 b3 -

51 a0 a1 a3 b0 b2 b3 + 27 a0 a1 a2 b1 b2 b3 + 45 a0
2
a3 b1 b2 b3 -

27 a0 a1
2
b2

2
b3 + 27 a0

2
a2 b2

2
b3 + 16 a0

2
b3

2
- 27 a1

3
b0 b3

2
+

45 a0 a1 a2 b0 b3
2
+ 27 a0 a1

2
b1 b3

2
- 48 a0

2
a2 b1 b3

2
+ 3 a0

2
a1 b2 b3

2=

Figure 6: Constraints on parameters obtained using Elimination.

5 Non-perturbative effects

So far we have addressed models for which the scalar potential, the F-terms, and all other
relevant quantities are all rational functions of the fields. In many cases, such as in models
where non-perturbative contributions to the superpotential play an important role, we may be
interested in more complicated situations. These can be addressed using the STRINGVACUA
package by the simple expedient of replacing any non-polynomial terms in the equations with
dummy variables. As in earlier sections we will illustrate this with some examples.

5.1 Creating non-perturbative models

Consider the following toy model as an example.

W = T + exp(−S) , K = − log(T + T̄ )− 3 log(S + S) ,

T = t + iτ , S = s+ iσ
(13)

The supergravity model is set up in the package using CreateModel, just as before.

model = CreateModel[{T,S}, {t,s}, {\[Tau],\[Sigma]},

-Log[T + Conjugate[T]] - 3 Log[S + Conjugate[S]], T + Exp[-S]];

Before we can apply our methods we must find a way to transform the system into a set
of equations STRINGVACUA can understand – essentially into polynomials. This may be
achieved by using dummy variables to represent non-algebraic objects. A good choice of dummy
variables, in this case, is the set,

X ≡ exp(−S), Y ≡ exp(−S) , x ≡ exp(−s), y ≡ exp(−iσ) . (14)
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These variables are built into the model as a set of replacements included in CalcModel (which,
recall, takes supergravity objects and converts them into expressions the package can use)
through two options. These are CDummies→..., a list of replacements for the superfields, and
Dummies→..., a list of replacements for the real fields. The dummy variables defined in (14)
are entered as shown below.

fullmodel = CalcModel[model, CDummies->{Exp[-S]->X, Exp[-Conjugate[S]]->Y},

Dummies->{Exp[-s]->x, Exp[-I\[Sigma]]->y}];

To see the effect of the dummy variables, compare the supergravity potential,

Pot/.fullmodel

e−2s

48s3t

(

3 + 12s+ 4s2 + 3e2st2 + 4e2sτ 2 + 6es(2s− 1)t cos(σ)− 6es(2a+ 1)τ sin(σ)

)

, (15)

with its numerator, converted into a polynomial,

IPot/.fullmodel

{Var → {t, s, τ, σ, x, y},Par → {},Gen → {−3tx+ 6stx+ 3t2y + 3x2y + 12sx2y + 4s2x2y

− 3txy2 + 6stxy2 + 3ixτ + 6isxτ − 3ixy2τ − 6isxy2τ + 3yτ 2}} .

(16)

Here, the dummy variables {x, y} have been appended to the list of true variables {t, s, τ, σ}
and the potential has been reduced to a polynomial as desired.

5.2 Finding vacua

The routine SaturationExpand may be used to identify and classify all vacua of this model in a
few seconds. Note that we are working in an enlarged field space with dummy variables, in which
true isolated vacua may appear to have flat directions. To ensure that this is accounted for, we
adjust the Dim option in SaturationExpand to retain vacua with any number of flat directions
up to and including the number of (real field) dummy variables included. SaturationExpand is
then called using

satexNP = SaturationExpand[fullmodel, Dim ->{0,1,2}]

which returns a list satexNP of vacua classified by their SUSY breaking in a manner which is
now familiar (see, for example, figure 4). Consider the vacuum space in which the imaginary
parts of both F-terms vanish but the real parts are non-zero. We can extract the vacua of
this kind from the full list by using their identifier, thus {s,t}/.satexNP . This list contains

two potential vacua, as seen by evaluating Length[{s,t}/.satexNP] . Extracting one of these

pieces using ({s,t}/.satexNP)[[1]] we find

{Gen → {τ, 1 + y,−3t2 + 7tx+ 2stx+ 2x2 + 4sx2,−7t− 2st+ x+ 8sx+ 4s2x,

− 11t2 + 2st2 + 11tx+ 6x2 + 16sx2,−15t− 2st + 2s2t− 3x− 4sx,

3t3 − 24t2x+ 23tx2 + 10x3 + 24sx3, 3t4 − 18t3x+ 11t2x2 − 28tx3 − 4x4,

− 18− 78s− 41s2 + 4s3 + 4s4},Dim → {2},Var → {s, t, x, y, σ, τ},Par → {}}

(17)
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Thus, even in these non-perturbative cases, SaturationExpand can be used to break up the
equations describing the vacuum space into smaller, more manageable pieces. In the above we
could easily solve the equation given by setting the last polynomial in Gen to zero to find s and
hence x. The solutions for τ and y (and thus σ) are evident from the first two polynomials.
These solutions could then be plugged into the remaining polynomials to find t. In other words,
in many cases the decomposition of the vacuum space provided by SaturationExpand makes the
equations to be solved trivial. In situations where this is not the case the algorithm developed
in [2] should be used. This algorithm can be executed using the modules of the package. This
is, however, more involved than the level of this simple tutorial and we refer the user to [2] and
to the package help files for more information.

The essential point we wish to convey is that one of the core keys to the power of STRING-
VACUA – breaking up the equations for the vacuum space into smaller pieces – is applicable
even in these non-polynomial cases.

5.3 Constraints in non-perturbative models

The other application of STRINGVACUA which we have introduced in this tutorial, finding
constraints on parameters, also works in the case where non-perturbative effects are present.

As an example consider the supergravity model,

K = −3 log
(

T + T̄
)

− 3 log
(

Z + Z̄
)

− log
(

S + S̄
)

,

W = i(ξ + ieT ) + (ǫ+ ipT )Z + i(µ+ iqT )Z2/2 + λ exp(−cS) ,

T = t+ iτ, Z = z + iζ, S = s+ iσ .

(18)

which is obtained by compactifying heterotic string theory on a generalised half-flat manifold in
the presence of gaugino condensation [10, 11]. We can input this model into STRINGVACUA
using CreateModel and CalcModel as usual, using the CDummies and Dummies options to specify
the replacements for the exponentials. To clarify the presentation we here first define the Kähler
and superpotentials,

K = -3 Log[T+Conjugate[T]] -3 Log [Z+Conjugate[Z]]-Log[S+Conjugate[S]];

W = I(\[Xi]+I e T)+(\[Epsilon]+I p T) Z + I (\[Mu]+I q T) Z^2/2

+\[Lambda] Exp[-c S];

These are then entered into CreateModel using the identifiers K andW to create the supergravity
model,

NPmodel = CreateModel[{T,S,Z}, {t,s,z}, {\[Tau],\[Sigma],\[Zeta]}, K, W,

Par->{\[Xi], e, \[Epsilon], p, \[Mu], q, \[Lambda], c}];

Now we use CalcModel to create the extended model list, including our choice of dummy vari-
ables for the exponential function,

NPmodel = CalcModel[NPmodel, CDummies->{Exp[-c S]->X, Exp[-c Conjugate[S]]->Y},

Dummies->{Exp[-c s]-> x, Exp[-I c \[Sigma]]-> y}];
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There is one condition on the parameters which follows from the integrability of the Bianchi
identity, qǫ− pµ = 0, which we enter simply as

BIcondition = q \[Epsilon] - p \[Mu];

We can find further constraints on the parameters of this model which are necessary for the
existence of supersymmetric vacua satisfying certain physical conditions. For various physical
reasons we might be interested in vacua with field values t = 1, s = 24, and σ = 0, for example.
We require, then, that the F-terms, and the polynomials t − 1, s − 24 and σ all vanish in our
vacua.

Note that setting the value of σ = 0 implies a fixed value for y ≡ exp(−icσ) = 1, so we
should also set the polynomial y − 1 to vanish. At this stage, even though we have chosen a
value for s, the value of the dummy variable x still depends on the parameter c. As such, we
cannot fix its value. To find our constraints, we simply collect all of our equations and then
eliminate all of the fields using the command Elimination, exactly as in section 4.

ConstraintsNP = Elimination[{IFTerms/.NPmodel, BIcondition, t-1, s-24,

\[Sigma], y-1}, VarPar-> {s, t, y, z, \[Zeta], \[Sigma], \[Tau]}];

The output of this module call is shown in figure 7, put in table form by evaluating

ConstraintsNP//TF .

VarHVariablesL 8c, e, p, q, x, Ε, Λ, Μ, Ξ<
ParHParametersL 8<
GenHGeneratorsL 9q Ε - p Μ, e q Μ - q2 Ξ, e p Μ - p q Ξ, e2 Μ - e q Ξ,

-e Μ + 96 c e Μ + q Ξ - 96 c q Ξ, e p Ε - p2 Ξ, -e Ε + 96 c e Ε + p Ξ - 96 c p Ξ,

-4 e2 Μ + 3 e x Λ Μ + 4 e q Ξ - 3 q x Λ Ξ, e Μ - x Λ Μ + 24 c x Λ Μ - q Ξ,

-4 e2 Ε + 3 e x Ε Λ + 4 e p Ξ - 3 p x Λ Ξ, e Ε - x Ε Λ + 24 c x Ε Λ - p Ξ,

-q x Λ + 24 c q x Λ, -p x Λ + 24 c p x Λ, x Λ Ξ - 120 c x Λ Ξ + 2304 c2 x Λ Ξ,

2 e p Ε - 3 p x Ε Λ - 12 e x Λ Μ + 9 x2 Λ2 Μ - 2 p2 Ξ + 6 q x Λ Ξ,

-p2 x Λ - 2 e q x Λ + 3 q x2 Λ2, 4 e x Λ - 96 c e x Λ - 3 x2 Λ2 + 72 c x2 Λ2,

2 e x Λ - 112 c e x Λ + 1536 c2 e x Λ - x2 Λ2 + 24 c x2 Λ2=

Figure 7: Constraints in a non-perturbative example using Elimination.

The returned polynomials in the entry labelled “Gen (Generators)” should be set to zero
to obtain the desired constraints. The vanishing of these polynomials describes necessary con-
straints on the flux parameters of this model (necessary and sufficient constraints only being
obtained in the case of perturbative supersymmetric Minkowski vacua) for the existence of
vacua of the desired type [1, 2]. As mentioned in section 4, constraints such as these can fre-
quently be simplified using other STRINGVACUA modules - for example PrimDec. The user
is directed to the Mathematica help files for further information.
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6 STRINGVACUA: other applications

Since the package is tailored to the fast manipulations of systems of polynomials, its appli-
cations clearly extend far beyond finding the vacua of string-inspired or derived models as
described above. Problems such as finding the dimension of the space defined by a system of
polynomials, or how many real roots there are, etc., are ubiquitous in countless fields of modern
research. The convenient Mathematica interface we have developed, which requires neither an
understanding of computational algebraic geometry nor of the program Singular, should prove
useful to researchers in diverse fields of interest. In this short section we will illustrate the
solution of questions one may encounter in more abstract situations.

Suppose we are given a formidable-looking system of polynomials, given in figure 8 and called
sys, and we wish to check whether its zero-locus has dimension zero (i.e., no flat directions)
and if so find how many real roots this system has. A system of polynomials, in the language
of algebraic geometry, is called an ideal. Ideals are stored within STRINGVACUA as a list of
assignments, called an ideal list, as follows.

ideal = {Gen->{polynomials}, Var->{variables}, Par->{parameters}}

Additional assignments can be added to ideal lists by some of the STRINGVACUA modules –
we shall see an example of this shortly.

sys = 8-7 w2 + 7 w4 + 35 w3 x - 2 x2 + 2 w2 x2 + 10 w x3 - 2 w y + 51 w3 y - x y +

67 w2 x y + 19 w x2 y + 16 x3 y - 4 y2 + 74 w2 y2 + 43 w x y2 + 24 x2 y2 + 44 w y3 + 40 x y3 +

32 y4 - 8 w z + 36 w3 z - 10 x z + 92 w2 x z + 58 w x2 z + 12 x3 z - 4 y z + 75 w2 y z +

170 w x y z + 88 x2 y z + 110 w y2 z + 137 x y2 z + 36 y3 z - 7 z2 + 95 w2 z2 + 123 w x z2 +

76 x2 z2 + 89 w y z2 + 98 x y z2 + 92 y2 z2 + 92 w z3 + 122 x z3 + 39 y z3 + 56 z4,

30 w4 + 95 w3 x + 134 w2 x2 + 83 w x3 + 18 x4 + 41 w3 y + 133 w2 x y + 153 w x2 y + 93 x3 y +

101 w2 y2 + 200 w x y2 + 137 x2 y2 + 52 w y3 + 132 x y3 + 70 y4 + 21 w3 z + 96 w2 x z + 127 w x2 z +

71 x3 z + 98 w2 y z + 186 w x y z + 141 x2 y z + 76 w y2 z + 209 x y2 z + 113 y3 z + 102 w2 z2 +

172 w x z2 + 127 x2 z2 + 95 w y z2 + 218 x y z2 + 198 y2 z2 + 36 w z3 + 99 x z3 + 126 y z3 + 81 z4,

21 w2 x + 21 w x2 + 3 x3 + 63 w2 y + 93 w x y + 30 x2 y + 90 w y2 + 72 x y2 + 27 y3 + 35 w2 z +

59 w x z + 32 x2 z + 122 w y z + 140 x y z + 87 y2 z + 40 w z2 + 57 x z2 + 76 y z2 + 20 z3,

9 w4 + 34 w3 x + 79 w2 x2 + 54 w x3 + 24 x4 + 91 w3 y + 192 w2 x y + 193 w x2 y + 94 x3 y +

133 w2 y2 + 230 w x y2 + 148 x2 y2 + 103 w y3 + 106 x y3 + 28 y4 + 14 w3 z + 67 w2 x z + 89 w x2 z +

70 x3 z + 127 w2 y z + 236 w x y z + 158 x2 y z + 107 w y2 z + 136 x y2 z + 56 y3 z + 95 w2 z2 +

119 w x z2 + 126 x2 z2 + 211 w y z2 + 243 x y z2 + 99 y2 z2 + 54 w z3 + 117 x z3 + 72 y z3 + 81 z4<

Figure 8: A given system of polynomial equations.

Given this general structure, the dimension in our current example is easily calculated using
the command

Dim/.DimIdeal[{Var-> {x, y, z, w}, Gen-> sys}]

As described above, the Var → option specifies that the variables are {x, y, z, w}, the Gen →
sys dictates that the system to be studied is our list sys of 4 polynomials in 4 variables and
there is no Par assignment in this case as there are no parameters in our system. The command
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DimIdeal[ ] then tells us the dimension of the space thus defined; it adds the assignment Dim
→ {the dimension} to the ideal list. Here we have extracted the dimension from this list using
Dim /. The answer is very quickly found to be 0.

We can now try to find the real roots. The Mathematica command Solve[ ] is readily
seen to be ineffective in solving this system. However, methods of computational algebraic
geometry can first reduce this system into much simpler pieces by a technique known as primary

decomposition. What this means is that the package can split sys up into a finite number of
simpler components, the union of whose zero-loci is the zero-locus of sys itself – in other words,
solving any of the simpler sets of equations gives a solution to the full set sys:

pieces = PrimDec[{Var->{x,y,z,w}, Gen->sys}];

The output is rather complicated so we will not present it here; suffice it to say that pieces is a
list of length 11, check using Length[pieces] , meaning that there are 11 simple components to

sys, each of dimension 0 and each represented by its own ideal list5. Now, we can find the number
of real roots of any 0-dimensional system of polynomials with the command NumRoots[ ]. This
adds the assignment NRoots → {number of roots} to an ideal list. We can then extract the
number with the keyword NRoots in the same way as we extracted the dimension above.

We can perform this for each of the 11 components by entering

Table[NRoots/.NumRoots[pieces[[i]]], {i, 1, 11}]

giving us

{{1}, {0}, {0}, {1}, {0}, {0}, {1}, {0}, {0}, {0}, {0}}

Therefore, we see that eight of the components do not have real roots while three of them have
a single real root. In other words, sys has a total of 3 real roots.

We can, of course, do more. Since we have the explicit expressions for the actual pieces
we can find what the roots are explicitly. We see from the above that the 1st, 4th and 7th
components have real roots. Executing pieces[[1]] and similarly extracting pieces[[4]] and

pieces[[7]] will give us the relevant equations. In fact, here they all turn out to be

{Gen → {z, y, x, w}, Dim → {0}, Var → {w, x, y, z}, Par → {}}

We see that the Gen keyword is set to {z, y, x, w}. To find the real roots we must therefore
solve the equations obtained by setting each of the polynomials in this list to zero - which is
just the origin. In other words, all of the roots here are at (0, 0, 0, 0) and therefore the original
system, sys, has a triple root at the origin and no other real roots.

7 Summary

We have briefly described, illustrating our discussion with simple examples, how the Mathemat-

ica package STRINGVACUA may be used to aid in the investigation of vacuum configurations

5By default, PrimDec retains only dimension 0 pieces. As before this may be adjusted using the Dim→
option.
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of models of string phenomenology. We have focused on two main applications. First, we de-
scribed how to split the large equations describing the vacuum space of a model up into smaller
systems, each of which can be dealt with more easily. Second, we discussed how to obtain
constraints on the parameters in a theory necessary for the existence of given types of vacua.

In fact, in this short note, we have only used 7 of the package’s 17 modules and we have
far from exhausted the flexibility provided by optional arguments even in those. The message
is that there is much more STRINGVACUA can do to aid the user than the simple automated
routines described in this document. Many of the methods imported to Mathematica from
Singular by this package are not restricted to use in string theory, but will benefit researchers
in any area where a problem involves polynomial computations. The papers [1, 2], along with
the Mathematica help files for the various modules, should go a long way towards helping the
user in apply the techniques of STRINGVACUA in a more flexible manner. This, as always
with a computer algebra system, can lead to huge improvements in what may be achieved using
the package.
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A Glossary – supergravity model list keywords

A.1 CreateModel

The command model=CreateModel[...] takes a list of fields, a Kähler potential and a su-
perpotential, and creates a model list, here called model. A model list contains essentially all
of the information about a supergravity theory which is useful in an analysis of its vacuum
space. Objects, such as the F-terms and the scalar potential, can be extracted via ‘keywords’
by executing a command of the form

keyword/.model

where keyword can be any of the following:
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Keyword Description

Fields A list of the superfields in the model, e.g. {T}.
ReFields A list of the real parts of the superfields in the model, e.g. {t}.
ImFields A list of the imaginary parts of the superfields in the model, e.g. {τ}.
ComplexToReal A list of the relations between the Fields and their real and imaginary

parts, in the form {T → t+ iτ}.
Par A list of the flux parameters in the model, e.g. {a}.
KPot The Kähler potential.
SPot The superpotential.
DeltaPot The non-supersymmetric extension to the scalar potential.
DSPot A list of first derivatives of the superpotential with respect to the

superfields, in the form “{field → derivative with respect to field}”.
FTerms A list of the F-terms, in the form “{field → F-term}”.
Pot The supergravity scalar potential, calculated from the superpotential,

Kähler potential and non-SUSY extension.
DPot A list of the first derivatives of the scalar potential, in the same format

as DSPot, above.
Hesse The Hessian matrix of the scalar potential, computed with respect to

the real fields.

A.2 CalcModel

CalcModel creates an extended model list which contains the keywords above and added assign-
ments where the supergravity objects have been processed into a form suitable for our methods
– an “I” is prefixed to the above keywords to indicate this. For example, Pot/.model is now
accompanied by IPot/.model. All data is accessed in the manner described above. The following
optional inputs of CalcModel are also keywords:

Keyword Description

CDummies A list of replacement rules for non-algebraic functions of superfields,
in the form “function→ dummy variable”.

Dummies A list of replacement rules for non-algebraic functions of real fields,
in the form “function→ dummy variable”.

RDummies A list of rules for replacing non-algebraic functions with dummy vari-
ables, in the form “function→ dummy variable”.
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